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Abstract. The two-terminal reliability, known as the pair connectedness or

connectivity function in percolation theory, may actually be expressed as a product of

transfer matrices in which the probability of operation of each link and site is exactly

taken into account. When link and site probabilities are p and ρ, it obeys an asymptotic

power-law behaviour, for which the scaling factor is the transfer matrix’s eigenvalue

of largest modulus. The location of the complex zeros of the two-terminal reliability

polynomial exhibits structural transitions as 0 ≤ ρ ≤ 1.
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1. Introduction

Since the original work of Moore and Shannon [1], network reliability has been a

field devoted to the calculation of the connection probability between different sites

of a network constituted by edges (links, bonds) and nodes (vertices, sites), each of

them having a probability of operating correctly (the reliability). This field, although

mainly developed in an applied background [2], is strongly related to graph theory

[3, 4], combinatorics and algebraic structures [5, 6], percolation theory [7, 8], as well

as numerous lattice models in statistical physics [9, 10, 11, 12]. For instance, the all-

terminal reliability RelA, i.e., the probability that all nodes are connected, is derived

from the Tutte polynomial, an invariant of the associated graph, when all edges have

the same reliability p (0 ≤ p ≤ 1). This polynomial appears in the partition function for

various Potts models, and has been calculated for several families of graphs [9, 10, 11];

the location of its complex zeros has also been studied [10, 11, 13]. The two-terminal

reliability Rel2(s → t), the probability that a source s and a destination t are connected,

is known in percolation theory as the connectivity function or pair connectedness. It

has been used in modeling epidemics or fire propagation [7, 8]. This approach is

complementary to the effort recently devoted on complex networks, in which the network

resilience, i.e., its robustness against link or node failures (sometimes following deliberate

attacks) has been studied for ‘scale-free’ random graphs [14].

Exact reliability calculations are known to be very difficult [15], except for series-

parallel reducible graphs for which only successive simplifications {pseries = p1 p2,

pparallel = p1//p2 = p1 + p2 − p1 p2} are needed. Even for planar graphs with identical

edge reliabilities p and perfect nodes (i.e., pnode ≡ 1), their algorithmic complexity has

been classified as #P-hard [5, 16]. Yet, the development of Internet traffic makes it

important to assess the overall reliability of network connections, when links and nodes

may fail.

In this work, we show that for a network represented by an undirected graph

G, the two-terminal reliability may be expressed as a product of transfer matrices,

where individual edge and node reliabilities are exactly taken into account. Such a

factorization, already observed for graph colouring polynomials [4, 11], 2D-percolation

in square strips [17] or all-terminal reliability polynomials [9, 10], originates with the

underlying algebraic structure of the graph. We apply our method to the two examples

(Kn is the complete graph with n nodes) of figure 1. The K4-ladder describes a generic

architecture for long-haul connections, while the K3-cylinder slightly generalizes the

‘sponge model’ of width three by Seymour and Welsh [18]. When edge and node

reliabilities are respectively equal to p and ρ, a unique transfer matrix is involved;

its largest eigenvalue determines the asymptotic power-law behaviour of reliability as

a function of the ladder length. The location of the complex zeros of Rel2(p) exhibits

striking structure transitions as ρ decreases from one to zero. We illustrate the variety of

behaviours for the above-mentioned graphs. For the sake of completeness, we finally give

the matrix decomposition for the all-terminal reliability of the K4-ladder with arbitrary
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Figure 1. Generic network architectures: (top) K4-ladder (bottom) K3-cylinder.

Links and nodes are identified by their reliabilities: an, bn, etc. for links, Sn, Tn, and

Un for nodes. The source is S0, the possible destinations are Sn, Tn, or Un. A missing

link or node’s reliability is simply set to zero.

edge reliabilities (the uniform case has already been treated by Chang and Shrock [9]).

2. Graph decomposition

The gist of our method is to simplify the graph by removing links of the nth (last)

elementary cell of the network, namely the edges and nodes indexed by n, a procedure

called pivotal decomposition or deletion-contraction [5]. If the end terminal t (which

can be regarded as perfect) is connected to node u through edge e, with respective

reliabilities pu and pe, then

Rel2(G) = (1 − pe) Rel2(G\e) + pe pu Rel2(G · e)
+ pe (1 − pu) Rel2(G\u), (1)

where G\e and G\u are the graphs where e or u have been deleted, and G · e the

graph where t and u have been merged through the ‘contraction’ of e; (1) merely sums

probabilities of disjoint events. This procedure, along with standard series-parallel

reductions, is repeated for the three (instead of the usual two) secondary graphs in

order to take advantage of a structural recursivity of the graph. After a finite number

of such reductions, we get replicas of the original graph, albeit with one less elementary

cell and with the (n − 1)th cell’s edge and node reliabilities possibly renormalized by

those of the nth cell, or set to either zero or one. In order to ensure the existence of a

recursion relation, the graph structure must be closed under successive applications of

(1); it may initially require the use of extra edges with symbolic reliabilities, so that all

nodes of an elementary cell are connected pair-wise, even if such links do not exist in

the graph under consideration. At this point, a recursion hypothesis is needed, giving



What is the probability of connecting two points ? 4

bn-1//(cn Tn en)
bn-1

an
Sn

cn

bn
en

Tn

Sn-1

dn

Tn-1

= (1 – bn) Sn

Sn-1

dn
Tn-1

an

+ bn Tn + bn (1-Tn)bn-1 Sn

Sn-1

Tn-1

an // en

cn // dn

bn-1
Sn

Sn-1

Tn-1

an

dn

Figure 2. First step of the pivotal decomposition : the removal of edge bn. Three

structurally identical, secondary graphs are obtained.

for instance Rel2(S0→Sn) as a sum over specific polynomials in the reliabilities indexed

by n; these are often obvious from the n = 2 value. Going from n − 1 to n provides

the transfer matrix linking the prefactors of the polynomials, because Rel2 is an affine

function of each component reliability; the (often trivial) n = 1 case serves as the initial

condition of the recurrence.

3. Application to the K4-ladder

Let us first illustrate this method by calculating Rn = Rel2(S0→Sn) for the K4-ladder

(top of figure 1). Following the guidelines of the preceding section, we first consider bn

for deletion as detailed in figure 2. Note that the three secondary graphs have essentially

the same structure. The renewed application of (1) leads to two families of contributions.

The first one is a sum of Rn−1-like terms with prefactors, in which the ‘old’ an−1, ...,

Tn−1 are renormalized by one or more of the ‘new’ an, ..., Tn. The second one is a sum of

Rel2(S0→Tn−1)-like terms. There is no need for coupled recursion relations for the two

destinations Sn and Tn, since they are essentially identical through the permutations

an↔en, cn↔dn, and Sn↔Tn. Rn may be expressed as the sum of five polynomials in

an, ..., Tn (see below). The five prefactors at step n are obtained from those at step n−1

by a recursion relation which translates as a 5×5 transfer matrix (such calculations are

routinely performed by mathematical software). The value of R1 leads to

Rn = (1 0 0 0 0) Mn Mn−1 · · ·M1 M0




1

0

0

0

0




, (2)
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where Mi’s coefficients Mkl are (x ≡ 1 − x)

M11 = (ai + bi ei Ti − ai bi ei Ti) Si, (3a)

M12 = (di + bi ci Ti − di bi ci Ti) Si, (3b)

M13 = ai di Si + bi (χi + ci ei) Si Ti, (3c)

M14 = − M44 = ai ei M42, (3d)

M15 = − M45 = ci di M41, (3e)

M21 = (ei + bi ai Si − ei bi ai Si) Ti, (3f)

M22 = (ci + bi di Si − ci bi di Si) Ti, (3g)

M23 = ci ei Ti + bi (χi + ai di) Si Ti, (3h)

M24 = − M54 = ai ei M52, (3i)

M25 = − M55 = ci di M51, (3j)

M31 = − (ai bi + ai ei + bi ei − 2 ai bi ei) Si Ti, (3k)

M32 = − (bi ci + bi di + ci di − 2 bi ci di) Si Ti, (3l)

M33 = ((1 − 2 bi) χi − bi (ci ei + ai di)) Si Ti, (3m)

M34 = − M14 − M24, (3n)

M35 = − M15 − M25, (3o)

M41 = ai bi ei Si Ti, (3p)

M42 = bi ci di Si Ti, (3q)

M43 = bi (χi + ci ei) Si Ti, (3r)

M51 = ai bi ei Si Ti, (3s)

M52 = bi ci di Si Ti, (3t)

M53 = bi(χi + ai di) Si Ti, (3u)

with χi = ai ci di ei+ai ci di ei−ai ci di ei. In the n = 0 case, a0 = 1 and c0 = d0 = e0 = 0.

The five above-mentioned polynomials are actually given by the first row of Mn.

Rel2(S0 → Tn) is given by (2) if the left vector is (0 1 0 0 0). We have here another

useful instance of a product of random matrices [19].

The case of identical reliabilities ai = · · · = ei = p (unless i = 0, see the restriction

above) and Si = Ti = ρ is worth investigating, since only the nth power of a unique

matrix needs be taken. Because of the recursion relation between successive values of Rn,

the generating function G(z) =
∑

∞

n=0 Rn zn is a rational fraction of z. Its denominator

D(z) is derived from the characteristic polynomial of the transfer matrix, taken at 1/z.

The numerator of G(z) is then deduced from the computed first terms of the G(z)D(z)’s

expansion. The final result reads:

G(z) =
1

2
ρ (1 − p ρ) +

N (z)

D(z)
, (4)

N (z) =
1

2
ρ (1 + p ρ)
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Figure 3. Location of the complex zeros of the two-terminal reliability polynomial

Rn(p, ρ) for n = 150 and ρ = 1.

− 1

2
p2 ρ3 (2 − 10 p + 13 p2 − 4 p3 − p3 ρ) z

+ (1 − p)2 p5 (2 − 4 p + p2) (1 − ρ) ρ5 z2, (5)

D(z) = 1 − p ρ
(
2 + 4 p ρ − 14 p2 ρ + 13 p3 ρ − 4 p4 ρ

)
z

+ 2 (1 − p) p3 ρ3
(
2 − 7 p + 4 p2 + 7 p2 ρ

−10 p3 ρ + 5 p4 ρ − p5 ρ
)

z2

− 4 (2 − p) (1 − p)3 p6 (1 − ρ) ρ5 z3. (6)

Equations (4–6) are simpler for perfect nodes, because the denominator is of degree 2

in z; a partial fraction decomposition provides

Rn =
1 − p

2
δn,0 + a+ λn

+ + a− λn
−
, (7)

λ± =
p

2

[
2 + 4 p − 14 p2 + 13 p3 − 4 p4 ±

√
A
]
, (8)

a± =
1 + p

4
± 2 + 2 p + 10 p2 − 27 p3 + 19 p4 − 4 p5

4
√
A

,

(9)

A = 4 + 32 p2 − 204 p3 + 452 p4 − 516 p5

+ 329 p6 − 112 p7 + 16 p8. (10)

As n grows, Rn ≈ a+ λn
+: the two-terminal reliability exhibits a power-law behaviour,

the scaling factor being λ+, the eigenvalue of largest modulus. Alternatively, Rn ∼
exp(−n/ξ), where ξ = −1/ ln(λ+) is the correlation length of percolation theory [7].

The location of the zeros of Rel2(p) in the complex plane is also worth investigating.

The situation differs from that for chromatic [4, 11] and all-terminal polynomials [9],

because Rel2(p) is not a graph invariant. However, the node reliability ρ is an extra

parameter that has a deep impact on the curves to which the zeros of Rel2(p) converge

as n → ∞. The critical values of ρ at which shape transitions occur may be deduced
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Figure 4. Same as figure 3, with ρ = 0.8.
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Figure 5. Same as figure 3, with ρ = 0.5.
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Figure 6. Same as figure 3, with ρ = 0.01.
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[20] from the three roots of D(1/z). The straightforward but tedious procedures used to

determine these values, along with a few asymptotic expansions as ρ → 0, are outlined

in the Appendix (they are also applied to the K3-cylinder configuration). We limit

ourselves to the final results in the following sections.

A sample of the richness of behaviour is displayed in figures 3–6 for the K4-ladder

and decreasing values of ρ. We initially observe four well-separated ‘curves’ that merge

into two when ρ is exactly equal to 0.8 (see figure 4) and separate again. When ρ further

decreases, other isolated zeros appear, as in figure 6. These zeros occur in pairs, the

separation of which vanishes exponentially with n, and converge to roots of the algebraic

equation

0 = 2 + 2 ρ + 4 (3 ρ + 1) ρ p − (40 ρ + 11) ρ p2

+ (45 ρ + 4) ρ p3 − 20 ρ2 p4 + 3 ρ2 p5 . (11)

Equation (11) is obtained by ensuring that N (z) and D(z) have a common root. The

true limiting isolated points are such that this root is the eigenvalue of greatest complex

modulus at the given p and ρ. Actually, the triplet of figure 6 appears only when

ρ < ρc1 ≈ 0.175221381869, where ρc1 is a solution of (see the Appendix)

0 = − 32768 − 198656 ρ + 3990544 ρ2 − 12843528 ρ3

+ 16258037 ρ4 − 6757568 ρ5 − 2015436 ρ6 − 575540 ρ7

+ 4636356 ρ8 − 3082436 ρ9 + 624640 ρ10 , (12)

whereas the associated pc1 ≈ −0.604692601721 is a solution of

0 = 40 − 364 p + 1064 p2 − 700 p3 − 1946 p4 + 4296 p5

− 3465 p6 + 1074 p7 + 146 p8 − 176 p9 + 32 p10 . (13)

If ρc1 < ρ < ρc2 ≈ 0.406657811123 (the algebraic equation satisfied by ρc2 is actually of

degree 65 in ρ), only the two rightmost isolated points are present.

The leftmost isolated point, located on the real negative axis, is asymptotically given

by −(2 ρ)−1/3 + 25/24 + O(ρ1/3); for the other two, ρ must be replaced by ρ e±2 i π. By

contrast, the algebraic curves’ asymptotic limit is a circle of radius (2 ρ)−1/4 centred at

(27/32, 0), demonstrating a different power-law behaviour with ρ. Finally, a third critical

value ρc3 ≈ 0.49137068 also appears, for which we have not been able to find the defining

algebraic equation satisfied by ρ (its degree is likely to be large); at this value, there is an

asymptotic (anti-)crossing of the curves in the vicinity of p ≈ 1.55533445+i 0.55314582.

4. K3-cylinder

In the second architecture of figure 1, S0 is still the source while Sn, Tn, and Un are

the three possible destinations (the last two are equivalent through a permutation of

variables). The crucial point is to take all fi 6= 0, because in the successive applications

of (1), the merging of nodes entails a secondary graph in which Sn−1 and Un−1 are

connected. As mentioned above, the dummy — with respect to the Manhattan-like strip
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— link fn between Sn and Un must therefore be present right at the start; this allows

us to unveil the coupled recursion relations between the source and all the destinations.

Each source-destination reliability is a sum of eight polynomials in reliabilities indexed

by n. This could lead to 24 × 24 transfer matrices M̃i. However, several rows of

these matrices, if not identical, are linearly dependent; rearrangements of terms actually

reduce their size to 13 × 13, even when fi = 0.

The final result reads

R̃n = vL M̃n M̃n−1 · · · M̃1 M̃0 vR, (14)

where vR is the column vector defined by (vR)k = δk1 for 1 ≤ k ≤ 13 (using the

Kronecker notation: δkl is equal to 1 if k = l and 0 if k 6= l), and vL is a row vector

which depends on the destination: (vSn
)k = δ1k, (vTn

)k = δ2k, and (vUn
)k = δ3k. The

matrix elements are much lengthier than in (3a–3u), and are given in the Appendix for

the sake of completeness.

4.1. fi = 0

Following the procedure outlined in the preceding section, we can compute the new

generating function. For perfect nodes, G̃(S0→Un) is given by Ñ /(D̃1 D̃2):

Ñ = p2 − (1 − p) p4
(
3 + 3 p − 4 p2

)
z

+ (1 − p)3 p6
(
2 + 11 p − 3 p2 − 2 p3

)
z2

+ (1 − p)3 p8
(
2 − 4 p + 3 p2 + 11 p3 − 13 p4 + 3 p5

)
z3

− (1 − p)4 p10
(
3 + 6 p − 12 p2 + 10 p3 − 10 p4 + 4 p5

)
z4

+ (1 − p)6 p12
(
1 + 8 p − p2 − 5 p3 − p4 + p5

)
z5

− (1 − p)8 p15
(
2 + 5 p − 4 p2

)
z6 + (1 − p)10 p18 z7, (15)

D̃1 = 1 −
(
1 − p2

)
p
(
1 + p − p2

)
z

+ (1 − p)2 p3
(
1 + p + p2 − 2 p3

)
z2 − (1 − p)4 p6 z3, (16)

D̃2 = 1 − p
(
2 + 2 p + p2 − 9 p3 + 5 p4

)
z

+ (1 − p) p2
(
1 + 5 p + 5 p2 − 6 p3 − 15 p4

+13 p5 + p6 − 2 p7
)

z2

− (1 − p)2 p4
(
2 + 6 p + 6 p2 − 26 p3 + 17 p4

−18 p5 + 27 p6 − 16 p7 + 3 p8
)

z3

+ (1 − p)4 p6
(
1 + 6 p + 4 p2 − p3 − 17 p4

+9 p5 + 3 p6 − 2 p7
)

z4

− (1 − p)6 p9
(
2 + 4 p + p2 − 7 p3 + 3 p4

)
z5

+ (1 − p)8 p12 z6. (17)
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Figure 7. Complex zeros of the two-terminal reliability polynomial for the K3-

cylinder, fi = 0, n = 100 and ρ = 1.
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Figure 8. Same as figure 7, with ρ = 0.6.

When ρ 6= 1, the degrees of Ñ , D̃1, D̃2 are still 7, 3 and 6, respectively; their expressions

are only lengthier.

The eigenvalue of greatest modulus λmax involved in the asymptotic power-law

behaviour obeys D̃2(1/λmax) = 0. The degree of the denominator leads us to expect

that the ‘width’ of the network should drastically affect the size of the transfer matrices.

The associated complex zeros are displayed for various values of ρ in figures 7–9.

The overall structure is more complicated than that for the K4-ladder, but some features

are quite similar.

A segment of the real axis appears as a limit curve when 0.4202958 < ρ < 0.8092264.

These critical values obey different criteria. Indeed, the higher one (with the associated

critical, real p ≈ 1.53039659) occurs when two complex roots of D̃2(z) have the same

(lowest) modulus as a real negative root of D̃1(z). By contrast, the lower critical value

0.4202958 appears when D̃2(z) exhibits two complex roots and a real positive root with
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Figure 9. Same as figure 7, with ρ = 0.1.

the same modulus (the critical p is about 1.8363587).

What happens when ρ → 0 ? The outermost parts of the curves tend asymptotically

to a circle of radius

(
5 −

√
17
)1/4

√
2 ρ

, i.e., approximately
0.684261√

ρ
. The closed curve on

the left survives. For instance, a triple point pt goes asymptotically as ± i a√
ρ

+ b, with

a ≈ 0.4610389 and b ≈ −0.08457522 (a2 is a root of a polynomial of degree 10, and

b is a rational fraction of a). From each of these points, two curves head back to the

origin. One of them crosses the imaginary axis at p ∼ ± i a′

√
ρ
, with a′ ≈ 0.33529987 (a′2

is actually the root of a polynomial of degree 17).

4.2. fi 6= 0

In this case, the generating function G̃′(S0 →Un) is now equal to Ñ ′/(D̃′
1 D̃′

2), where

for perfect nodes

Ñ ′ = p (1 + p − p2)

− (2 − p) (1 − p)2 p3 (1 + p) (1 + 3 p − 3 p2) z

+ (1 − p)5 p5 (1 + 10 p + 8 p2 − 5 p3 − 2 p4) z2

− (1 − p)6 p8 (3 + 8 p − 25 p2 + 9 p3 + 4 p4 − p5) z3

+ (1 − p)8 p11 (1 − 2 p) (3 + 3 p − 7 p2 + 2 p3) z4

− (1 − p)11 p14 (1 − 3 p + p2) z5, (18)

D̃′
1 = 1 − (1 − p)2 p (1 + p)

(
1 + p − p2

)
z

+ (1 − p)4 p3
(
1 + p + p2 − 2 p3

)
z2

− (1 − p)7 p6 z3, (19)

D̃′
2 = 1 − p (1 + 3 p + 4 p2 − 23 p3 + 23 p4 − 7 p5) z
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Figure 10. Complex zeros of the two-terminal reliability polynomial for the K3-

cylinder, fi 6= 0, n = 100 and ρ = 1.
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Figure 11. Same as figure 10, with ρ = 0.3.

+ (1 − p)2 p3 (1 + 6 p + 2 p2 − 9 p3

− 8 p4 + 16 p5 − 6 p6) z2

− (1 − p)4 p6 (2 + 4 p + p2 − 15 p3 + 12 p4 − 3 p5) z3

+ (1 − p)7 p9 z4. (20)

Note that D̃′
2 is of degree 4 in z (even when ρ 6= 1), so that a complete

analytical solution for the two-terminal reliability could be obtained — but would be

very cumbersome.

The location of complex zeros are displayed in figures 10–12. Critical values of

different nature occur in this case. Two isolated zeros exist as long as 0.3633122889 <

ρ ≤ 1. They do not survive in the ρ → 0 limit, in contrast with the K4 case. For

ρ ≈ 0.3633122889, they merge with a continuous curve at p ≈ 1.466816 ± i 0.5823927.
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Figure 12. Same as figure 10, with ρ = 0.01.

For these isolated points, the relevant p and ρ obey the polynomial constraint

0 = − 2 (1 − 2 p)
(
1 + 5 p − 4 p2

)

− p
(
1 + 39 p − 172 p2 + 316 p3 − 230 p4 + 56 p5

)
ρ

+ p2
(
12 + 42 p − 416 p2 + 947 p3 − 899 p4

+382 p5 − 60 p6
)

ρ2

+ p3
(
27 − 45 p + 33 p2 − 90 p3 + 135 p4

−77 p5 + 15 p6
)

ρ3, (21)

the origin of which is similar to that of (11).

Another feature is the segment on the real axis (see figure 11) which occurs when

0.016301418 < ρ < 0.83140245. These two critical values are actually solutions of a

polynomial in ρ of degree 95, and the associated critical p’s, namely 1.60638989 and

4.56013168, are also roots of a polynomial in p of degree 95. These transitions occur

when the equation D̃′
2(z) = 0 has a double, real (negative) root, the opposite of which

is also a root.

As in the preceding subsection, the global structure expands as ρ → 0. The outer

curves tend asymptotically to a circle of radius
1

71/5 ρ2/5
≈ 0.677611 ρ−2/5. The closed

curve on the left also survives (see figure 12). Here again, it crosses the imaginary axis

asymptotically at p ∼ ±i

(
10−1/6

ρ1/3
− 3

5
√

10

)
.

5. Transfer matrices for the all-terminal reliability RelA

Nodes may be viewed as perfect in this case since the node reliabilities can be factored

out, and simpler calculations may be done because (1) has one less term. For the
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K4-ladder, the transfer matrix is 2 × 2:

RelA(n) = (1 0) M̂n · · · M̂n−1 M̂0

(
1

0

)
; (22)

The matrix elements (M̂i)kl of M̂i are (x ≡ 1 − x)

(M̂i)11 = [(ai + ei) (ci + di) − 2 ai ci di ei] bi

+ [(ai//ei) + (ci//di)] bi, (23)

(M̂i)12 = ai ci di ei [
1

ai

+
1

ci

+
1

di

+
1

ei

− 3] bi

+ [(ai//ei) (ci//di)] bi, (24)

(M̂i)21 = [(ai//ci) + (di//ei) − 2 (ai ei//ci di)] bi

− (M̂i)11, (25)

(M̂i)22 = (ci + di − 2 ci di) (ai + ei − 2 ai ei) bi

− (M̂i)12; (26)

in M̂0, a0 = 1 and c0 = d0 = e0 = 0. This is a special case of a multivariate Tutte

polynomial [21]. If ai = · · · = ei ≡ p (0 ≤ i ≤ n), we recover Chang and Shrock’s result

(appendix 4.2 of [9]) ĜA(z) = N̂A(z)/D̂A(z) with

N̂A(z) = p + p3 (1 − p) (4 − 3 p) z, (27)

D̂A(z) = 1 − p2
(
12 − 26 p + 21 p2 − 6 p3

)
z

+ 2 p5 (1 − p)3 (2 − p) z2. (28)

The asymptotic power-law scaling factor is controlled by ζ+ = 1
2
p2 (12 − 26 p + 21 p2 −

6 p3 +
√
B) with B = 144 − 640 p + 1236 p2 − 1308 p3 + 793 p4 − 260 p5 + 36 p6.

6. Conclusion and perspectives

The two-terminal reliability of undirected networks may be expressed by a product of

transfer matrices, in which each edge and node reliability is exactly taken into account.

This result is easily extended to the all-terminal reliability with nonuniform links, as

well as to directed graphs. We can now go beyond series-parallel simplifications and

look for new (wider) families of exactly solvable, meshed architectures that may be

useful for general reliability studies (as building blocks for more complex networks), for

the enumeration of self-avoiding walks on lattices, and for percolation with imperfect

bonds and sites. Since the true generating function is itself a rational fraction, Padé

approximants should provide efficient upper or lower bounds for these studies. Moreover,

individual reliabilities can be viewed as average values of random variables. Having

access to each edge or node allows the introduction of disorder or correlations in

calculations. The location of complex zeros of the two-terminal reliability polynomials

exhibits numerous structure transitions, with the possible occurrence of isolated points,

convergence to segments of the real axis, and also an expansion from the origin as ρ

goes to 0 which obeys power-law behaviours with rational exponents which may differ



What is the probability of connecting two points ? 15

strongly for seemingly not too dissimilar graphs. All critical values of the node reliability

are actually algebraic values. Finally, in a more applied perspective, let us mention that

the failure frequency ν of a given connection is another important performance index of

networks. If equipment i with reliability pi has a failure rate λi, ν =
∑

i λi pi ∂Rel2/∂pi.

The matrix factorization makes the calculation straightforward, since each pi appears

in one transfer matrix only.
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É. Didelet, M. Ducloy, F. Glas, and G. Patriarche are gratefully acknowledged.



What is the probability of connecting two points ? 16

Appendix A. A few recipes on the determination of the complex zeros of

two-variate polynomials

Our method relies on well-known results for the zeros of recursively defined one-

parameter polynomials [4, 9, 11, 20]. Since we are dealing here with two-variate (p,ρ)

polynomials, let us outline the procedure used to obtain the figures, the critical values,

and the asymptotic expansions given in the text.

Appendix A.1. Determination of the two-variate polynomial

As shown by many published studies, the convergence of the zeros to limiting sets of

algebraic curves is already apparent for n roughly equal to 50. To be on the safe side,

we calculated these polynomials for n = 100 or n = 150 in order to (i) be very close

to the asymptotic limit (ii) get a good sampling of the zeros, since — especially in the

small-ρ limit — they are not uniformly distributed over the asymptotic curves when

n → ∞ (see figures 7–9 and 12).

We have calculated these polynomials using Mathematica and recursion relations

based on the denominator of the generating function. If

D(z) = 1 + b1(p, ρ) z + b2(p, ρ) z2 + · · ·+ bm(p, ρ) zm , (A.1)

then

Rel
(n)
2 = −b1(p, ρ) Rel

(n−1)
2 −b2(p, ρ) Rel

(n−2)
2 −· · ·−bm(p, ρ) Rel

(n−m)
2 .(A.2)

Knowledge of the first m polynomials deduced from the generating function allows

the quick determination of Rel
(n)
2 for a given ρ. ρ has not been kept as a parameter

because of the explosion in the number of terms, but has been given rational values in

order to prevent numerical errors; this gives polynomials with integral coefficients that

may be very large (hundreds of digits sometimes). Their zeros have been obtained using

Mathematica’s routine NSolve, the accuracy of which must be set accordingly (higher

than hundreds of digits).

Appendix A.2. Limiting curves and isolated zeros

The zeros of recursively defined (one-parameter) polynomials mostly tend to aggregate

close to curves such as (at least) two eigenvalues have the same modulus (the largest

one for all the eigenvalues). Assuming that the ratio of the two eigenvalues is equal to

ei θ, we can write

D(z) = (1 − ζ ei θ/2 z) (1 − ζ e−i θ/2 z) (1 − b̃1 z − · · · − b̃m−2 zm−2), (A.3)

which must be compared with (A.1). Elimination of ζ and the b̃k’s leads to a

(polynomial) relationship between p, ρ and even powers of t = cos(θ/2). Replacing

t by the more practical T = cos θ gives a polynomial constraint C(p, ρ, T ) = 0. However,

the true limiting curves are defined by only a subset of this constraint’s many solutions

for a given ρ and T ranging from -1 to +1, because |ζ | must be the largest. In this

context, it does no harm to investigate special points of these curves.
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Appendix A.2.1. Double roots of D(z) = 0 In our case studies the endpoints of the

limiting curves are such that both roots are equal (θ = 0 or equivalently T = +1): they

are thus obtained from a subset of the solutions of Ĉ(p, ρ) = C(p, ρ, T = +1) = 0. For

the K4-ladder with ρ = 1, this leads to

0 = (2 − p)2 (1 − p)4 (1 − p + p2)2

(4 + 32 p2 − 204 p3 + 452 p4 − 516 p5 + 329 p6 − 112 p7 + 16 p8) (A.4)

which gives the true endpoints of figure 3: −0.1175415 ± i 0.2041183, 0.7609223 ±
i 0.5877642, 1.343654 ± i 0.3456238, and 1.512965 ± i 0.4931547 (all the solutions are

actually roots of the polynomial of degree 8). A quicker way to find these endpoints

is to investigate when D(z) and
∂D(z)

∂z
are both equal to zero. Elimination of z from

these two equations leads to the desired Ĉ(p, ρ), or more accurately, to a product of

two-variate polynomials. Confrontation with numerical estimates of the zeros allows to

remove spurious solutions.

Appendix A.2.2. Opposite roots of D(z) = 0 While they are usually not associated to

remarkable points in the numerical plots of the complex zeros, they are nonetheless

quite useful. Indeed, they pinpoint the limiting curves and can be obtained more

easily because they satisfy D(z) = 0 and D(−z) = 0. Considering the even and odd

components of D(z) as functions of Z = z2 and performing the elimination of Z gives a

new constraint C̃(p, ρ), which is nothing but C(p, ρ, T = −1) = 0. This task is simpler

because the degree of the polynomials has been divided by two (this definitely helps

because even computer-assisted computations become ugly when the degree of D(z)

increases). A few real zeros may correspond to opposite roots. For the K4-ladder

with ρ = 1, -0.2430623 and 1.527648 are indeed two such examples of intersections of

the curves with the real axis, which may ultimately be tracked down to solutions of

−2 − 4 p + 14 p2 − 13 p3 + 4 p4 = 0 (see figure 3).

Appendix A.2.3. Real roots and segments on the real axis They are frequent features

of the complex zeros’ structure. We mentioned in the previous paragraph that algebraic

curves may intersect the real axis at a given p, the location of which can be traced back

to particular roots of D(z) = 0. Whole segments of the real (positive or negative) axis

may also occur for some graphs (see figures 8 and 11). It happens when, for a fixed ρ, two

complex conjugate eigenvalues have the largest modulus for an extended range of real

p’s. The proper assessment of the endpoints of this segment generally requires careful,

numerical tests of the roots of D(z) = 0. The existence of segments of the real axis

may be restricted to a limited range of ρ’s or may persist down to ρ → 0; it depends on

the graph under consideration. When an algebraic curve (and its symmetrical twin with

respect to the real axis) crosses the real axis, we have C(p, ρ, T ) = 0 and
∂C
∂p

(p, ρ, T ) = 0,

because p is a double (real) root at the intersection. The elimination of T gives another

polynomial constraint between p and ρ.
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Appendix A.2.4. Isolated zeros, intersections with the imaginary axis, and roots of

higher order Isolated zeros correspond to values of p and ρ such that the residue of

the generating function — taken at one of the eigenvalues of largest modulus — simply

vanishes. This implies that D(z) and N (z) are both equal to zero. Here again, the

elimination of z gives a constraint between p and ρ. In the K4-ladder and the K3-

cylinder with fi 6= 0, this leads to (11) and (21), respectively.

In a few cases (see figures 7 and 10), algebraic curves intersect the imaginary axis,

even for vanishing ρ. Noting that if p is a solution, then so is −p, we get a new constraint

allowing the elimination of T .

In yet other instances, sets of algebraic curves join at triple points (see figures 7–9).

This occurs when three roots of D(z) = 0 have the same modulus. These points are

usually harder to pinpoint in practice, especially away from the real axis.

Appendix A.3. Critical values

Changes — sometimes quite drastic — in the global structure of the complex zeros occur

at particular values of ρ: the apparition or disappearance of real segments, isolated

zeros, and small closed curves. These changes take place when, as ρ varies, different

pairs of eigenvalues have the largest modulus. Such a situation may be described in the

following, simplified way. Let us assume that a particular point of the complex zeros’

structure is described by C1(p, ρ) = 0. As ρ decreases, this feature’s origin changes and

can be traced back to another constraint C2(p, ρ) = 0. At the critical (pc, ρc), both

constraints must be satisfied. Elimination of one variable among p and ρ leads to the

desired critical value. Since ρ is kept real, we usually eliminate p. Not surprisingly, ρc

is a root of an algebraic equation, the degree and (integral) coefficients of which may

become quite large. For instance, let us consider the apparition of the third isolated

zero in the K4-ladder configuration. Its existence is based on (11), which is apparently

satisfied for ρ ≤ ρc. When ρ is slightly smaller than ρc, the isolated zero — which

remains on the real axis — approaches the leftmost algebraic curve, which intersects

the real axis at a point such that C(p, ρ, T = −1) = 0. ρc and the associated pc are

therefore defined by their obeying the following two conditions, (11) and

0 = 4 − 14 p + 8 p2

+
(
8 p − 46 p2 + 130 p3 − 153 p4 + 80 p5 − 16 p6

)
ρ

+
(
4 p2 + 18 p3 − 130 p4 + 249 p5 − 232 p6

+119 p7 − 33 p8 + 4 p9
)

ρ2 . (A.5)

The elimination of either p or ρ leads to the defining algebraic equation for the remaining

parameter, which can be expressed as a product of polynomials. Comparison with the

numerical data (one can always bracket ρc or pc by trial and error) allows to select the

relevant polynomial, given in (12) and (13).

Obviously, the elimination procedure, which heavily relies on computer software

(Mathematica in the present case), works best when the degrees (in the variables to
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be eliminated) of the polynomials are not too large. A point may be worth mentioning:

finding critical values involving only real ρc and pc is usually much easier than for a real

ρc and complex conjugate pc’s, because pc is associated with Tc which is seldom equal

to ±1. We have been able to calculate the critical ρc corresponding to the apparition

of the first two isolated (complex conjugate) zeros for the K4-ladder, by considering

the conditions C(p, ρ, T ) = 0 and (11), which can be decomposed in real and imaginary

parts. This gives four equations and four parameters, namely ρ, T , Re(p), and Im(p).

While it does not present any conceptual difficulty, this task may become numerically

challenging since after each elimination procedure, the degrees in the remaining variables

have a tendency to ‘explode’. Suffice it to say that the polynomial defining this critical

ρc is of degree 65, much larger than the degree 10 exhibited by (12–13).

Appendix A.4. Asymptotic expansions

Our general method is to first assess numerically the expansion rate of the different

substructures, which must behave as a negative fractional power of ρ (because of the

polynomial constraints in p and ρ). This can be done by calculating the complex zeros

for ρ equal to 10−3, 10−6, etc. For instance, we infer from numerical calculations that

the isolated zeros move from the origin with an expansion rate proportional to ρ−1/3.

Setting p = χ ρ−1/3 in (11) gives to lowest order 0 = 2 + 4 χ3 +O(ρ1/3) and implies that

χ3 = −1

2
. The leading term is therefore easily obtained, down to its prefactor (note the

symmetry of order 3 lying at the heart of the triplet of isolated zeros). The following

terms of the asymptotic expansion may be deduced iteratively in a straightforward way.

As regards the sets of algebraic curves, the procedure is identical, with possibly

different exponents. The ‘best’ equation to start with is obtained for opposite roots (see

above). For instance, setting p = χ ρ−1/4 in (A.5) gives 0 = 8 χ2 1 − 2 χ4

√
ρ

+ O(ρ−1/4),

implying χ4 =
1

2
.

Note that because the asymptotic structure is not strictly circular, the following

terms of the expansion may depend on the argument (not only on the modulus) of the

leading term of χ. Finally, in such cases as the K3-cylinder with fi = 0, the above

procedure gives several possible analytical solutions for χ with an expansion rate in

ρ−1/2, with very close numerical values which makes the correct identification of the

true prefactor quite tedious. After careful numerical tests, we finally identified the

expansion rate as

(
5 −

√
17
)1/4

√
2 ρ

.

Appendix B. Transfer matrix for the K3-cylinder

The elements mk,l of the 13 × 13 transfer matrix M̃i are

m1,1 = ai Si
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m1,2 = ci Si Ti (bi + di fi Ui − bi di fi Ui) = −m4,2

m1,3 = ei Si Ui (fi + bi di Ti − bi di fi Ti)

= −m5,3 = −m11,3

m1,4 = ai m1,2 = m2,4

m1,5 = ai m1,3 = m3,11 = −m5,11 = −m11,5

m1,6 = ai ci ei Si Ti Ui (di + bi fi − bi di fi) = −m11,6

m1,7 = ci ei Si Ti Ui (bi di + bi fi + di fi − 2 bi di fi)

= m13,7 = −m4,7 = −m11,7

m1,8 = ai m1,7 = m2,6 = m2,8 = m3,13 = m8,13

= −m5,13 = −m7,13 = −m9,6 = −m9,8 = −m11,8

m2,1 = ai Si Ti (bi + di fi Ui − bi di fi Ui) = −m4,1

m2,2 = ci Ti

m2,3 = ei Ti Ui (di + bi fi Si − bi di fi Si)

= −m7,3 = −m9,3

m2,5 = ai ei Si Ti Ui (bi di + bi fi + di fi − 2 bi di fi)

= −m9,5

m2,9 = ci m2,3 = m3,9

m2,10 = ai (1 − bi) ci (1 − di) ei fi Si Ti Ui

= m8,10 = m9,12 = m13,10 = −m4,10

= −m7,10 = −m9,10

m3,1 = ai Si Ui (fi + bi di Ti − bi di fi Ti)

= −m5,1 = −m11,1

m3,2 = ci Ti Ui (di + bi fi Si − bi di fi Si)

= −m7,2 = −m9,2

m3,3 = ei Ui

m3,4 = ai ci Si Ti Ui (bi di + bi fi + di fi − 2 bi di fi)

m3,12 = ai ci ei Si Ti Ui (bi + di fi − bi di fi)

= m8,12 = −m5,12 = −m7,12

m4,3 = − ei Si Ti Ui (bi di + bi fi + di fi − 2 bi di fi)

= −m13,3

m4,4 = ai ci Si Ti (1 − 2 bi − 2 di fi Ui + 2 bi di fi Ui)

m4,5 = ai ei Si Ti Ui (di − 2 bi di − bi fi − 2 di fi

+ 3 bi di fi) = −m13,5

m4,6 = ai ci ei Si Ti Ui (−bi di + fi − 2 bi fi − 2 di fi

+ 3 bi di fi) = −m13,6
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m4,8 = ai ci ei Si Ti Ui (di − 2 bi di + fi − 2 bi fi

− 3 di fi + 4 bi di fi) = −m13,8

m4,9 = (1 − bi) ci (1 − di) ei fi Si Ti Ui = m12,9

m5,2 = − ci Si Ti Ui (bi di + bi fi + di fi − 2 bi di fi)

= m11,2

m5,4 = ai ci Si Ti Ui (di − 2 bi di − bi fi − 2 di fi

+ 3 bi di fi) = m11,4

m5,5 = ai ei (1 − fi) Si Ui (1 − bi di Ti) = m11,11

m5,6 = ai bi ci (1 − di) ei (1 − fi) Si Ti Ui

m5,7 = ci (bi + di − 2 bi di) ei (1 − fi) Si Ti Ui

m5,8 = ai m5,7 = m10,6 = m10,8 = m11,13

m5,9 = − ci ei Si Ti Ui (di + bi fi − bi di fi)

m6,2 = (1 − bi) ci (1 − di) fi Si Ti Ui = m12,2

m6,3 = bi (1 − di) ei (1 − fi) Si Ti Ui = m10,3

m6,4 = ai m6,2

m6,5 = ai m6,3 = m9,11

m6,6 = ai ci (1 − di) ei (1 − bi fi) Si Ti Ui

m6,7 = ci (1 − di) ei (bi + fi − 2 bi fi) Si Ti Ui

m6,8 = ai m6,7 = m7,6 = m7,8 = m9,13

m7,1 = − ai Si Ti Ui (bi di + bi fi + di fi − 2 bi di fi)

= m9,1 = −m8,1

m7,4 = ai ci Si Ti Ui (−bi di + fi − 2 bi fi − 2 di fi

+ 3 bi di fi) = m9,4

m7,5 = ai (1 − di) ei (bi + fi − 2 bi fi) Si Ti Ui

m7,9 = ci ei Ti Ui (1 − 2 di − 2 bi fi Si + 2 bi di fi Si)

= m9,9

m7,11 = − ai ei Si Ti Ui (bi di + fi − bi di fi) = −m8,11

m8,2 = − ci Si Ti Ui (−bi di + fi − 2 bi fi − 2 di fi

+ 3 bi di fi) = m13,2

m8,3 = − ei Si Ti Ui (bi − 2 bi di − 2 bi fi − di fi

+ 3 bi di fi) = m13,2

m8,4 = − ai ci Si Ti Ui (di − 2 bi di + 2 fi − 3 bi fi

− 4 di fi + 5 bi di fi)

m8,5 = − ai ei Si Ti Ui (2 bi + di − 3 bi di + fi − 3 bi fi

− 2 di fi + 4 bi di fi)
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m8,6 = − 2 ai m6,7

m8,7 = − ci ei Si Ti Ui (2 bi + di − 3 bi di + fi − 3 bi fi

− 2 di fi + 4 bi di fi)

m8,8 = − ai ci ei Si Ti Ui (−1 + 3 bi + 2 di − 4 bi di + 3 fi

− 5 bi fi − 4 di fi + 6 bi di fi)

m8,9 = − ci ei Si Ti Ui (−di + fi − 2 bi fi − di fi

+ 2 bi di fi)

m10,1 = ai (1 − bi) di (1 − fi) Si Ti Ui = m12,1

m10,4 = ci m10,1

m10,5 = ai (bi + di − 2 bi di) ei (1 − fi) Si Ti Ui = −m13,11

m10,9 = bi ci (1 − di) ei (1 − fi) Si Ti Ui = m11,9

m10,10 = ai (1 − bi) ci (1 − di) ei (1 − fi) Si Ti Ui

m11,12 = ai (1 − bi) ci di ei (1 − fi) Si Ti Ui

m12,4 = ai (1 − bi) ci (di + fi − 2 di fi) Si Ti Ui

m12,11 = ei m10,1

m12,12 = ai (1 − bi) ci ei (1 − di fi) Si Ti Ui

m12,13 = ei m12,4 = −m13,12

m13,1 = − ai Si Ti Ui (di − 2 bi di − bi fi − 2 di fi

+ 3 bi di fi)

m13,4 = − ai ci Si Ti Ui (2 di − 3 bi di + 2 fi − 3 bi fi

− 5 di fi + 6 bi di fi)

m13,9 = ci (1 − di) ei (−bi − 2 fi + 3bi fi) Si Ti Ui

m13,13 = − ai ci ei Si Ti Ui (−1 + 2 bi + 2 di − 3 bi di + 2 fi

− 3 bi fi − 3 di fi + 4 bi di fi)

All the following matrix elements are equal to zero: m1,9, m1,10, m1,11, m1,12, m1,13,

m2,7, m2,11, m2,12, m2,13, m3,5, m3,6, m3,7, m3,8, m3,10, m4,11, m4,12, m4,13, m5,10, m6,1,

m6,9, m6,10, m6,11, m6,12, m6,13, m7,7, m9,7, m10,2, m10,7, m10,11, m10,12, m10,13, m11,10

m12,3, m12,5, m12,6, m12,7, m12,8, m12,10.

Note that for i = 0, one must set a0 = 1 and c0 = e0 = 0.
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