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Informatique Théorique et Applications

ON THE TOPOLOGICAL COMPLEXITY OF

INFINITARY RATIONAL RELATIONS

Olivier Finkel1

Abstract. We prove in this paper that there exists some infinitary ra-
tional relations which are analytic but non Borel sets, giving an answer
to a question of Simonnet [Sim92].

1991 Mathematics Subject Classification. 68Q45; 03D05; 03D55; 03E15.

1. Introduction

Acceptance of infinite words by finite automata was firstly considered by Büchi in
order to study decidability of the monadic second order theory of one successor
over the integers [Büc62]. Then the so called ω-regular languages have been inten-
sively studied and many applications have been found, see [Tho90] [Sta97] [PP01]
for many results and references.
Rational relations on finite words were studied in the sixties and played a fun-
damental role in the study of families of context free languages [Ber79]. Their
extension to rational relations on infinite words was firstly investigated by Gire
and Nivat [Gir81] [GN84]. Infinitary rational relations are subsets of Σω

1 × Σω
2 ,

where Σ1 and Σ2 are finite alphabets, which are recognized by Büchi transducers
or by 2-tape finite Büchi automata with asynchronous reading heads (there exists
an extension to subsets of Σω

1 ×Σω
2 ×. . .×Σω

n recognized by n-tape Büchi automata,
with Σ1, . . . , Σn some finite alphabets, but we shall not need to consider it). Since
then they have been much studied, in particular in connection with the rational
functions they may define, see for example [CG99] [BC00] [Sim92] [Sta97] [Pri00]
for many results and references.
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The question of the complexity of such relations on infinite words naturally arises.
A way to investigate the complexity of infinitary rational relations is to consider
their topological complexity and particularly to locate them with regard to the
Borel and the projective hierarchies. It is well known that every ω-language ac-
cepted by a Turing machine with a Büchi or Muller acceptance condition is an
analytic set, [Sta97], thus every infinitary rational relation is an analytic set. Si-
monnet asked in [Sim92] whether there exists some infinitary rational relation
which is an analytic but non Borel set. We give in this paper a positive answer to
this question showing that there exists some non Borel (and even Σ1

1
-complete)

infinitary rational relation. The paper is organized as follows. In section 2 we
introduce the notion of transducers and of infinitary rational relations. In section
3 we recall definitions of Borel and analytic sets, and we prove our main result in
section 4.

2. Infinitary rational relations

Let Σ be a finite alphabet whose elements are called letters. A non-empty finite
word over Σ is a finite sequence of letters: x = a1a2 . . . an where ∀i ∈ [1; n] ai ∈ Σ.
We shall denote x(i) = ai the ith letter of x and x[i] = x(1) . . . x(i) for i ≤ n. The
length of x is |x| = n. The empty word will be denoted by λ and has 0 letter. Its
length is 0. The set of finite words over Σ is denoted Σ?. Σ+ = Σ? − {λ} is the
set of non empty words over Σ. A (finitary) language L over Σ is a subset of Σ?.
The usual concatenation product of u and v will be denoted by u.v or just uv. For
V ⊆ Σ?, we denote V ? = {v1 . . . vn/n ∈ N and vi ∈ V ∀i ∈ [1; n]}.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1a2 . . . an . . .,
where ai ∈ Σ, ∀i ≥ 1. When σ is an ω-word over Σ, we write σ = σ(1)σ(2) . . . σ(n) . . .
and σ[n] = σ(1)σ(2) . . . σ(n) the finite word of length n, prefix of σ. The set of
ω-words over the alphabet Σ is denoted by Σω. An ω-language over an alphabet
Σ is a subset of Σω. For V ⊆ Σ?, V ω = {σ = u1 . . . un . . . ∈ Σω/ui ∈ V, ∀i ≥ 1}
is the ω-power of V . The concatenation product is extended to the product of a
finite word u and an ω-word v: the infinite word u.v is then the ω-word such that:
(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.
The prefix relation is denoted v: the finite word u is a prefix of the finite word
v (respectively, the infinite word v), denoted u v v, if and only if there exists a
finite word w (respectively, an infinite word w), such that v = u.w.

We assume the reader to be familiar with the theory of formal languages and of
ω-regular languages, see [Büc62] [Tho90] [EH93] [Sta97] [PP01] for many results
and references. We recall that ω-regular languages form the class of ω-languages
accepted by finite automata with a Büchi acceptance condition and this class is
the omega Kleene closure of the class of regular finitary languages.
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We are going now to introduce the notion of infinitary rational relation which
extends the notion of ω-regular language, via definition by Büchi transducers:

Definition 2.1. A Büchi transducer is a sextuple T = (K, Σ, Γ, ∆, q0, F ), where
K is a finite set of states, Σ and Γ are finite sets called the input and the output
alphabets, ∆ is a finite subset of K ×Σ? ×Γ? ×K called the set of transitions, q0

is the initial state, and F ⊆ K is the set of accepting states.
A computation C of the transducer T is an infinite sequence of transitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F and
infinitely many integers i ≥ 0 such that qi = qf .
The input word of the computation is u = u1.u2.u3 . . .
The output word of the computation is v = v1.v2.v3 . . .
Then the input and the output words may be finite or infinite.
The infinitary rational relation R(T ) ⊆ Σω × Γω recognized by the Büchi trans-
ducer T is the set of couples (u, v) ∈ Σω ×Γω such that u and v are the input and
the output words of some successful computation C of T .
The set of infinitary rational relations will be denoted RAT .

Remark 2.2. An infinitary rational relation is a subset of Σω × Γω for two finite
alphabets Σ and Γ. One can also consider that it is an ω-language over the finite
alphabet Σ×Γ. If (u, v) ∈ Σω ×Γω, one can consider this couple of infinite words
as a single infinite word (u(1), v(1)).(u(2), v(2)).(u(3), v(3)) . . . over the alphabet
Σ×Γ. We shall use this fact to investigate the topological complexity of infinitary
rational relations.

3. Borel and analytic sets

We assume the reader to be familiar with basic notions of topology which may be
found in [Kur66] [Mos80] [Kec95] [LT94] [Sta97] [PP01].
For a finite alphabet X having at least two letters we shall consider Xω as a
topological space with the Cantor topology. The open sets of Xω are the sets in
the form W.Xω, where W ⊆ X?. A set L ⊆ Xω is a closed set iff its complement
Xω − L is an open set. We define now the next classes of the Borel Hierarchy:

Definition 3.1. The classes Σ0

n
and Π0

n
of the Borel Hierarchy on the topological

space Xω are defined as follows:
Σ0

1
is the class of open sets of Xω.

Π0

1
is the class of closed sets of Xω.

And for any integer n ≥ 1:
Σ0

n+1
is the class of countable unions of Π0

n
-subsets of Xω.

Π0

n+1
is the class of countable intersections of Σ0

n
-subsets of Xω.

The Borel Hierarchy is also defined for transfinite levels. The classes Σ0

α and Π0

α,
for a countable ordinal α, are defined in the following way:
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Σ0

α is the class of countable unions of subsets of Xω in ∪γ<αΠ0

γ .

Π0

α is the class of countable intersections of subsets of Xω in ∪γ<αΣ0

γ .

There are also some subsets of Xω which are not Borel sets. In particular the class
of Borel subsets of Xω is strictly included into the class Σ1

1
of analytic subsets

of Xω. A subset A of Xω is an analytic set iff there exists another finite set
Y and a Borel subset B of (X × Y )ω such that x ∈ A ↔ ∃y ∈ Y ω such that
(x, y) ∈ B, where (x, y) is the infinite word over the alphabet X × Y such that
(x, y)(i) = (x(i), y(i)) for each integer i ≥ 1.

Recall also the notion of completeness with regard to reduction by continuous
functions. If α be a countable ordinal, a set F ⊆ Xω is said to be a Σ0

α (respectively
Π0

α, Σ1

1
)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α

(respectively E ∈ Π0

α, Σ1

1
) iff there exists a continuous function f : Y ω → Xω

such that E = f−1(F ).
A Σ0

α (respectively Π0

α, Σ1

1
)-complete set is a Σ0

α (respectively Π0

α, Σ1

1
)- set

which is in some sense a set of the highest topological complexity among the Σ0

α

(respectively Π0

α, Σ1

1
)- sets. Σ0

n
(respectively Π0

n
)-complete sets, with n an integer

≥ 1, are thoroughly characterized in [Sta86].

The ω-language A = (0?.1)ω is a well known example of Π0

2
-complete set which

will be used below. It is the set of ω-words over the alphabet {0, 1} with infinitely
many occurrences of the letter 1.

4. Σ
1

1
-complete infinitary rational relations

We can now state our main result:

Theorem 4.1. There exists some Σ1

1
-complete (hence non Borel) infinitary ra-

tional relations.

Proof. We shall use here results about languages of infinite binary trees whose
nodes are labelled in a finite alphabet Σ.
A node of an infinite binary tree is represented by a finite word over the alphabet
{l, r} where r means ”right” and l means ”left”. Then an infinite binary tree
whose nodes are labelled in Σ is identified with a function t : {l, r}? → Σ. The set
of infinite binary trees labelled in Σ will be denoted T ω

Σ .

There is a natural topology on this set T ω
Σ [Mos80], [LT94], [Sim92]. It is defined

by the following distance. Let t and s be two distinct infinite trees in T ω
Σ . Then the

distance between t and s is 1

2n
where n is the smallest integer such that t(x) 6= s(x)

for some word x ∈ {l, r}? of length n.
The open sets are then in the form T0.T

ω
Σ where T0 is a set of finite labelled trees.

T0.T
ω
Σ is the set of infinite binary trees which extend some finite labelled binary

tree t0 ∈ T0, t0 is here a sort of prefix, an ”initial subtree” of a tree in t0.T
ω
Σ .
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For an alphabet Σ having at least two letters the topological space T ω
Σ is homeo-

morphic to the Cantor set Σω. Borel and analytic subsets of T ω
Σ are defined from

open sets in the same manner as in the case of the topological space Σω.

Let t be a tree. A branch B of t is a subset of the set of nodes of t which is linearly
ordered by the tree partial order v and which is closed under prefix relation, i.e.
if x and y are nodes of t such that y ∈ B and x v y then x ∈ B.
A branch B of a tree is said to be maximal iff there is not any other branch of t
which strictly contains B.

Let t be an infinite binary tree in T ω
Σ . If B is a maximal branch of t, then this

branch is infinite. Let (ui)i≥0 be the enumeration of the nodes in B which is
strictly increasing for the prefix order.
The infinite sequence of labels of the nodes of such a maximal branch B, i.e.
t(u0)t(u1)....t(un)..... is called a path. It is an ω-word over the alphabet Σ.

Let then L ⊆ Σω be an ω-language over Σ. We denote Path(L) the set of infinite
trees t in T ω

Σ such that t has at least one path in L.

It is well known that if L ⊆ Σω is an ω-language over Σ which is a Π0

2
-complete

subset of Σω (or a Borel set of higher complexity in the Borel hierarchy) then the
set Path(L) is a Σ1

1
-complete subset of T ω

Σ . Hence in particular Path(L) is not a
Borel set, [Niw85] [Sim93] [Sim92].

Whenever B ⊆ Σω is a regular ω-language, we shall find a rational relation
R ⊆ (Σ ∪ {A})ω × (Σ ∪ {A})ω and a continuous function

h : T ω
Σ → ((Σ ∪ {A}) × (Σ ∪ {A}))ω

such that Path(B) = h−1(R). For that we shall code trees labelled in Σ by words
over the finite alphabet (Σ ∪ {A}) × (Σ ∪ {A}) where A is supposed to be a new
letter not in Σ.

Consider now the set {l, r}? of nodes of binary infinite trees. For each integer
n ≥ 0, call Cn the set of words of length n of {l, r}?. Then C0 = {λ}, C1 = {l, r},
C2 = {ll, lr, rl, rr} and so on. Cn is the set of nodes which appear in the (n + 1)th

level of an infinite binary tree. The number of nodes of Cn is card(Cn) = 2n. We
consider now the lexicographic order on Cn (assuming that l is before r for this
order). Then, in the enumeration of the nodes with regard to this order, the nodes
of C1 will be: l, r; the nodes of C3 will be: lll, llr, lrl, lrr, rll, rlr, rrl, rrr.
Let un

1 , ..., un
j , ..., un

2n be such an enumeration of Cn in the lexicographic order and
let vn

1 , ..., vn
j , ..., vn

2n be the enumeration of the elements of Cn in the reverse order.
Then for all integers n ≥ 0 and i, 1 ≤ i ≤ 2n, it holds that vn

i = un
2n+1−i.

We define now the code of a tree t in T ω
Σ . Let A be a new letter not in Σ. The code

of the tree t is an ω-word σ over the alphabet (Σ ∪ {A}) × (Σ ∪ {A}) which may
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be written in the form (σ1, σ2), where σ1 and σ2 are ω-words over the alphabet
(Σ ∪ {A}).

The ω-word σ1 enumerates the labels of the nodes of the tree t which appear at
levels 1, 3, 5, . . . , 2n+1, . . . , i.e. at odd levels. More precisely the word σ1 begins
with the label t(v0

1) of the node at level 1, followed by an A, followed by the labels of
the nodes of the third level enumerated in the reverse lexicographic order, i.e.
t(v2

1)t(v
2
2)t(v2

3)t(v2
4), followed by an A, followed by the labels of the nodes of the 5th

level enumerated in the reverse lexicographic order, i.e. t(v4
1)t(v

4
2)t(v4

3) . . . t(v4
16),

and so on . . .
For each integer n ≥ 0, the labels of the nodes of C2n, enumerated in the reverse

lexicographic order, are placed before those of C2n+2 and these two sets of
labels are separated by an A.

The construction of the ω-word σ2 is very similar but it successively enumerates,
in the lexicographic order, the labels of nodes occuring at even levels. So the
word σ2 is in the form

σ2 = t(u1
1)t(u

1
2)At(u3

1)t(u
3
2)t(u

3
3)t(u

3
4)t(u

3
5)t(u

3
6)t(u

3
7)t(u

3
8)A . . .

For each integer n ≥ 0, the labels of the nodes of C2n+1 are enumerated before
those of C2n+3 and these two sets of labels are separated by an A. Moreover the
labels of the nodes of C2n+1, for n ≥ 0, are enumerated in the lexicographic

order (for the nodes).

Let then h be the mapping from T ω
Σ into ((Σ∪{A})×(Σ∪{A}))ω such that for every

labelled binary infinite tree t of T ω
Σ , h(t) is the code (σ1, σ2) of the tree as defined

above. It is easy to see, from the definition of h and of the order of the enumeration
of labels of nodes (they are enumerated level after level in the increasing order),
that h is a continuous function from T ω

Σ into ((Σ ∪ {A}) × (Σ ∪ {A}))ω.

Now we are looking for a rational relation R such that for every tree t ∈ T ω
Σ ,

h(t) ∈ R if and only if t has a path in B. Then we shall have Path(B) = h−1(R).

We shall first describe the rational relation R which is an ω-language over the
alphabet ((Σ ∪ {A}) × (Σ ∪ {A})). Every word of R may be seen as a couple
y = (y1, y2) of ω-words over the alphabet Σ∪ {A}. Now y = (y1, y2) is in R if and
only if it is in the form

y1 = x(1).u1.A.v2.x(3).u3.A.v4.x(5).u5.A. . . . A.v2n.x(2n + 1).u2n+1.A . . .
y2 = v1.x(2).u2.A.v3.x(4).u4.A. . . . A.v2n+1.x(2n + 2).u2n+2.A . . .

where for all integers i ≥ 1, x(i) ∈ Σ and ui, vi ∈ Σ? and

|vi| = 2|ui| or |vi| = 2|ui| + 1



TITLE WILL BE SET BY THE PUBLISHER 7

and the ω-word x = x(1)x(2) . . . x(n) . . . is in B.

If such an ω-word y = (y1, y2) is the code h(t) of a tree t ∈ T ω
Σ , then x(1) = t(v0

1)
and u1 = λ, then |v1| = 2|u1| = 0 or |v1| = 2|u1| + 1 = 1. Therefore if |v1| = 0
then x(2) = t(u1

1) and if |v1| = 1 then x(2) = t(u1
2). Then the choice of |v1| = 2|u1|

or of |v1| = 2|u1|+1 implies that x(2) is the label of the left or the rigth successor
of the root node v0

1 = λ.

By construction this phenomenon will happen for further levels. The choice of
|vi| = 2|ui| or of |vi| = 2|ui| + 1 determines one of the two successor nodes of a
node at level i thus the successive choices determine a branch of t and the labels
of nodes of this branch form a path x(1)x(2)x(3) . . . x(n) . . . which is in B. Thus
for a tree t ∈ T ω

Σ , h(t) ∈ R if and only if t ∈ Path(B) then Path(B) = h−1(R).
Remark that R does not contain only codes of trees but such a code h(t) is in R
iff t ∈ Path(B) and this fact suffices for our proof.

Hence if B is a Borel set which is a Π0

2
-complete subset of Σω (or a set of higher

complexity in the Borel hierarchy), the language h−1(R) = Path(B) is a Σ1

1
-

complete subset of T ω
Σ . Then the ω-language R is at least Σ1

1
-complete because

h is a continuous function.
Note that here h is a continuous function: T ω

Σ → ((Σ∪{A})× (Σ∪{A}))ω and the
preceding definition of Σ1

1
-complete set involves continuous reductions: Xω → Y ω;

but the two topological spaces T ω
Σ and Y ω have good similar properties (they

are zero-dimensional polish spaces, see [PP01] [Kec95] [Sim92], in fact they are
homeomorphic) which enable to extend the previous definition to this new case.
Indeed R is a Σ1

1
-complete subset of ((Σ ∪ {A}) × (Σ ∪ {A}))ω because every

infinitary rational relation is a Σ1

1
-set.

Then in that case R is not a Borel set because a Σ1

1
-complete set is not a Borel

set. This gives infinitely many non Borel infinitary rational relations, because
there exist infinitely many Π0

2
-complete ω-regular languages.

It remains to show that if B is an ω-regular language then R is an infinitary ratio-
nal relation. In fact this is easy to see from the definition of R. We shall explicitely
give a Büchi transducer defining R in the following simple case: Σ = {0, 1} and
B = (0?.1)ω is a well known example of Π0

2
-complete ω-regular language.

The infinitary rational relation R is then recognized by the following Büchi trans-
ducer T = (K, (Σ ∪ {A}), (Σ ∪ {A}), ∆, q0, F ), where

K = {q0, q1, q2, q3, q4, q
0
1 , q

1
1 , q

0
2 , q

1
2}

is a finite set of states, {0, 1, A} is the input and the output alphabet, q0 is the
initial state, and F = {q1

1, q
1
2} is the set of accepting states. Moreover ∆ ⊆

K × (Σ ∪ {A})? × (Σ ∪ {A})? × K is the finite set of transitions, containing the
following transitions:
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(q0, 0, λ, q1) and (q0, 1, λ, q1),
(q1, u, v, q1), for all words u, v ∈ Σ? with |u| = 1 and |v| = 2,
(q1, λ, v, q2), for v ∈ {0, 1, λ},
(q2, A, 0, q0

1) and (q2, A, 1, q1
1),

(q, u, v, q3), for all u, v ∈ Σ? with |u| = 2 and |v| = 1 and q ∈ {q0
1 , q

1
1 , q3},

(q, u, λ, q4), for u ∈ {0, 1, λ} and q ∈ {q0
1 , q

1
1 , q3},

(q4, 0, A, q0
2) and (q4, 1, A, q1

2),
(q0

2 , λ, λ, q1) and (q1
2 , λ, λ, q1). �

Remark 4.2. We could of course have avoided the set of transitions to contain
some transitions with both the input and the output words being empty, like the
two last ones: (q0

2 , λ, λ, q1) and (q1
2 , λ, λ, q1).

Remark 4.3. We have shown that there exists some infinitary rational relations
which are Σ1

1
-complete hence non Borel. In particular this implies that these

infinitary rational relations are not arithmetical sets because every arithmetical
set is a Borel set (of finite rank). We refer to [Sta86] [Sta97] for definitions and
results about the arithmetical hierarchy over sets of infinite words over a finite
alphabet Σ.

Remark 4.4. From the preceding example we can easily find a Σ1

1
-complete

infinitary rational relation in the form Sω where S is a rational relation over finite
words, see [Ber79] [Gir81] [Pri00] about finitary rational relations.

Acknowledgements. Thanks to Jean-Pierre Ressayre and Pierre Simonnet for
useful discussions.
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