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Abstract. - The two-terminal reliability, known as the pair connectedness or connectivity function
in percolation theory, may actually be expressed as a product of transfer matrices in which the
probability of operation of each link and site is exactly taken into account. When link and site
probabilities are p and ρ, it obeys an asymptotic power-law behavior, for which the scaling factor
is the transfer matrix’s eigenvalue of largest modulus. The location of the complex zeros of the
two-terminal reliability polynomial exhibits structural transitions as 0 ≤ ρ ≤ 1.

Introduction. – Since the original work of Moore
and Shannon [1], network reliability has been a field de-
voted to the calculation of the connection probability be-
tween different sites of a network constituted by edges
(links, bonds) and nodes (vertices, sites), each of them
having a probability of operating correctly (the reliabil-
ity). This field, although mainly developed in an applied
background [2], is strongly related to graph theory [3, 4],
combinatorics and algebraic structures [5, 6], percolation
theory [7,8], as well as numerous lattice models in statisti-
cal physics [9–12]. For instance, the all-terminal reliability
RelA, i.e., the probability that all nodes are connected, is
derived from the Tutte polynomial, an invariant of the as-
sociated graph, when all edges have the same reliability
p (0 ≤ p ≤ 1). This polynomial appears in the partition
function for various Potts models, and has been calcu-
lated for several families of graphs [9–11]; the location of
its complex zeros has also been studied [10, 11, 13]. The
two-terminal reliability Rel2(s → t), the probability that
a source s and a destination t are connected, is known as
the connectivity function or pair connectedness in perco-
lation theory. It has been used in modeling epidemics or
fire propagation [7,8]. This approach is complementary to
the effort recently devoted on complex networks, in which
the network resilience, i.e., its robustness against link or
node failures (sometimes following deliberate attacks) has
been studied for “scale-free” random graphs [14].

Exact reliability calculations are known to be very
difficult [15], except for series-parallel reducible graphs
for which only successive simplifications {pseries = p1 p2,
pparallel = p1//p2 = p1 + p2 − p1 p2} are needed. Even for
planar graphs with identical edge reliabilities p and perfect
nodes (i.e., pnode ≡ 1), their algorithmic complexity has
been classified as #P-hard [5, 16]. Yet, the development
of Internet traffic makes it important for telecom opera-
tors to assess the overall reliability of network connections,
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when links and nodes may fail.
In this Letter, we show that for a network represented

by an undirected graph G, the two-terminal reliability
may be expressed as a product of transfer matrices, where
individual edge and node reliabilities are exactly taken
into account. Such a factorization, already observed
for graph coloring polynomials [4, 11], 2D-percolation in
square strips [17] or all-terminal reliability polynomials
[9, 10], originates with the underlying algebraic structure
of the graph. We apply our method to the two examples
(Kn is the complete graph with n nodes) of fig. 1. The
K4 ladder, for which we explicitly give the 5 × 5 trans-
fer matrix, describes a generic architecture for long-haul
connections, while the K3 cylinder slightly generalizes the
“sponge model” of width three by Seymour and Welsh [18].
When edge and node reliabilities are respectively equal to
p and ρ, a unique transfer matrix is involved; its largest
eigenvalue determines the asymptotic power-law behavior
of reliability as a function of the ladder length. The lo-
cation of the complex zeros of Rel2(p) exhibits striking
structure transitions as 0 ≤ ρ ≤ 1.

Graph decomposition. – The gist of our method is
to simplify the graph by removing links of the nth (last) el-
ementary cell of the network, namely the edges and nodes
indexed by n, a procedure called pivotal decomposition or
deletion-contraction [5]. If the end terminal t (which can
be regarded as perfect) is connected to node u through
edge e, with respective reliabilities pu and pe, then

Rel2(G) = (1 − pe)Rel2(G \ e) + pe pu Rel2(G · e)
+pe (1 − pu)Rel2(G \ u), (1)

where G \ e and G \ u are the graphs where e or u
have been deleted, and G · e the graph where t and u
have been merged through the “contraction” of e; eq. (1)
merely sums probabilities of disjoint events. This pro-
cedure, along with standard series-parallel reductions, is
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Fig. 1: Generic network architectures: (top) K4 ladder (bot-
tom) K3 cylinder. Links and nodes are identified by their reli-
abilities: an, bn, etc. for links, Sn, Tn, and Un for nodes. The
source is S0, the possible destinations are Sn, Tn, or Un. A
missing link or node’s reliability is simply set to zero.

repeated for the three (instead of the usual two) secondary
graphs in order to take advantage of a structural recursiv-
ity of the graph. After a finite number of such reductions,
we get replicas of the original graph, albeit with one less
elementary cell and with the (n−1)th cell’s edge and node
reliabilities possibly renormalized by those of the nth cell,
or set to either zero or one. In order to ensure the exis-
tence of a recursion relation, the graph structure must be
closed under successive applications of eq. (1); it may ini-
tially require the use of extra edges with symbolic reliabil-
ities, so that all nodes of an elementary cell are connected
pair-wise, even if such links do not exist in the graph un-
der consideration. At this point, a recursion hypothesis is
needed, giving for instance Rel2(S0 → Sn) as a sum over
specific polynomials in the reliabilities indexed by n; they
are often obvious from the n = 2 value. Going from n− 1
to n provides the transfer matrix linking the prefactors of
the polynomials, because Rel2 is an affine function of each
component reliability; the (often trivial) n = 1 case serves
as the initial condition of the recurrence.

Application to the K4 ladder. – Let us first illus-
trate this method by calculating Rn = Rel2(S0 →Sn) for
the K4 ladder (top of fig. 1). Following the guidelines of
the preceding section, we first consider bn for deletion, ap-
ply eq. (1) twice, and find two contributions. The first
one is a sum of Rn−1-like terms with prefactors, in which
the “old” an−1, ..., Tn−1 are renormalized by one or more
of the “new” an, ..., Tn. The second one is a sum of
Rel2(S0 → Tn−1)-like terms. There is no need for cou-
pled recursion relations for the two destinations Sn and
Tn, since they are essentially identical through the per-
mutations an ↔ en, cn ↔ dn, and Sn ↔ Tn. Rn may be

expressed as the sum of five polynomials in an, ..., Tn (see
below). The five prefactors at step n are obtained from
those at step n−1 by a recursion relation which translates
as a 5× 5 transfer matrix (such calculations are routinely
performed by mathematical software). The value of R1

leads to

Rn = (1 0 0 0 0)Mn Mn−1 · · ·M1 M0




1
0
0
0
0




, (2)

where Mn’s coefficients Mij are (x ≡ 1 − x)

M11 = (an + bn en Tn − an bn en Tn)Sn,

M12 = (dn + bn cn Tn − dn bn cn Tn)Sn,

M13 = an dn Sn + bn (χn + cn en)Sn Tn,

M14 = −M44 = an en M42,

M15 = −M45 = cn dn M41,

M21 = (en + bn an Sn − en bn an Sn)Tn,

M22 = (cn + bn dn Sn − cn bn dn Sn)Tn,

M23 = cn en Tn + bn (χn + an dn)Sn Tn,

M24 = −M54 = an en M52, (3)

M25 = −M55 = cn dn M51,

M31 = −(an bn + an en + bn en − 2 an bn en)Sn Tn,

M32 = −(bn cn + bn dn + cn dn − 2 bn cn dn)Sn Tn,

M33 = ((1 − 2 bn)χn − bn (cn en + an dn)) Sn Tn,

M34 = −M14 − M24,

M35 = −M15 − M25,

M41 = an bn en Sn Tn,

M42 = bn cn dn Sn Tn,

M43 = bn (χn + cn en)Sn Tn,

M51 = an bn en Sn Tn,

M52 = bn cn dn Sn Tn,

M53 = bn(χn + an dn)Sn Tn,

with χn = an cn dn en + an cn dn en − an cn dn en. In
the n = 0 case, a0 = 1 and c0 = d0 = e0 = 0. The five
abovementioned polynomials are actually given by the first
row of Mn. Rel2(S0 → Tn) is given by eq. (2) if the left
vector is (0 1 0 0 0). We have here another useful instance
of a product of random matrices [19].

The case of identical reliabilities an = ... = en = p (un-
less n = 0, see the restriction above) and Sn = Tn = ρ
is worth investigating, since only the nth power of one
matrix needs be taken. Because of the recursion relation
between successive values of Rn, the generating function
G(z) =

∑∞

n=0 Rn zn is a rational fraction of z. Its denom-
inator D(z) is derived from the characteristic polynomial
of the transfer matrix, taken at 1/z. G(z) is deduced from
the known first terms of the G(z)D(z)’s expansion:

G(z) =
1

2
ρ (1 − p ρ) +

N (z)

D(z)
, (4)
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N (z) =
1

2
ρ (1 + p ρ)

−1

2
p2 ρ3 (2 − 10 p + 13 p2 − 4 p3 − p3 ρ) z

+(1 − p)2 p5 (2 − 4 p + p2) (1 − ρ) ρ5 z2, (5)

D(z) = 1 − p ρ
(
2 + 4 p ρ− 14 p2 ρ + 13 p3 ρ − 4 p4 ρ

)
z

+2 (1 − p) p3 ρ3
(
2 − 7 p + 4 p2 + 7 p2 ρ

−10 p3 ρ + 5 p4 ρ − p5 ρ
)

z2

−4 (2 − p) (1 − p)3 p6 (1 − ρ) ρ5 z3. (6)

Equations (4–6) are simpler for perfect nodes, because the
denominator is of degree 2 in z; a partial fraction decom-
position provides

Rn =
1 − p

2
δn,0 + a+ λn

+ + a− λn
−, (7)

λ± =
p

2

[
2 + 4 p− 14 p2 + 13 p3 − 4 p4 ±

√
A

]
, (8)

a± =
1 + p

4
± 2 + 2 p + 10 p2 − 27 p3 + 19 p4 − 4 p5

4
√
A

,

(9)

A = 4 + 32 p2 − 204 p3 + 452 p4 − 516 p5

+329 p6 − 112 p7 + 16 p8. (10)

As n grows, Rn ≈ a+ λn
+: the two-terminal reliability

exhibits a power-law behavior, the scaling factor being λ+,
the eigenvalue of largest modulus. Alternatively, Rn ∼
exp(−n/ξ), where ξ = −1/ ln(λ+) is the correlation length
of percolation theory [7].
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Fig. 2: Location of the complex zeros of the two-terminal reli-
ability polynomial Rn for n = 120 and ρ = 0.05.

The location of the zeros of Rel2(p) in the complex plane
is also worth investigating. The situation differs from that
for chromatic [4, 11] and all-terminal polynomials [9], be-
cause Rel2(p) is not a graph invariant. The new twist lies
in the extra parameter at our disposal, the node reliabil-
ity ρ, which has a deep impact on the curves to which the
zeros of Rel2(p) converge as n → ∞. The critical values
of ρ at which shape transitions occur may be deduced [20]
from the three roots of D(1/z) and will be detailed else-
where [21]. A sample of the richness of behavior is dis-
played in fig. 2 for the K4 ladder and ρ = 0.05. We see (i)

well-separated “curves” (ii) a triplet of doublets, whose
separation vanishes exponentially with n, converging to
three roots of 2 + 2 ρ + 4 (3 ρ + 1) ρ p− (40 ρ + 11) ρ p2 +
(45 ρ + 4) ρ p3−20 ρ2 p4+3 ρ2 p5 = 0. Actually, this triplet
is present only for ρ < ρc1 ≈ 0.17522138 (ρc1 is a root of
a polynomial of degree 10); if ρc1 < ρ < ρc2 ≈ 0.4066578,
only the two rightmost isolated points are present. The
leftmost one, located on the real negative axis, is asymp-
totically given by −(2 ρ)−1/3 + 25/24 + O(ρ1/3); for the
other two, ρ must be replaced by ρ e±2 i π. By contrast,
the algebraic curves’ asymptotic limit is a circle of radius
(2 ρ)−1/4 centered at (27/32, 0).

K3 cylinder. – In the second architecture of fig. 1,
S0 is still the source while Sn, Tn, and Un are the three
possible destinations (the last two are equivalent through
a permutation of variables). The crucial point is to take
fn 6= 0, because in the successive applications of eq. (1),
the merging of nodes entails a secondary graph in which
Sn−1 and Un−1 are connected. As mentioned above, the
dummy — with respect to the Manhattan-like strip —
link fn between Sn and Un must therefore be present right
at the start; this allows us to unveil the coupled recursion
relations between the source and all the destinations. Each
source-destination reliability is a sum of eight polynomials
in reliabilities indexed by n. This could lead to a 24 × 24
transfer matrix M̃n; rearrangements of terms reduce its
size to 13×13, even when fn = 0. The final expressions are
much lengthier than eq. (3) and will be provided elsewhere

[21]. For perfect nodes and fn ≡ 0, G̃(S0 →Un) is given

by Ñ/(D̃1 D̃2):

Ñ = p2 − (1 − p) p4
(
3 + 3 p− 4 p2

)
z

+(1 − p)3 p6
(
2 + 11 p− 3 p2 − 2 p3

)
z2

+(1 − p)
3
p8

(
2 − 4 p + 3 p2 + 11 p3 − 13 p4 + 3 p5

)
z3

−(1 − p)4 p10
(
3 + 6 p− 12 p2 + 10 p3 − 10 p4 + 4 p5

)
z4

+(1 − p)
6
p12

(
1 + 8 p− p2 − 5 p3 − p4 + p5

)
z5

−(1 − p)8 p15
(
2 + 5 p− 4 p2

)
z6 + (1 − p)10 p18 z7, (11)

D̃1 = 1 −
(
1 − p2

)
p

(
1 + p − p2

)
z

+(1 − p)
2
p3

(
1 + p + p2 − 2 p3

)
z2 − (1 − p)

4
p6 z3,(12)

D̃2 = 1 − p
(
2 + 2 p + p2 − 9 p3 + 5 p4

)
z

+ (1 − p) p2
(
1 + 5 p + 5 p2 − 6 p3 − 15 p4

+13 p5 + p6 − 2 p7
)

z2

−(1 − p)
2
p4

(
2 + 6 p + 6 p2 − 26 p3 + 17 p4

−18 p5 + 27 p6 − 16 p7 + 3 p8
)

z3

+(1 − p)
4
p6

(
1 + 6 p + 4 p2 − p3 − 17 p4

+9 p5 + 3 p6 − 2 p7
)

z4

−(1 − p)
6
p9

(
2 + 4 p + p2 − 7 p3 + 3 p4

)
z5

+(1 − p)
8
p12 z6. (13)
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The eigenvalue of greatest modulus λmax involved in the
asymptotic power-law behavior obeys D̃2(1/λmax) = 0 (if

fn ≡ p, the denominator of G̃ is a product of polynomials
of degrees 3 and 4 in z). The degree of the denominator
leads us to expect that the “width” of the network should
drastically affect the size of the transfer matrices.

Transfer matrices for the all-terminal reliability

RelA. – Nodes may be viewed here as perfect, and sim-
pler calculations may be done because eq. (1) has one less
term. For the K4 ladder, the transfer matrix is 2 × 2:

RelA(n) = (1 0) M̂n · · · M̂n−1 M̂0

(
1
0

)
; (14)

The matrix elements (M̂n)ij of M̂n are

(M̂n)11 = [(an + en) (cn + dn) − 2 an cn dn en] bn

+[(an//en) + (cn//dn)] bn, (15)

(M̂n)12 = an cn dn en [
1

an
+

1

cn
+

1

dn
+

1

en
− 3] bn

+[(an//en) (cn//dn)] bn, (16)

(M̂n)21 = [(an//cn) + (dn//en) − 2 (an en//cn dn)] bn

−(M̂n)11, (17)

(M̂n)22 = (cn + dn − 2 cn dn) (an + en − 2 an en) bn

−(M̂n)12; (18)

in M̂0, a0 = 1 and c0 = d0 = e0 = 0. This is a
special case of a multivariate Tutte polynomial [22]. If
an = ... = en ≡ p, we recover Chang and Shrock’s re-
sult (appendix 4.2 of [9]): ĜA(z) = N̂A(z)/D̂A(z) with

N̂A(z) = p + p3 (1 − p) (4 − 3 p) z and D̂A(z) = 1 −
p2

(
12 − 26 p + 21 p2 − 6 p3

)
z + 2 p5 (1 − p)

3
(2 − p) z2.

The asymptotic power-law scaling factor is ζ+ = 1
2

p2 (12−
26 p+21 p2− 6 p3 +

√
B) with B = 144− 640 p+1236 p2−

1308 p3 + 793 p4 − 260 p5 + 36 p6.

Conclusion and perspectives. – The two-terminal
reliability of undirected networks may be expressed by a
product of transfer matrices, in which each edge and node
reliability is exactly taken into account. This result is
easily extended to the all-terminal reliability with nonuni-
form links, as well as to directed graphs. We can now
go beyond series-parallel simplifications and look for new
(wider) families of exactly solvable, meshed architectures
that may be useful for general reliability studies (as build-
ing blocks for more complex networks), for the enumera-
tion of self-avoiding walks on lattices, and for percolation
with imperfect bonds and sites. Since the true generating
function is itself a rational fraction, Padé approximants
should provide efficient upper or lower bounds for these
studies. Moreover, individual reliabilities can be viewed
as average values of random variables. Having access to
each edge or node allows the introduction of disorder or
correlations in calculations. Finally, in a more applied per-
spective, we should mention that the failure frequency ν

of a given connection is another important performance
index of networks. If equipment i of reliability pi has
a failure rate λi, ν =

∑
i λi pi ∂Rel2/∂pi. The matrix

factorization makes the calculation straightforward, since
each pi appears in one transfer matrix only.
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