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Large Population Limit and Time Behaviour of a Stochastic

Particle Model Describing an Age-structured Population

Tran Viet Chi∗

December 27, 2006

Abstract

We study a continuous-time discrete population structured by a vector of ages. Indi-
viduals reproduce asexually, age and die. The death rate takes interactions into account.
Adapting the approach of Fournier and Méléard, we show that in a large population limit,
the microscopic process converges to the measure-valued solution of an equation that gener-
alizes the McKendrick-Von Foerster and Gurtin-McCamy PDEs in demography. The large
deviations associated with this convergence are studied. The upper-bound is established
via exponential tightness, the difficulty being that the marginals of our measure-valued pro-
cesses are not of bounded masses. The local minoration is proved by linking the trajectories
of the action functional’s domain to the solutions of perturbations of the PDE obtained in
the large population limit. The use of Girsanov theorem then leads us to regularize these
perturbations. As an application, we study the logistic age-structured population. In the
super-critical case, the deterministic approximation admits a non trivial stationary stable
solution, whereas the stochastic microscopic process gets extinct almost surely. We establish
estimates of the time during which the microscopic process stays in the neighborhood of
the large population equilibrium by generalizing the works of Freidlin and Ventzell to our
measure-valued setting.

Keywords: Age-structured population, interacting measure-valued process, large population ap-
proximation, large deviations, exit time estimates.
AMS Subject Classification: 60J80, 60K35, 92D25, 60F10.

1 Introduction and motivations

Structured population models describe the dynamics of populations in which individuals differ
according to variables that affect their reproductive capacities and survivals. In this article,
we are interested in a population structured by ages. Age-structures are important to take
into account the changes of behaviour of an individual during its life as well as life histories.
It is natural to consider many ages. Examples are the physical age (the time since which an
individual is born), the biological age (the intrinsic maturation stage of the individual), the age
of an illness (the time since which the individual has been infected), the stage of the illness (the
clinical stage of the illness). To our knowledge, the literature on the subject mostly considers
structuration by the only physical age.

Our purpose is to study a microscopic stochastic population structured by a vector of ages
that can grow nonlinearly in time and which models the age-dependence of the birth and death
rates as well as possible interactions between individuals (competition or cooperation), including
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competition of logistic type (for which the death rate is linear in the size of the population).

Continuous time physical age-structured models that generalize the models of Malthus [32]
and Verhulst’s famous Logistic Equation [46], have made the object of an abundant literature
based on the theory of partial differential equations (PDEs) (see Sharpe and Lotka [43], McK-
endrick [34], Gurtin and MacCamy [22], Marcati [33], Busenberg and Iannelli [6], Webb [49]).

Stochastic models generalizing the Galton-Watson process [18] have been studied by Bellman
and Harris [3, 23], Athreya and Ney ([2] Chapter IV). These models consider non Markovian
processes, called age-structured branching processes, structured by the physical age and in which
the lifelength of an individual does not follow an exponential law. Each particle, at its death,
is replaced by a random number of daughters with a law that is independent of the age of the
mother and of the state of the population.

The assumptions of birth at the parent’s death and of independence between the reproduction
law and the age of the parent are biologically restrictive. Kendall [29], Crump and Mode [9, 10],
Jagers [26] and Doney [13] have studied birth and death processes in which a particle can give
birth many times during its life, with a rate that depends on its age.

In the preceding models, the particles alive at the same time are independent, which is also a
biologically restrictive assumption. Wang [48], Solomon [44] consider birth and death processes
in which the lifelength are independent, but where the birth rate of a particle depends on the
state of the population. Oelschläger [37] generalizes their works to take interactions in both the
birth and the death rate into account. However, in these models, the rates remain bounded,
which excludes interactions of logistic type.

We present here an individual-centered model which takes age-structure into account. We
are inspired by the works of Fournier et Méléard [16] and Champagnat et al. [8, 7]. Our paper
is inspired from more general models of trait and age-structured population considered in [45]
to which we refer for examples, more details and full proofs.

Individuals are characterized by their ages with values in R
d
+. Each component of this vector

is an age belonging to R+, which can increase nonlinearly in time. Let n ∈ N
∗ be a fixed

integer (its interpretation is given below). We describe the population by a measure belonging
to Mn

P (Rd
+) (the set of point measures on R

d
+ with atoms weighted by 1/n) included in MF (Rd

+)
(the set of finite measures on R

d
+):

Zn
t =

1

n

Nn
t∑

i=1

δai(t), where Nn
t = n〈Zn

t , 1〉 = n

∫

Rd
+

Zn
t (da) (1.1)

is the number of individuals living at time t.
An individual of ages a ∈ R

d
+ in the population Z ∈ MF (Rd

+) reproduces asexually, ages
and dies:

1. It gives birth to a new individual of age zero with rate b(a) ∈ R+.
2. Let U : R

d
+ × R

d
+ → R

dc be an interaction kernel, dc ∈ N
∗ being the number of

interactions taken into account. For a, α ∈ R
d
+, U(a, α) models the action of an individual of

ages α on an individual of ages a. The death rate of our individual is modelled by d(a, ZU(a)),
with d : R

d
+ × R

dc → R+ and where ZU(a) =
∫

Rd
+

U(a, α)Z(dα),

3. Our individual ages with the speed v(a) ∈ R
d
+.

We introduce in Section 2 a pathwise description of our microscopic process, using Poisson
point measures and the flow of the equation describing the aging phenomenon.

The parameter n ∈ N
∗ in (1.1) is related to the large population limit that will interest us

in this work, and which corresponds to n → +∞. The underlying idea is to let the number
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of individuals grow proportionally to n while their masses and the intensity of the interactions
are renormalized by 1/n. This can be understand as a constraints in ressources: if we increase
the size of the population, we have to decrease the biomass of individuals to keep the system
alive. In Section 3, we prove the convergence in law in D := D(R+,MF (Rd

+)) of the sequence

(Zn)n∈N∗ to the solution ξ ∈ C(R+,MF (Rd
+)) of: ∀ (f : (a, s) 7→ fs(a)) ∈ C1

b (Rd
+ × R+, R+),

〈ξt, ft〉 =〈ξ0, f0〉 +

∫ t

0

∫

Rd

+

[
v(a)∇afs(a) +

∂fs

∂s
(a) + fs(0)b(a) − fs(a)d(a, ξsU(x, a))

]
ξs(da) ds. (1.2)

This convergence result is an adaptation of results due to Fournier and Méléard [16] and
Champagnat et al. [7] for populations without age structure. The densities m(a, t) of the
measures ξt ∈ MF (Rd

+), when they exist, correspond to the notion of number density, and
describe the distribution in age of a population consisting in a ”continuum” of individuals.
They solve the system: ∀a ∈ R

d
+, ∀t ∈ R+,

∂m

∂t
(a, t) = −∇a (v(a)m(a, t)) − d

(
a,

∫

R+

U(a, α)m(α, t)dα

)
m(a, t) (1.3)

v(0)m(0, t) =

∫

R+

m(a, t)b(a)da, m(a, 0) = m0(a). (1.4)

These equations generalize the PDEs introduced by McKendrick-Von Foerster [34, 15] and
Gurtin MacCamy [22]. This is considered in Section 3.3. Equations (1.2) and (1.3)-(1.4) are
macroscopic deterministic approximations describing the ecology at the scale of the population.
Individual trajectories are lost, as well as stochasticity since an averaging phenomenon occurs.

Let T > 0. We consider the evolution problem on the compact time interval [0, T ]. We use
the notation DT := D([0, T ],MF (Rd

+)). From the exponential deviations of Section 4 and from
the central limit theorem proved in [45], we know that on [0, T ], the microscopic process behaves
like its deterministic approximation up to a small probability set. Their large time behaviors
can however be radically different. We present in the following an example to illustrate this.

In the logistic age-structured population, represented by Z ∈ MF (R+), individuals are char-
acterized by their scalar physical age a ∈ R+ growing with speed 1, give birth with rate b(a)
(continuous and upper bounded by b̄) and die with rate d(a)+η〈Z, 1〉. The term d is the natural
death rate (assumed continuous and bounded above and below by positive constants d̄ and d),
and η〈Z, 1〉 is the logistic competition term of intensity η > 0. The system (1.3)-(1.4) becomes:

∂m

∂t
(a, t) = −

∂m

∂a
(a, t) − (d(a) + ηMt)m(a, t)

m(0, t) =

∫ +∞

0
b(a)m(a, t)da, m(a, 0) = m0(a), Mt =

∫ +∞

0
m(a, t)da. (1.5)

If R0 :=
∫ +∞
0 b(a)e−

∫ a

0 d(α)dαda > 1, we are in a super-critical case and there exists a globally
stable stationary solution to (1.5) that we denote by m̂(a) (see [22, 6, 49]). The microscopic
process Zn has a different long time behaviour. It follows it deterministic approximation on com-
pact time intervals but leaves almost surely the neighborhood of m̂(a)da to drive the population
to extinction (see Propositions 5.5 and 5.6 in Section 5).

For various applications, including the studies of evolution problems for trait and age struc-
tured population, which is a work under progress, it is interesting to establish estimates for the
time of exit from a neighborhood of the stable equilibrium of (1.5). This can be obtained by
using large deviations techniques and by adapting the results of Freidlin and Ventzell to our
measure-valued processes.

Exponential deviations are considered in Section 4 for the general model. The large deviation
upper-bound is proved by establishing exponential tightness. The main difficulty lies in the fact
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Figure 1: Time behaviors of the microscopic process and of its large population approximation. For

sufficiently large n, the behaviour of the stochastic microscopic population Zn follows the one of its

deterministic approximation ξ on compact time intervals. In the long time, however, Zn leaves the

neighborhood of the stationary stable solution of ξ and the population gets extinct.

that MF (Rd
+) is not compact. Our proof of the local lower bound relies on the use of a Riesz

theorem in Orlicz spaces. This allows us to establish the links between the trajectories in the
domain of the rate function and solutions of PDEs obtained by perturbing (1.2). Regularizing
the perturbations and using a Girsanov theorem allow us to conclude.

Notation: For two metric spaces E and F , Cb(E,F ) (resp. D(E,F ), C0(E, R), C1
b (E, F ),

CK(E, R), Bb(E, F )) the set of continuous bounded functions from E to F embedded with the
uniform convergence norm (resp. of càdlàg functions from E to F embedded with the Skorohod
distance, of real continuous functions with limit 0 at infinity, of differentiable and bounded
functions with bounded partial derivatives, of continuous functions with compact support, of
bounded measurable functions).

The space of finite measures on R
d
+ is denoted by MF (Rd

+). It can be embedded with the
weak or vague convergence topology. By default, we will consider the weak convergence topology.
We will write (MF (Rd

+), w) or (MF (Rd
+), v) to precise it when necessary.

We will consider the total variation norm and the L1-Vaserstein distance on MF (Rd
+):

∀µ, ν ∈ MF (Rd
+), ‖ν − µ‖TV = sup

f Cb(R
d
+, R)

‖f‖∞ ≤ 1

∣∣∣∣∣

∫

Rd
+

fdµ −

∫

Rd
+

fdν

∣∣∣∣∣ , (1.6)

W1(µ, ν) = inf

{∫

(Rd
+)2

(|a − α| ∧ 1) dπ(a, α)

}
= sup

f 1 − Lip(Rd
+)

‖f‖∞ ≤ 1

∣∣∣∣∣

∫

Rd
+

fdµ −

∫

Rd
+

fdν

∣∣∣∣∣ . (1.7)

the infimum being taken on the set of measures π ∈ MF ((Rd
+)2) with marginals µ and ν (see

Rachev [39], Villani [47] Theorem 7.12 and Remark 7.5).
For m ∈ MF (Rd

+) and f ∈ Bb(R
d
+), we write 〈m, f〉 =

∫
E fdm and 〈m, f(a)〉 =

∫
Rd

+
f(a)m(da).

C is a constant that can change from line to line.
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2 Microscopic Process

We now precise the individual dynamic of our model and describe the path of Zn by a SDE.

2.1 Aging phenomenon

The aging phenomenon is deterministic, and we describe it thanks to the flow of an ordinary
differential equation (ODE ). The ages of an individual aged a ∈ R

d
+ at time t0 ∈ R+ satisfy:

∀t ≥ t0,
da

dt
= v(a(t)), a(t0) = a0, (2.1)

where v(a) = (v1(a), · · · , vd(a)) ∈ R
d
+. The ith component vi(a) of v(a) is the speed of aging of

the ith age. The constant components correspond to ages which increase linearly in time. Non
constant speeds of aging modelize ages which are measured on physiological criteria and which
evolve non linearly in time.

Assumption 2.1. v ∈ C1
b (Rd

+, Rd
+) and ∃v̄ > 0, ∀i ∈ [[1, d]] , ∀a ∈ R

d
+, 0 < vi(a) ≤ v̄(1 + ai).

This assumption is a technical assumption under which:

Proposition 2.2. Under Assumption 2.1.
(i) The system (2.1) admits for every t0 ∈ R+, a0 ∈ R

d
+ a unique solution, defining a C1-flow:

A : (t, t0, a0) ∈ R+ × R+ × R
d
+ 7→ A(t, t0, a0) ∈ R

d. (2.2)

Each component of this flow is increasing in t.
(ii) ∀t1, t2 ∈ R+, a ∈ R

d
+ 7→ A(t1, t2, a) ∈ R

d defines a C1-diffeomorphism from R
d
+ on its image.

(iii) When d = 1, ∀a0 ∈ R+, ∀t0 ∈ R+, t ∈ R+ 7→ A(t, t0, a0) ∈ R defines a C1-diffeomorphism
from R+ on its image.

Proposition 2.2 is a consequence of classical ODE results (see for instance [50], Chapter 10).
The following PDE (2.3), which often appears in the sequel, is solved by using the flow (2.2):

Proposition 2.3. Under Assumption 2.1, for T > 0 and φ ∈ C1(Rd
+, R+), the following trans-

port equation with condition at time T : ∀a ∈ R
d
+, ∀t ∈ R+,

∂f

∂t
(a, t) + v(a)∇af(a, t) = 0, f(a, T ) = φ(a), (2.3)

admits a unique solution f ∈ C1(R+ × R
d
+) given by ∀t ∈ R+, ∀a ∈ R

d
+, f(a, t) = φ(A(T, t, a)),

where A is the flow defined in (2.2).

The proof is given in [19].
The other assumptions, concerning the birth and death rates are the following:

Assumption 2.4. We assume that b, d and U are continuous and that:
(i) ∃b̄ > 0, ∀a ∈ R+, |b(a)| ≤ b̄.
(ii) ∃ Ū > 0, ∀a, α ∈ R

d
+, |U(a, α)| ≤ Ū .

(iii) ∃Ld > 0, ∀u, v ∈ R
dc , ∀a ∈ R

d
+, |d(a, u) − d(a, v)| ≤ Ld|u − v|, and ∃d̄ > 0, ∀a ∈ R+,∀u ∈

R
dc , d(a, u) ≤ d̄(1 + |u|).

(iv) ∃d ∈ Cb(R
d
+, R+), ∀a ∈ R+, ∀u ∈ R

dc , d(a, u) ≥ d(a), and ∀t0 ∈ R+, ∀a0 ∈ R
d
+,

∫ +∞

t0

d(A(t, t0, a0))dt = +∞.
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The function d in (iv) can be interpreted as a natural death rate, and Point (iv) can be
linked to the survival probability: the probability that an individual of ages a0 at time t0 is still
alive at time t is:

Π(t0, a0, t) =E

[
exp

(
−

∫ t

t0

d(A(u, t0, a0), ZuU(x,A(u, t0, a0)))du

)]
.

Under Point (iv), limt→+∞ Π(t0, a0, t) = 0.

2.2 Stochastic Differential Equation

We introduce a SDE driven by a Poisson Point Measure, for which existence and uniqueness of
the solution are stated. The solution is a Markov process, with a generator that corresponds to
the dynamics described previously. We follow in this the approach of [16, 8, 7].

Let us introduce the following map A = (A1, · · · , AN , · · · ) from
⋃

n∈N∗ Mn
P (Rd

+) in (Rd
+)N

that will be useful to extract a particular individual from the population where the particles are
ranked in the lexicographical order of R

d
+: ∀n, N ∈ N

∗,

A

(
1

n

N∑

i=1

δai

)
= (a1, · · · , aN , 0, · · · , 0, · · · ) , (2.4)

Definition 2.5. On the probability space (Ω,F , P):
1. Let Zn

0 ∈ Mn
P (Rd

+) be a random variable such that supn∈N∗ E (〈Zn
0 , 1〉) < +∞,

2. Let Q(ds, di, dθ) be a Poisson point measure on R+ × E where E := N
∗ × R+ of intensity

ds⊗ n(di)⊗ dθ independent from Z0 (where ds and dθ are Lebesgue measures on R+ and n(di)
is the counting measure on N

∗).
We denote by (Ft)t∈R+ the canonical filtration associated with Zn

0 and Q. For t ∈ R+, Zn
t is

described by:

Zn
t =

1

n

Nn
0∑

i=1

δA(t,0,Ai(Zn
0 )) +

1

n

∫ t

0

∫

E
1{i≤Nn

s−
}

[
δA(t,s,0)1{0≤θ<m1(s,Zn

s−
,i)}

− δA(t,s,Ai(Zn
s−

))1{m1(s,Zn
s−

,i)≤θ<m2(s,Zn
s−

,i)}

]
Q(ds, di, dθ), (2.5)

where Nn
s is defined in (1.1), where A is the flow defined in (2.2), and where:

m1(s, Z
n
s− , i) = b(Ai(Z

n
s−)), m2(s, Z

n
s− , i) = m1(s, Z

n
s− , i) + d(Ai(Z

n
s−), Zn

s−U(Ai(Z
n
s−))).

Let Tn
0 = 0. Assume that the size Nn

t of the population at time t ∈ R+ is finite. Under
Assumptions 2.4, there exists a positive constant C̄ (say b̄+ d̄) such that the global jump rate at
time t ∈ R+ is upper bounded by C̄Nn

t−(1 + Nn
t−), which is finite. Hence, it is possible to define

the sequence of event times (Tn
k )k∈N∗ of Zn almost surely. Since it forms an increasing sequence,

Tn
∞ := limk→+∞ Tn

k is well defined. It is proved in [45] (Sections 2.2, 2.3 and 3.1) that:

Theorem 2.6. Existence and uniqueness of the solutions of (2.5)
Under Assumptions 2.1, 2.4 and Point 1 of Definition 2.5, Tn

∞ = +∞ P-a.s. and SDE (2.5)
admits for every n ∈ N

∗ a unique pathwise solution (Zn
t )t∈R+ ∈ D.

Since for t ∈ R+, Nn
t and 〈Zn

t , |a|〉 are finite but unbounded, we introduce the following
stopping times: let N ∈ R

∗
+,

τn
N = inf {t ≥ 0, Nn

t ≥ N} , ζn
N = inf {t ≥ 0, Nn

t ≥ N or 〈Zn
t , |a|〉 ≥ N} . (2.6)
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Figure 2: The interpretation is that the state of the population at time t is obtained by considering

the initial particles with their ages at times t (for example, A(t, 0, a0) for the blue thin-line particle), by

adding the particles born between s = 0 and s = t with their age at time t (A(t, s1, 0) and A(t, s2, 0) for

the particles in thick orange and black dot lines) and by suppressing the particles which have died before

time t (A(t, s3, a) for the particle in black dot-line).

2.3 Moment and martingale properties

We give some moments and martingale properties that will be useful in the sequel.

Lemma 2.7. Let F ∈ C1(R, R), (f : (a, s) 7→ fs(a)) ∈ Bb(R
d
+×R+, R)∩C1

b (Rd
+×R+, R). Then,

∀t ∈ R+, ∀n ∈ N
∗,

F (〈Zn
t , ft〉) = F (〈Zn

0 , f0〉) +

∫ t

0

〈
Zn

s , v∇afs +
∂fs

∂s

〉
F ′ (〈Zn

s , fs〉) ds (2.7)

+

∫ t

0

∫

E
1{i≤Nn

t }

[(
F

(
〈Zn

s− , fs〉 +
fs(0)

n

)
− F

(
〈Zn

s− , fs〉
))

1{0≤θ<m1(s,Zn
s−

,i)}

+
(
F

(
〈Zn

s− , fs〉 − fs(Ai(Z
n
s−))

)
− F

(
〈Zn

s− , fs〉
))

1{m1(s,Zn
s−

,i)≤θ<m2(s,Zn
s−

,i)}

]
Q(ds, di, dθ).

Proof. Integrating ft(a) with respect to (2.5) gives:

〈Zn
t , ft〉 =

1

n

Nn
0∑

i=1

ft (A(t, 0, Ai(Z
n
0 ))) +

1

n

∫ t

0

∫

E
1{i≤Nn

s−
}

[
ft (A(t, s, 0))1{0≤θ<m1(s,Zn

s−
,i)}

− ft

(
A(t, s, Ai(Z

n
s−))

)
1{m1(s,Zn

s−
,i)≤θ<m2(s,Zn

s−
,i)}

]
Q(ds, di, dθ).

Since ∀a ∈ R
d
+, ∀0 ≤ s ≤ t,

ft(A(t, s, a)) = fs(a) +

∫ t

s

(
∂fu

∂u
(A(u, s, a)) + v(A(u, s, a))∇afu(A(u, s, a))

)
du,

we deduce:

〈Zn
t , ft〉 =

1

n

Nn
0∑

i=1

f0 (Ai(Z0)) +
1

n

∫ t

0

∫

E
1{i≤Nn

s−
}

[
fs (0)1{0≤θ<m1(s,Zn

s−
,i)} (2.8)

− fs

(
Ai(Z

n
s−)

)
1{m1(s,Zn

s−
,i)≤θ<m2(s,Zn

s−
,i)}

]
Q(ds, di, dθ) + T1 + T2 + T3,
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where:

T1 =
1

n

∫ t

0

Nn

0∑

i=1

(
∂fs

∂s
(A(s, 0, Ai(Z

n
0 ))) + v(A(s, 0, Ai(Z

n
0 )))∇afs(A(s, 0, Ai(Z

n
0 )))

)
ds

T2 =
1

n

∫ t

0

∫

E

1{i≤Nn
s
−

}

∫ t

s

(
∂fu

∂u
(A(u, s, 0)) + v(A(u, s, 0))∇afu(A(u, s, 0))

)
du

1{0≤θ<m1(s,Zn
s
−

,i)}Q(ds, di, dθ)

T3 =
1

n

∫ t

0

∫

E

1{i≤Nn
s
−

}

∫ t

s

(
∂fu

∂u
(A(u, s, Ai(Z

n
s
−

))) + v(A(u, s,Ai(Z
n
s
−

)))∇afu(A(u, s,Ai(Z
n
s
−

)))

)
du

1{m2(s,Zn
s
−

,i)≤θ<m3(s,Zn
s
−

,i)}Q(ds, di, dθ).

It is possible to apply Fubini’s theorem to T2 and T3 and by (2.5) we recognize:

T1 + T2 + T3 =

∫ t

0

[∫

Rd
+

(
∂fu

∂u
(a) + v(a)∇afu(a)

)
Zn

u (da)

]
du (2.9)

From (2.8), (2.9), and applying Itô’s formula with jump terms, we obtain (2.7). ¥

Proposition 2.8. Under Assumptions 2.1 and 2.4,
(i) if ∃q ≥ 1, supn∈N∗ E (〈Zn

0 , 1〉q) < +∞, then:

∀n ∈ N
∗, lim

N→+∞
τn
N = +∞, P − a.s., and ∀T > 0, sup

n∈N∗

E

(
sup

t∈[0,T ]
〈Zn

t , 1〉q

)
< +∞. (2.10)

(ii) if ∃q ≥ 1, m ≥ 1, supn∈N∗ E (〈Zn
0 , 1〉m) < +∞ and supn∈N∗ E (〈Zn

0 , |a|q〉m) < +∞, then:

∀T > 0, sup
n∈N∗

E

(
sup

t∈[0,T ]
〈Zn

t , |a|q〉m

)
< +∞. (2.11)

(iii) Let n ∈ N
∗. If E

(
〈Zn

0 , 1〉2
)

< +∞ and E (〈Zn
0 , |a|〉) < +∞ then: ∀f ∈ C1

b (Rd
+ × R+, R),

Mn,f
t =〈Zn

t , ft〉 − 〈Zn
0 , f0〉

−

∫ t

0

∫

R+

[
v(a)∇afs(a) +

∂fs

∂s
(a) + fs(0)b(a) − fs(a)d(a, Zn

s U(a))

]
Zn

s (da) ds, (2.12)

is a square integrable càdlàg martingale starting from 0, with previsible quadratic variation:

〈Mn,f 〉t =
1

n

∫ t

0

∫

R+

[
f2

s (0)b(a) + f2
s (a)d(a, Zn

s U(a))
]
Zn

s (da) ds. (2.13)

Proof. Point (i) is a direct adaptation of the proof of Lemma 5.2 in [16]. Let us consider Point
(ii). Let N > 0, n ∈ N

∗ and ζn
N be the stopping time introduced in (2.6). For this proof, we will

consider the norm 1 on R
d: ∀a = (a1, · · · ad) ∈ R

d
+, |a| =

∑d
i=1 ai. This choice is made since it

simplifies the calculations. It is not restrictive since the norms in R
d are equivalent. The function

f : a ∈ R
d
+ 7→ |a|q =

(∑d
i=1 ai

)q
∈ R+ is differentiable and ∀i ∈ [[1, d]] , ∂f/∂ai = q|a|q−1. The

map F : x ∈ R+ 7→ xm ∈ R+ is also differentiable and F ′(x) = mxm−1. Applying Lemma 2.7
and neglecting the non positive terms gives:

E

(
sup

u∈[0,t∧ζn
N

]
〈Zn

u , |a|q〉m

)
≤ E (〈Zn

0 , |a|q〉m) + mqv̄E

(∫ t∧ζn
N

0
〈Zn

s , |a|q−1(d + |a|)〉〈Zn
s , |a|q〉m−1ds

)
,
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by using the fact that 0 ≤
∑d

i=1 vi(x, a) ≤ v̄(d + |a|) (Assumption 2.1). Since:

〈Zn
s , |a|q−1〉 ≤ 〈Zn

s , (|a| ∨ 1)q−1〉 ≤〈Zn
s , (|a| ∨ 1)q〉 ≤ 〈Zn

s , 1〉 + 〈Zn
s , |a|q〉, (2.14)

we have:

〈Zn
s , |a|q−1〉〈Zn

s , |a|q〉m−1 ≤〈Zn
s , 1〉〈Zn

s , |a|q〉m−1 + 〈Zn
s , |a|q〉m ≤ 〈Zn

s , 1〉m + 2〈Zn
s , |a|q〉m,

and hence by the moment assumptions, (2.10) and by the Fubini’s theorem:

E

(
sup

u∈[0,t∧ζn
N

]
〈Zn

u , |a|q〉m

)
≤ E (〈Zn

0 , |a|q〉m) + mqv̄dTE

(
sup

u∈[0,T∧ζn
N

]
〈Zn

u , 1〉m

)

+mqv̄(2d + 1)

∫ t

0
E

(
sup

u∈[0,s∧ζn
N

]
〈Zn

u , |a|q〉m

)
ds

≤

(
sup
n∈N∗

E (〈Zn
0 , |a|q〉m) + mqv̄dT C(m,T )

)
emqv̄(2d+1)T =: D(q, T ), (2.15)

by Gronwall’s lemma. As D(q, T ) does not depend on N , we deduce that:

lim
N→+∞

ζn
N = +∞, P − a.s. (2.16)

Assume indeed that (2.16) is not satisfied. For q = 1, there exists M > 0 and AM ⊂ Ω with

P(AM ) > 0 such that ∀ω ∈ AM , limN→+∞ ζn
N (ω) < M . Then, for T > M, E

(
supt∈[0,T∧ζn

N
]〈Z

n
t , |a|〉m

)
≥

P(AM )Nm, which can not be upper bounded independently of N . Hence, (2.16) is satisfied. Let-
ting N tend to infinity in (2.15) gives (2.11) by Fatou’s lemma.

Point (iii) is obtained by using the compensated Poisson point measure Q̃ of Q. We have:

Mn,f
t = −

1

n

∫ t

0

∫

E
1{i≤Nn

s−
}

(
fs(0)1{0≤θ<m1(s,Zn

s−
,i)}

− fs(Ai(Z
n
s−))1{m1(s,Zn

s−
,i)≤θ≤m2(s,Zn

s−
,i)}

)
Q̃(ds, di, dθ).

Showing that it is a square integrable martingale and computing its quadratic variation is then
relatively standard (see [45]). ¥

The infinitesimal generator of (2.5) corresponds to the description of the introduction:

Theorem 2.9. For n ∈ N
∗, Zn ∈ D is a Markov process of infinitesimal generator defined by:

∀f ∈ C1
b (Rd

+, R), ∀F ∈ C1
b (R, R),

LFf (Zn
0 ) =

∂

∂t
E (Ff (Zn

t )) |t=0 =

∫

X̃
v(a)∇af(a)F ′ (〈Zn

0 , f〉)Zn
0 (da)

+ n

∫

X̃

[(
Ff

(
Zn

0 +
1

n
δ0

)
− Ff (Zn

0 )

)
b(a)Zn

0 (da)

+

(
Ff

(
Zn

0 −
1

n
δa

)
− Ff (Zn

0 )

)
d(a, Zn

0 U(a))

]
Zn

0 (da),

where ∀Z ∈ MF (Rd
+), Ff (Z) = F (〈Z, f〉).

Proof. We refer to [45] for the proof, which consists in proving that it is possible to take the
derivative under the expectation. ¥
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We conclude this part with the consideration of exponential moments, which will be useful
in the Section dealing with exponential deviations.

Assumption 2.10. We assume that:

1. ∀λ > 0, supn∈N∗ eλ 〈Zn
0 ,1〉 < +∞, and ∃η ∈]0, 1[, supn∈N∗

[∫
Rd

+
|a|Zn

0 (da)
]1+η

< +∞.

2. ∃i0 ∈ [[1, dc]] , ∃n0 ∈ N
∗, ∃U0 ∈ R

∗
+, ∀n ≥ n0, ∀u ∈ R

dc , ∀a ∈ R
d
+, ∀λ > 0, [ui0 ≥ U0] ⇒[

(eλ/n − 1)b(a) + (e−λ/n − 1)d(a, u) < 0
]
, (dc is the number of interactions).

3. ∃U > 0, ∀a, α ∈ R+, Ui0(a, α) > U , for the index i0 of Point 2.

Since ∀a ∈ R
d
+, b(a) ≤ b̄, Point 2 is for instance satisfied if lim|u|→+∞ d(a, u) = +∞ (this

happens for the logistic model).

Proposition 2.11. Under Assumptions 2.1, 2.4, 2.10 :
(i) ∀λ > 0, ∀t ∈ [0, T ],

sup
n∈N∗

E

(
eλ 〈Zn

t ,1〉
)
≤ sup

n∈N∗

eλ 〈Zn
0 ,1〉 + λb̄MTeλM < +∞, (2.17)

where M := U0/U with the constants U0 and U of Assumption 2.10.

(ii) Let ρ(x) = ex − x− 1. We consider the martingale (Mn,f
t )t∈R+ defined in (2.12). Then, the

process defined for t ∈ [0, T ], n ∈ N
∗ and f ∈ Cb(R

d
+ × [0, T ], R) by Λn,f

t = eMn,f
t −Ξn,f

t ,

with: Ξn,f
t =

∫ t

0

∫

Rd
+

n

[
ρ

(
f(0, s)

n

)
b(a) − ρ

(
−

f(a, s)

n

)
d(a, Zn

s U(a))

]
Zn

s (da)ds, (2.18)

is a martingale.

Sketch of proof. We refer to [45] for a complete proof. For Point (i), the idea is that under

Assumptions 2.10, the drift of the semi-martingale (e
λ 〈Zn

t∧τn
N

,1〉
)t∈[0,T ] is nonnegative only for

measures that have a mass bounded by M . For Point (ii), applying Itô’s formula to Λn,f
t localized

by the stopping time τn
N (2.6) yields that Λn,f is a local martingale. From Assumptions 2.10

and Point (i) of Proposition 3.3, limN→+∞ τn
N = +∞ P-a.s. Using Fatou’s lemma, we show that

Λn,f is a real martingale. ¥

3 Convergence to the weak measure solution of a PDE in the
Large Population Limit

We study the limit of (Zn)n∈N∗ when n → +∞, under the following assumptions:

Assumption 3.1. We assume that (Zn
0 )n∈N∗ ∈ MF (Rd

+) converges in law in (MF (Rd
+), w) to

the deterministic measure ξ0 ∈ MF (Rd
+) and that the following moment conditions are satisfied:

∃η ∈]0, 1[, sup
n∈N∗

E
(
〈Zn

0 , 1〉2+η
)

< +∞, and sup
n∈N∗

E
(
〈Zn

0 , |a|〉1+η
)

< +∞.

In this section, we prove the convergence of the sequence (Zn)n∈N∗ to the solution of (1.2)
by a tightness-uniqueness argument.

3.1 Tightness of the sequence (Zn)n∈N∗

Proposition 3.2. Under Assumptions 2.1, 2.4, 3.1, (Zn)n∈N∗ is tight on D(R+, (MF (Rd
+), w)).

Its limit values are continuous measure-valued processes satisfying (1.2).
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Proof. The proof is inspired by the proof of Theorem 5.3 in [16], and a detailed proof stands in
[45], Theorem 3.2.2. We begin with establishing the tightness of the laws of (Zn)n∈N∗ considered
as processes of D(R+, (MF (Rd

+), v)), where MF (Rd
+) is embedded with the topology of vague

convergence. For this purpose, we use a criterium due to Roelly ([41], Theorem 2.1): it is
sufficient to prove that for f ∈ C1

b (Rd
+, R)∩C0(R

d
+, R), which is dense in C0(R

d
+, R), the sequence

(Zn,f = 〈Zn, f〉)n∈N∗ is tight in D(R+, R). Thanks to Proposition 2.8 and Assumptions 3.1, we
can prove that Aldous and Rebolledo criteria [1, 28] are satisfied, which is a sufficient condition
for (Zn,f )n∈N∗ to be tight.

Notice that the particular choice of f ≡ 1 implies the tightness of the sequence (〈Zn, 1〉)n∈N∗

in D(R+, R+) with the same arguments.
By Prohorov Theorem, it is possible to extract from (Zn)n∈N∗ a subsequence (Zφ(n))n∈N∗

that converges in law in D(R+, (MF (Rd
+), v)) to a limiting process Z. Since we also proved the

tightness of (〈Zn, 1〉)n∈N∗ , it is possible to choose this subsequence such that (〈Zφ(n), 1〉)n∈N∗

converges in law to 〈Z, 1〉 in D(R+, R+). By construction, the jumps of (Zn)n∈N∗ are of order 1/n
and entails that the limit process Z is almost surely continuous. Using Theorem 3 in Méléard
and Roelly [35], (Zφ(n))n∈N∗ also converges in law in D(R+, (MF (Rd

+), w)), where MF (Rd
+)

is embedded with the topology of weak convergence. Applying Prohorov Theorem again, we
deduce that the sequence (Zn)n∈N∗ is tight in D(R+, (MF (Rd

+), w)).
To identify the limit, we have to prove that P-a.s., ∀[f : (a, t) 7→ ft(a)] ∈ C1

b (Rd
+ ×

R+, R), ∀t ∈ R+, Ψt(Z) = 0, where:

Ψt(Z) =〈Zt, ft〉 − 〈Z0, f0〉

−

∫ t

0

∫

Rd
+

[
v(a)∇afs(a) +

∂fs

∂s
(a) + f(0, s)b(a) − f(a, s)d(a, ZsU(a))

]
Zs(da) ds.

This is obtained by a direct adaptation of the proof of [16, 45]. ¥

In order to prove that the whole sequence (Zn)n∈N∗ converges, we will show that it admits
a unique limit value. This is related to the uniqueness of the solution of (1.2).

3.2 Existence and uniqueness of the solution of (1.2)

Existence of the solutions of (1.2) is a consequence of Proposition 3.2, since the limit values of
(Zn)n∈N∗ are solutions. Proposition 3.3 deals with the uniqueness problem.

Proposition 3.3. Let ξ0 ∈ MF (Rd
+) be a deterministic initial condition. Let (ξ1

t )t∈R+ and
(ξ2

t )t∈R+ be two solutions of (1.2) in C(R+,MF (Rd
+)), starting from ξ0. Under Assumptions

2.1, 2.4, 3.1, we have: ∀t ∈ R+, ξ1
t (dx, da) = ξ2

t (dx, da).

Proof. The solutions of (1.2) are continuous with bounded masses on finite time intervals: ∀t ≥
0, 〈ξt, 1〉 ≤ 〈ξ0, 1〉 +

∫ t
0 b̄〈ξs, 1〉 ds ≤ 〈ξ0, 1〉 exp

(
b̄t

)
< +∞. For T > 0, we can define AT :=

supt∈[0,T ]〈ξ
1
t +ξ2

t , 1〉 < +∞. Let φ ∈ C1
b (Rd

+, R) such that ‖φ‖∞ ≤ 1. For t ∈ [0, T ], we can define

∀a ∈ R
d
+, ∀s ∈ R+, f(a, s) = φ(A(t, s, a)). By Proposition 2.3: ∀i ∈ {1, 2}, ∀t ∈ [0, T ],

〈ξi
t, φ〉 =

∫

Rd
+

φ(A(t, 0, a))ξi
0(da) +

∫ t

0

∫

Rd
+

[
φ(A(t, s, 0))b(a) − φ(A(t, s, a))d(a, ξi

sU(a))
]
ξi
s(da) ds

Hence: ∀t ∈ [0, T ],

|〈ξ1
t − ξ2

t , φ〉| ≤

∫ t

0

[∣∣∣∣∣

∫

Rd
+

(
φ(A(t, s, 0))b(a) − φ(A(t, s, a))d(a, ξ1

sU(a))
)
(ξ1

s (da) − ξ2
s (da))

∣∣∣∣∣

+

∣∣∣∣∣

∫

Rd
+

φ(A(t, s, a))
(
d(a, ξ1

sU(a)) − d(a, ξ2
sU(a))

)
ξ2
s (da)

∣∣∣∣∣

]
ds ≤ C(T )

∫ t

0
‖ξ1

s − ξ2
s‖TV ds, (3.1)
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where C(T ) = b̄ + d̄(1 + AT ) + AT Ld Ū . By taking the sup in φ in the left hand side and by
noticing that every function φ ∈ Cb(R+, R) is the limit for the bounded pointwise convergence
of a sequence of functions of C1

b (R+, R):

∀t ∈ [0, T ], ||ξ1
t − ξ2

t ||TV ≤ C(T )

∫ t

0
||ξ1

s − ξ2
s ||TV ds.

The result is given by Gronwall Lemma, and by the fact that T is arbitrary. ¥

Corollary 3.4. Under Assumptions 2.1, 2.4, 3.1 and for every initial condition ξ0 ∈ MF (Rd
+),

Equation (1.2) admits a unique solution (ξt)t∈R+ ∈ C(R+,MF (Rd
+)) to which the sequence

(Zn)n∈N∗ of D converges in probability.

3.3 Absolute continuity of the solutions of (1.2)

Let us now study the existence of densities for the measures ξt(da) with respect to the Lebesgue
measure of R

d
+. If they exist, they define a weak solution of (1.5) which generalizes the McK-

endrick and Von Foerster equations that are classical in demography. In the case of a scalar
age we have the propagation of the absolute continuity for positive times (Proposition 3.5).
However, when many ages are taken into account, densities do not exist any more (Remark 3.6).

Proposition 3.5. In the case d = 1, under Assumptions 2.1, 2.4, 3.1 and if ξ0(da) = m0(a)da
is absolutely continuous with respect to the Lebesgue measure on R+, then the time marginals
ξt(da) also admit densities mt(a) for every t ∈ R+.

Proof. Let t ∈ R+ and let φ ∈ C1
b (R+, R+) nonnegative. For f defined by ∀s ∈ R+,∀a ∈

R+, f(a, s) = φ(A(t, s, a)), where A is defined in (2.2), we have:

〈ξt, φ〉 ≤

∫

R+

φ(A(t, 0, a))ξ0(da) +

∫ t

0

∫

R+

φ(A(t, s, 0))b(a)ξs(da) ds (3.2)

since φ is nonnegative. Let us consider the first term. By Point (ii) of Proposition 2.2, the
map a 7→ A(t, 0, a) defines a C1-diffeomorphism from R+ into [A(t, 0, 0),+∞[. Let us denote by
A−1(t, α) the inverse diffeomorphism and by JA−1(t, α) its jacobian matrix. Using the change
of variable associated with a 7→ A(t, 0, a):

∫

R+

φ(A(t, 0, a))m0(a)da =

∫

R+

∫ +∞

A(t,0,0)
φ(α)m0(A

−1(t, α))|JA−1(t, α)| dα. (3.3)

For the second term, the change of variable given by the C1-diffeomorphism s 7→ A(t, s, 0) yields:

∫ t

0

∫

R+

φ(A(t, s, 0))b(a)ξs(da) ds =

∫ A(t,0,0)

0

∫

R+

φ(α) b(a)|JÃ−1(α)|ξ
Ã−1(α)

(da) dα. (3.4)

From (3.3) and (3.4), we deduce that:

0 ≤

∫

R+

φ(a)ξt(da) ≤

∫ +∞

0
φ(α)H(α, t)dα, where: (3.5)

H(α, t) =1A(t,0,0)≤α n0(A
−1
x (t, α))|JA−1(t, α)| + 1α≤A(t,0,0)

∫

R+

b(a)|JÃ−1(α)|ξ
Ã−1(α)

(da) dα.

The function H is nonnegative and integrable, since the right hand side of (3.5) equals the right
hand side of (3.2), which is finite. Since C1

b (R+, R+) is dense in the set of measurable functions
that are ξt-almost everywhere bounded (see Rudin [42], p. 69, ξt being a finite measure),
we deduce from (3.5) that the measure ξt(da) is dominated by a measure that is absolutely
continuous with respect to the Lebesgue measure and is hence itself absolutely continuous. ¥
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Remark 3.6. In the case where d > 1, the map t ∈ R+ 7→ A(t, 0, 0) ∈ R
d
+ does not define

a bijection any more, and the ages of individuals born after s = 0 at time t belong to the set
{A(t, s, 0) ∈ R

d
+, s ∈ [0, t]}, which is a one-dimensional variety of R

d
+. Thus, the measures ξt

can not be absolutely continuous with respect to the Lebesgue measure on R
d
+.

The following Proposition linking (1.2) and (1.3, 1.4) is proved in Section 3.2.4 of [45]:

Proposition 3.7. For d = 1 and under the Assumptions of Proposition 3.5, the weak function
solution (a, t) 7→ m(a, t) of (1.2) is well defined. If this solution belongs to C1

b (R2
+, R+) and if

∀t ∈ R+, ∂
∂t

∫
R+

m(a, t)da =
∫

R+

∂m
∂t (a, t)da, then it is the classical solution of (1.3, 1.4).

Proof. We replace ξs(da) in (1.2) by m(a, s)da and differentiate with respect to time. ∀t ∈ R+,

∂

∂t

∫

R+

f(a)m(a, t)da =

∫

R+

[v(a)∇a (f(a))

+f(0)b(a) − f(a)d

(
a,

∫

R+

U(a, α)m(α, t)dα

)]
m(a, t)da. (3.6)

Let us first consider test functions f ∈ C1
b,K(R+, R) bounded with compact support in R

∗
+.

in particular f(0) = 0. By Fubini theorem and by an integration by parts formula for the aging
term: ∀t ∈ R+,

∫

R+

∇a (f(a)) v(a)m(a, t)da = [f(a)v(a)m(a, t)]+∞
a=0 −

∫

R+

f(a)∇a (v(a)m(a, t)) da. (3.7)

The bracket in the right hand side being zero since lima→+∞ m(a, t) = 0 for every t ∈ R+. From
(3.6) and (3.7), we obtain that da-almost surely on R

∗
+, and ∀t ∈ R+,

∂

∂t
m(a, t) + ∇a (v(a)m(a, t)) = −d

(
a,

∫

R+

U(a, α)m(α, t)dα

)
m(a, t). (3.8)

Let us now consider test functions f ∈ C1
b (R+, R) with arbitrary support. From (3.7) and

(3.6): ∀t ∈ R+,

∫

R+

[
∂

∂t
m(a, t) + ∇a (v(a)m(a, t))

]
f(a)da = −f(0)v(0)n(0, t)

+

∫

X̃

[
f(0)b(a) − f(a)d

(
a,

∫

R+

U(a, α)m(α, t)dα

)]
m(a, t)da. (3.9)

We simplify (3.9) with (3.8) and: ∀t ∈ R+, f(0)v(0)n(0, t) =
∫

R+
f(0)b(a)m(a, t)da. By identifi-

cation of the integrands, we obtain the boundary condition in (1.4). ¥

4 Exponential deviations

In this section, we set T > 0 and study the exponential deviations associated with the conver-
gence of (Zn)n∈N∗ to the solution ξ of (1.2) in DT (Corollary 3.4). More precisely, we look for
estimates of (1/n) log P(Zn ∈ B), for any Borel set B ⊂ DT , when n → +∞. Applications will
be considered in Section 5.

A first difficulty arise from the fact that MF (Rd
+) is not compact. The mass of the micro-

scopic process is not necessarily bounded. The exponential tightness of (Zn
.∧ζn

N
)n∈N∗ on DT is
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classical and can be established by adapting techniques from Dawson and Gärtner [11] and Gra-
ham and Méléard [21]. The relaxation of the localization by ζn

N relies on exponential deviation
inequalities proved in Lemmas 4.7 and 4.8.

The lower bound issue is treated in Section 4.3. A second difficulty comes from the fact that
the events describing the dynamics are of different nature (births, deaths) and that they are as-
sociated with nonlinear rates. Following the approach of Léonard [31], Kipnis and Léonard [30],
we base our proof on the use of a Riesz theorem on Orlicz spaces, which gives us a representation
of the trajectories of the action functional as solutions of perturbed PDEs obtained from (1.2)
and on a Girsanov theorem. A key point in the the proof is the use of a density Theorem due
to Bishop-Phelps-Israel [5, 24].

Notation: We define E := R
d
+ × {0, 1}. With each function f ∈ B(Rd

+ × [0, T ], R), we can
associate a map ψ(f) defined on E × [0, T ] by: ∀(a, u, t) ∈ E × [0, T ],

ψ(f)(a, u, t) = f(0, t)1u=0 − f(a, t)1u=1. (4.1)

For t ∈ [0, T ] and z ∈ DT , let us introduce the following positive finite measure on E:

mz,T
t (da, du) = [b(a)δ0(du) + d(a, zt−U(a))δ1(du)] zt−(da). (4.2)

The Laplace transform ρ of the standard centered Poisson law and its Legendre transform are:

ρ(x) = ex − x − 1, ρ∗(y) =





(y + 1) log(y + 1) − y si y > −1,
1 si y = −1,

+∞ si y < −1,
(4.3)

ρ∗ is nonnegative and vanishes only at y = 0. The functions ρ and ρ∗ are convex conjugated.
For α ∈ {ρ, ρ∗}, T > 0 and z ∈ DT , we define the following Orlicz norm on the space of real
Borel functions on E × R+:

||g||α,z = inf

{
κ > 0,

∫ T

0

∫

E
α

(
|g(a, u, s)|

κ

)
mz,T

s (da, du)ds ≤ 1

}
. (4.4)

The set of functions with finite Orlicz norms are denoted by Lρ,z and Lρ∗,z. The closure Eρ,z(E×
R+) of the space of Borel bounded functions for the norm ‖.‖ρ,z is strictly included in Lρ,z (see
[30] Section 3, for instance) and admits a topological dual which can be identified with Lρ∗,z

thanks to the following representation theorem:

Theorem 4.1. Riesz Theorem in Orlicz spaces (see Rao et Ren [40], p.93 and following
or Kipnis and Léonard [30]) For every continuous linear form ℓ on Eρ,z(E × R+), there exists
a function h ∈ Lρ∗,z such that:

∀g ∈ Eρ,z(E × R+), ℓ(g) =

∫ T

0

∫

E
g(a, u, s)h(a, u, s)dmz,T

s (da, du)ds.

4.1 Main Result

The main result of this Section is enounced in Theorem 4.4.

Assumption 4.2. We assume that Assumptions 2.10 are satisfied and that:
1. The sequence (Zn

0 )n∈N∗ is deterministic and converges in (MF (Rd
+), w) to a measure ξ0.

2. ∃C0 > 0, 〈ξ0, 1 + |a|〉 < C0 and ∃n0 ∈ N
∗, ∀n ≥ n0, 〈Z

n
0 , 1 + |a|〉 < C0.

14



The Assumption of Point 1 is made for simplification. It can be weaken by assuming that
(Zn

0 )n∈N∗ converges in law in (MF (Rd
+), w) to ξ0.

We now define the action functional that appears in our deviation result.

Definition 4.3. For ξ0 ∈ MF (Rd
+) and z ∈ DT , let us define IT

ξ0
(z) by:

IT
ξ0(z) =

{
supf∈C1

b
(Rd

+×[0,T ],R) I
f,T (z), if z0 = ξ0

+∞, else,
, with: If,T (z) = ℓT (f, z) − cT (f, z), (4.5)

where ℓT (f, z) and cT (f, z) are defined for (f : (a, s) 7→ fs(a)) ∈ C1
b (Rd

+ × [0, T ], R) by:

ℓT (f, z) =〈zt, ft〉 − 〈z0, f0〉 −

∫ t

0

[∫

Rd
+

(
v(a)∇afs(a) +

∂fs

∂s
(a)

)
zs(da) −

∫

E
ψ(f)dmz,T

s

]
ds,

cT (f, z) =

∫ T

0

∫

E
ρ(ψ(f)(a, u, s))mz,T

s (da, du) ds. (4.6)

Theorem 4.4. Under Assumptions 2.4, 2.1, 4.2.
(i) Let z ∈ DT such that IT

ξ0
(z) < +∞. There exists hz ∈ Lρ∗,z such that z is the solution of:

∀ (f : (a, s) 7→ fs(a)) ∈ C1
b (Rd

+ × R+, R), ∀t ∈ [0, T ],

〈zt, ft〉 =〈z0, f0〉 +

∫ t

0

〈
zs, v∇afs +

∂fs

∂s

〉
ds +

∫ T

0

∫

E
(1 + hz)ψ(f)dmz,T

s ds. (4.7)

We have then have the following non-variational representation of the action functional:

IT
ξ0(z) =

∫ T

0

∫

E
ρ∗ (hz(a, u, s))mz,T

s (da, du) ds. (4.8)

(ii) Let:
G =

{
z ∈ DT | IT

ξ0(z) < +∞, and hz ∈ L∞(E × [0, T ], R)
}

(4.9)

The sequence (Zn)n∈N∗ of DT satisfies the following deviation inequalities: ∀B Borel set of DT ,

− inf
z∈B̊∩G

IT
ξ0(z) ≤ lim inf

n→+∞

1

n
log P(Zn ∈ B) ≤ lim sup

n→+∞

1

n
log P(Zn ∈ B) ≤ − inf

z∈B̄
IT

ξ0(z), (4.10)

with the convention inf ∅ = +∞.

Remark 4.5. (4.7) corresponds to a perturbation of the birth and death rates of (1.2) by factors
(1 + hz(a, 0, s)) and (1 + hz(a, 1, s)) which are different (and hence the introduction of the mark
u ∈ {0, 1}). We will prove in Proposition 4.14 (Point 4) that these factors are nonnegative.

The upper bound of (4.10) is a large deviation upper bound. The lower bound is local, the
infimum being taken on B̊ ∩ G and not B̊. In the proof of the lower bound, we will be lead to
regularize hz by approximating it with a sequence (hm)m∈N∗ of perturbations with particular
forms, continuous and bounded. With each hm, we can associate the solution zm of the evolution
equation (4.7) perturbed by hm. The convergence of zm to z when hz is bounded is proved in
Proposition 4.18, the general case is still open. In the works which have inspired us [31, 30]
the similar difficulty is encountered, but under a different form: the problem is a uniqueness
problem for the perturbed equation (4.7) and not a convergence problem.

The local minoration that we obtain is still a useful result, that we will use in Section 5.
It provides an information as soon as B̊ ∩ G 6= ∅, in which case, the lower bound of (4.10) is
not −∞. This is the case when B̊ contains the solution of (1.2) which corresponds to a zero
perturbation for instance.
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4.2 Exponential tightness and large deviation upper bound

We prove the exponential tightness of (Zn)n∈N∗ on DT . The large deviation upper bound is then
a generalization of Theorem 4.4.2 and Lemma 4.4.5 of Dembo and Zeitouni [12], obtained by
replacing the limits with lim sup.

Recall that the continuity modulus for y ∈ D([0, T ], R) and δ ∈]0, 1[ is defined by:

w′(y, δ) = inf
{tl}

(
max

1<i≤card{tl}
w(y, [ti−1, ti[)

)
where w(y, [ti−1, ti[) = sup

s,t∈[ti−1,ti[
|ys − yt|,

and where the infimum is considered on the subdivisions 0 = t0 < t1 · · · < tcard{tl} = T such
that ∀i ∈ [1, card{tl}], ti − ti−1 > δ.

Proposition 4.6. Under Assumptions 2.1, 2.4, 4.2:
(i) Let (ϕr)r∈N∗ be a denumberable dense family of C1

0(Rd
+, R), and let us set ϕ0 ≡ 1. ∀L >

0, ∀N > 0, ∃K1
L,N closed subset of DT , ∃n0 ∈ N

∗, ∀n ≥ n0:

P

(
Zn

.∧ζn
N

/∈ K1
L,N

)
≤

e−nL(2 − e−L)

(1 − e−L)2
and such that: ∀r ∈ N, lim

δ→0
sup

z∈K1
L,N

w′(〈z, ϕr〉, δ) = 0.

(4.11)
(ii) ∀L > 0, ∃K2

L compact subset of (MF (Rd
+), w),

lim sup
n→+∞

1

n
log

(
P

(
∃t ∈ [0, T ], Zn

t /∈ K2
L

))
≤ −L. (4.12)

The measure-valued process Zn
.∧ζn

N
has marginals of mass bounded by N > 0. The proof

of Point (i) is an adaption of the proof in [11] (see [45] for a detailed proof). It relies on
the proof of the following estimate, obtained by an adaptation of techniques used in [21, 20]:
∀ε > 0, ∀N > 0, ∀c > 0, ∀δ > 0, ∀n ∈ N, ∀ϕ ∈ C1

b (Rd
+),

P

(
sup

|t−s|≤δ
|〈Zn

t∧ζn
N

, ϕ〉 − 〈Zn
s∧ζn

N
, ϕ〉| > 4ε

)
≤ 8

(
T

δ
+ 1

)
e−ncε+2δnSc(N,φ) (4.13)

where Sc(N, ϕ) =
[
ρ(c‖ϕ‖∞)N(b̄ + d̄(1 + N))

]
∨

[
c(v̄2N ||∇aϕ||∞ + N‖ϕ‖∞(b̄ + d̄(1 + N)))

]
.

The upper bound in (4.13) depends on N , and we can not take the limit in N → +∞.

The second point of Proposition 4.6 and the relaxation of the stopping time ζn
N make the

object of the end of this section. We generalize an argument used by Dawson Gärtner [11] in
the case of continuous probability-valued processes. We prove that there exists N > 0 such that
the probability P (ζn

N ≤ T ) is exponentially small. Then, the exponential tightness of the laws
of ((Zn

t∧ζn
N

)t∈[0,T ])n∈N∗ implies the exponential tightness of the laws of ((Zn
t )t∈[0,T ])n∈N∗ .

We set φ0 ≡ 1 and introduce a denumberable family K = (φr)r∈N such that for every r ∈ N
∗,

φr is constant outside a compact set of R
d
+, polynômial on this compact set, and bounded up and

below by positive constants, and such that for every φ ∈ C0(R
d
+, R+) there exists a sub-sequence

(φψ(r))r∈N of (φr)r∈N that converges uniformly to φ.
In order to establish (4.12), we will need the following Lemma proved in the sequel:

Lemma 4.7. Under Assumptions 2.4, 2.1, 4.2.
(i) ∀L > 0, ∃N = N(T, L, C0) > 0, ∃n0 ∈ N

∗, ∀n > n0, P (τn
N > T ) ≤ e−nL, and P (ζn

N > T ) ≤
e−nL, C0 being defined in Point 2 of Assumptions 2.10.

(ii) ∀φ ∈ K, ∀L > 0, ∃C = C(φ, T, L, C0) > 0, ∃n0 ∈ N
∗, ∀n > n0, P

(
supt∈[0,T ]〈Z

n
t , φ〉 > C

)
≤

e−nL.
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Sketch of the proof of Point (ii) of Proposition 4.6. Let us introduce the following sets for C >
0 and φ ∈ Cb(R

d
+, R+):

Kφ(C) =
{

z ∈ MF (Rd
+) | 〈z, φ〉 ≤ C

}
.

Let us prove that the set K2
L = adh

[⋂
r∈N

Kφr
(Cr)

]
, with Cr := C(φr, T, rL ∨L,C0) of Lemma

4.7, is compact in (MF (Rd
+), w) and that (4.12) is satisfied.

Let (zm)m∈N∗ be a sequence of
⋂

r∈N
Kφr

(Cr). For every given r ∈ N, (〈zm, φr〉)m∈N∗ is a
nonnegative real sequence upper bounded by Cr and hence relatively compact.

By a diagonal procedure, we can extract from (zm)m∈N∗ a subsequence, again denoted by
(zm)m∈N∗ , such that for every r ∈ N, (〈zm, φr〉)m∈N∗ converges to a limit ℓ(φr). Let g ∈
C0(R

d
+, R+). By choice of K, there exists a subsequence (φψ(r))r∈N of (φr)r∈N that converges

uniformly to g. The sequence (ℓ(φψ(r)))r∈N is then a Cauchy sequence in R and we can define
the limit ℓ(g) = limr→+∞ ℓ(φψ(r)), which does not depend on the choice of the subsequence

(φψ(r))r∈N. With a non negative function g ∈ C0(R
d
+, R−), we associate ℓ(g) := −ℓ(−g). With

g ∈ C0(R
d
+, R), we associate ℓ(g) = ℓ([g]+)− ℓ([g]−), where [.]+ and [.]− denote the positive and

negative parts.
If ℓ(1) 6= 0, we can prove that the map g ∈ C0(R

d
+, R) 7→ ℓ(g)/ℓ(1) ∈ R is well-defined, linear,

continuous, of norm 1 and nonnegative. Thanks to the Riesz representation Theorem (see Rudin
[42], Theorem 6.19 p.130), there exists a unique probability measure ν, such that ∀g ∈ C0(R

d
+, R),

ℓ(g) = ℓ(1)
∫

R+
g(a)ν(da). By construction, for every g ∈ C0(R

d
+, R), (〈zm, g〉)m∈N∗ converges to

〈ℓ(1)ν, g〉. Since (〈zm, 1〉)m∈N∗ converges to ℓ(1) = 〈ℓ(1)ν, 1〉, (zm)m∈N∗ converges weakly to ℓ(1)ν
(see [35]). If ℓ(1) = 0, then ∀g ∈ C0(R

d
+, R), (〈zm, g〉)m∈N∗ converges to 0 and (〈zm, 1〉)m∈N∗ also

converges to 0. This implies that (zm)m∈N∗ converges weakly to the null measure.
The set

⋂
r∈N

Kφr
(Cr) is hence relatively compact in (MF (Rd

+), w), and its adherence K2
L is

compact in (MF (Rd
+), w). Finally:

P
(
∃t ∈ [0, T ], Zn

t /∈ K2
L

)
≤

∑

r∈N

P (∃t ∈ [0, T ], Zn
t /∈ Kφr

(C(φr, T, Lr, C0)))

≤
∑

r∈N∗

e−nrL + e−nL ≤
e−nL(2 − e−nL)

1 − e−nL
(4.14)

by Point (ii) of Lemma 4.7. This yields (4.12). ¥

The proof of Lemma 4.7 is based of the following Lemma 4.8, where we establish a sufficient
condition to obtain the upper bounds of Lemma 4.7.

Lemma 4.8. Under Assumptions 2.1, 2.4, 4.2, for C0 and n0 defined in Assumptions 4.2,
for φ ∈ C1

b (Rd
+, R) such that ∃C(φ) > 0, ∀a ∈ R

d
+, |φ(a)| ≤ C(φ)(1 + |a|), there exists γ =

γ(φ, T,C0) > 0 such that ∀t ∈ [0, T ], ∀n > n0, P-a.s.:

∫

E
ψ(φ)dmZn,T

t + 〈Zn
t , v∇aφ〉 − γ〈Zn

t , φ〉 ≤ −

∫

E
eγtρ

(
ψ (φ) e−γt

)
dmZn,T

t , (4.15)

then: ∀L > 0, ∃C = C(φ, T, L, C0) > 0, ∀n > n0,

P

(
sup

t∈[0,T ]
〈Zn

t , φ〉 > C

)
≤ e−nL. (4.16)

Proof of Lemma 4.8. We are inspired by techniques from [11] for continuous probability-valued
processes, and consider the semi-martingale (e−γt〈Zn

t , φ〉)t∈[0,T ]. By Point 2 of Assumptions 4.2,
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2C0C(φ) + 〈ξ0 − Zn
0 , φ〉 ≥ 0 for sufficiently large n. Then:

P

(
sup

t∈[0,T ]
〈Zn

t , φ〉 > eγT (L + 2C0C(φ) + 〈ξ0, φ〉)

)

=P

(
∃t ∈ [0, T ], e−γt〈Zn

t , φ〉 > eγ(T−t) (L + 2C0C(φ) + 〈ξ0, φ〉)
)

≤P

(
sup

t∈[0,T ]
e−γt〈Zn

t , φ〉 − 〈Zn
0 , φ〉 > L + 2C0C(φ) + 〈ξ0 − Zn

0 , φ〉

)
since eγ(T−t) ≥ 1

≤P

(
sup

t∈[0,T ]
Mn,γ,φ

t +

∫ t

0
e−γs〈Zn

s , v∇aφ − γφ〉ds +

∫ t

0

∫

E
e−γsψ(φ)dmZn,T

s ds > L

)
, (4.17)

where:

Mn,γ,φ
t := e−γt〈Zn

t , φ〉 − 〈Zn
0 , φ〉 −

∫ t

0
〈Zn

s , v∇aφ − γφ〉e−γsds −

∫ t

0

∫

E
ψ(φ)e−γsdmZn,T

s ds,

is a local martingale starting from 0 (Point (iii) of Proposition 2.8). Let us define Ξn,γ,φ
t := Ξn,Ψ

t

with the notation of (2.18). By the Assumption (4.15):

∫ t

0
〈Zn

s , v∇aφ − γφ〉e−γsds +

∫ t

0

∫

E
ψ(φ)e−γsdmZn,T

s ds

≤ −

∫ t

0
e−γs

[∫

E
eγsρ

(
ψ (φ) e−γs

)
dmZn,T

s

]
ds = −

∫ t

0

∫

E
ρ

(
ψ (φ) e−γs

)
dmZn,T

s ds = −
1

n
Ξn,γ,nφ

t .

Thus:

P

(
sup

t∈[0,T ]
〈Zn

t , φ〉 > eγT (L + 2C0C(φ) + 〈ξ0, φ〉)

)
≤ P

(
sup

t∈[0,T ]
Mn,γ,nφ

t − Ξn,γ,nφ
t > nL

)
≤ e−nL,

by the Doob inequality and Point (iii) of Proposition 3.3. ¥

Proof of Lemma 4.7. We begin with establishing a sufficient condition (Inequality (4.19)) for
(4.15) to be satisfied. We obtain the results announced in Lemma 4.7 thanks to Lemma 4.8, by
proving that this sufficient condition is satisfied for proper choices of functions φ.

Let t ∈ [0, T ] and n ∈ N
∗. In the case where 〈Zn

t , 1〉 = 0, the two members of (4.15) are zero.
Assume that 〈Zn

t , 1〉 > 0. Let φ ∈ C1(Rd
+, R+) be a positive function and let γ > 0.

eγtρ
(
ψ (φ) e−γt

)
+ ψ(φ) =eγt

(
exp

(
ψ (φ) e−γt

)
− ψ (φ) e−γt − 1

)
+ ψ(φ)

=
+∞∑

k=1

[ψ (φ)]k
e−(k−1)γt

k!
= ψ (φ)

+∞∑

k=0

[ψ (φ)]k
e−kγt

k!(k + 1)

Since for every k ∈ N, 1/2k ≤ 1/(k + 1) ≤ 1, we have:

1

k!

[
e−γt

2
ψ (φ)

]k

≤ [ψ (φ)]k
e−kγt

k!(k + 1)
≤

1

k!

[
e−γtψ (φ)

]k
,

summing over k gives:

ψ(φ) exp

(
e−γt

2
ψ (φ)

)
≤eγtρ

(
ψ (φ) e−γt

)
+ ψ(φ) ≤ ψ(φ) exp

(
e−γtψ (φ)

)
.
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Since φ is nonnegative:

∫

E

[
eγtρ

(
ψ (φ) e−γt

)
+ ψ(φ)

]
dmZn,T

t ≤

∫

R+

φ(0) exp
(
e−γtφ(0)

)
b(a)Zn

t (da). (4.18)

A sufficient condition for (4.15) to be satisfied is that there exists γ > 0 such that:

〈Zn
t , v∇aφ − γφ〉 +

∫

R+

φ(0) exp
(
e−γtφ(0)

)
b(a)Zn

t (da) ≤ 0. (4.19)

We now prove Point (i) of Lemma 4.7. Noticing that P (τn
N ≤ T ) = P

(
supt∈[0,T ]〈Z

n
t , 1〉 ≥ N

)
,

it is sufficient, by Lemma 4.8, to prove that (4.15) is satisfied for φ ≡ 1. This is fulfilled since
(4.19) is satisfied for φ ≡ 1 and γ > eb̄.

We proceed in a similar way to establish the deviation inequality for ζn
N . For φ defined by:

∀a ∈ R
d
+, φ(a) = 1 + |a| = 1 +

√∑d
i=1 a2

i , (4.19) becomes:

∫

R+

(
exp

(
e−γt

)
b(a) +

d∑

i=1

2vi(a)ai

|a|
− γ − γ|a|

)
Zn

t (da) ≤ 0.

By Assumptions 2.1 and since
(∑d

i=1 ai

)2
≤ C(d)

∑d
i=1 a2

i , we have
∑d

i=1
2vi(a)ai

|a| ≤ 2v̄
(√

C(d) + |a|
)

.

Then, (4.19) is satisfied for γ > eb̄ +
√

C(d)2v̄. By Lemma 4.8:

lim sup
n→+∞

1

n
log P (ζn

N ≤ T ) = lim sup
n→+∞

1

n
log P

(
sup

t∈[0,T ]
〈Zn

t , 1〉 ≥ N or sup
t∈[0,T ]

∫

R+

|a|Zn
t (da) ≥ N

)

≤ lim sup
n→+∞

1

n
log P

(
sup

t∈[0,T ]
〈Zn

t , 1 + |a|〉 ≥ N

)
≤ −L.

This concludes the proof of Point (i).

Let us now consider Point (ii). Let φ ∈ K. The condition (4.19) is satisfied if: ∀a ∈ R
d
+,

v(a)∇aφ(a) − γφ(a) + φ(0) exp (φ(0)) b(a) ≤ 0,

which is satisfied as soon as:

γ > sup
a∈Rd

+

[
1

φ(a)
(v(a)∇aφ(a) + φ(0) exp (φ(0)) b(a))

]
. (4.20)

By the definition of K, in particular since the function φ is polynomial on a compact set and
constant outside this set, it is possible to choose γ satisfying (4.20) since the right member is
bounded by a constant independent from a ∈ R

d
+ as:

lim
|a|→+∞

∑d
i=1(1 + ai)

∂φ
∂ai

(a)

φ(a)
≤ C < +∞.

Lemma 4.8 applies and concludes the proof. ¥

Corollary 4.9. Under Assumptions 2.1, 2.4, 4.2, the sequence of laws of (Zn)n∈N∗ is exponen-
tially tight on DT : ∀L > 0, ∃KL ⊂ DT compact, lim supn→+∞

1
n log P (Zn /∈ KL) ≤ −L.
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Proof. Let N = N(T, L, C0) be the positive constant given in Point (i) of Lemma 4.7. Consider
the sets K1

L,N and K2
L given by Proposition 4.6. Let us define:

KL = K1
L,N ∩

{
z ∈ DT such that ∀t ∈ [0, T ], zt ∈ K2

L

}
(4.21)

Using a criterium from Jakubowski [27] (Theorem 1.7 and Lemma 3.3), the set KL is relatively
compact in DT . Since:

P (Zn /∈ KL) ≤ P

(
Zn

.∧ζn
N

/∈ K1
L,N

)
+ P

(
∃t ∈ [0, T ], Zn

t∧ζn
N

/∈ K2
L

)
+ P (ζn

N ≤ T )

we have:

lim sup
n→+∞

1

n
log P (Zn /∈ KL) ≤ max

(
lim sup
n→+∞

1

n
log P

(
Zn

.∧ζn
N

/∈ K1
L,N

)
,

lim sup
n→+∞

1

n
log P

(
∃t ∈ [0, T ], Zn

t∧ζn
N

/∈ K2
L

)
, lim sup

n→+∞

1

n
log P (ζn

N ≤ T )

)
≤ −L,

This concludes the proof. ¥

4.3 Lower bound of Theorem 4.4

The proof of the lower bound relies on a change of probability and on the use of Girsanov
Theorem. We follow the work of Léonard [31], Kipnis Léonard [30], and thanks to a Riesz
theorem, use the links between the trajectories in the domain of the action functional and
between some evolution equations obtained by perturbation of (1.2). We prove a local minoration
for the neighborhood of trajectories associated to bounded perturbations.

4.3.1 Representation of the paths of the action functional

Proposition 4.10. Under Assumptions 2.1, 2.4 and for z ∈ DT such that IT
ξ0

(z) < +∞, there

exists a function hz ∈ Lρ∗,z satisfying ∀(f : (a, s) 7→ fs(a)) ∈ C1
b (Rd

+ × [0, T ], R):

ℓT (f, z) =

∫ T

0

∫

E
ψ(f)(a, u, s)hz(a, u, s)mz,T

s (da, du) ds, (4.22)

where ℓT (f, z) has been defined in (4.6). Thus:

If,T (z) =

∫ T

0

∫

E
[hzψ(f) − ρ(ψ(f))] dmz,T

s ds, (4.23)

and z is the solution of Equation (4.7).

Proof. From the definition of IT
ξ0

, we have for every f ∈ C1
b (Rd

+ × [0, T ], R) and every κ ∈ R
∗:

If/κ,T (z) =
1

κ
ℓT (f, z) − cT

(
f

κ
, z

)
≤ Iξ0(z) < +∞.

Using the notation τ(x) = max(ρ(x), ρ(−x)) = ρ(|x|):

1

κ
ℓT (f, z) ≤IT

ξ0(z) +

∫ T

0

∫

E
ρ

(
ψ(f)

κ

)
dmz,T

s ds ≤ IT
ξ0(z) +

∫ T

0

∫

E
τ

(
ψ(f)

κ

)
dmz,T

s ds.

Choosing κ = ||ψ(f)||ρ,z et κ = −||ψ(f)||ρ,z, we obtain |ℓT (f, z)| ≤
(
1 + IT

ξ0
(z)

)
||ψ(f)||ρ,z,

from (4.4). The map ψ(f) 7→ ℓT (f, z) is hence linear and continuous for the norm ||.||ρ,z on
ψ

(
C1

b (Rd
+ × [0, T ], R)

)
⊂ Bb(E × [0, T ], R). By Hahn-Banach’s theorem, it is possible to extend

this continuous linear form into a continuous linear form on Eρ,z(E×[0, T ]). Thanks to Theorem
4.1, there exists a function hz ∈ Lρ∗,z satisfying (4.22). From (4.22) and (4.5), we deduce (4.23).
(4.7) is a consequence of (4.22) and (4.6). ¥
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The function hz given by the previous proposition is not unique, since it is only characterized
by the functions of ψ

(
C1

b (Rd
+ × [0, T ], R)

)
⊂ Bb(E × [0, T ], R).

Lemma 4.11. We can choose hz such that hz(a, 0, s) depends only on s ∈ [0, T ].

Proof. Let us hz ∈ Lρ∗,z be the perturbation given by Proposition 4.10. We are going to modify
it on R

d
+ × {0} × [0, T ]. ∀f ∈ C1

b (Rd
+ × [0, T ], R),

∫ T

0

∫

Rd
+

f(0, s)hz(a, 0, s)b(a)zs(da)ds =

∫ T

0

∫

Rd
+

f(0, s)h̄z(s)b(a)zs(da)ds,

with: h̄z(s) =

∫
Rd

+
hz(a, 0, s)b(a)zs(da)
∫

Rd
+

b(a)zs(da)
.

(If
∫

Rd
+

b(a)zs(da) = 0, the choice of hz on R
d
+ × {0} × [0, T ] is arbitrary). By the convexity of

ρ∗ and by Jensen’s inequality, ∀κ > 0,

∫ T

0

∫

Rd
+

ρ∗
(

h̄z(s)

κ

)
b(a)zs(da)ds =

∫ T

0

∫

Rd
+

ρ∗

(∫
Rd

+
hz(α, 0, s)b(α)zs(dα)

κ
∫

Rd
+

b(α)zs(dα)

)
b(a)zs(da)ds

≤

∫ T

0

∫

Rd
+

1∫
Rd

+
b(α)zs(dα)

[∫

Rd
+

ρ∗
(

hz(α, 0, s)

κ

)
b(α)zs(da)

]
b(a)zs(da)ds

≤

∫ T

0

∫

Rd
+

ρ∗
(

hz(a, 0, s)

κ

)
b(a)zs(da)ds,

and the new choice of perturbation obtained by replacing hz with h̄z on R
d
+ × {0} × [0, T ] is

again a function of Lρ∗,z. ¥

4.3.2 Non-variational formula for IT
ξ0

In order to obtain a non-variational formula for the action functional, we are going to use (4.23)
and approximate the perturbations hz by perturbations of the form hm = eψ(fm) − 1 with
(fm)m∈N∗ a sequence of C1

b (Rd
+ × [0, T ], R). The result of this section is given in Proposition

4.14. To establish it, we will use the following lemma, which is a particular case of a result due
to Israel [24] who generalized a Theorem of Bishop and Phelps [5]:

Lemma 4.12. Let F be a closed subspace of a Banach space E and let E′ the topological dual of
E. Let Λ be a convex continuous function from E to R and let ∂Λ(x) be its sub-differential in
x ∈ E defined by ∂Λ(x) = {ℓ ∈ E′ | ∀y ∈ E, Λ(x) + ℓ(y) ≤ Λ(x + y)} . Let ℓ0 ∈ E′ such that:

∃c ∈ R, ∀x ∈ E, Λ(x) ≥ ℓ0(x) + c, (4.24)

then: ∀ε > 0, ∃x′ ∈ F, ∃ℓ′ ∈ ∂Λ(x′), ∀x ∈ F, |ℓ0(x) − ℓ′(x)| ≤ ε‖x‖.

Definition 4.13. ∀z ∈ DT , ∀g ∈ Bb(E × [0, T ], R), ∀h ∈ B(E × [0, T ], R), ∀ν ∈ (L∞(E ×
[0, T ], R))′,

Γρ,z(g) :=

∫ T

0

∫

E
ρ(g(a, u, s))mz,T

s (da, du) ds (4.25)

Γ∗
ρ,z(h) := sup

f∈C1
b
(Rd

+×[0,T ],R)

{∫ T

0

∫

E
hψ(f) dmz,T

s ds −

∫ T

0

∫

E
ρ(ψ(f))dmz,T

s ds

}
(4.26)

Γ̃∗
ρ,z(ν) := sup

g∈Bb(E×[0,T ],R)
{〈ν, g〉 − Γρ,z(g)} . (4.27)
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By (4.5) and (4.23):
IT

ξ0(z) = Γ∗
ρ,z(h

z). (4.28)

The main result of this Section 4.3.2 provides a non-variational formula for the action func-
tional IT

ξ0
(z) = Γ∗

ρ,z(h
z), and an approximation result when we regularize hz:

Proposition 4.14. Under Assumptions 2.1, 2.4, for z ∈ DT such that IT
ξ0

(z) < +∞, and for

the associated perturbation hz ∈ Lρ∗,z (see Proposition 4.10), there exists a sequence (hm)m∈N∗

of Cb(E × [0, T ], R) such that:
(i) ∀m ∈ N

∗, ∃fm ∈ C1
b (Rd

+ × [0, T ], R), hm = eψ(fm) − 1,

(ii) the sequence (hm)m∈N∗ converges to hz dmz,T
s ds-a.e.

(iii) ∀m ∈ N
∗, Γ∗

ρ,z(hm) = Γρ∗,z(hm).

(iv) hz ∈ [−1, +∞[ dmz,T
s ds-a.e. and there exists fz ∈ B(Rd

+ × [0, T ], R) such that dmz,T
s ds-a.e.

on {hz > −1}, hz(a, u, s) = eψ(fz)(a,u,s) − 1.
(v) We have the following non-variational representation for the action functional:

IT
ξ0(z) = Γρ∗,z(h

z) =

∫ T

0

∫

E
ρ∗(hz)dmz,T

s ds

=

∫ T

0

∫

E
1{hz>−1} (hzψ(fz) − ρ(ψ(fz))) dmz,T

s ds +

∫ T

0

∫

E
1{hz=−1}dmz,T

s ds. (4.29)

A difficulty lies in the fact that Γ∗
ρ,z(h

z) and Γ̃∗
ρ,z(h

z dmz,T
s ds) do not coincide a priori, since

the sup in (4.26) and (4.27) are taken on different sets. This is due to the particular formulation
of our problem which leads us to deal with births and deaths.

Before enoucing Proposition 4.14, we give a lemma for the functions of Definition 4.13.

Lemma 4.15. Under Assumptions 2.1, 2.4, for z ∈ DT ,
(i) Γρ,z is convex continuous,
(ii) Let f ∈ Cb(R

d
+ × [0, T ], R). ∂Γρ,z(ψ(f)) is a singleton {ν} characterized by:

∀g ∈ Bb(E × [0, T ], R), 〈ν, g〉 =

∫ T

0

∫

E
g

(
eψ(f) − 1

)
dmz,T

s ds. (4.30)

(iii) We have: ∀h ∈ B(E × [0, T ], R), h ≥ −1 dmz,T
s ds-a.e, and:

Γ∗
ρ,z(h) ≤ Γ̃∗

ρ,z(h dmz,T
s ds) ≤ Γρ∗,z(h). (4.31)

Proof. The convexity of Γρ,z is a direct consequence of the convexity of ρ. For the continuity,
we can see by dominated convergence that if g ∈ Bb(E × [0, T ], R) and if (gq)q∈N∗ is a sequence
that converges uniformly to g in Bb(E × [0, T ], R), we have limq→+∞ Γρ,z(gq) = Γρ,z(g).

To characterize ∂Γρ,z(ψ(f)), let g ∈ Bb(E × [0, T ], R),

lim
ε→0

Γρ,z(ψ(f) + εg) − Γρ,z(ψ(f))

ε
= lim

ε→0

∫ T

0

∫

E

(
ρ(ψ(f) + εg) − ρ(ψ(f))

ε

)
dmz,T

s ds

=

∫ T

0

∫

E
g

[
eψ(f) − 1

]
dmz,T

s ds. (4.32)

This is obtained by taking the derivative under the integral. Γρ,z is hence Gâteau-differentiable
in ψ(f) and its sub-differential in ψ(f) exists and is a singleton characterized by (4.30) (Ekeland
and Temam [14], Proposition 5.3 Chapitre I).

The first inequality of (4.31) is a consequence of the inclusion ψ(C1
b (Rd

+× [0, T ], R)) ⊂ Bb(E×
[0, T ], R). The second inequality is a consequence of the fact that ∀(a, u, s) ∈ E × [0, T ], ∀g ∈
Bb(E × [0, T ], R), h(a, u, s)g(a, u, s) − ρ(g(a, u, s)) ≤ ρ∗(h(a, u, s)). ¥
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We can now prove Proposition 4.14.

Proof of Proposition 4.14. We have IT
ξ0

(z) = Γ∗
ρ,z(h

z) < +∞ by assumption, but we do not

know whether Γ̃∗
ρ,z(h

zdmz,T
s ds) < +∞. Since hz ∈ Lρ∗,z, we however know by (4.31) and by

definition of the Orlicz norm ‖.‖ρ∗,z (4.4) that:

Γ̃∗
ρ,z

(
hz

‖hz‖ρ∗,z
dmz,T

s ds

)
≤ Γρ∗,z

(
hz

‖hz‖ρ∗,z

)
≤ 1. (4.33)

By definition of Γ̃∗
ρ,z, and by (4.33), it is possible to write: ∀g ∈ Bb(E × [0, T ], R),

Γρ,z(g) ≥

∫ T

0

∫

E

hz

‖hz‖ρ∗,z
g dmz,T

s ds − Γ̃∗
ρ,z

(
hz

‖hz‖ρ∗,z
dmz,T

s ds

)
,

and the condition (4.24) is satisfied. Applying Lemma 4.12 with the closed sub-space F =
adh

(
ψ

(
C1

b (Rd
+ × [0, T ], R)

))
of L∞(E×[0, T ], R) gives: ∀m ∈ N

∗, ∃f̃m ∈ adh
(
C1

b (Rd
+ × [0, T ], R)

)
,

∃ν̃m ∈ ∂Γρ,z(ψ(f̃m)), ∀g ∈ C1
b (Rd

+ × [0, T ], R),

∣∣∣∣
∫ T

0

∫

E
ψ(g)

hz

‖hz‖ρ∗,z
dmz,T

s ds − 〈ν̃m, ψ(g)〉

∣∣∣∣ ≤
‖g‖∞

2m‖hz‖ρ∗,z
(4.34)

By Point (ii) of Lemma 4.15 and setting h̃m := ‖hz‖ρ∗,z(e
ψ(f̃m) − 1):

∣∣∣∣∣

∫ T

0

∫

E
ψ(g)

(
hz

‖hz‖ρ∗,z
−

h̃m

‖hz‖ρ∗,z

)
dmz,T

s ds

∣∣∣∣∣ ≤
‖g‖∞

2m‖hz‖ρ∗,z
. (4.35)

Since f̃m is bounded and since dmz,T
s ds is a finite measure, Γρ∗,z(h̃m) < +∞, implying by (4.31),

that Γ̃∗
ρ,z(h̃mdmz,T

s ds) < +∞. From the definition of Γ̃∗
ρ,z: ∀g ∈ Bb(E × [0, T ], R),

Γρ,z(g) ≥

∫ T

0

∫

E
h̃mg dmz,T

s ds − Γ̃∗
ρ,z

(
h̃mdmz,T

s ds
)

.

Applying the Lemma 4.12 and Point (ii) of Lemma 4.15, there exists a sequence (fm)m∈N∗ of
adh(C1

b (Rd
+ × [0, T ], R)), and a sequence of continuous and bounded perturbations (hm)m∈N∗

defined by hm := eψ(fm) − 1 such that: ∀m ∈ N
∗, ∀g ∈ C1

b (Rd
+ × [0, T ], R),

∣∣∣∣
∫ T

0

∫

E
ψ(g)

(
hm − h̃m

)
dmz,T

s ds

∣∣∣∣ ≤
‖g‖∞
4m

.

Since each function fm is the uniform limit of a sequence (fm,p)p∈N∗ of C1
b (Rd

+ × [0, T ], R), hm

is the limit, for the uniform norm and in L1(E × [0, T ], dmz,T
s ds) (since the measure dmz,T

s ds is
finite) of the sequence hm,p = eψ(fm,p) − 1. Replacing hm with hm,p for sufficiently large p, we
obtain the existence of a sequence (fm)m∈N∗ of C1

b (Rd
+ × [0, T ], R) satisfying:

∣∣∣∣
∫ T

0

∫

E
ψ(g)

(
hm − h̃m

)
dmz,T

s ds

∣∣∣∣ ≤
‖g‖∞
2m

. (4.36)

From (4.35) and (4.36): ∀m ∈ N
∗, ∀g ∈ C1

b (Rd
+ × [0, T ], R),

∣∣∣∣
∫ T

0

∫

E
ψ(g) (hm − hz) dmz,T

s ds

∣∣∣∣ ≤
‖g‖∞

m
, (4.37)
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with:

∫ T

0

∫

E
ψ(g) (hm − hz) dmz,T

s ds =

∫ T

0

∫

Rd
+

g(0, s)
(
efm(0,s) − 1 − hz(0, 0, s)

)
b(a)zs(da)ds

−

∫ T

0

∫

Rd
+

g(a, s)
(
e−fm(a,s) − 1 − hz(a, 1, s)

)
d(a, zsU(a))zs(da)ds. (4.38)

For g ∈ C1
K((R∗

+)d × [0, T ], R), which satisfies ∀s ∈ [0, T ], g(0, s) = 0, we obtain the vague

convergence of the sequence of measures (hm dmz,T
s ds)m∈N∗ to hz dmz,T

s ds on (R∗
+)d × [0, T ].

Hence, there exists a sub-sequence of (e−fm − 1)m∈N∗ that converges to hz(., 1, .) zs(da)ds-a.e.
on (R∗

+)d × [0, T ]. For g ∈ C1
b (Rd

+ × [0, T ], R), and for the previous sub-sequence of (fm)m∈N∗ :

∣∣∣∣∣

∫ T

0
g(0, s)

[∫

Rd
+

(
efm(0,s) − 1 − hz(0, 0, s)

)
b(a)zs(da)ds

−

∫

Rd
+

1a=0

(
e−fm(a,s) − 1 − hz(a, 1, s)

)
d(a, zsU(a))zs(da)ds

]∣∣∣∣∣ ≤
C‖g‖∞

m
(4.39)

If we prove that:
〈zs(da), 1a=0〉 = 0, (4.40)

then, hz(0, 0, s) will be the ds-a.e. limit of a sub-sequence of (efm(0,s)−1)m∈N∗ , which will entail
that hz is the dmz,T

s ds-a.e. limit of a sub-sequence of (eψ(fm) − 1)m∈N∗ . Let us prove (4.40). For
ε > 0, let φε ∈ C1

b (Rd
+, R) be a non-negative function, bounded by 1, such that φε(0) = 1 and

φε(a) = 0 for |a| ≥ ε. For t ∈ [0, T ] and for the function fε(a, s) = φε(A(t, s, a)):

〈zt, φε〉 = 〈zt, ft〉 = 〈ξ0, f0〉 +

∫ t

0

∫

Rd
+

φε(A(t, s, 0))(1 + hz(a, 0, s))b(a)zs(da)ds

−

∫ t

0

∫

Rd
+

φε(A(t, s, a))(1 + hz(a, 1, s))d(a, zsU(a))zs(da)ds. (4.41)

For s < t and a ∈ R
d
+, φε(A(t, s, a)) → 0 when ε → 0. Since φε(A(t, s, 0))(1 + hz(a, 0, s))b(a)

and φε(A(t, s, a))(1 + hz(a, 1, s))d(a, zsU(a)) are dominated by (1 + hz(a, 0, s))b(a) and (1 +
hz(a, 1, s))d(a, zsU(a)) which are integrable with respect to zs(da) ds, the right hand side of
(4.41) converges to 0. The left hand side converges to 〈zt,1a=0〉. This proves (4.40) and thus
Points (i) and (ii).

Since hm = eψ(fm)−1, ρ∗(hm) = eψ(fm)ψ(fm)−eψ(fm)+1 = hmψ(fm)−
(
eψ(fm) − ψ(fm) − 1

)
:

Γρ∗,z(hm) =

∫ T

0

∫

E
[hmψ(fm) − ρ (ψ(fm))] dmz,T

s ds

≤ sup
f∈C1

b
(Rd

+×[0,T ])

[∫ T

0

∫

E
hmψ(f) dmz,T

s ds − Γρ,z(ψ(f))

]
= Γ∗

ρ,z(hm). (4.42)

From (4.31) and (4.42), Γ∗
ρ,z(hm) = Γ̃ρ∗,z(hmdmz,T

s ds) = Γρ∗,z(hm). This proves Point (iii).

Since (hm)m∈N∗ converges dmz,T
s ds-a.e. to hz and since ∀m ∈ N

∗, hm > −1 dmz,T
s ds-a.e.,

then hz ≥ −1 dmz,T
s ds-a.e. As hz ∈ Lρ∗,z ⊂ L1(E × [0, T ], dmz,T

s ds), hz < +∞ dmz,T
s ds-a.e. In

the sequel, we have to separate the cases hz = −1 and hz > −1 to take the logarithm of 1 + hz.
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On {hz > −1}, ψ(fm)(a, u, s) = log(hm(a, u, s)+1) converges dmz,T
s ds-a.e. to ψ(fz)(a, u, s) :=

log(hz(a, u, s)+1). The sequence hzψ(fm)−ρ(ψ(fm)) thus converge to hzψ(fz)−ρ(ψ(fz)) when
m → +∞, and the latter function is nonnegative:

0 ≤ ρ∗(hz) =eψ(fz)ψ(fz) − eψ(fz) + 1

=
(
eψ(fz) + 1

)
ψ(fz) −

(
eψ(fz) − ψ(fz) − 1

)
= hzψ(fz) − ρ(ψ(fz)). (4.43)

On {hz = −1}, the sequence (ψ(fm))m∈N∗ diverges to −∞. Then, hzψ(fm) − ρ(ψ(fm)) =
−eψ(fm) + 1 converges to 1.

Let us define the sequence (f̆m)m∈N∗ by:

ψ(f̆m) =ψ(fm)1{hz ψ(fm)−ρ(ψ(fm))≥0, hz>−1} + ψ(fm)1{ψ(fm)≤0, hz=−1}. (4.44)

The nonnegative sequence (hzψ(f̆m)−ρ(ψ(f̆m)))m∈N∗ converges to [hzψ(fz) − ρ(ψ(fz))]1{hz>−1}+
1{hz=−1} = ρ∗(hz). Thus, Γρ∗,z(h

z) < +∞. Else, by Fatou Lemma and (4.43):

Γ∗
ρ,z(h

z) = sup
f∈C1

b
(Rd

+×[0,T ],R)

{∫ T

0

∫

E
(hzψ(f) − ρ(ψ(f))) dmz,T

s ds

}

≥ lim inf
m→+∞

∫ T

0

∫

E

(
hzψ(f̆m) − ρ(ψ(f̆m))

)
dmz,T

s ds ≥

∫ T

0

∫

E
lim inf
m→+∞

(
hzψ(f̆m) − ρ(ψ(f̆m))

)
dmz,T

s ds

=

∫ T

0

∫

E
ρ∗(hz)dmz,T

s ds = Γρ∗,z(h
z) = +∞, (4.45)

which contradicts the assumption Γ∗
ρ,z(h

z) < +∞. Integrating (4.43) gives the last equality of
(4.29). Moreover Point (iii) of Lemma 4.15 and (4.45) imply the first equality of (4.29). ¥

Remark 4.16. When hz is bounded, we can choose the functions hm bounded by ‖hz‖∞. Indeed,
if we regularize the functions fm in the neighborhood of the points where ψ(fm) ≥ log(‖hz‖∞+1),

we obtain a new sequence (ĥm = eψ(f̂m) − 1)m∈N∗ bounded by ‖hz‖∞ and satisfying |hz − ĥm| =∣∣∣eψ(fz) − eψ(f̂m)
∣∣∣ ≤

∣∣eψ(fz) − eψ(fm)
∣∣ = |hz − hm|.

4.3.3 Local lower bound

The proof of the local lower bound enounced in Theorem 4.4 relies on a change of probability,
and on the use of Girsanov Theorem. Let Pn = L(Zn). It is a probability law on DT . Let
z ∈ DT be such that IT

ξ0
(z) < +∞. Our purpose is to construct a sequence of probability

measures (P ′n)n∈N∗ on DT that are absolutely continuous with respect to (Pn)n∈N∗ and which
can be interpreted as a recentering on z. To achieve this, we use the perturbed equation (4.7)
satisfied by z. The use of the Girsanov Theorem is allowed if hz has a particular form and
proper regularities. Since hz ∈ Lρ∗,z is not a priori bounded or differentiable, we use regularized
perturbations hm of the form given in Point 1 of Proposition 4.14. It is hence natural to
introduced the sequence (zm)m∈N∗ of the solutions of (4.7) perturbed by the hm and to apply a
recentering associated with these zm. Unfortunately, we can prove the convergence of (zm)m∈N∗

to z only in the case were hz is bounded. The case where hz is unbounded remains open. Thus,
we will be lead to introduce the additional assumption hz ∈ L∞(E × [0, T ], R).

The following result implies the lower bound of Theorem 4.4:

Proposition 4.17. Under Assumptions 2.1, 2.4, 4.2, for z ∈ DT such that IT
ξ0

(z) < +∞ and
hz ∈ L∞(E × [0, T ], R), we have for any open subset O of DT containing z:

lim inf
n→+∞

1

n
log P (Zn ∈ O) ≥ −IT

ξ0(z). (4.46)

(in the case where IT
ξ0

(z) = +∞, the result is automatically satisfied).
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First, we complete the approximation result of Proposition 4.14 by showing that every path
z of the domain of the action functional IT

ξ0
associated to a bounded hz can be approximated

by a sequence of paths (zm)m∈N∗ associated to perturbations hm of the form hm = efm − 1 with
fm ∈ C1

b (Rd
+ × [0, T ], R).

Proposition 4.18. Under Assumptions 2.1, 2.4, for z ∈ DT such that IT
ξ0

(z) < +∞ and

hz ∈ Lρ∗,z ∩L∞(E × [0, T ], R), there exists a sequence (fm)m∈N∗ of C1
b (Rd

+ × [0, T ], R) such that
the sequence defined by hm = eψ(fm) − 1 satisfies:
(i) (hm)m∈N∗ converges to hz dmz,T

s ds-a.e. and (4.37) is fulfilled,
(ii) For every m ∈ N

∗, the evolution equation: ∀f ∈ C1
b (Rd

+ × R+),

〈yt, ft〉 = 〈ξ0, f0〉 +

∫ t

0

〈
ys, v∇afs +

∂fs

∂s

〉
ds +

∫ T

0

∫

E
exp (ψ(fm))ψ(f)dmy,T

s ds (4.47)

admits a unique solution in y, which is denoted by zm ∈ C([0, T ],MF (Rd
+)).

(iii) The sequence (zm)m∈N∗ converges to z ∈ (C([0, T ], (MF (Rd
+), ‖.‖TV )), ‖.‖∞).

(iv) We have IT
ξ0

(zm) =
∫ T
0

∫
E (hmψ(fm) − ρ(ψ(fm))) dmzm,T

s ds =
∫ T
0

∫
E ρ∗(hm)dmzm,T

s ds and:

lim
m→+∞

IT
ξ0(z

m) = IT
ξ0(z). (4.48)

Proof. Point (i) is a consequence of Proposition 4.14. By Remark 4.16:

〈zm
t , 1〉 ≤〈ξ0, 1〉 +

∫ t

0

∫

Rd
+

efm(0,s)b(a)zm
s (da) ds ≤ 〈ξ0, 1〉e

(‖hz‖∞+1)b̄t,

we can define AT = max
(
supt∈[0,T ]〈zt, 1〉, supt∈[0,T ]〈z

m
t , 1〉, m ∈ N∗

)
which exists and is finite

and independent from m.

Existence and uniqueness of the solution zm ∈ C([0, T ],MF (Rd
+)) of (4.47) is an adaptation

of the results of Section 3.2 (the birth and death rates are perturbed by continuous bounded
factors and Assumptions 2.4 are still satisfied).

Let t ∈ [0, T ] and φ ∈ C1
b (Rd

+, R) such that ‖φ‖∞ ≤ 1. Let f : (a, s) ∈ R
d
+ × [0, T ] 7→

f(a, s) = φ(A(t, s, a)) ∈ R.

|〈zt − zm
t , φ〉| =

∣∣∣∣
∫ t

0

∫

E

(1 + hz)ψ(f)dmz,T
s ds −

∫ t

0

∫

E

(1 + hm) ψ(f)dmzm,T
s ds

∣∣∣∣ ≤ A + B, (4.49)

where by (4.37):

A =

∣∣∣∣
∫ t

0

∫

E
(hz − hm)ψ(f)dmz,T

s ds

∣∣∣∣ ≤
1

m
, (4.50)

and, by Remark 4.16 and computations similar to (3.1):

B =

∣∣∣∣
∫ t

0

∫

E
(1 + hm)ψ(f)

[
dmz,T

s − dmzm,T
s

]
ds

∣∣∣∣ ≤ C(‖hz‖∞, T )

∫ t

0
‖zs − zm

s ‖TV ds, (4.51)

We deduce from (4.49), (4.50), (4.51) that:

|〈zt − zm
t , φ〉| ≤

1

m
+ C(‖hz‖∞, T )

∫ t

0
‖zs − zm

s ‖TV ds,
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Since every function φ ∈ Cb(R
d
+, R+) bounded by 1 can be written as the pointwise limit of a

sequence of C1
b (Rd

+, R+) bounded by 1, we obtain by taking the supremum in the left hand side:

sup
u∈[0,t]

‖zu − zm
u ‖TV ≤

1

m
+ C(‖hz‖∞, T )

∫ t

0
sup

u∈[0,s]
‖zu − zm

u ‖TV ds, (4.52)

and by Gronwall Lemma: supt∈[0,T ] ‖zt − zm
t ‖TV ≤ C(‖hz‖∞, T )/m. Hence:

∀ε > 0, ∃m0 = m0(ε, T ) ∈ N
∗, ∀m ≥ m0, sup

t∈[0,T ]
‖zt − zm

t ‖TV ≤ ε, (4.53)

and (zm)m∈N∗ converges to z in C([0, T ], (MF (Rd
+), ‖.‖TV )) uniformly in t ∈ [0, T ].

By an adaptation of the proof of Point 3 of Proposition 4.14:

Γρ∗,zm(hm) =Γ∗
ρ,zm(hm). (4.54)

By (4.5), (4.23), (4.31) and (4.54) IT
ξ0

(zm) = Γ∗
ρ,zm(hm) = Γρ∗,zm(hm), which proves the first

part of (iv). Finally let us prove (4.48).

0 ≤
∣∣IT

ξ0(z
m) − IT

ξ0(z)
∣∣ ≤ A + B

A =

∣∣∣∣
∫ T

0

∫

E
ρ∗(hm)dmz,T

s ds −

∫ T

0

∫

E
ρ∗(hz)dmz,T

s ds

∣∣∣∣

B =

∣∣∣∣
∫ T

0

∫

E
ρ∗(hm)dmzm,T

s ds −

∫ T

0

∫

E
ρ∗(hm)dmz,T

s ds

∣∣∣∣ (4.55)

By (4.53): ∀m ≥ m0, B ≤
∫ T
0 ρ∗(‖hm‖∞)(b̄+d̄(1+AT )+LdŪAT )‖zs−zm

s ‖TV ds ≤ C(‖hz‖∞, T )ε.

Since (hm)m∈N∗ converges dmz,T
s ds-a.e. to hz, and since these functions are bounded, we have

by dominated convergence that limm→+∞ Γρ∗,z(hm) = Γρ∗,z(h
z) = IT

ξ0
(z), and limm→+∞ A = 0.

This concludes the proof of (4.48). ¥

Thanks to Propositions 4.14 and 4.18 and under the Assumptions of Proposition 4.17, we
can restrict the study of the local minoration to ”regular” paths:

Assumption 4.19. We consider a path z belonging to the domain of the action functional IT
ξ0

and such that hz = efz
− 1 with fz ∈ C1

b (Rd
+ × R+). Then:

IT
ξ0(z) =

∫ T

0

∫

E
(hzψ(fz) − ρ(ψ(fz))) dmz,T

s ds.

We construct the change of probability corresponding to a centering around a such path z.

Proposition 4.20. For a path z as in Assumption 4.19, the following SDE on [0, T ]:

Dn
t = 1 +

∫ t

0

∫

E
Dn

s−1{i≤Nn
t }

[(
efz(0,s) − 1

)
1{0≤θ≤m1(s,Zn

s−
,i)}

+
(
e
fz(Ai(Z

n
s−

),s)
− 1

)
1{m1(s,Zn

s−
,i)<θ≤m2(s,Zn

s−
,i)}

]
Q̃(ds, di, dθ) (4.56)

admits a unique solution (Dn
t )t∈[0,T ] which is a Pn-exponential martingale:

Dn
t = exp

(
n

[
〈Zn

t , fz
t 〉 − 〈Zn

0 , fz
0 〉 −

∫ t

0

∫

Rd
+

(
v(a)∇af

z
s (a) +

∂fz
s

∂s
(a)

)
Zn

s (da) ds

−

∫ t

0

∫

E
ψ(fz) dmZn,T

s ds −

∫ t

0

∫

E
ρ (ψ(fz)) dmZn,T

s ds

])
, (4.57)
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Under the probability P ′n := Dn
T · Pn, the compensator of the random measure Q is:

q̂(ds, di, dθ) = 1{i≤Nn
t }

[
efz(0,s)1{0≤θ≤m1(s,Zn

s−
,i)}

+ e
fz(Ai(Z

n
s−

),s)
1{m1(s,Zn

s−
,i)<θ≤m2(s,Zn

s−
,i)}

]
ds n(di) dθ. (4.58)

Proof. We wish to perturb the birth and death rate of the particles, so that the new rates are
multiplied by 1+hz(a, u, s) = eψ(fz)(a,u,s), u ∈ {0, 1}. This is why we introduce SDE (4.56). For
the proofs, we refer to Jacod and Shiryaev [25], Theorems 3.24 p.159 and 5.19 p.181. ¥

Proposition 4.21. Under Assumptions 2.1, 2.4, 4.2, for z ∈ DT satisfying Assumption 4.19
and under (P ′n)n∈N∗ of Proposition 4.20, the sequence (Zn)n∈N∗ converges in probability to z.

Proof. Birth and death rates are perturbed by continuous bounded functions:

b(a) ↔ efz(0,s)b(a), d(a, Zn
s U(a)) ↔ e−fz(a,s)d(a, Zn

s U(a)). (4.59)

Assumptions 2.4 are still satisfied. We can then prove, with proofs similar to the ones of Section
3 (Corollary 3.4), that Zn converges weakly to z in P ′n-probability. ¥

We are now able to prove the lower bound announced in (4.46).

Proof of Proposition 4.17. We have Pn(O) = P ′n(O)EP ′n (
1O

dP n

dP ′n /P ′n(O)
)

(these terms may
all be equal to zero). By Jensen’s inequality and the definition of Dn

T :

lim inf
n→∞

1

n
log Pn(O) ≥ lim inf

n→∞

1

n
log P ′n(O) + lim inf

n→∞
E

P ′n

(
−

1O

P ′n(O)

1

n
log Dn

T

)
.

By Proposition 4.21, limn→+∞ log P ′n(O) → 0, which implies: lim infn→∞
1
n log P ′n(O) = 0.

From (4.57), from Proposition 4.21, from the fact that z is continuous and that hz and fz are
continuous and bounded, we obtain the following convergence in probability:

lim
n→∞

1

n
log Dn

T = lim
n→∞

[
〈Zn

t , fz
t 〉 − 〈Zn

0 , fz
0 〉 −

∫ t

0

∫

Rd
+

(
v(a)∇af

z
s (a) +

∂fz
s

∂s

)
Zn

s (da)ds

−

∫ t

0

∫

E
ψ(fz)dmZn,T

s ds −

∫ t

0

∫

E
ρ (ψ (fz)) dmZn,T

s ds

]

=

∫ t

0

∫

E
hz ψ(fz)dmz,T

s ds −

∫ t

0

∫

E
ρ (ψ (fz)) dmz,T

s ds = IT
ξ0(z),

by (4.22) and (4.29). Since: 1
n log Dn

T ≤ C(T, ‖fz‖∞)
(
1 + supt∈[0,T ]〈Z

n
t , 1〉2

)
, we obtain, by

Point 2 of Assumptions 2.10 and by Proposition 2.8:

lim sup
n→∞

E
P ′n

(
1O

P ′n(O)

1

n
log Dn

T

)
≤

∫ t

0

∫

E
[hzψ(fz) − ρ (ψ(fz))] dmz,T ds = IT

ξ0(z).

This concludes the proof of Theorem 4.4. ¥
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5 Application to problems of exit of domains

We deduce from Theorem 4.4 some estimates on times of exit of domains. The computations that
we present are inspired by results obtained by Freidlin and Ventzell [17], Dembo and Zeitouni
[12] (Section 5) in finite dimension, and Da Prato and Zabczyk [38] (Chapter 12). We adapt
these works to the case of our measure-valued processes.

This allows us to control the probability of exit of a tube around the deterministic solution
(Section 5.1) and to give estimates for the exit time of a neighborhood of an attractive domain
of the deterministic limit solution in the particular case of logistic age-structured populations.

In the proofs, the distance W1 appears naturally since the consideration of an age-structure
leads us to introduce functions f of C1

b (Rd
+, R) such that ∇af is bounded. These functions are

Lipschitz continuous. The total variation norm arise since we do not know if the perturbations
hz are Lipschitz continuous. However, under the constraint that z ∈ G, these perturbations
remain bounded. The difficulty will be to deal with these two distances. We have:

∀µ, ν ∈ MF (Rd
+), W1(µ, ν) ≤ ‖µ − ν‖TV . (5.1)

We denote by BTV (µ, r) (resp. BW1(µ, r)) the ‖.‖TV -ball (resp. the W1-ball) of radius r > 0,
centered in µ ∈ MF (X̃ ). dD,T is the Skorohod distance on DT (see. [4, 25]).

5.1 Exit times from tubes and pits

Proposition 5.1. Let R > 0, δ > 0 and let K(R) and BW1(K(R), δ) be the sets defined by:

K(R) =
{
z ∈ DT , IT

ξ0(z) ≤ R
}

and K(R)δ =
{
z ∈ DT , ∃z′ ∈ K(R), dD,T (z, z′) < δ

}
.

Under Assumptions 2.1, 2.4, 4.2:
(i) ∀R > 0, ∀δ > 0, ∀ε > 0, ∃n0 ∈ N

∗, ∀n ≥ n0, P (Zn ∈ K(R)δ) ≥ 1 − e−n(R−ε).

(ii) ∀z ∈ G, ∀δ > 0, ∀ε > 0, ∃n0 ∈ N
∗, ∀n ≥ n0, P (dD,T (Zn, z) < δ) ≥ e

−n
[
IT

ξ0
(z)+ε

]

.

Proof. For R > 0, δ > 0 and z ∈ DT , K(R)c
δ is closed in DT and {y ∈ DT | dD,T (z, y) < δ} is

open. The results are then consequences of Theorem 4.4. ¥

Remark 5.2. Since {y | dD,T (y, ξ) < δ}∩G 6= ∅, the lower bound of (4.10) provides information
for the times of exit from tubes centered on the solution ξ of (1.2).

5.2 Exit times from the neighborhood of a stationary state of the Logistic
age-structured population

Recall the example of the logistic population structured by a scalar age presented in the intro-
duction. Let us introduce the probability Π(a1, a2) that an individual of age a1 lives until age
a2 and the net reproduction rate R0.

Π(a1, a2) = exp

(
−

∫ a2

a1

d(α)dα

)
and R0 =

∫ +∞

0
b(a)Π(0, a)da. (5.2)

Assumption 5.3. In the following, we assume that R0 > 1, implying that b̄ > d since: b̄/d =∫ +∞
0 b̄e−dada ≥ R0 > 1.

There exists a unique classical solution to PDE (1.5) that describe the large population
limit of the microscopic process and we have an explicit expression (Proposition 5.4). Under
Assumption 5.3, the behaviour of the solution of (1.5) is moreover known: there exists a unique
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nontrivial stable stationary solution to which every solution starting from a nonzero initial
condition converge (Proposition 5.5). These are results due to [6, 22, 33, 49].

The estimates given by Section 5.1 tell us that the microscopic stochastic process behaves as
its deterministic approximation on compact time intervals, and we prove in Proposition 5.6 that
for sufficiently large T > 0 and n, Zn

T finds itself with ”large probability” in a neighborhood of
the stationary solution m̂(a)da of (1.5).

However, the same Proposition 5.6 indicates that in long time, (Zn)n∈N∗ does not converge to
m̂(a)da, but to the null measure. The realizations (Zn

t )t∈R+ almost surely leave the neighborhood
of m̂(a)da to drive the population to extinction.

Proposition 5.4. Under Assumptions 2.1, 2.4, 3.1, if ∃m0 ∈ C1
b (R+, R+), ξ0(da) = m0(a)da:

(i) (Zn)n∈N∗ converges in probability in D to the weak measure solution (ξt)t∈R+ of (1.5).
(ii) For every t ∈ R+, ξt is absolutely continuous with respect to the Lebesgue measure on R+.
The family of the densities (m(., t))t∈R+ is the unique classical solution of (1.5). It belongs to
C1(R2

+, R+) ∩ L1(R2
+, R+) and its explicit expression is given by: ∀a ∈ R+, ∀t ∈ R+,

m(a, t) =
M0 ν(a, t)

1 + M0

∫ t
0

∫ +∞
0 ν(α, s)dα ds

, with: ν(a, t) =

{
m0(a−t)

M0
Π(a − t, a) si a ≥ t,

B(t − a)Π(a, 0) si a < t,

Π being defined in (5.2) and for g∗n the nth-convolution of the function g with itself:

B(t) = B0∗

(
+∞∑

n=0

g∗n(t)

)
, B0(t) = 1t≥0

∫ +∞

0
b(a+t)

n0(a)

N0
Π(a, a+t)da, g(a) = b(a)Π(0, a)1a≥0.

Proof. Existence and uniqueness of a weak function solution are particular cases of Corollary
3.4 and Proposition 3.5. The computations of [6, 22, 33, 49] tell us that (1.5) admits a classical
solution. This provides regularity information and an explicit expression of the function solution
of (1.2) in this case. ¥

Proposition 5.5. Under Assumption 5.3:
(i) The following equation: 1 =

∫ +∞
0 e−λ1ab(a)Π(0, a)da, admits a unique solution λ1 > 0.

(ii) The solution m(a, t) of (1.5) has the following long-time behaviour:

lim
t→+∞

m(a, t) =
λ1e

−λ1aΠ(0, a)

η
∫ +∞
0 e−λ1αΠ(0, α)dα

=: m̂(a), (5.3)

the following limit being uniformly in age on the bounded interval of R+.
(iii) m̂ is exponentially asymptotically stable and ∀ξ0 ∈ MF (Rd

+), ∀R > 0, ∃T1 = T1(R, ξ0) ≥

0, ∀t ≥ T1, W1(ξt, ξ̂) < R, where ξ̂(da) = m̂(a)da.

Proof. These assertions are proved in [6, 33, 49] and Proposition 5.6.4 of [45]. ¥

Proposition 5.6. If ∃m0 ∈ C1
b (R+, R+), ξ0(da) = m0(a)da:

(i) For n ∈ N
∗. P-a.s. limt→+∞〈Zn

t , 1〉 = 0.
(ii) ∀ε > 0, ∀ς > 0, ∃T1 = T1(ς) > 0, ∃n1 = n1(ε, T1(ς)) ∈ N

∗, ∀n ≥ n1, P(W1(Z
n
T1

, ξ̂) > ς) ≤ ε.

Proof. Let n ∈ N
∗ be fixed. The idea in the proof of Point (i) is to dominate stochastically

(〈Zn
t , 1〉)t∈R+ by the following process (Y n

t )t∈R+ with values in (1/n)N:

Y n
t =〈Zn

0 , 1〉 +

∫ t

0

∫

E
1{i≤nY n

s−
}
1

n

(
10≤θ<b(Ai(Zn

s−
)) − 1b(Ai(Zn

s−
))≤θ<b(Ai(Zn

s−
))+d+ηY n

s−

)
Q(ds, di, dθ)

+

∫ t

0

∫

E

1

n

[
1{Y n

s−
=0, i∈[[1,n]], θ∈[0,1]} + 1{i≤nY n

s−
}10≤θ<b̄−b(Ai(Zn

s−
))

]
Q′(ds, di, dθ). (5.4)
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Q is the Poisson point measure introduced in Definition 2.5 and Q′ is an independent copy. The
second term of (5.4) implies that 0 is not an absorbing state for Y n and, when Y n

t > 0, completes
the births events so that the birth rate is b̄. Let us prove that Y n is recurrent positive. This
process is irreducible. Its generator A is defined by: ∀F ∈ C((1/n)N, R+), ∀i ∈ N,

AF (i/n) =1i>0

{(
F

(
i + 1

n

)
− F

(
i

n

))
b̄

i

n
+

(
F

(
i − 1

n

)
− F

(
i

n

))(
d + η

i

n

)
i

n

}

+

(
F

(
1

n

)
− F (0)

)
1i=0 (5.5)

If we choose for F the Lyapounov function V n : i/n 7→ i/n, then ∀i ∈ N,

AV n

(
i

n

)
=

i

n2

[
b̄ − d − η

i

n

]
1i>0 +

1

n
1i=0 ≤ −

1

n
V n

(
i

n

)
+

(b̄ − d)2

4n3η
∨

1

n
, (5.6)

since b̄ − d − ηi/n < −1 for i > n
(
b̄ + 1 − d

)
/η, and

sup

0<i≤
n(b̄+1−d)

η

{
i

n2

[
b̄ − d − η

i

n

]}
≤

(b̄ − d)2

4n3η
.

The inequality (5.6) is of the form ∀i ∈ N, AV n
(

i
n

)
≤ −cV n

(
i
n

)
+ c′. A criterium of Meyn et

Tweedie ([36], Theorems 6.1 and 7.1) then entails that Y n is recurrent positive.

A sufficient condition for Point (i) to be proved is that P (∃t ∈ R+, Y n
t = 0) = 1. Let

C > 1 and τC = inf {t > 0, Y n
t = 0 or Y n

t = C/n}. Since (Y n
t )t∈R+ is recurrent positive,

PC/n

(
Y n

τC
= 0

)
> 0 (under PC/n, Y n starts from C/n).

P (∃t ∈ R+, Y n
t = 0) = P

(
Y n

τC
= 0

)
+ P

(
Y n

τC
= C/n et ∃t ∈ R+, Y n

t+τC
= 0

)

=P
(
Y n

τC
= 0

)
+ P

(
Y n

τC
= C/n

)
PC/n (∃t ∈ R+, Y n

t = 0) , by the strong Markov property

=P
(
Y n

τC
= 0

)
+ P

(
Y n

τC
= C/n

) [
PC/n

(
Y n

τC
= 0

)
+ PC/n

(
Y n

τC
= C/n et ∃t ∈ R+, Y n

t+τC
= 0

)]

=P
(
Y n

τC
= 0

)
+ P

(
Y n

τC
= C/n

)
[

+∞∑

ℓ=0

PC/n

(
Y n

τC
= 0

)
PC/n

(
Y n

τC
= C/n

)ℓ

]
, by recursion

=P
(
Y n

τC
= 0

)
+ P

(
Y n

τC
= C/n

) PC/n

(
Y n

τC
= 0

)

1 − PC/n

(
Y n

τC
= C/n

) = P
(
Y n

τC
= 0

)
+ P

(
Y n

τC
= C/n

)
= 1.

This concludes the proof. Point (ii) is a consequence of Proposition 5.1. ¥

Assumption 5.7. Assume that the functions a 7→ b(a) and a 7→ d(a) are Lipschitz continuous
from R+ to R+, with constants Lb and Ld.
We assume that the limit ξ0 of (Zn

0 )n∈N∗ in (MF (R+), w) is absolutely continuous with respect
to the Lebesgue measure, with a density m0 ∈ C1(R+, R+) ∩ L1(R+, R+).

For numerous applications (see [45], Chapter 6 for instance), it is of great interest to evaluate
the time during which the microscopic process stays in the neighborhood of the stationary stable
solution m̂(a)da of its deterministic approximation.

Let 0 < γ < 〈ξ̂, 1〉. We study the problem of exit from the domain BW1(ξ̂, γ) using the results
of Theorem 4.4. Results are stated in Propositions 5.8 and 5.13. Notice that for this choice of
γ, this neighborhood does not contain the null measure. The exit time of BW1(ξ̂, γ) is:

T n = inf
{

t ≥ 0, | Zn
t /∈ BW1(ξ̂, γ)

}
. (5.7)
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For R > 0 and G defined in (4.9):

V̄ = inf
{
IT

ξ0(z) | T > 0, z ∈ DT ∩ G, z0 = ξ̂, zT /∈ BW1(ξ̂, γ)
}

, (5.8)

V (R) = inf
{
IT

z0
(z) | T > 0, z ∈ DT , W1(z0, ξ̂) < R, zT /∈ BW1(ξ̂, γ)

}
, (5.9)

V = lim
R→0

V (R). (5.10)

When the set in (5.8) (resp. (5.9)) is empty, V̄ (resp. V (R)) is infinite. The estimates given
in the following sections (Propositions 5.8 and 5.13) are then automatically satisfied. Notice
that V is well defined in R+ ∪ {+∞}: (V (R))R>0 is an increasing sequence when R ↓ 0 and:

V := lim
R→0

V (R) ≤ V̄ . (5.11)

Notation:

Recall that ξ is the solution of (1.2) starting from ξ0 ∈ MF (R+), which is the limit of Zn
0 for

the weak convergence. Until the end of this section, we will consider ξ0 ∈ BW1(ξ̂, γ). We denote
by ξµ0 ∈ C(R+,MF (R+)) the solution of (1.2) starting from the initial condition µ0 ∈ MF (R+).

For z ∈ DT such that IT
ξ0

(z) < +∞ with T > 0, there exists hz ∈ Lρ∗,z such that z is the
solution of (4.7) perturbed by hz. We denote by zµ0 the solution of this equation perturbed by
hz starting from µ0 ∈ MF (R+).

5.2.1 Upper bound of the exit time

Proposition 5.8. Let ξ0 ∈ BW1(ξ̂, γ). Under Assumptions 2.4, 4.2, 4.19, 5.7:

lim sup
n→+∞

1

n
log E (T n) ≤ V̄ . (5.12)

The following corollary, obtained by the Markov inequality, give us an interpretation of this
result: the exit time T n is upper bounded by enV̄ up to an exponentially small probability.

Corollary 5.9. Let ξ0 ∈ BW1(ξ̂, γ). Under Assumptions 2.4, 4.2, 4.19, 5.7 : ∀δ > 0, ∃C > 0,

lim sup
n→+∞

1

n
log P

(
T n ≥ en(V̄ +δ)

)
≤ −C. (5.13)

The proof of Proposition 5.8 relies on the following lemmas. Lemma 5.10, proved in the end
of this section, establishes a result of continuity with respect to the initial condition. Lemma
5.11 shows that z 7→ IT

ξ0
(z) wanishes only at ξ. Its proof stands in [20] page 490. Notice that

the results given by these lemmas use the total variation norm. Indeed, we do not know if the
perturbations hz are Lipschitz continuous. However, under the constraint that z ∈ G in the
definition of V̄ and in the lower bound of Theorem 4.4, these perturbations remain bounded.

Lemma 5.10. Let T > 0, let z ∈ DT ∩ G with initial condition z0 ∈ MF (R+).
(i) ∀ε > 0, ∃δ > 0, ∀µ0 ∈ BTV (z0, δ), supt∈[0,T ] ‖z

µ0
t − zt‖TV < ε,

(ii) The map µ0 7→ IT
µ0

(zµ0) from (MF (R+), ‖.‖TV ) into R+ is continuous at point µ0 = z0.

Lemma 5.11. Let T > 0. We have IT
ξ0

(z) = 0 is and only if z = ξ, the unique weak measure
solution of (1.4)-(1.3) starting from ξ0.

Proof Proposition 5.8. Let z ∈ D(R+,MF (R+)) such that z0 = ξ̂, ∃T > 0, zT /∈ BW1(ξ̂, γ),
(zt)t∈[0,T ] ∈ G. We do this assumption since the upper bound (5.12) is based on the lower bound
in (4.10). In order to establish the Proposition 5.8, it is sufficient to prove that:

lim sup
n→+∞

1

n
log E (T n) ≤ IT

ξ̂
(z). (5.14)
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The left hand side does not depend on z, and we can take the infimum in z in the right hand
side, which gives (5.12) by (5.8).

In order to obtain (5.14), we establish an upper bound of the form:

∀n ∈ N
∗, ∀k ∈ N

∗, P (T n > kC(z, T )) ≤ (p(z, T ))k, (5.15)

where C(z, T ) is a nonnegative constant. For this purpose, we lower bound the probability
P (T n ≤ kC(z, T )) by the probability that (Zn

t )t∈[0,kC(z,T )] goes through the neighborhood of

zT ∈ MF (R+) situated outside of BW1(ξ̂, γ).

Step 1 : We begin with bounding below the exit probability of BW1(ξ̂, γ) when the initial

condition is ”near” ξ̂, by using the parth z.

Let δ := inf{W1(zT , y), y ∈ BW1(ξ̂, γ)}. Since zT /∈ BW1(ξ̂, γ), δ > 0. Let us consider the

perturbed evolution equation (4.7) satisfied by z starting from ξ̂ and let µ0 ∈ MF (R+).

By Point (i) of Lemma 5.10, ∀δ1 ∈]0, δ[, ∃δ2 > 0,
[
‖µ0 − ξ̂‖TV < δ2

]
⇒

[
‖zµ0

T − zT ‖TV < δ − δ1

]
.

We deduce by the triangular inequality: ∀µ0 ∈ BTV (ξ̂, δ2),

inf
y∈BW1

(ξ̂,γ)
W1(z

µ0

T , y) ≥ inf
y∈BW1

(ξ̂,γ)
W1(zT , y) − ‖zµ0

T − zT ‖TV ≥ δ − (δ − δ1) = δ1 > 0,

and thus zµ0

T /∈ BW1(ξ̂, γ).
By Point (ii) of Lemma 5.10:

∀ε > 0, ∃δ0 > 0, ∀µ0 ∈ BTV (ξ̂, δ0), |I
T
µ0

(zµ0) − IT
ξ̂

(z)| ≤ ε. (5.16)

Assume that ξ0 ∈ BTV (ξ̂, δ0∧δ2). We can lower bound the probability of exit of BW1(ξ̂, γ) by
the probability that the path stays in a tube of radius δ1 around zξ0 : ∀ε > 0, ∃n0 ∈ N

∗, ∀n ≥ n0,

P (T n ≤ T ) ≥ P

(
dD,T (Zn, zξ0) < δ1

)
≥ e

−n
�
IT

ξ0
(zξ0 )+ε

�

≥ e
−n
�
IT

ξ̂
(z)+2ε

�

, (5.17)

by Proposition 5.1 and by (5.16).

Step 2 : We now consider an initial condition ξ0 ∈ BW1(ξ̂, γ) satisfying Assumption 5.7. By
Proposition 3.5, the marginals ξt of the solution of (1.2) are absolutely continuous with respect
to the Lebesgue measure. By Point (iii) of Proposition 5.5,

∃T1 = T1(δ0 ∧ δ2, ξ̂, γ) ≥ 0, ‖ξT1 − ξ̂‖TV < δ0 ∧ δ2. (5.18)

Let δ3 = inft∈[0,T1]

(
γ −W1(ξt, ξ̂)

)
> 0 (the deterministic path ξ remains in BW1(ξ̂, γ)). Since

(Zn
T1

)n∈N∗ converges in probability to ξT1 ∈ BTV (ξ̂, δ0 ∧ δ2), we obtain from (5.17), and from the
strong Markov property:

P (T n ≤ T + T1) ≥E

(
1T n>T1PZn

T1
(T n ≤ T )

)

≥P (dD,T1(Z
n, ξ) ≤ δ3) e

−n(IT

ξ̂
(z)+2ε)

≥ e
−n(IT

ξ̂
(z)+3ε)

, (5.19)

where the lower bound for P (dD,T1(Z
n, ξ) ≤ δ3) is obtained by Proposition 5.1 and Lemma 5.11.
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Step 3: We now establish (5.15). Let p := 1 − e
−n(IT

ξ̂
(z)+3ε)

. Assume that for k ∈ N
∗, we

have shown that for ξ0 ∈ BW1(ξ̂, γ):

P (T n > k(T + T1)) ≤ pk. (5.20)

By the strong Markov property and since on {T n > k(T +T1)}, Zn
k(T+T1) ∈ BW1(ξ̂, γ) converges

to ξk(T+T1) ∈ BW1(ξ̂, γ):

P (T n > (k + 1)(T + T1)) ≤E

(
PZn

k(T+T1)
(T n > T + T1)1T n>k(T+T1)

)

≤p P (T n ≥ k(T + T1)) ≤ pk+1. (5.21)

By recursion, we obtain (5.20) for every k ∈ N
∗.

Step 4: We deduce for ξ0 ∈ BW1(ξ̂, γ) :

E

(
T n

T + T1

)
=

+∞∑

k=0

∫ k+1

k
P

(
T n

T + T1
> t

)
dt

≤
+∞∑

k=0

P (T n > k(T + T1)) ≤
1

1 − p
= e

n(IT

ξ̂
(z)+3ε)

, (5.22)

by definition of p. Then lim supn→+∞
1
n log E (T n) ≤ IT

ξ̂
(z)+3ε. The choice of ε > 0 is arbitrary

and the Proposition is proved. ¥

Remark 5.12. In order to obtain the inequalities (5.17) and (5.19), the fact that we only have
a local minoration in (4.10) is not restrictive, since we consider deviations with respect to the
path ξ, which belongs to G (4.9).

Proof of Lemma 5.10. Let ε > 0, δ ∈]0, 1] and µ0 ∈ BTV (ξ0, δ). We have supt∈[0,T ]〈zt +zµ0
t , 1〉 ≤

(2〈ξ0, 1〉 + 1)eb̄T =: AT independent of µ0 and δ.
Let φ ∈ C1

b (R+, R+) such that ‖φ‖∞ ≤ 1. Let t ∈ [0, T ] and (f : (a, s) 7→ φ(a + t − s)) ∈
C1

b (R+ × R+, R). With a computation similar to (3.1):

|〈zt − zµ0
t , φ〉| ≤

∣∣∣∣
∫

R+

φ(a + t)z0(da) −

∫

R+

φ(a + t)µ0(da)

∣∣∣∣

+

∣∣∣∣
∫ t

0

∫

E
ψ(f)(hz + 1)dmz,T

s ds −

∫ t

0

∫

E
ψ(f)(hz + 1)dmzµ0 ,T

s ds

∣∣∣∣

≤‖z0 − µ0‖TV + (‖hz‖∞ + 1)
[
b̄ + d̄ + 2ηAT

] ∫ t

0
‖zs − zµ0

s ‖TV ds (5.23)

Taking the supremum in φ ∈ C1
b (R+, R+) bounded by 1 gives:

‖zt − zµ0
t ‖TV ≤δ exp

(
(‖hz‖∞ + 1)

[
b̄ + d̄ + 2ηAT

]
T

)
, (5.24)

by Gronwall’s Lemma and by choice of µ0. Choosing δ = min
(
1, εe−(‖hz‖∞+1)[b̄+d̄+2ηAT ]T

)
, we

have δ ∈]0, 1] and can upper bound the right hand side of (5.24) by ε, which proves Point (i).
Now let us consider Point (ii). For fz defined in Proposition 4.14 and using (4.29):
∣∣IT

µ0
(zµ0) − IT

z0
(z)

∣∣ ≤‖hzψ(fz) − ρ(ψ(fz))‖∞T
(
b̄ + d̄ + 2ηAT

)
sup

t∈[0,T ]
‖zt − zµ0

t ‖TV . (5.25)

Thanks to Point (i), there exists δ > 0 such that for all µ0 ∈ B(z0, δ), the right hand side of
(5.25) is upper bounded by ε. ¥
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5.2.2 Lower bound of the exit time

We now consider the probability P(T n > en(V −δ)) for δ > 0. We rely on the large deviation
upper bound (4.10). The skeleton of the proof looks like its counterpart in finite dimension (see
[12], Section 5), but the proofs of all the technical lemmas have to be changed, when dealing
with our measure-valued processes. Another difficulty is that V is possibly infinite.

Proposition 5.13. Let ξ0 ∈ BW1(ξ̂, γ). Under Assumptions 2.4, 4.2, 5.7 :
1. If V < +∞, then ∀δ > 0, limn→+∞ P

(
T n > en(V −δ)

)
= 1.

2. If V = +∞, then ∀V > 0, limn→+∞ P
(
T n > enV

)
= 1.

Let ρ ∈]0, γ/2[. For such ρ, we define the following stopping times:

σρ = inf
{

t ≥ 0, Zn
t ∈ BW1(ξ̂, ρ) ∪ Bc

W1
(ξ̂, γ)

}
. (5.26)

σρ is the first time when (Zn
t )t∈R+ enters BW1(ξ̂, ρ) or leaves BW1(ξ̂, γ). The proof of Proposition

5.13 is based on the following lemmas, proved at the end of the section. The interesting vase is
when ρ ≤ W1(ξ0, ξ̂), ξ0 ∈ BW1(ξ̂, γ) \ BW1(ξ̂, ρ). The estimates of Lemmas 5.14, 5.15 and 5.16

are automatically satisfied if ρ > W1(ξ0, ξ̂).

Lemma 5.14. Let ρ ∈]0, γ/2[, limt→+∞ lim supn→+∞
1
n log P (σρ > t) = −∞.

Lemma 5.15. (i) limρ→0 lim supn→+∞
1
n log P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
≤ −V (where V is possibly

equal to +∞).

(ii) We deduce that for ρ ∈]0, γ/2[, limn→+∞ P

(
Zn

σρ
∈ BW1(ξ̂, ρ)

)
= 1.

Lemma 5.16. Let ρ ∈]0, γ/2[. ∀c > 0, ∃T (c, ρ) > 0,

lim sup
n→+∞

1

n
log P

(
sup

t∈[0,T (c,ρ)]
W1(Z

n
t , Zn

0 ) ≥ ρ

)
< −c. (5.27)

Lemmas 5.14, 5.15 and 5.16 tell us that the following probabilities are exponentially small:
1. the probability that the path (Zn

s )s∈[0,t] remains in the set BW1(ξ̂, γ)\BW1(ξ̂, ρ) when t → +∞,

2. the probability that Zn leaves this set by leaving BW1(ξ̂, γ),
3. the probability that Zn ”strongly” deviates from its initial condition Zn

0 in short time.
Notice that the use of W1 is fundamental in the proof of Lemma 5.16.

Proof of Proposition 5.13. Let δ > 0 and let:

Ṽ =

{
V if V < +∞,

V + δ if V = +∞,
(5.28)

with an arbitrary V > 0 as in the terms of the Proposition. By Lemma 5.15, ∃ρ ∈]0, γ/2[,

lim supn→+∞
1
n log P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
< −Ṽ + δ/4, and: ∃n0 ∈ N

∗, ∀n ≥ n0,

P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
< e−n(Ṽ −δ/2). (5.29)

We define the following stopping times: ∀k ∈ N,

θ0 =0 (5.30)

τk = inf
{

t ≥ θk, Zn
t ∈ BW1(ξ̂, ρ) ∪ Bc

W1
(ξ̂, γ)

}
, (5.31)

θk+1 = inf
{

t ≥ τk, Zn
t ∈ Bc

W1
(ξ̂, 2ρ)

}
, (5.32)
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with the convention θk+1 = +∞ si Zn
τk

∈ Bc
W1

(ξ̂, γ). τk is the first time of exit from BW1(ξ̂, γ) \

BW1(ξ̂, ρ) after θk, and if Zn
τk

∈ BW1(ξ̂, ρ), θk+1 is the first time of exit of BW1(ξ̂, 2ρ). Notice
that the exit time T n is one of the τk, k ∈ N.

Let q ∈ N
∗ and T0 = T (Ṽ , ρ) as given by Lemma 5.16. The event {T n ≤ qT0} implies that

there exists k ∈ [[0, q]] such that either T n = τk or one of the q first ”excursions” [τk−1, τk] for
k ∈ [[1, q]] is of length upper bounded by T0. In this last case, one of the trajectories [τk−1, θk[ is
covered in less than T0. Thus:

P (T n ≤ qT0) ≤

q∑

k=1

[
P (T n = τk) + P

(
min

1≤k≤q
(θk − τk−1) ≤ T0

)]
+ P (T n = τ0) (5.33)

By Markov strong property and by (5.29), ∃n0 > 0, ∀n ≥ n0, ∀k ∈ N
∗,

P (T n = τk) =P

(
PZn

θk
(T n = τ0)1T n>τk−1

)

=P

(
PZn

θk

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
1T n>τk−1

)
≤ e−n(Ṽ −δ/2), (5.34)

by noticing that for sufficiently large n, Zn
θk

belongs to BW1(ξ̂, γ).
By choice of T0, by the strong Markov property: ∀n ≥ n0, ∀k ∈ N

∗,

P (θk − τk−1 ≤ T0) ≤P

(
sup

t∈[0,T0]
W1(Z

n
t , Zn

0 ) ≥ ρ

)
≤ e−n(Ṽ −δ/2). (5.35)

By (5.33), (5.34), (5.35) : ∀q ∈ N
∗,

P (T n ≤ qT0) ≤P (T n = τ0) + 2qe−n(Ṽ −δ/2). (5.36)

Since {T n = τ0} = {Zn
σρ

∈ Bc
W1

(ξ̂, γ)}, then, for the choice of q = [en(Ṽ −δ)/T0] + 1:

P

(
T n ≤ en(Ṽ −δ)

)
≤P (T n ≤ qT0) ≤ P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
+

4

T0
e−nδ/2. (5.37)

The right hand side of (5.37) converges to 0 when n → +∞, as:

lim
n→+∞

P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
= 0, (5.38)

by Lemma 5.15. ¥

Proof of Lemma 5.14. If ξ0 ∈ BW1(ξ̂, ρ), Lemma 5.14 is true. Assume that ρ ≤ W1(ξ̂, ξ0). Then,

ξ0 ∈ BW1(ξ̂, γ) \ BW1(ξ̂, ρ). Let L > 0. It is sufficient to show that: ∃T = T (L) > 0,

lim sup
n→+∞

1

n
log P (σρ > T ) < −L.

By Point (iii) of Proposition 5.5: ∀ξ0 ∈ BW1(ξ̂, γ), ∃T1(ρ, ξ̂, γ) > 0, ∀t ≥ T1, W1(ξ
ξ0
t , ξ̂) < ρ/2.

Let T ≥ T1. If the path (Zn
t )t∈[0,T ] remains in BW1(ξ̂, γ) \ BW1(ξ̂, ρ), we have necessarily

W1(Z
n
T , ξξ0

T ) > ρ/2.
The sequence (L(Zn))n∈N∗ being exponentially tight, ∃K(L, T ) ⊂ DT compact, ∃n0 ∈

N
∗, ∀n ≥ n0, P (Zn /∈ K(L, T )) ≤ e−nL.

The following set:

A(T ) = adh
{

z ∈ DT , ∀t ∈ [0, T ], zt ∈ BW1(ξ̂, γ) \ BW1(ξ̂, ρ)
}
∩ K(L, T ). (5.39)
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is compact, does not contain ξ by choice of T and ∀z ∈ A(T ), IT
ξ0

(z) > 0 (Lemma 5.11). Then:

lim sup
n→+∞

1

n
log P (σρ > T ) ≤max

(
lim sup
n→+∞

1

n
log P (Zn ∈ A(T )) , lim sup

n→+∞

1

n
log P (Zn /∈ K(L, T ))

)

≤max

(
− inf

z∈A(T )
IT

ξ0(z),−L

)
< 0.

It remains to show that for sufficiently large T ,

inf
z∈A(T )

IT
ξ0(z) > L. (5.40)

Let z ∈ A(T ) starting from ξ0 ∈ BW1(ξ̂, γ) \ BW1(ξ̂, ρ) with T ≥ T1. Let φ ∈ C1(R+, R) be
bounded by 1, t ∈ [0, T ] and f : (a, s) ∈ R

2
+ 7→ fs(a) = φ(a + t − s) ∈ R. We have:

〈zt − ξt, φ〉 =

∫ t

0

∫

R+

(b(a)φ(t − s) − φ(a + t − s) (d(a) − η〈zs, 1〉)) (zs − ξs)(da)ds

−

∫ t

0

∫

R+

φ(a + t − s)η (〈zs − ξs, 1〉) ξs(da) ds +

∫ t

0

∫

E
ψ(f)hzdmz,T

s ds.

For z ∈ A(T ) and by choice of γ, supt∈[0,T ](〈ξt, 1〉 + 〈zt, 1〉) ≤ 4〈ξ̂, 1〉eb̄T := AT , which is finite

and does not depend on ξ0 ∈ BW1(ξ̂, γ) nor on z ∈ A(T ). We then deduce that:

|〈zt − ξt, φ〉| ≤
(
b̄ + d̄ + 2ηAT

) ∫ t

0
sup

u∈[0,s]
‖zu − ξu‖TV ds +

∫ t

0

∫

E
|hz|dmz,T

s ds

Taking the supremum in φ in the left hand side, by Gronwall’s inequality and by (5.1):

sup
t∈[0,T ]

W1(zt, ξt) ≤ sup
t∈[0,T ]

‖zt − ξt‖TV ≤

(∫ T

0

∫

E
|hz|dmz,T

s ds

)
e(b̄+d̄+2ηAT )T . (5.41)

Since supt∈[0,T ] W1(zt, ξt) ≥ ρ/2:

∫ T

0

∫

E
|hz|

dmz,T
s ds

∫ T
0

∫
E dmz,T

s ds
≥

ρ

2

1
∫ T
0

∫
E dmz,T

s ds
e−(b̄+d̄+2ηAT )T

and since ρ∗ is an increasing function on R+:

ρ∗

(∫ T

0

∫

E
|hz|

dmz,T
s ds

∫ T
0

∫
E dmz,T

s ds

)
≥ρ∗

(
ρ

2

1

(b̄ + d̄ + ηAT )AT T
e−(b̄+d̄+2ηAT )T

)
, (5.42)

On the other hand, by Jensen’s inequality:

ρ∗

(∫ T

0

∫

E
|hz|

dmz,T
s ds

∫ T
0

∫
E dmz,T

s ds

)
≤

∫ T

0

∫

E
ρ∗ (|hz|)

dmz,T
s ds

∫ T
0

∫
E dmz,T

s ds
=

IT
ξ0

(z)
∫ T
0

∫
E dmz,T

s ds
. (5.43)

By (5.42) and (5.43), and for T = T1:

∫ T1

0

∫

E
ρ∗(hz)dmz,T1

s ds = IT1
ξ0

(z)

≥

(∫ T1

0

∫

E
dmz,T1

s ds

)
ρ∗

(
ρ

2

1

(b̄ + d̄ + ηAT1)AT1 T1
e−(b̄+d̄+2ηAT1

)T1

)

≥

(
inf

z∈A(T1)

∫ T1

0

∫

E
dmz,T1

s ds

)
ρ∗

(
ρ

2

e−(b̄+d̄+2ηAT1
)T1

(b̄ + d̄ + ηAT1)AT1 T1

)
:= C2 > 0, (5.44)
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by compactness of A(T1) with paths that do not vanish (by choice of γ and since they remain in
adh(BW1(ξ̂, γ))). Notice that the constant C2 does not depend on the particular choice of the

initial condition ξ0 ∈ BW1(ξ̂, γ) \ BW1(ξ̂, ρ) nor on the path z ∈ A(T ).
Let now T > 0 be such that T > J T1 with J ∈ N

∗. We have:

IT
ξ0(z) ≥

J∑

j=1

∫ jT1

(j−1)T1

∫

E
ρ∗(hz)dmz,T

s ds =
J∑

j=1

∫ T1

0

∫

E
ρ∗(hzj

)dmzj ,T
s ds, (5.45)

where ∀t ∈ [0, T1], zj
t = z(j−1)T1+t is a path in A(T1) which solves: ∀ (f : (a, s) 7→ fs(a)) ∈

C1
b (R+ × [0, T1], R),

〈zj
t , ft〉 =〈z(j−1)T1

, f0〉 +

∫ t

0

〈
zj
s ,

∂

∂a
fs +

∂fs

∂s

〉
ds +

∫ t

0

∫

E
(1 + hzj

)ψ(f)dmz,T
s ds,

which is an equation obtained by the perturbation of (1.2) with hzj
(a, u, s) = hz(a, u, (j−1)T1+s)

for s ∈ [0, T1]. By (5.44) and by recursion IT
ξ0

(z) ≥ JC2. This proves (5.40). ¥

Proof of Lemma 5.15. Let us prove Point (i). Let ρ ∈]0, γ/2[. Let R > 0 be such that V (R) <
+∞. By Lemma 5.14 :

∃T2 > 0, ∃n0 ∈ N
∗, ∀n ≥ n0, P (σρ > T2) < e−nV (R), (5.46)

where V (R) is defined in (5.9). For T > 0, we define:

A(T ) :=
{

z ∈ D([0, T ],MF (R+)) | ∃t ∈ [0, T ], zt /∈ BW1(ξ̂, γ)
}

(5.47)

which is closed since z 7→ supt∈[0,T ] W1(zt, ξ̂) is continuous. From (5.9): ∀ξ0 ∈ BW1(ξ̂, 2ρ),

infz∈A(T2) I
T2
ξ0

(z) ≥ V (2ρ). Using the large deviation upper bound (Theorem 4.4) :

lim sup
n→+∞

1

n
log P

Zn
0 ∈BW1

(ξ̂,γ)\BW1
(ξ̂,ρ)

(Zn ∈ A(T2)) ≤ − inf
z∈A(T2)

IT2
ξ0

(z) ≤ −V (2ρ). (5.48)

By (5.46) and (5.48) :

lim sup
n→+∞

1

n
log P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)

≤ max

(
lim sup
n→+∞

1

n
log P (σρ > T2) , lim sup

n→+∞

1

n
log P (Zn ∈ A(T2))

)
≤ max (−V (R),−V (2ρ)) .

By (5.10), limρ→0 lim supn→+∞
1
n log P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
≤ −V (R), and letting R tend to 0,

we obtain the result of Point (i), since the left hand side does not depend on R.
Let us consider Point (ii). Let ε > 0, ρ ∈]0, γ/2[ and R > 0 satisfying V (R) < +∞ and:

lim sup
n→+∞

1

n
log P(Zn

σρ
∈ Bc

W1
(ξ̂, γ)) ≤ −V (R) +

ε

2
.

(the existence of such R is given by (i)) Then ∃n0 ∈ N
∗, ∀n ≥ n0, P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
≤

e−nV (R)+nε, and:

P

(
Zn

σρ
∈ BW1(ξ̂, ρ)

)
= 1 − P

(
Zn

σρ
∈ Bc

W1
(ξ̂, γ)

)
≥ 1 − e−n(V (R)−ε).

Choosing ε < V (R) and letting n tend to +∞ completes the proof. ¥
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Proof of Lemma 5.16. Let T > 0 and c > 0. By Point (i) of Lemma 4.7, there exists N =
N(c, T ) > 0 such that:

lim sup
n→+∞

1

n
log P (ζn

N < T ) < −c. (5.49)

Let φ ∈ C1
b (R+, R) 1−Lipschitz continuous bounded by 1, t ∈ [0, T ], and f(a, s) = φ(a+ t− s) ∈

C1
b (R+ × R+, R). With the notation of Definition 2.5:

∣∣∣〈Zn
t∧ζn

N

, φ〉 − 〈Zn
0 , φ〉

∣∣∣ ≤
∣∣∣∣∣

∫

R+

(φ(a + t) − φ(a)) Zn
0 (da)

∣∣∣∣∣ +

∣∣∣∣∣
1

n

∫ t∧ζn

N

0

∫

E

1{i≤Nn
s
}

[
f(0, s)10≤m1(s,Zn

s
−

,i)

− f(Ai(Z
n
s
−

), s)1m1(s,Zn
s
−

,i)≤θ<m2(s,Zn
s
−

,i)

]
Q(ds, di, dθ, dx′)

∣∣∣ ≤ t〈Zn
0 , 1〉 +

N (t)

n
,

where N (t) is a Poisson random variable with parameter tN(b̄ + d̄ + ηN). We deduce:

sup
s∈[0,t]

W1(Z
n
s∧ζn

N
, Zn

0 ) ≤ t〈Zn
0 , 1〉 +

N (t)

n

and: P

(
sup

s∈[0,t]
W1(Z

n
s∧ζn

N
, Zn

0 ) ≥ ρ

)
≤ P

(
t〈Zn

0 , 1〉 ≥
ρ

2

)
+ P

(
N (t)

n
≥

ρ

2

)
.

Since:

lim sup
n→+∞

1

n
log P

(
N (t) ≥

nρ

2

)
≤

ρ

2
log(tN(b̄ + d̄ + ηN)),

which tends to −∞ when t → 0. Then: ∃T3 ∈]0, T [, ∀t ∈ [0, T3],

lim sup
n→+∞

1

n
log P

(
N (t) ≥

nρ

2

)
< −c. (5.50)

By Point 2 of Assumptions 4.2, ∃n0 ∈ N
∗, ∀n ≥ n0, 〈Z

n
0 , 1〉 < C0 + 〈ξ0, 1〉. Then, for T4 <

ρ/(2(C0 + 〈ξ0, 1〉)): ∀t ∈ [0, T4], ∀n ≥ n0, P
(
t〈Zn

0 , 1〉 > ρ
2

)
= 0.

Hence, for t ∈ [0, T3 ∧ T4 ∧ T ] :

lim sup
n→+∞

1

n
log P

(
sup

s∈[0,t]
W1(Z

n
t , Zn

0 ) ≥ ρ

)
≤ max

[
lim sup
n→+∞

1

n
log P(ζn

N < T ),

lim sup
n→+∞

1

n
log P

(
t〈Zn

0 , 1〉 ≥
ρ

2

)
, lim sup

n→+∞

1

n
log P

(
N (t) ≥

nρ

2

)]
< −c. (5.51)

¥

This concludes the proof of Proposition 5.13.

Thanks: I am greatly indebted to Sylvie Méléard for having proposed this subject to me and
for her constant support during this work. I also wish to thank Christian Léonard for numerous
helpful discussions and pertinent corrections.
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[19] F. Golse. Polycopié de cours sur les edp. http://www.dma.ens.fr/~golse/Cours/cours.html,
2003.
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