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We study a continuous-time discrete population structured by a vector of ages. Individuals reproduce asexually, age and die. The death rate takes interactions into account. Adapting the approach of Fournier and Méléard, we show that in a large population limit, the microscopic process converges to the measure-valued solution of an equation that generalizes the McKendrick-Von Foerster and Gurtin-McCamy PDEs in demography. The large deviations associated with this convergence are studied. The upper-bound is established via exponential tightness, the difficulty being that the marginals of our measure-valued processes are not of bounded masses. The local minoration is proved by linking the trajectories of the action functional's domain to the solutions of perturbations of the PDE obtained in the large population limit. The use of Girsanov theorem then leads us to regularize these perturbations. As an application, we study the logistic age-structured population. In the super-critical case, the deterministic approximation admits a non trivial stationary stable solution, whereas the stochastic microscopic process gets extinct almost surely. We establish estimates of the time during which the microscopic process stays in the neighborhood of the large population equilibrium by generalizing the works of Freidlin and Ventzell to our measure-valued setting.

Introduction and motivations

Structured population models describe the dynamics of populations in which individuals differ according to variables that affect their reproductive capacities and survivals. In this article, we are interested in a population structured by ages. Age-structures are important to take into account the changes of behaviour of an individual during its life as well as life histories. It is natural to consider many ages. Examples are the physical age (the time since which an individual is born), the biological age (the intrinsic maturation stage of the individual), the age of an illness (the time since which the individual has been infected), the stage of the illness (the clinical stage of the illness). To our knowledge, the literature on the subject mostly considers structuration by the only physical age.

Our purpose is to study a microscopic stochastic population structured by a vector of ages that can grow nonlinearly in time and which models the age-dependence of the birth and death rates as well as possible interactions between individuals (competition or cooperation), including competition of logistic type (for which the death rate is linear in the size of the population).

Continuous time physical age-structured models that generalize the models of Malthus [START_REF] Malthus | An Essay on the Principle of Population[END_REF] and Verhulst's famous Logistic Equation [START_REF] Verhulst | Notice sur la loi que la population suit dans son accroissement[END_REF], have made the object of an abundant literature based on the theory of partial differential equations (PDEs) (see Sharpe and Lotka [START_REF] Sharpe | A problem in age distribution[END_REF], McKendrick [START_REF] Mckendrick | Applications of mathematics to medical problems[END_REF], Gurtin and MacCamy [START_REF] Gurtin | Nonlinear age-dependent population dynamics[END_REF], Marcati [START_REF] Marcati | On the global stability of the logistic age dependent population growth[END_REF], Busenberg and Iannelli [START_REF] Busenberg | A class of nonlinear diffusion problems in age-dependent population dynamics[END_REF], Webb [START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF]).

Stochastic models generalizing the Galton-Watson process [START_REF] Galton | On the probability of the extinction of families[END_REF] have been studied by Bellman and Harris [START_REF] Bellman | On age-dependent binary branching processes[END_REF][START_REF] Harris | The Theory of Branching Processes[END_REF], Athreya and Ney ( [START_REF] Athreya | Branching Processes[END_REF] Chapter IV). These models consider non Markovian processes, called age-structured branching processes, structured by the physical age and in which the lifelength of an individual does not follow an exponential law. Each particle, at its death, is replaced by a random number of daughters with a law that is independent of the age of the mother and of the state of the population.

The assumptions of birth at the parent's death and of independence between the reproduction law and the age of the parent are biologically restrictive. Kendall [START_REF] Kendall | Stochastic processes and population growth[END_REF], Crump and Mode [START_REF] Crump | A general age-dependent branching process i[END_REF][START_REF] Crump | A general age-dependent branching process ii[END_REF], Jagers [START_REF] Jagers | A general stochastic model for population development[END_REF] and Doney [START_REF] Doney | Age-dependent birth and death processes[END_REF] have studied birth and death processes in which a particle can give birth many times during its life, with a rate that depends on its age.

In the preceding models, the particles alive at the same time are independent, which is also a biologically restrictive assumption. Wang [START_REF] Wang | A central limit theorem for age-and density-dependent population processes[END_REF], Solomon [START_REF] Solomon | Representation and approximation of large population age distributions using poisson random measures[END_REF] consider birth and death processes in which the lifelength are independent, but where the birth rate of a particle depends on the state of the population. Oelschläger [START_REF] Oelschläger | Limit theorem for age-structured populations[END_REF] generalizes their works to take interactions in both the birth and the death rate into account. However, in these models, the rates remain bounded, which excludes interactions of logistic type.

We present here an individual-centered model which takes age-structure into account. We are inspired by the works of Fournier et Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF] and Champagnat et al. [START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adpatative evolution and various scaling approximations[END_REF]. Our paper is inspired from more general models of trait and age-structured population considered in [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] to which we refer for examples, more details and full proofs.

Individuals are characterized by their ages with values in R d + . Each component of this vector is an age belonging to R + , which can increase nonlinearly in time. Let n ∈ N * be a fixed integer (its interpretation is given below). We describe the population by a measure belonging to M n P (R d + ) (the set of point measures on R d + with atoms weighted by 1/n) included in M F (R d + ) (the set of finite measures on R d + ):

Z n t = 1 n N n t i=1
δ a i (t) , where N n t = n Z n t , 1 = n

R d + Z n t (da) (1.1)
is the number of individuals living at time t.

An individual of ages a ∈ R d + in the population Z ∈ M F (R d + ) reproduces asexually, ages and dies: We introduce in Section 2 a pathwise description of our microscopic process, using Poisson point measures and the flow of the equation describing the aging phenomenon.

The parameter n ∈ N * in (1.1) is related to the large population limit that will interest us in this work, and which corresponds to n → +∞. The underlying idea is to let the number of individuals grow proportionally to n while their masses and the intensity of the interactions are renormalized by 1/n. This can be understand as a constraints in ressources: if we increase the size of the population, we have to decrease the biomass of individuals to keep the system alive. In Section 3, we prove the convergence in law in This convergence result is an adaptation of results due to Fournier and Méléard [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF] and Champagnat et al. [START_REF] Champagnat | Individual-based probabilistic models of adpatative evolution and various scaling approximations[END_REF] for populations without age structure. The densities m(a, t) of the measures ξ t ∈ M F (R d + ), when they exist, correspond to the notion of number density, and describe the distribution in age of a population consisting in a "continuum" of individuals. They solve the system:

D := D(R + , M F (R d + )) of the sequence (Z n ) n∈N * to the solution ξ ∈ C(R + , M F (R d + )) of: ∀ (f : (a, s) → f s (a)) ∈ C 1 b (R d + × R + , R + ), ξ t , f t = ξ 0 , f 0 + t 0 R d + v ( 
∀a ∈ R d + , ∀t ∈ R + , ∂m ∂t (a, t) = -∇ a (v(a)m(a, t)) -d a, R + U (a, α)m(α, t)dα m(a, t) (1.3) v(0)m(0, t) = R +
m(a, t)b(a)da, m(a, 0) = m 0 (a).

(1.4)

These equations generalize the PDEs introduced by McKendrick-Von Foerster [START_REF] Mckendrick | Applications of mathematics to medical problems[END_REF][START_REF] Foerster | Some remarks on changing populations[END_REF] and Gurtin MacCamy [START_REF] Gurtin | Nonlinear age-dependent population dynamics[END_REF]. This is considered in Section 3.3. Equations (1.2) and (1.3)-(1.4) are macroscopic deterministic approximations describing the ecology at the scale of the population. Individual trajectories are lost, as well as stochasticity since an averaging phenomenon occurs. Let T > 0. We consider the evolution problem on the compact time interval [0, T ]. We use the notation D T := D([0, T ], M F (R d + )). From the exponential deviations of Section 4 and from the central limit theorem proved in [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], we know that on [0, T ], the microscopic process behaves like its deterministic approximation up to a small probability set. Their large time behaviors can however be radically different. We present in the following an example to illustrate this.

In the logistic age-structured population, represented by Z ∈ M F (R + ), individuals are characterized by their scalar physical age a ∈ R + growing with speed 1, give birth with rate b(a) (continuous and upper bounded by b) and die with rate d(a) + η Z, 1 . The term d is the natural death rate (assumed continuous and bounded above and below by positive constants d and d), and η Z, 1 is the logistic competition term of intensity η > 0. The system (1.3)-(1.4) becomes: b(a)e -a 0 d(α)dα da > 1, we are in a super-critical case and there exists a globally stable stationary solution to (1.5) that we denote by m(a) (see [START_REF] Gurtin | Nonlinear age-dependent population dynamics[END_REF][START_REF] Busenberg | A class of nonlinear diffusion problems in age-dependent population dynamics[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF]). The microscopic process Z n has a different long time behaviour. It follows it deterministic approximation on compact time intervals but leaves almost surely the neighborhood of m(a)da to drive the population to extinction (see Propositions 5.5 and 5.6 in Section 5).

For various applications, including the studies of evolution problems for trait and age structured population, which is a work under progress, it is interesting to establish estimates for the time of exit from a neighborhood of the stable equilibrium of (1.5). This can be obtained by using large deviations techniques and by adapting the results of Freidlin and Ventzell to our measure-valued processes.

Exponential deviations are considered in Section 4 for the general model. The large deviation upper-bound is proved by establishing exponential tightness. The main difficulty lies in the fact
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Figure 1: Time behaviors of the microscopic process and of its large population approximation. For sufficiently large n, the behaviour of the stochastic microscopic population Z n follows the one of its deterministic approximation ξ on compact time intervals. In the long time, however, Z n leaves the neighborhood of the stationary stable solution of ξ and the population gets extinct.

that M F (R d + ) is not compact. Our proof of the local lower bound relies on the use of a Riesz theorem in Orlicz spaces. This allows us to establish the links between the trajectories in the domain of the rate function and solutions of PDEs obtained by perturbing (1.2). Regularizing the perturbations and using a Girsanov theorem allow us to conclude.

Notation: For two metric spaces E and F , C b (E, F ) (resp. D(E, F ), C 0 (E, R), C 1 b (E, F ), C K (E, R), B b (E, F
)) the set of continuous bounded functions from E to F embedded with the uniform convergence norm (resp. of càdlàg functions from E to F embedded with the Skorohod distance, of real continuous functions with limit 0 at infinity, of differentiable and bounded functions with bounded partial derivatives, of continuous functions with compact support, of bounded measurable functions).

The space of finite measures on R d + is denoted by M F (R d + ). It can be embedded with the weak or vague convergence topology. By default, we will consider the weak convergence topology. We will write (M F (R d + ), w) or (M F (R d + ), v) to precise it when necessary. We will consider the total variation norm and the

L 1 -Vaserstein distance on M F (R d + ): ∀µ, ν ∈ M F (R d + ), ν -µ T V = sup f C b (R d + , R) f ∞ ≤ 1 R d + f dµ - R d + f dν , (1.6 
)

W 1 (µ, ν) = inf (R d + ) 2 (|a -α| ∧ 1) dπ(a, α) = sup f 1 -Lip(R d + ) f ∞ ≤ 1 R d + f dµ - R d + f dν . (1.7)
the infimum being taken on the set of measures π ∈ M F ((R d + ) 2 ) with marginals µ and ν (see Rachev [START_REF] Rachev | Probability Metrics and the Stability of Stochastic Models[END_REF], Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF] Theorem 7.12 and Remark 7.5).

For

m ∈ M F (R d + ) and f ∈ B b (R d + ), we write m, f = E f dm and m, f (a) = R d + f (a)m(da).
C is a constant that can change from line to line.

Microscopic Process

We now precise the individual dynamic of our model and describe the path of Z n by a SDE.

Aging phenomenon

The aging phenomenon is deterministic, and we describe it thanks to the flow of an ordinary differential equation (ODE ). The ages of an individual aged a ∈ R d + at time t 0 ∈ R + satisfy:

∀t ≥ t 0 , da dt = v(a(t)), a(t 0 ) = a 0 , (2.1) 
where

v(a) = (v 1 (a), • • • , v d (a)) ∈ R d + . The i th component v i (a) of v(a)
is the speed of aging of the i th age. The constant components correspond to ages which increase linearly in time. Non constant speeds of aging modelize ages which are measured on physiological criteria and which evolve non linearly in time.

Assumption 2.1. v ∈ C 1 b (R d + , R d + ) and ∃v > 0, ∀i ∈ [[1, d]] , ∀a ∈ R d + , 0 < v i (a) ≤ v(1 + a i ).
This assumption is a technical assumption under which:

Proposition 2.2. Under Assumption 2.1.

(i) The system (2.1) admits for every

t 0 ∈ R + , a 0 ∈ R d + a unique solution, defining a C 1 -flow: A : (t, t 0 , a 0 ) ∈ R + × R + × R d + → A(t, t 0 , a 0 ) ∈ R d . (2.2) Each component of this flow is increasing in t. (ii) ∀t 1 , t 2 ∈ R + , a ∈ R d + → A(t 1 , t 2 , a) ∈ R d defines a C 1 -diffeomorphism from R d + on its image. (iii) When d = 1, ∀a 0 ∈ R + , ∀t 0 ∈ R + , t ∈ R + → A(t, t 0 , a 0 ) ∈ R defines a C 1 -diffeomorphism from R + on its image.
Proposition 2.2 is a consequence of classical ODE results (see for instance [START_REF] Zuily | Eléments d'analyse pour l'agrégation[END_REF], Chapter 10). The following PDE (2.3), which often appears in the sequel, is solved by using the flow (2.2): Proposition 2.3. Under Assumption 2.1, for T > 0 and φ ∈ C 1 (R d + , R + ), the following transport equation with condition at time

T : ∀a ∈ R d + , ∀t ∈ R + , ∂f ∂t (a, t) + v(a)∇ a f (a, t) = 0, f (a, T ) = φ(a), (2.3 
)

admits a unique solution f ∈ C 1 (R + × R d + ) given by ∀t ∈ R + , ∀a ∈ R d + , f (a, t) = φ(A(T, t, a)), where A is the flow defined in (2.2).
The proof is given in [START_REF] Golse | Polycopié de cours sur les edp[END_REF]. The other assumptions, concerning the birth and death rates are the following: Assumption 2.4. We assume that b, d and U are continuous and that:

(i) ∃ b > 0, ∀a ∈ R + , |b(a)| ≤ b. (ii) ∃ Ū > 0, ∀a, α ∈ R d + , |U (a, α)| ≤ Ū . (iii) ∃L d > 0, ∀u, v ∈ R dc , ∀a ∈ R d + , |d(a, u) -d(a, v)| ≤ L d |u -v|, and ∃ d > 0, ∀a ∈ R + , ∀u ∈ R dc , d(a, u) ≤ d(1 + |u|). (iv) ∃d ∈ C b (R d + , R + ), ∀a ∈ R + , ∀u ∈ R dc , d(a, u) ≥ d(a), and ∀t 0 ∈ R + , ∀a 0 ∈ R d + , +∞ t 0 d(A(t, t 0 , a 0 ))dt = +∞.
The function d in (iv) can be interpreted as a natural death rate, and Point (iv) can be linked to the survival probability: the probability that an individual of ages a 0 at time t 0 is still alive at time t is:

Π(t 0 , a 0 , t) =E exp - t t 0 d(A(u, t 0 , a 0 ), Z u U (x, A(u, t 0 , a 0 )))du .
Under Point (iv), lim t→+∞ Π(t 0 , a 0 , t) = 0.

Stochastic Differential Equation

We introduce a SDE driven by a Poisson Point Measure, for which existence and uniqueness of the solution are stated. The solution is a Markov process, with a generator that corresponds to the dynamics described previously. We follow in this the approach of [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF][START_REF] Champagnat | Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models via timescale separation[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adpatative evolution and various scaling approximations[END_REF].

Let us introduce the following map

A = (A 1 , • • • , A N , • • • ) from n∈N * M n P (R d + ) in (R d +
) N that will be useful to extract a particular individual from the population where the particles are ranked in the lexicographical order of R d

+ : ∀n, N ∈ N * , A 1 n N i=1 δ a i = (a 1 , • • • , a N , 0, • • • , 0, • • • ) , (2.4) 
Definition 2.5. On the probability space (Ω, F, P):

1. Let Z n 0 ∈ M n P (R d + ) be a random variable such that sup n∈N * E ( Z n 0 , 1 ) < +∞, 2. Let Q(ds, di, dθ) be a Poisson point measure on R + × E where E := N * × R + of intensity ds ⊗ n(di) ⊗ dθ independent from Z 0 (
where ds and dθ are Lebesgue measures on R + and n(di) is the counting measure on N * ). We denote by (F t ) t∈R + the canonical filtration associated with Z n 0 and Q. For t ∈ R + , Z n t is described by:

Z n t = 1 n N n 0 i=1 δ A(t,0,A i (Z n 0 )) + 1 n t 0 E 1 {i≤N n s -} δ A(t,s,0) 1 {0≤θ<m 1 (s,Z n s -,i)} -δ A(t,s,A i (Z n s -)) 1 {m 1 (s,Z n s -,i)≤θ<m 2 (s,Z n s -,i)} Q(ds, di, dθ), (2.5) 
where N n s is defined in (1.1), where A is the flow defined in (2.2), and where: The interpretation is that the state of the population at time t is obtained by considering the initial particles with their ages at times t (for example, A(t, 0, a 0 ) for the blue thin-line particle), by adding the particles born between s = 0 and s = t with their age at time t (A(t, s 1 , 0) and A(t, s 2 , 0) for the particles in thick orange and black dot lines) and by suppressing the particles which have died before time t (A(t, s 3 , a) for the particle in black dot-line).

m 1 (s, Z n s -, i) = b(A i (Z n s -)), m 2 (s, Z n s -, i) = m 1 (s, Z n s -, i) + d(A i (Z n s -), Z n s -U (A i (Z n s -))). Let T n 0 = 0.
τ n N = inf {t ≥ 0, N n t ≥ N } , ζ n N = inf {t ≥ 0, N n t ≥ N or Z n t , |a| ≥ N } . ( 2 

Moment and martingale properties

We give some moments and martingale properties that will be useful in the sequel.

Lemma 2.7. Let F ∈ C 1 (R, R), (f : (a, s) → f s (a)) ∈ B b (R d + × R + , R) ∩ C 1 b (R d + × R + , R). Then, ∀t ∈ R + , ∀n ∈ N * , F ( Z n t , f t ) = F ( Z n 0 , f 0 ) + t 0 Z n s , v∇ a f s + ∂f s ∂s F ′ ( Z n s , f s ) ds (2.7) + t 0 E 1 {i≤N n t } F Z n s -, f s + f s (0) n -F Z n s -, f s 1 {0≤θ<m 1 (s,Z n s -,i)} + F Z n s -, f s -f s (A i (Z n s -)) -F Z n s -, f s 1 {m 1 (s,Z n s -,i)≤θ<m 2 (s,Z n s -,i)} Q(ds, di, dθ).
Proof. Integrating f t (a) with respect to (2.5) gives:

Z n t , f t = 1 n N n 0 i=1 f t (A(t, 0, A i (Z n 0 ))) + 1 n t 0 E 1 {i≤N n s -} f t (A(t, s, 0)) 1 {0≤θ<m 1 (s,Z n s -,i)} -f t A(t, s, A i (Z n s -)) 1 {m 1 (s,Z n s -,i)≤θ<m 2 (s,Z n s -,i)} Q(ds, di, dθ). Since ∀a ∈ R d + , ∀0 ≤ s ≤ t, f t (A(t, s, a)) = f s (a) + t s ∂f u ∂u (A(u, s, a)) + v(A(u, s, a))∇ a f u (A(u, s, a)) du,
we deduce:

Z n t , f t = 1 n N n 0 i=1 f 0 (A i (Z 0 )) + 1 n t 0 E 1 {i≤N n s -} f s (0) 1 {0≤θ<m 1 (s,Z n s -,i)} (2.8) -f s A i (Z n s -) 1 {m 1 (s,Z n s -,i)≤θ<m 2 (s,Z n s -,i)} Q(ds, di, dθ) + T 1 + T 2 + T 3 ,
where:

T 1 = 1 n t 0 N n 0 i=1 ∂f s ∂s (A(s, 0, A i (Z n 0 ))) + v(A(s, 0, A i (Z n 0 ))) ∇ a f s (A(s, 0, A i (Z n 0 ))) ds T 2 = 1 n t 0 E 1 {i≤N n s - } t s ∂f u ∂u (A(u, s, 0)) + v(A(u, s, 0)) ∇ a f u (A(u, s, 0)) du 1 {0≤θ<m1(s,Z n s - ,i)} Q(ds, di, dθ) T 3 = 1 n t 0 E 1 {i≤N n s - } t s ∂f u ∂u (A(u, s, A i (Z n s-))) + v(A(u, s, A i (Z n s-))) ∇ a f u (A(u, s, A i (Z n s-))) du 1 {m2(s,Z n s - ,i)≤θ<m3(s,Z n s - ,i)} Q(ds, di, dθ).
It is possible to apply Fubini's theorem to T 2 and T 3 and by (2.5) we recognize: 

T 1 + T 2 + T 3 = t 0 R d + ∂f u ∂u (a) + v(a)∇ a f u (a) Z n u (
Z n t , 1 q < +∞. (2.10) (ii) if ∃q ≥ 1, m ≥ 1, sup n∈N * E ( Z n 0 , 1 m ) < +∞ and sup n∈N * E ( Z n 0 , |a| q m ) < +∞, then: ∀T > 0, sup n∈N * E sup t∈[0,T ]
Z n t , |a| q m < +∞.

(2.11)

(iii) Let n ∈ N * . If E Z n 0 , 1 2 < +∞ and E ( Z n 0 , |a| ) < +∞ then: ∀f ∈ C 1 b (R d + × R + , R), M n,f t = Z n t , f t -Z n 0 , f 0 - t 0 R + v(a)∇ a f s (a) + ∂f s ∂s (a) + f s (0)b(a) -f s (a)d(a, Z n s U (a)) Z n s (da) ds, (2.12)
is a square integrable càdlàg martingale starting from 0, with previsible quadratic variation:

M n,f t = 1 n t 0 R + f 2 s (0)b(a) + f 2 s (a)d(a, Z n s U (a)) Z n s (da) ds. (2.13)
Proof. Point (i) is a direct adaptation of the proof of Lemma 5.2 in [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF]. Let us consider Point (ii). Let N > 0, n ∈ N * and ζ n N be the stopping time introduced in (2.6). For this proof, we will consider the norm 1 on

R d : ∀a = (a 1 , • • • a d ) ∈ R d + , |a| = d i=1 a i .
This choice is made since it simplifies the calculations. It is not restrictive since the norms in R d are equivalent. The function

f : a ∈ R d + → |a| q = d i=1 a i q ∈ R + is differentiable and ∀i ∈ [[1, d]] , ∂f /∂a i = q|a| q-1 . The map F : x ∈ R + → x m ∈ R + is also differentiable and F ′ (x) = mx m-1
. Applying Lemma 2.7 and neglecting the non positive terms gives:

E sup u∈[0,t∧ζ n N ] Z n u , |a| q m ≤ E ( Z n 0 , |a| q m ) + mqvE t∧ζ n N 0 Z n s , |a| q-1 (d + |a|) Z n s , |a| q m-1 ds ,
by using the fact that 0 ≤ d i=1 v i (x, a) ≤ v(d + |a|) (Assumption 2.1). Since:

Z n s , |a| q-1 ≤ Z n s , (|a| ∨ 1) q-1 ≤ Z n s , (|a| ∨ 1) q ≤ Z n s , 1 + Z n s , |a| q , ( 2.14) 
we have:

Z n s , |a| q-1 Z n s , |a| q m-1 ≤ Z n s , 1 Z n s , |a| q m-1 + Z n s , |a| q m ≤ Z n s , 1 m + 2 Z n s , |a| q m ,
and hence by the moment assumptions, (2.10) and by the Fubini's theorem:

E sup u∈[0,t∧ζ n N ] Z n u , |a| q m ≤ E ( Z n 0 , |a| q m ) + mqvdT E sup u∈[0,T ∧ζ n N ] Z n u , 1 m +mqv(2d + 1) t 0 E sup u∈[0,s∧ζ n N ] Z n u , |a| q m ds ≤ sup n∈N * E ( Z n 0 , |a| q m ) + mqvdT C(m, T ) e mqv(2d+1)T =: D(q, T ), (2.15) 
by Gronwall's lemma. As D(q, T ) does not depend on N , we deduce that:

lim N →+∞ ζ n N = +∞, P -a.s. (2.16)
Assume indeed that (2.16) is not satisfied. For q = 1, there exists M > 0 and A M ⊂ Ω with Point (iii) is obtained by using the compensated Poisson point measure Q of Q. We have:

P(A M ) > 0 such that ∀ω ∈ A M , lim N →+∞ ζ n N (ω) < M . Then, for T > M, E sup t∈[0,T ∧ζ n N ] Z n t , |a| m ≥ P(A M )N m ,
M n,f t = - 1 n t 0 E 1 {i≤N n s -} f s (0)1 {0≤θ<m 1 (s,Z n s -,i)} -f s (A i (Z n s -))1 {m 1 (s,Z n s -,i)≤θ≤m 2 (s,Z n s -,i)} Q(ds, di, dθ).
Showing that it is a square integrable martingale and computing its quadratic variation is then relatively standard (see [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF]).

The infinitesimal generator of (2.5) corresponds to the description of the introduction:

Theorem 2.9. For n ∈ N * , Z n ∈ D is a Markov process of infinitesimal generator defined by: ∀f ∈ C 1 b (R d + , R), ∀F ∈ C 1 b (R, R), LF f (Z n 0 ) = ∂ ∂t E (F f (Z n t )) | t=0 = X v(a)∇ a f (a)F ′ ( Z n 0 , f ) Z n 0 (da) + n X F f Z n 0 + 1 n δ 0 -F f (Z n 0 ) b(a)Z n 0 (da) + F f Z n 0 - 1 n δ a -F f (Z n 0 ) d(a, Z n 0 U (a)) Z n 0 (da),
where

∀Z ∈ M F (R d + ), F f (Z) = F ( Z, f ).
Proof. We refer to [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] for the proof, which consists in proving that it is possible to take the derivative under the expectation.

We conclude this part with the consideration of exponential moments, which will be useful in the Section dealing with exponential deviations. Assumption 2.10. We assume that: 

1. ∀λ > 0, sup n∈N * e λ Z n 0 ,1 < +∞, and ∃η ∈]0, 1[, sup n∈N * R d + |a|Z n 0 (da) 1+η < +∞. 2. ∃i 0 ∈ [[1, d c ]] , ∃n 0 ∈ N * , ∃U 0 ∈ R * + , ∀n ≥ n 0 , ∀u ∈ R d c , ∀a ∈ R d + , ∀λ > 0, [u i 0 ≥ U 0 ] ⇒ (e λ/n -1)b(a) + (e -λ/n -1)d(a, u) < 0 , (d c is the number of interactions). 3. ∃U > 0, ∀a, α ∈ R + , U i 0 (a, α) > U , for the index i 0 of Point 2. Since ∀a ∈ R d + , b(a) ≤ b,
(i) ∀λ > 0, ∀t ∈ [0, T ], sup n∈N * E e λ Z n t ,1 ≤ sup n∈N * e λ Z n 0 ,1 + λ bM T e λM < +∞, (2.17) 
where M := U 0 /U with the constants U 0 and U of Assumption 2.10.

(ii) Let ρ(x) = e xx -1. We consider the martingale (M n,f t ) t∈R + defined in (2.12). Then, the process defined for t

∈ [0, T ], n ∈ N * and f ∈ C b (R d + × [0, T ], R) by Λ n,f t = e M n,f t -Ξ n,f t , with: Ξ n,f t = t 0 R d + n ρ f (0, s) n b(a) -ρ - f (a, s) n d(a, Z n s U (a)) Z n s (da)ds, (2.18) 
is a martingale. Sketch of proof. We refer to [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] for a complete proof. For Point (i), the idea is that under Assumptions 2.10, the drift of the semi-martingale (e λ Z n t∧τ n N

,1 ) t∈[0,T ] is nonnegative only for measures that have a mass bounded by M . For Point (ii), applying Itô's formula to Λ n,f t localized by the stopping time τ n N (2.6) yields that Λ n,f is a local martingale. From Assumptions 2.10 and Point (i) of Proposition 3.3, lim N →+∞ τ n N = +∞ P-a.s. Using Fatou's lemma, we show that Λ n,f is a real martingale.

3 Convergence to the weak measure solution of a PDE in the Large Population Limit

We study the limit of (Z n ) n∈N * when n → +∞, under the following assumptions:

Assumption 3.1. We assume that (Z n 0 ) n∈N * ∈ M F (R d + ) converges in law in (M F (R d + ), w) to the deterministic measure ξ 0 ∈ M F (R d + )
and that the following moment conditions are satisfied:

∃η ∈]0, 1[, sup n∈N * E Z n 0 , 1 2+η < +∞, and 
sup n∈N * E Z n 0 , |a| 1+η < +∞.
In this section, we prove the convergence of the sequence (Z n ) n∈N * to the solution of (1.2) by a tightness-uniqueness argument.

Tightness of the sequence

(Z n ) n∈N * Proposition 3.2. Under Assumptions 2.1, 2.4, 3.1, (Z n ) n∈N * is tight on D(R + , (M F (R d + ), w)).

Its limit values are continuous measure-valued processes satisfying (1.2).

Proof. The proof is inspired by the proof of Theorem 5.3 in [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF], and a detailed proof stands in [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], Theorem 3.2.2. We begin with establishing the tightness of the laws of (Z n ) n∈N * considered as processes of

D(R + , (M F (R d + ), v)), where M F (R d + )
is embedded with the topology of vague convergence. For this purpose, we use a criterium due to Roelly ([41], Theorem 2.1): it is sufficient to prove that for

f ∈ C 1 b (R d + , R) ∩ C 0 (R d + , R), which is dense in C 0 (R d + , R), the sequence (Z n,f = Z n , f ) n∈N * is tight in D(R + , R).
Thanks to Proposition 2.8 and Assumptions 3.1, we can prove that Aldous and Rebolledo criteria [START_REF] Aldous | Stopping times and tightness[END_REF][START_REF] Joffe | Weak convergence of sequences of semimartingales with applications to multitype branching processes[END_REF] are satisfied, which is a sufficient condition for (Z n,f ) n∈N * to be tight.

Notice that the particular choice of f ≡ 1 implies the tightness of the sequence ( Z n , 1 ) n∈N * in D(R + , R + ) with the same arguments.

By Prohorov Theorem, it is possible to extract from

(Z n ) n∈N * a subsequence (Z φ(n) ) n∈N * that converges in law in D(R + , (M F (R d + ), v))
to a limiting process Z. Since we also proved the tightness of ( Z n , 1 ) n∈N * , it is possible to choose this subsequence such that ( Z φ(n) , 1 ) n∈N * converges in law to Z, 1 in D(R + , R + ). By construction, the jumps of (Z n ) n∈N * are of order 1/n and entails that the limit process Z is almost surely continuous. Using Theorem 3 in Méléard and Roelly [START_REF] Méléard | Sur les convergences étroite ou vague de processus à valeurs mesures[END_REF],

(Z φ(n) ) n∈N * also converges in law in D(R + , (M F (R d + ), w)), where M F (R d + )
is embedded with the topology of weak convergence. Applying Prohorov Theorem again, we deduce that the sequence w)). To identify the limit, we have to prove that P-a.s.,

(Z n ) n∈N * is tight in D(R + , (M F (R d + ),
∀[f : (a, t) → f t (a)] ∈ C 1 b (R d + × R + , R), ∀t ∈ R + , Ψ t (Z) = 0, where: Ψ t (Z) = Z t , f t -Z 0 , f 0 - t 0 R d + v(a)∇ a f s (a) + ∂f s ∂s (a) + f (0, s)b(a) -f (a, s)d(a, Z s U (a)) Z s (da) ds.
This is obtained by a direct adaptation of the proof of [START_REF] Fournier | A microscopic probabilistic description of a locally regulated population and macroscopic approximations[END_REF][START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF].

In order to prove that the whole sequence (Z n ) n∈N * converges, we will show that it admits a unique limit value. This is related to the uniqueness of the solution of (1.2).

Existence and uniqueness of the solution of (1.2)

Existence of the solutions of (1.2) is a consequence of Proposition 3.2, since the limit values of (Z n ) n∈N * are solutions. Proposition 3.3 deals with the uniqueness problem.

Proposition 3.3. Let ξ 0 ∈ M F (R d + ) be a deterministic initial condition. Let (ξ 1 t ) t∈R + and (ξ 2 t ) t∈R + be two solutions of (1.2) in C(R + , M F (R d + )), starting from ξ 0 . Under Assumptions 2.1, 2.4, 3.1, we have: ∀t ∈ R + , ξ 1 t (dx, da) = ξ 2 t (dx, da).
Proof. The solutions of (1.2) are continuous with bounded masses on finite time intervals:

∀t ≥ 0, ξ t , 1 ≤ ξ 0 , 1 + t 0 b ξ s , 1 ds ≤ ξ 0 , 1 exp bt < +∞. For T > 0, we can define A T := sup t∈[0,T ] ξ 1 t + ξ 2 t , 1 < +∞. Let φ ∈ C 1 b (R d + , R) such that φ ∞ ≤ 1. For t ∈ [0, T ], we can define ∀a ∈ R d + , ∀s ∈ R + , f (a, s) = φ(A(t, s, a)). By Proposition 2.3: ∀i ∈ {1, 2}, ∀t ∈ [0, T ], ξ i t , φ = R d + φ(A(t, 0, a))ξ i 0 (da) + t 0 R d + φ(A(t, s, 0))b(a) -φ(A(t, s, a))d(a, ξ i s U (a)) ξ i s (da) ds Hence: ∀t ∈ [0, T ], | ξ 1 t -ξ 2 t , φ | ≤ t 0 R d + φ(A(t, s, 0))b(a) -φ(A(t, s, a))d(a, ξ 1 s U (a)) (ξ 1 s (da) -ξ 2 s (da)) + R d + φ(A(t, s, a)) d(a, ξ 1 s U (a)) -d(a, ξ 2 s U (a)) ξ 2 s (da) ds ≤ C(T ) t 0 ξ 1 s -ξ 2 s T V ds, (3.1) 
where

C(T ) = b + d(1 + A T ) + A T L d Ū .
By taking the sup in φ in the left hand side and by noticing that every function φ ∈ C b (R + , R) is the limit for the bounded pointwise convergence of a sequence of functions of

C 1 b (R + , R): ∀t ∈ [0, T ], ||ξ 1 t -ξ 2 t || T V ≤ C(T ) t 0 ||ξ 1 s -ξ 2 s || T V ds.
The result is given by Gronwall Lemma, and by the fact that T is arbitrary.

Corollary 3.4. Under Assumptions 2.1, 2.4, 3.1 and for every initial condition

ξ 0 ∈ M F (R d + ), Equation (1.2) admits a unique solution (ξ t ) t∈R + ∈ C(R + , M F (R d + )) to which the sequence (Z n ) n∈N * of D converges in probability.

Absolute continuity of the solutions of (1.2)

Let us now study the existence of densities for the measures ξ t (da) with respect to the Lebesgue measure of R d + . If they exist, they define a weak solution of (1.5) which generalizes the McKendrick and Von Foerster equations that are classical in demography. In the case of a scalar age we have the propagation of the absolute continuity for positive times (Proposition 3.5). However, when many ages are taken into account, densities do not exist any more (Remark 3.6). Proposition 3.5. In the case d = 1, under Assumptions 2.1, 2.4, 3.1 and if ξ 0 (da) = m 0 (a)da is absolutely continuous with respect to the Lebesgue measure on R + , then the time marginals ξ t (da) also admit densities m t (a) for every t ∈ R + .

Proof. Let t ∈ R + and let φ ∈ C 1 b (R + , R + ) nonnegative. For f defined by ∀s ∈ R + , ∀a ∈ R + , f (a, s) = φ(A(t, s, a)), where A is defined in (2.
2), we have:

ξ t , φ ≤ R+ φ(A(t, 0, a))ξ 0 (da) + t 0 R+ φ(A(t, s, 0))b(a)ξ s (da) ds (3.2)
since φ is nonnegative. Let us consider the first term. By Point (ii) of Proposition 2.2, the map a → A(t, 0, a) defines a C 1 -diffeomorphism from R + into [A(t, 0, 0), +∞[. Let us denote by A -1 (t, α) the inverse diffeomorphism and by JA -1 (t, α) its jacobian matrix. Using the change of variable associated with a → A(t, 0, a):

R + φ(A(t, 0, a))m 0 (a)da = R + +∞ A(t,0,0) φ(α)m 0 (A -1 (t, α))|JA -1 (t, α)| dα. (3.3) 
For the second term, the change of variable given by the C 1 -diffeomorphism s → A(t, s, 0) yields:

t 0 R + φ(A(t, s, 0))b(a)ξ s (da) ds = A(t,0,0) 0 R + φ(α) b(a)|J A -1 (α)|ξ A -1 (α) (da) dα. (3.4)
From (3.3) and (3.4), we deduce that:

0 ≤ R + φ(a)ξ t (da) ≤ +∞ 0 φ(α)H(α, t)dα, where: (3.5) H(α, t) =1 A(t,0,0)≤α n 0 (A -1 x (t, α))|JA -1 (t, α)| + 1 α≤A(t,0,0) R + b(a)|J A -1 (α)|ξ A -1 (α) (da) dα.
The function H is nonnegative and integrable, since the right hand side of (3.5) equals the right hand side of (3.2), which is finite. Since C 1 b (R + , R + ) is dense in the set of measurable functions that are ξ t -almost everywhere bounded (see Rudin [START_REF] Rudin | Real and Complex Analysis[END_REF], p. 69, ξ t being a finite measure), we deduce from (3.5) that the measure ξ t (da) is dominated by a measure that is absolutely continuous with respect to the Lebesgue measure and is hence itself absolutely continuous. Remark 3.6. In the case where d > 1, the map t ∈ R + → A(t, 0, 0) ∈ R d + does not define a bijection any more, and the ages of individuals born after s = 0 at time t belong to the set

{A(t, s, 0) ∈ R d + , s ∈ [0, t]}, which is a one-dimensional variety of R d + .
Thus, the measures ξ t can not be absolutely continuous with respect to the Lebesgue measure on R d + .

The 

∂ ∂t R + f (a)m(a, t)da = R + [v(a)∇ a (f (a)) +f (0)b(a) -f (a)d a, R + U (a, α)m(α, t)dα m(a, t)da. (3.6)
Let us first consider test functions f ∈ C 1 b,K (R + , R) bounded with compact support in R * + . in particular f (0) = 0. By Fubini theorem and by an integration by parts formula for the aging term:

∀t ∈ R + , R + ∇ a (f (a)) v(a)m(a, t)da = [f (a)v(a)m(a, t)] +∞ a=0 - R + f (a)∇ a (v(a)m(a, t)) da. (3.7) 
The bracket in the right hand side being zero since lim a→+∞ m(a, t) = 0 for every t ∈ R + . From 

∈ R + , R + ∂ ∂t m(a, t) + ∇ a (v(a)m(a, t)) f (a)da = -f (0)v(0)n(0, t) + X f (0)b(a) -f (a)d a, R + U (a, α)m(α, t)dα m(a, t)da. (3.9)
We simplify (3.9) with (3.8) and:

∀t ∈ R + , f (0)v(0)n(0, t) = R + f (0)b(a)m(a, t)da.
By identification of the integrands, we obtain the boundary condition in (1.4).

Exponential deviations

In this section, we set T > 0 and study the exponential deviations associated with the convergence of (Z n ) n∈N * to the solution ξ of (1.2) in D T (Corollary 3.4). More precisely, we look for estimates of (1/n) log P(Z n ∈ B), for any Borel set B ⊂ D T , when n → +∞. Applications will be considered in Section 5.

A first difficulty arise from the fact that M F (R d + ) is not compact. The mass of the microscopic process is not necessarily bounded. The exponential tightness of (Z n .∧ζ n N ) n∈N * on D T is classical and can be established by adapting techniques from Dawson and Gärtner [START_REF] Dawson | Large deviations from the McKean-Vlasov limit for weakly interacting diffusions[END_REF] and Graham and Méléard [START_REF] Graham | An upper bound of large deviations for a generalized star-shaped loss network[END_REF]. The relaxation of the localization by ζ n N relies on exponential deviation inequalities proved in Lemmas 4.7 and 4.8.

The lower bound issue is treated in Section 4.3. A second difficulty comes from the fact that the events describing the dynamics are of different nature (births, deaths) and that they are associated with nonlinear rates. Following the approach of Léonard [START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous boltzmann type equations[END_REF], Kipnis and Léonard [START_REF] Kipnis | Grandes déviations pour un système hydrodynamique asymétrique de particules indépendantes[END_REF], we base our proof on the use of a Riesz theorem on Orlicz spaces, which gives us a representation of the trajectories of the action functional as solutions of perturbed PDEs obtained from (1.2) and on a Girsanov theorem. A key point in the the proof is the use of a density Theorem due to Bishop-Phelps-Israel [START_REF] Bishop | The support functionals of a convex set[END_REF][START_REF] Israel | Existence of phase transitions for long-range interactions[END_REF].

Notation: We define E := R d + × {0, 1}. With each function f ∈ B(R d + × [0, T ], R), we can associate a map ψ(f ) defined on E × [0, T ] by: ∀(a, u, t) ∈ E × [0, T ], ψ(f )(a, u, t) = f (0, t)1 u=0 -f (a, t)1 u=1 . (4.1)
For t ∈ [0, T ] and z ∈ D T , let us introduce the following positive finite measure on E:

m z,T t (da, du) = [b(a)δ 0 (du) + d(a, z t-U (a))δ 1 (du)] z t -(da). (4.2)
The Laplace transform ρ of the standard centered Poisson law and its Legendre transform are:

ρ(x) = e x -x -1, ρ * (y) =    (y + 1) log(y + 1) -y si y > -1, 1 si y = -1, +∞ si y < -1, (4.3) 
ρ * is nonnegative and vanishes only at y = 0. The functions ρ and ρ * are convex conjugated. For α ∈ {ρ, ρ * }, T > 0 and z ∈ D T , we define the following Orlicz norm on the space of real Borel functions on E × R + :

||g|| α,z = inf κ > 0, T 0 E α |g(a, u, s)| κ m z,T s (da, du)ds ≤ 1 . (4.4)
The set of functions with finite Orlicz norms are denoted by L ρ,z and L ρ * ,z . The closure E ρ,z (E × R + ) of the space of Borel bounded functions for the norm . ρ,z is strictly included in L ρ,z (see [START_REF] Kipnis | Grandes déviations pour un système hydrodynamique asymétrique de particules indépendantes[END_REF] Section 3, for instance) and admits a topological dual which can be identified with L ρ * ,z thanks to the following representation theorem:

Theorem 4.1. Riesz Theorem in Orlicz spaces (see Rao et Ren [START_REF] Rao | Theory of Orlicz spaces[END_REF], p.93 and following or Kipnis and Léonard [START_REF] Kipnis | Grandes déviations pour un système hydrodynamique asymétrique de particules indépendantes[END_REF]) For every continuous linear form ℓ on E ρ,z (E × R + ), there exists a function h ∈ L ρ * ,z such that:

∀g ∈ E ρ,z (E × R + ), ℓ(g) = T 0 E
g(a, u, s)h(a, u, s)dm z,T s (da, du)ds.

Main Result

The main result of this Section is enounced in Theorem 4.4.

Assumption 4.2. We assume that Assumptions 2.10 are satisfied and that: 1. The sequence

(Z n 0 ) n∈N * is deterministic and converges in (M F (R d + ), w) to a measure ξ 0 . 2. ∃C 0 > 0, ξ 0 , 1 + |a| < C 0 and ∃n 0 ∈ N * , ∀n ≥ n 0 , Z n 0 , 1 + |a| < C 0 .
The Assumption of Point 1 is made for simplification. It can be weaken by assuming that (Z n 0 ) n∈N * converges in law in (M F (R d + ), w) to ξ 0 . We now define the action functional that appears in our deviation result. 

I T ξ 0 (z) = sup f ∈C 1 b (R d + ×[0,T ],R) I f,T (z), if z 0 = ξ 0 +∞, else, , with: I f,T (z) = ℓ T (f, z) -c T (f, z), (4.5) 
where ℓ T (f, z) and c T (f, z) are defined for (f : (a, s) (i) Let z ∈ D T such that I T ξ 0 (z) < +∞. There exists h z ∈ L ρ * ,z such that z is the solution of:

→ f s (a)) ∈ C 1 b (R d + × [0, T ], R) by: ℓ T (f, z) = z t , f t -z 0 , f 0 - t 0 R d + v(a)∇ a f s (a) + ∂f s ∂s (a) z s (da) - E ψ(f )dm z,T s ds, c T (f, z) = T 0 E ρ(ψ(f )(a, u, s))m z,
∀ (f : (a, s) → f s (a)) ∈ C 1 b (R d + × R + , R), ∀t ∈ [0, T ], z t , f t = z 0 , f 0 + t 0 z s , v∇ a f s + ∂f s ∂s ds + T 0 E (1 + h z )ψ(f )dm z,T s ds. (4.7) 
We have then have the following non-variational representation of the action functional:

I T ξ 0 (z) = T 0 E ρ * (h z (a, u, s)) m z,T s (da, du) ds. (4.8) 
(ii) Let:

G = z ∈ D T | I T ξ 0 (z) < +∞, and h z ∈ L ∞ (E × [0, T ], R) (4.9)
The sequence (Z n ) n∈N * of D T satisfies the following deviation inequalities: ∀B Borel set of D T ,

-inf z∈ B∩G I T ξ 0 (z) ≤ lim inf n→+∞ 1 n log P(Z n ∈ B) ≤ lim sup n→+∞ 1 n log P(Z n ∈ B) ≤ -inf z∈ B I T ξ 0 (z), (4.10)
with the convention inf ∅ = +∞.

Remark 4.5. (4.7) corresponds to a perturbation of the birth and death rates of (1.2) by factors (1 + h z (a, 0, s)) and (1 + h z (a, 1, s)) which are different (and hence the introduction of the mark u ∈ {0, 1}). We will prove in Proposition 4.14 (Point 4) that these factors are nonnegative.

The upper bound of (4.10) is a large deviation upper bound. The lower bound is local, the infimum being taken on B ∩ G and not B. In the proof of the lower bound, we will be lead to regularize h z by approximating it with a sequence (h m ) m∈N * of perturbations with particular forms, continuous and bounded. With each h m , we can associate the solution z m of the evolution equation (4.7) perturbed by h m . The convergence of z m to z when h z is bounded is proved in Proposition 4.18, the general case is still open. In the works which have inspired us [START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous boltzmann type equations[END_REF][START_REF] Kipnis | Grandes déviations pour un système hydrodynamique asymétrique de particules indépendantes[END_REF] the similar difficulty is encountered, but under a different form: the problem is a uniqueness problem for the perturbed equation (4.7) and not a convergence problem.

The local minoration that we obtain is still a useful result, that we will use in Section 5. It provides an information as soon as B ∩ G = ∅, in which case, the lower bound of (4.10) is not -∞. This is the case when B contains the solution of (1.2) which corresponds to a zero perturbation for instance.

Exponential tightness and large deviation upper bound

We prove the exponential tightness of (Z n ) n∈N * on D T . The large deviation upper bound is then a generalization of Theorem 4.4.2 and Lemma 4.4.5 of Dembo and Zeitouni [START_REF] Dembo | Large Deviation Techniques and Applications[END_REF], obtained by replacing the limits with lim sup.

Recall that the continuity modulus for y ∈ D([0, T ], R) and δ ∈]0, 1[ is defined by:

w ′ (y, δ) = inf {t l } max 1<i≤card{t l } w(y, [t i-1 , t i [) where w(y, [t i-1 , t i [) = sup s,t∈[t i-1 ,t i [ |y s -y t |,
and where the infimum is considered on the subdivisions 0 = t 2 and such that: ∀r ∈ N, lim

0 < t 1 • • • < t card{t l } = T such that ∀i ∈ [1, card{t l }], t i -t i-1 > δ.
ϕ 0 ≡ 1. ∀L > 0, ∀N > 0, ∃K 1 L,N closed subset of D T , ∃n 0 ∈ N * , ∀n ≥ n 0 : P Z n .∧ζ n N / ∈ K 1 L,N ≤ e -nL (2 -e -L ) (1 -e -L )
δ→0 sup z∈K 1 L,N w ′ ( z, ϕ r , δ) = 0. (4.11) (ii) ∀L > 0, ∃K 2 L compact subset of (M F (R d + ), w), lim sup n→+∞ 1 n log P ∃t ∈ [0, T ], Z n t / ∈ K 2 L ≤ -L. (4.12) 
The measure-valued process Z n .∧ζ n N has marginals of mass bounded by N > 0. The proof of Point (i) is an adaption of the proof in [START_REF] Dawson | Large deviations from the McKean-Vlasov limit for weakly interacting diffusions[END_REF] (see [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF] for a detailed proof). It relies on the proof of the following estimate, obtained by an adaptation of techniques used in [START_REF] Graham | An upper bound of large deviations for a generalized star-shaped loss network[END_REF][START_REF] Graham | A large deviation principle for a large star-shaped loss network with links of capacity one[END_REF]:

∀ε > 0, ∀N > 0, ∀c > 0, ∀δ > 0, ∀n ∈ N, ∀ϕ ∈ C 1 b (R d + ), P sup |t-s|≤δ | Z n t∧ζ n N , ϕ -Z n s∧ζ n N , ϕ | > 4ε ≤ 8 T δ + 1 e -ncε+2δnSc(N,φ) (4.13)
where

S c (N, ϕ) = ρ(c ϕ ∞ )N ( b + d(1 + N )) ∨ c(v2N ||∇ a ϕ|| ∞ + N ϕ ∞ ( b + d(1 + N ))) .
The upper bound in (4.13) depends on N , and we can not take the limit in N → +∞.

The second point of Proposition 4.6 and the relaxation of the stopping time ζ n N make the object of the end of this section. We generalize an argument used by Dawson Gärtner [START_REF] Dawson | Large deviations from the McKean-Vlasov limit for weakly interacting diffusions[END_REF] in the case of continuous probability-valued processes. We prove that there exists N > 0 such that the probability P (ζ n N ≤ T ) is exponentially small. Then, the exponential tightness of the laws of ((Z n t∧ζ n N ) t∈[0,T ] ) n∈N * implies the exponential tightness of the laws of ((

Z n t ) t∈[0,T ] ) n∈N * .
We set φ 0 ≡ 1 and introduce a denumberable family K = (φ r ) r∈N such that for every r ∈ N * , φ r is constant outside a compact set of R d + , polynômial on this compact set, and bounded up and below by positive constants, and such that for every φ ∈ C 0 (R d + , R + ) there exists a sub-sequence (φ ψ(r) ) r∈N of (φ r ) r∈N that converges uniformly to φ.

In order to establish (4.12), we will need the following Lemma proved in the sequel: 

(R d + , R + ): K φ (C) = z ∈ M F (R d + ) | z, φ ≤ C .
Let us prove that the set

K 2 L = adh r∈N K φr (C r ) , with C r := C(φ r , T, rL ∨ L, C 0 ) of Lemma 4.7, is compact in (M F (R d + )
, w) and that (4.12) is satisfied. Let (z m ) m∈N * be a sequence of r∈N K φr (C r ). For every given r ∈ N, ( z m , φ r ) m∈N * is a nonnegative real sequence upper bounded by C r and hence relatively compact.

By a diagonal procedure, we can extract from (z m ) m∈N * a subsequence, again denoted by (z m ) m∈N * , such that for every r ∈ N, ( z m , φ r ) m∈N * converges to a limit ℓ(φ r ). Let g ∈ C 0 (R d + , R + ). By choice of K, there exists a subsequence (φ ψ(r) ) r∈N of (φ r ) r∈N that converges uniformly to g. The sequence (ℓ(φ ψ(r) )) r∈N is then a Cauchy sequence in R and we can define the limit ℓ(g) = lim r→+∞ ℓ(φ ψ(r) ), which does not depend on the choice of the subsequence (φ ψ(r) ) r∈N . With a non negative function

g ∈ C 0 (R d + , R -), we associate ℓ(g) := -ℓ(-g). With g ∈ C 0 (R d + , R), we associate ℓ(g) = ℓ([g] + ) -ℓ([g] -)
, where [.] + and [.] -denote the positive and negative parts.

If ℓ(1) = 0, we can prove that the map g ∈ C 0 (R d + , R) → ℓ(g)/ℓ(1) ∈ R is well-defined, linear, continuous, of norm 1 and nonnegative. Thanks to the Riesz representation Theorem (see Rudin [START_REF] Rudin | Real and Complex Analysis[END_REF], Theorem 6.19 p.130), there exists a unique probability measure ν, such that ∀g ∈ C 0 (R d + , R), ℓ(g) = ℓ(1) R + g(a)ν(da). By construction, for every g ∈ C 0 (R d + , R), ( z m , g ) m∈N * converges to ℓ(1)ν, g . Since ( z m , 1 ) m∈N * converges to ℓ(1) = ℓ(1)ν, 1 , (z m ) m∈N * converges weakly to ℓ(1)ν (see [START_REF] Méléard | Sur les convergences étroite ou vague de processus à valeurs mesures[END_REF]). If ℓ(1) = 0, then ∀g ∈ C 0 (R d + , R), ( z m , g ) m∈N * converges to 0 and ( z m , 1 ) m∈N * also converges to 0. This implies that (z m ) m∈N * converges weakly to the null measure.

The set r∈N K φr (C r ) is hence relatively compact in (M F (R d + ), w), and its adherence

K 2 L is compact in (M F (R d + )
, w). Finally: 

P ∃t ∈ [0, T ], Z n t / ∈ K 2 L ≤ r∈N P (∃t ∈ [0, T ], Z n t / ∈ K φ r (C(φ r , T, L r , C 0 ))) ≤ r∈N * e -nrL +
φ ∈ C 1 b (R d + , R) such that ∃C(φ) > 0, ∀a ∈ R d + , |φ(a)| ≤ C(φ)(1 + |a|), there exists γ = γ(φ, T, C 0 ) > 0 such that ∀t ∈ [0, T ], ∀n > n 0 , P-a.s.: E ψ(φ)dm Z n ,T t + Z n t , v∇ a φ -γ Z n t , φ ≤ - E e γt ρ ψ (φ) e -γt dm Z n ,T t , (4.15) 
then: ∀L > 0, ∃C = C(φ, T, L, C 0 ) > 0, ∀n > n 0 ,

P sup t∈[0,T ] Z n t , φ > C ≤ e -nL . (4.16)
Proof of Lemma 4.8. We are inspired by techniques from [START_REF] Dawson | Large deviations from the McKean-Vlasov limit for weakly interacting diffusions[END_REF] for continuous probability-valued processes, and consider the semi-martingale (e -γt Z n t , φ ) t∈[0,T ] . By Point 2 of Assumptions 4.2, 2C 0 C(φ) + ξ 0 -Z n 0 , φ ≥ 0 for sufficiently large n. Then:

P sup t∈[0,T ] Z n t , φ > e γT (L + 2C 0 C(φ) + ξ 0 , φ ) =P ∃t ∈ [0, T ], e -γt Z n t , φ > e γ(T -t) (L + 2C 0 C(φ) + ξ 0 , φ ) ≤P sup t∈[0,T ] e -γt Z n t , φ -Z n 0 , φ > L + 2C 0 C(φ) + ξ 0 -Z n 0 , φ since e γ(T -t) ≥ 1 ≤P sup t∈[0,T ] M n,γ,φ t + t 0 e -γs Z n s , v∇ a φ -γφ ds + t 0 E e -γs ψ(φ)dm Z n ,T s ds > L , (4.17) 
where: Proof of Lemma 4.7. We begin with establishing a sufficient condition (Inequality (4.19)) for (4.15) to be satisfied. We obtain the results announced in Lemma 4.7 thanks to Lemma 4.8, by proving that this sufficient condition is satisfied for proper choices of functions φ. Let t ∈ [0, T ] and n ∈ N * . In the case where Z n t , 1 = 0, the two members of (4.15) are zero. Assume that Z n t , 1 > 0. Let φ ∈ C 1 (R d + , R + ) be a positive function and let γ > 0.

M n,γ,φ t := e -γt Z n t , φ -Z n 0 , φ - t 0 Z n s ,
e γt ρ ψ (φ) e -γt + ψ(φ) =e γt exp ψ (φ) e -γt -ψ (φ) e -γt -1 + ψ(φ) = +∞ k=1 [ψ (φ)] k e -(k-1)γt k! = ψ (φ) +∞ k=0 [ψ (φ)] k e -kγt k!(k + 1)
Since for every k ∈ N, 1/2 k ≤ 1/(k + 1) ≤ 1, we have:

1 k! e -γt 2 ψ (φ) k ≤ [ψ (φ)] k e -kγt k!(k + 1) ≤ 1 k! e -γt ψ (φ) k ,
summing over k gives:

ψ(φ) exp e -γt 2 ψ (φ) ≤e γt ρ ψ (φ) e -γt + ψ(φ) ≤ ψ(φ) exp e -γt ψ (φ) .
Since φ is nonnegative:

E e γt ρ ψ (φ) e -γt + ψ(φ) dm Z n ,T t ≤ R + φ(0) exp e -γt φ(0) b(a)Z n t (

da). (4.18)

A sufficient condition for (4.15) to be satisfied is that there exists γ > 0 such that: 

Z n t , v∇ a φ -γφ + R + φ(0) exp e -γt φ(0) b(a)Z n t (da) ≤ 0. ( 4 
Z n t , 1 ≥ N or sup t∈[0,T ] R + |a|Z n t (da) ≥ N ≤ lim sup n→+∞ 1 n log P sup t∈[0,T ] Z n t , 1 + |a| ≥ N ≤ -L.
This concludes the proof of Point (i).

Let us now consider Point (ii

). Let φ ∈ K. The condition (4.19) is satisfied if: ∀a ∈ R d + , v(a)∇ a φ(a) -γφ(a) + φ(0) exp (φ(0)) b(a) ≤ 0,
which is satisfied as soon as:

γ > sup a∈R d + 1 φ(a) (v(a)∇ a φ(a) + φ(0) exp (φ(0)) b(a)) . (4.20)
By the definition of K, in particular since the function φ is polynomial on a compact set and constant outside this set, it is possible to choose γ satisfying (4.20) since the right member is bounded by a constant independent from a ∈ R d + as:

lim |a|→+∞ d i=1 (1 + a i ) ∂φ ∂a i (a) φ(a) ≤ C < +∞.
Lemma 4.8 applies and concludes the proof.

Corollary 4.9. Under Assumptions 2.1, 2.4, 4.2, the sequence of laws of (Z n ) n∈N * is exponentially tight on D T : ∀L > 0, ∃K L ⊂ D T compact, lim sup n→+∞ Proof. Let N = N (T, L, C 0 ) be the positive constant given in Point (i) of Lemma 4.7. Consider the sets K 1 L,N and K 2 L given by Proposition 4.6. Let us define:

K L = K 1 L,N ∩ z ∈ D T such that ∀t ∈ [0, T ], z t ∈ K 2 L (4.21)
Using a criterium from Jakubowski [START_REF] Jakubowski | On the skorokhod topology[END_REF] (Theorem 1.7 and Lemma 3.3), the set K L is relatively compact in D T . Since:

P (Z n / ∈ K L ) ≤ P Z n .∧ζ n N / ∈ K 1 L,N + P ∃t ∈ [0, T ], Z n t∧ζ n N / ∈ K 2 L + P (ζ n N ≤ T )
we have:

lim sup n→+∞ 1 n log P (Z n / ∈ K L ) ≤ max lim sup n→+∞ 1 n log P Z n .∧ζ n N / ∈ K 1 L,N , lim sup n→+∞ 1 n log P ∃t ∈ [0, T ], Z n t∧ζ n N / ∈ K 2 L , lim sup n→+∞ 1 n log P (ζ n N ≤ T ) ≤ -L,
This concludes the proof.

Lower bound of Theorem 4.4

The proof of the lower bound relies on a change of probability and on the use of Girsanov Theorem. We follow the work of Léonard [START_REF] Léonard | On large deviations for particle systems associated with spatially homogeneous boltzmann type equations[END_REF], Kipnis Léonard [30], and thanks to a Riesz theorem, use the links between the trajectories in the domain of the action functional and between some evolution equations obtained by perturbation of (1.2). We prove a local minoration for the neighborhood of trajectories associated to bounded perturbations.

Representation of the paths of the action functional

Proposition 4.10. Under Assumptions 2.1, 2.4 and for z ∈ D T such that I T ξ 0 (z) < +∞, there exists a function

h z ∈ L ρ * ,z satisfying ∀(f : (a, s) → f s (a)) ∈ C 1 b (R d + × [0, T ], R): ℓ T (f, z) = T 0 E ψ(f )(a, u, s)h z (a, u, s)m z,T s (da, du) ds, (4.22) 
where ℓ T (f, z) has been defined in (4.6). Thus:

I f,T (z) = T 0 E [h z ψ(f ) -ρ(ψ(f ))] dm z,T s ds, (4.23) 
and z is the solution of Equation (4.7).

Proof. From the definition of I T ξ 0 , we have for every

f ∈ C 1 b (R d + × [0, T ], R
) and every κ ∈ R * :

I f /κ,T (z) = 1 κ ℓ T (f, z) -c T f κ , z ≤ I ξ 0 (z) < +∞.
Using the notation τ (x) = max(ρ(x), ρ(-x)) = ρ(|x|):

1 κ ℓ T (f, z) ≤I T ξ 0 (z) + T 0 E ρ ψ(f ) κ dm z,T s ds ≤ I T ξ 0 (z) + T 0 E τ ψ(f ) κ dm z,T s ds. Choosing κ = ||ψ(f )|| ρ,z et κ = -||ψ(f )|| ρ,z , we obtain |ℓ T (f, z)| ≤ 1 + I T ξ 0 (z) ||ψ(f )|| ρ,z , from (4.4). The map ψ(f ) → ℓ T (f, z) is hence linear and continuous for the norm ||.|| ρ,z on ψ C 1 b (R d + × [0, T ], R) ⊂ B b (E × [0, T ], R)
. By Hahn-Banach's theorem, it is possible to extend this continuous linear form into a continuous linear form on E ρ,z (E ×[0, T ]). Thanks to Theorem 4.1, there exists a function h z ∈ L ρ * ,z satisfying (4.22). From (4.22) and (4.5), we deduce (4.23). (4.7) is a consequence of (4.22) and (4.6). 20

The function h z given by the previous proposition is not unique, since it is only characterized by the functions of ψ R). Lemma 4.11. We can choose h z such that h z (a, 0, s) depends only on s ∈ [0, T ].

C 1 b (R d + × [0, T ], R) ⊂ B b (E × [0, T ],
Proof. Let us h z ∈ L ρ * ,z be the perturbation given by Proposition 4.10. We are going to modify it on

R d + × {0} × [0, T ]. ∀f ∈ C 1 b (R d + × [0, T ], R), T 0 R d + f (0, s)h z (a, 0, s)b(a)z s (da)ds = T 0 R d + f (0, s) hz (s)b(a)z s (da)ds, with: hz (s) = R d + h z (a, 0, s)b(a)z s (da) R d + b(a)z s (da) . (If R d + b(a)z s (da) = 0, the choice of h z on R d + × {0} × [0, T ] is arbitrary)
. By the convexity of ρ * and by Jensen's inequality, ∀κ > 0,

T 0 R d + ρ * hz (s) κ b(a)z s (da)ds = T 0 R d + ρ * R d + h z (α, 0, s)b(α)z s (dα) κ R d + b(α)z s (dα) b(a)z s (da)ds ≤ T 0 R d + 1 R d + b(α)z s (dα) R d + ρ * h z (α, 0, s) κ b(α)z s (da) b(a)z s (da)ds ≤ T 0 R d + ρ * h z (a, 0, s) κ b(a)z s (da)ds,
and the new choice of perturbation obtained by replacing h z with hz on R d + × {0} × [0, T ] is again a function of L ρ * ,z .

Non-variational formula for I T ξ 0

In order to obtain a non-variational formula for the action functional, we are going to use (4.23) and approximate the perturbations h z by perturbations of the form

h m = e ψ(f m ) -1 with (f m ) m∈N * a sequence of C 1 b (R d + × [0, T ], R).
The result of this section is given in Proposition 4.14. To establish it, we will use the following lemma, which is a particular case of a result due to Israel [START_REF] Israel | Existence of phase transitions for long-range interactions[END_REF] who generalized a Theorem of Bishop and Phelps [START_REF] Bishop | The support functionals of a convex set[END_REF]: Lemma 4.12. Let F be a closed subspace of a Banach space E and let E ′ the topological dual of E. Let Λ be a convex continuous function from E to R and let ∂Λ(x) be its sub-differential in

x ∈ E defined by ∂Λ(x) = {ℓ ∈ E ′ | ∀y ∈ E, Λ(x) + ℓ(y) ≤ Λ(x + y)} . Let ℓ 0 ∈ E ′ such that: ∃c ∈ R, ∀x ∈ E, Λ(x) ≥ ℓ 0 (x) + c, (4.24) then: ∀ε > 0, ∃x ′ ∈ F, ∃ℓ ′ ∈ ∂Λ(x ′ ), ∀x ∈ F, |ℓ 0 (x) -ℓ ′ (x)| ≤ ε x . Definition 4.13. ∀z ∈ D T , ∀g ∈ B b (E × [0, T ], R), ∀h ∈ B(E × [0, T ], R), ∀ν ∈ (L ∞ (E × [0, T ], R)) ′ , Γ ρ,z (g) := T 0 E ρ(g(a, u, s))m z,T s (da, du) ds (4.25) Γ * ρ,z (h) := sup f ∈C 1 b (R d + ×[0,T ],R) T 0 E hψ(f ) dm z,T s ds - T 0 E ρ(ψ(f ))dm z,T s ds (4.26) Γ * ρ,z (ν) := sup g∈B b (E×[0,T ],R) { ν, g -Γ ρ,z (g)} . (4.27)
By (4.5) and (4.23):

I T ξ 0 (z) = Γ * ρ,z (h z ). (4.28)
The main result of this Section 4.3.2 provides a non-variational formula for the action functional I T ξ 0 (z) = Γ * ρ,z (h z ), and an approximation result when we regularize h z : Proposition 4.14. Under Assumptions 2.1, 2.4, for z ∈ D T such that I T ξ 0 (z) < +∞, and for the associated perturbation h z ∈ L ρ * ,z (see Proposition 4.10), there exists a sequence

(h m ) m∈N * of C b (E × [0, T ], R) such that: (i) ∀m ∈ N * , ∃f m ∈ C 1 b (R d + × [0, T ], R), h m = e ψ(f m ) -1, (ii) the sequence (h m ) m∈N * converges to h z dm z,T s ds-a.e. (iii) ∀m ∈ N * , Γ * ρ,z (h m ) = Γ ρ * ,z (h m ). (iv) h z ∈ [-1, +∞[ dm z,T
s ds-a.e. and there exists

f z ∈ B(R d + × [0, T ], R) such that dm z,T s ds-a.e. on {h z > -1}, h z (a, u, s) = e ψ(f z )(a,u,s) -1. (v)
We have the following non-variational representation for the action functional:

I T ξ 0 (z) = Γ ρ * ,z (h z ) = T 0 E ρ * (h z )dm z,T s ds = T 0 E 1 {h z >-1} (h z ψ(f z ) -ρ(ψ(f z ))) dm z,T s ds + T 0 E 1 {h z =-1} dm z,T s ds. ( 4 

.29)

A difficulty lies in the fact that Γ * ρ,z (h z ) and Γ * ρ,z (h z dm z,T s ds) do not coincide a priori, since the sup in (4.26) and (4.27) are taken on different sets. This is due to the particular formulation of our problem which leads us to deal with births and deaths.

Before enoucing Proposition 4.14, we give a lemma for the functions of Definition 4.13. (iii) We have: ∀h ∈ B(E × [0, T ], R), h ≥ -1 dm z,T s ds-a.e, and:

Γ * ρ,z (h) ≤ Γ * ρ,z (h dm z,T s ds) ≤ Γ ρ * ,z (h). (4.31)
Proof. The convexity of Γ ρ,z is a direct consequence of the convexity of ρ. For the continuity, we can see by dominated convergence that if

g ∈ B b (E × [0, T ], R) and if (g q ) q∈N * is a sequence that converges uniformly to g in B b (E × [0, T ], R), we have lim q→+∞ Γ ρ,z (g q ) = Γ ρ,z (g). To characterize ∂Γ ρ,z (ψ(f )), let g ∈ B b (E × [0, T ], R), lim ε→0 Γ ρ,z (ψ(f ) + εg) -Γ ρ,z (ψ(f )) ε = lim ε→0 T 0 E ρ(ψ(f ) + εg) -ρ(ψ(f )) ε dm z,T s ds = T 0 E g e ψ(f ) -1 dm z,T s ds. (4.32)
This is obtained by taking the derivative under the integral. Γ ρ,z is hence Gâteau-differentiable in ψ(f ) and its sub-differential in ψ(f ) exists and is a singleton characterized by (4.30) (Ekeland and Temam [START_REF] Ekeland | Convex Analysis and Variational Problems[END_REF], Proposition 5.3 Chapitre I). The first inequality of (4.31) is a consequence of the inclusion ψ(C

1 b (R d + ×[0, T ], R)) ⊂ B b (E × [0, T ], R). The second inequality is a consequence of the fact that ∀(a, u, s) ∈ E × [0, T ], ∀g ∈ B b (E × [0, T ], R), h(a, u, s)g(a, u, s) -ρ(g(a, u, s)) ≤ ρ * (h(a, u, s)). 22 
We can now prove Proposition 4.14.

Proof of Proposition 4.14. We have I T ξ 0 (z) = Γ * ρ,z (h z ) < +∞ by assumption, but we do not know whether Γ * ρ,z (h z dm z,T s ds) < +∞. Since h z ∈ L ρ * ,z , we however know by (4.31) and by definition of the Orlicz norm . ρ * ,z (4.4) that:

Γ * ρ,z h z h z ρ * ,z dm z,T s ds ≤ Γ ρ * ,z h z h z ρ * ,z ≤ 1. (4.33)
By definition of Γ * ρ,z , and by (4.33), it is possible to write:

∀g ∈ B b (E × [0, T ], R), Γ ρ,z (g) ≥ T 0 E h z h z ρ * ,z g dm z,T s ds -Γ * ρ,z h z h z ρ * ,z
dm z,T s ds , and the condition (4.24) is satisfied. Applying Lemma 4.12 with the closed sub-space

F = adh ψ C 1 b (R d + × [0, T ], R) of L ∞ (E×[0, T ], R) gives: ∀m ∈ N * , ∃ f m ∈ adh C 1 b (R d + × [0, T ], R) , ∃ ν m ∈ ∂Γ ρ,z (ψ( f m )), ∀g ∈ C 1 b (R d + × [0, T ], R), T 0 E ψ(g) h z h z ρ * ,z dm z,T s ds -ν m , ψ(g) ≤ g ∞ 2m h z ρ * ,z (4.34) 
By Point (ii) of Lemma 4.15 and setting h m := h z ρ * ,z (e ψ( fm) -1):

T 0 E ψ(g) h z h z ρ * ,z - h m h z ρ * ,z dm z,T s ds ≤ g ∞ 2m h z ρ * ,z . (4.35) 
Since f m is bounded and since dm z,T s ds is a finite measure, Γ ρ * ,z ( h m ) < +∞, implying by (4.31), that Γ * ρ,z ( h m dm z,T s ds) < +∞. From the definition of Γ * ρ,z :

∀g ∈ B b (E × [0, T ], R), Γ ρ,z (g) ≥ T 0 E h m g dm z,T s ds -Γ * ρ,z h m dm z,T s ds .
Applying the Lemma 4.12 and Point (ii) of Lemma 4.15, there exists a sequence

(f m ) m∈N * of adh(C 1 b (R d + × [0, T ], R))
, and a sequence of continuous and bounded perturbations (h m ) m∈N * defined by h m := e ψ(fm) -1 such that:

∀m ∈ N * , ∀g ∈ C 1 b (R d + × [0, T ], R), T 0 E ψ(g) h m -h m dm z,T s ds ≤ g ∞ 4m .
Since each function f m is the uniform limit of a sequence (f m,p

) p∈N * of C 1 b (R d + × [0, T ], R
), h m is the limit, for the uniform norm and in L 1 (E × [0, T ], dm z,T s ds) (since the measure dm z,T s ds is finite) of the sequence h m,p = e ψ(f m,p ) -1. Replacing h m with h m,p for sufficiently large p, we obtain the existence of a sequence 

(f m ) m∈N * of C 1 b (R d + × [0, T ], R) satisfying: T 0 E ψ(g) h m -h m dm z,T s ds ≤ g ∞ 2m . ( 4 
∈ N * , ∀g ∈ C 1 b (R d + × [0, T ], R), T 0 E ψ(g) (h m -h z ) dm z,T s ds ≤ g ∞ m , (4.37) 
with:

T 0 E ψ(g) (h m -h z ) dm z,T s ds = T 0 R d + g(0, s) e fm(0,s) -1 -h z (0, 0, s) b(a)z s (da)ds - T 0 R d + g(a, s) e -fm(a,s) -1 -h z (a, 1, s) d(a, z s U (a))z s (da)ds. (4.38) For g ∈ C 1 K ((R * + ) d × [0, T ], R
), which satisfies ∀s ∈ [0, T ], g(0, s) = 0, we obtain the vague convergence of the sequence of measures (h m dm z,T s ds) m∈N * to h z dm z,T s ds on (R * + ) d × [0, T ]. Hence, there exists a sub-sequence of (e -fm -1) m∈N * that converges to h z (., 1, .) z s (da)ds-a.e. on (R *

+ ) d × [0, T ]. For g ∈ C 1 b (R d + × [0, T ], R)
, and for the previous sub-sequence of (f m ) m∈N * :

T 0 g(0, s) R d + e fm(0,s) -1 -h z (0, 0, s) b(a)z s (da)ds - R d + 1 a=0 e -fm(a,s) -1 -h z (a, 1, s) d(a, z s U (a))z s (da)ds ≤ C g ∞ m (4.39) 
If we prove that:

z s (da), 1 a=0 = 0, (4.40) 
then, h z (0, 0, s) will be the ds-a.e. limit of a sub-sequence of (e fm(0,s) -1) m∈N * , which will entail that h z is the dm z,T s ds-a.e. limit of a sub-sequence of (e ψ(fm) -1) m∈N * . Let us prove (4.40). For

ε > 0, let φ ε ∈ C 1 b (R d + , R) be a non-negative function, bounded by 1, such that φ ε (0) = 1 and φ ε (a) = 0 for |a| ≥ ε. For t ∈ [0, T ] and for the function f ε (a, s) = φ ε (A(t, s, a)): z t , φ ε = z t , f t = ξ 0 , f 0 + t 0 R d + φ ε (A(t, s, 0))(1 + h z (a, 0, s))b(a)z s (da)ds - t 0 R d + φ ε (A(t, s, a))(1 + h z (a, 1, s))d(a, z s U (a))z s (da)ds. (4.41)
For s < t and a ∈ R d + , φ ε (A(t, s, a)) → 0 when ε → 0. Since φ ε (A(t, s, 0))(1 + h z (a, 0, s))b(a) and φ ε (A(t, s, a))(1 + h z (a, 1, s))d(a, z s U (a)) are dominated by (1 + h z (a, 0, s))b(a) and (1 + h z (a, 1, s))d(a, z s U (a)) which are integrable with respect to z s (da) ds, the right hand side of (4.41) converges to 0. The left hand side converges to z t , 1 a=0 . This proves (4.40) and thus Points (i) and (ii).

Since

h m = e ψ(fm) -1, ρ * (h m ) = e ψ(fm) ψ(f m )-e ψ(fm) +1 = h m ψ(f m )-e ψ(fm) -ψ(f m ) -1 : Γ ρ * ,z (h m ) = T 0 E [h m ψ(f m ) -ρ (ψ(f m ))] dm z,T s ds ≤ sup f ∈C 1 b (R d + ×[0,T ]) T 0 E h m ψ(f ) dm z,T s ds -Γ ρ,z (ψ(f )) = Γ * ρ,z (h m ). (4.42) 
From (4.31) and (4.42), Γ * ρ,z (h m ) = Γ ρ * ,z (h m dm z,T s ds) = Γ ρ * ,z (h m ). This proves Point (iii).

Since (h m ) m∈N * converges dm z,T s ds-a.e. to h z and since ∀m ∈ N * , h m > -1 dm z,T s ds-a.e., then h z ≥ -1 dm z,T s ds-a.e. As h z ∈ L ρ * ,z ⊂ L 1 (E × [0, T ], dm z,T s ds), h z < +∞ dm z,T s ds-a.e. In the sequel, we have to separate the cases h z = -1 and h z > -1 to take the logarithm of 1 + h z .

On {h z > -1}, ψ(f m )(a, u, s) = log(h m (a, u, s)+1) converges dm z,T s ds-a.e. to ψ(f z )(a, u, s) := log(h z (a, u, s) + 1). The sequence h z ψ(f m )ρ(ψ(f m )) thus converge to h z ψ(f z )ρ(ψ(f z )) when m → +∞, and the latter function is nonnegative:

0 ≤ ρ * (h z ) =e ψ(f z ) ψ(f z ) -e ψ(f z ) + 1 = e ψ(f z ) + 1 ψ(f z ) -e ψ(f z ) -ψ(f z ) -1 = h z ψ(f z ) -ρ(ψ(f z )). (4.43) 
On

{h z = -1}, the sequence (ψ(f m )) m∈N * diverges to -∞. Then, h z ψ(f m ) -ρ(ψ(f m )) = -e ψ(fm) + 1 converges to 1.
Let us define the sequence ( fm ) m∈N * by:

ψ( fm ) =ψ(f m )1 {h z ψ(f m )-ρ(ψ(f m ))≥0, h z >-1} + ψ(f m )1 {ψ(f m )≤0, h z =-1} . (4.44) 
The nonnegative sequence (h z ψ( fm )-ρ(ψ( fm ))

) m∈N * converges to [h z ψ(f z ) -ρ(ψ(f z ))] 1 {h z >-1} + 1 {h z =-1} = ρ * (h z ). Thus, Γ ρ * ,z (h z ) < +∞.
Else, by Fatou Lemma and (4.43):

Γ * ρ,z (h z ) = sup f ∈C 1 b (R d + ×[0,T ],R) T 0 E (h z ψ(f ) -ρ(ψ(f ))) dm z,T s ds ≥ lim inf m→+∞ T 0 E h z ψ( fm ) -ρ(ψ( fm )) dm z,T s ds ≥ T 0 E lim inf m→+∞ h z ψ( fm ) -ρ(ψ( fm )) dm z,T s ds = T 0 E ρ * (h z )dm z,T s ds = Γ ρ * ,z (h z ) = +∞, (4.45) 
which contradicts the assumption Γ * ρ,z (h z ) < +∞. Integrating (4.43) gives the last equality of (4.29). Moreover Point (iii) of Lemma 4.15 and (4.45) imply the first equality of (4.29).

Remark 4.16. When h z is bounded, we can choose the functions h m bounded by h z ∞ . Indeed, if we regularize the functions f m in the neighborhood of the points where ψ(f m ) ≥ log( h z ∞ +1), we obtain a new sequence ( h m = e ψ( f m ) -1) m∈N * bounded by h z ∞ and satisfying |h zh m | = e ψ(f z )e ψ( fm) ≤ e ψ(f z )e ψ(fm) = |h zh m |.

Local lower bound

The proof of the local lower bound enounced in Theorem 4.4 relies on a change of probability, and on the use of Girsanov Theorem. Let P n = L(Z n ). It is a probability law on D T . Let z ∈ D T be such that I T ξ 0 (z) < +∞. Our purpose is to construct a sequence of probability measures (P ′n ) n∈N * on D T that are absolutely continuous with respect to (P n ) n∈N * and which can be interpreted as a recentering on z. To achieve this, we use the perturbed equation (4.7) satisfied by z. The use of the Girsanov Theorem is allowed if h z has a particular form and proper regularities. Since h z ∈ L ρ * ,z is not a priori bounded or differentiable, we use regularized perturbations h m of the form given in Point 1 of Proposition 4.14. It is hence natural to introduced the sequence (z m ) m∈N * of the solutions of (4.7) perturbed by the h m and to apply a recentering associated with these z m . Unfortunately, we can prove the convergence of (z m ) m∈N * to z only in the case were h z is bounded. The case where h z is unbounded remains open. Thus, we will be lead to introduce the additional assumption

h z ∈ L ∞ (E × [0, T ], R).
The following result implies the lower bound of Theorem 4.4:

Proposition 4.17. Under Assumptions 2.1, 2.4, 4.2, for z ∈ D T such that I T ξ 0 (z) < +∞ and

h z ∈ L ∞ (E × [0, T ], R), we have for any open subset O of D T containing z: lim inf n→+∞ 1 n log P (Z n ∈ O) ≥ -I T ξ 0 (z). (4.46) 
(in the case where I T ξ 0 (z) = +∞, the result is automatically satisfied).

First, we complete the approximation result of Proposition 4.14 by showing that every path z of the domain of the action functional I T ξ 0 associated to a bounded h z can be approximated by a sequence of paths (z m ) m∈N * associated to perturbations h m of the form h m = e f m -1 with

f m ∈ C 1 b (R d + × [0, T ], R).
Proposition 4.18. Under Assumptions 2.1, 2.4, for z ∈ D T such that I T ξ 0 (z) < +∞ and

h z ∈ L ρ * ,z ∩ L ∞ (E × [0, T ], R), there exists a sequence (f m ) m∈N * of C 1 b (R d + × [0, T ], R
) such that the sequence defined by h m = e ψ(fm) -1 satisfies: (i) (h m ) m∈N * converges to h z dm z,T s ds-a.e. and (4.37) is fulfilled, (ii) For every m ∈ N * , the evolution equation:

∀f ∈ C 1 b (R d + × R + ), y t , f t = ξ 0 , f 0 + t 0 y s , v∇ a f s + ∂f s ∂s ds + T 0 E exp (ψ(f m )) ψ(f )dm y,T s ds (4.47)
admits a unique solution in y, which is denoted by

z m ∈ C([0, T ], M F (R d + )). (iii) The sequence (z m ) m∈N * converges to z ∈ (C([0, T ], (M F (R d + ), . T V )), . ∞ ). (iv) We have I T ξ 0 (z m ) = T 0 E (h m ψ(f m ) -ρ(ψ(f m ))) dm z m ,T s ds = T 0 E ρ * (h m )dm z m ,T
s ds and:

lim m→+∞ I T ξ 0 (z m ) = I T ξ 0 (z). (4.48) 
Proof. Point (i) is a consequence of Proposition 4.14. By Remark 4.16:

z m t , 1 ≤ ξ 0 , 1 + t 0 R d + e fm(0,s) b(a)z m s (da) ds ≤ ξ 0 , 1 e ( h z ∞+1) bt ,
we can define A T = max sup t∈[0,T ] z t , 1 , sup t∈[0,T ] z m t , 1 , m ∈ N * which exists and is finite and independent from m.

Existence and uniqueness of the solution z m ∈ C([0, T ], M F (R d + )) of (4.47) is an adaptation of the results of Section 3.2 (the birth and death rates are perturbed by continuous bounded factors and Assumptions 2.4 are still satisfied).

Let t ∈ [0, T ] and φ ∈ C 1 b (R d + , R) such that φ ∞ ≤ 1. Let f : (a, s) ∈ R d + × [0, T ] → f (a, s) = φ(A(t, s, a)) ∈ R. | z t -z m t , φ | = t 0 E (1 + h z ) ψ(f )dm z,T s ds - t 0 E (1 + h m ) ψ(f )dm z m ,T s ds ≤ A + B, (4.49) 
where by (4.37):

A = t 0 E (h z -h m ) ψ(f )dm z,T s ds ≤ 1 m , (4.50) 
and, by Remark 4.16 and computations similar to (3.1):

B = t 0 E (1 + h m ) ψ(f ) dm z,T s -dm z m ,T s ds ≤ C( h z ∞ , T ) t 0 z s -z m s T V ds, (4.51)
We deduce from (4.49), (4.50), (4.51) that:

| z t -z m t , φ | ≤ 1 m + C( h z ∞ , T ) t 0 z s -z m s T V ds,
Since every function φ ∈ C b (R d + , R + ) bounded by 1 can be written as the pointwise limit of a sequence of C 1 b (R d + , R + ) bounded by 1, we obtain by taking the supremum in the left hand side:

sup u∈[0,t] z u -z m u T V ≤ 1 m + C( h z ∞ , T ) t 0 sup u∈[0,s] z u -z m u T V ds, (4.52) 
and by Gronwall Lemma: sup t∈[0,T ] z tz m t T V ≤ C( h z ∞ , T )/m. Hence:

∀ε > 0, ∃m 0 = m 0 (ε, T ) ∈ N * , ∀m ≥ m 0 , sup t∈[0,T ] z t -z m t T V ≤ ε, (4.53) 
and

(z m ) m∈N * converges to z in C([0, T ], (M F (R d + ), . T V )) uniformly in t ∈ [0, T ].
By an adaptation of the proof of Point 3 of Proposition 4.14: 

Γ ρ * ,z m (h m ) =Γ * ρ,z m (h m ). ( 4 
I T ξ 0 (z m ) = Γ * ρ,z m (h m ) = Γ ρ * ,z m (h m )
, which proves the first part of (iv). Finally let us prove (4.48).

0 ≤ I T ξ 0 (z m ) -I T ξ 0 (z) ≤ A + B A = T 0 E ρ * (h m )dm z,T s ds - T 0 E ρ * (h z )dm z,T s ds B = T 0 E ρ * (h m )dm z m ,T s ds - T 0 E ρ * (h m )dm z,T s ds (4.55) By (4.53): ∀m ≥ m 0 , B ≤ T 0 ρ * ( h m ∞ )( b+ d(1+A T )+L d Ū A T ) z s -z m s T V ds ≤ C( h z ∞ , T )ε. Since (h m ) m∈N * converges dm z,T
s ds-a.e. to h z , and since these functions are bounded, we have by dominated convergence that lim m→+∞ Γ ρ * ,z (h m ) = Γ ρ * ,z (h z ) = I T ξ 0 (z), and lim m→+∞ A = 0. This concludes the proof of (4.48).

Thanks to Propositions 4.14 and 4.18 and under the Assumptions of Proposition 4.17, we can restrict the study of the local minoration to "regular" paths: Assumption 4.19. We consider a path z belonging to the domain of the action functional I T ξ 0 and such that h z = e f z -1 with f z ∈ C 1 b (R d + × R + ). Then:

I T ξ 0 (z) = T 0 E (h z ψ(f z ) -ρ(ψ(f z ))) dm z,T s ds.
We construct the change of probability corresponding to a centering around a such path z.

Proposition 4.20. For a path z as in Assumption 4.19, the following SDE on [0, T ]:

D n t = 1 + t 0 E D n s -1 {i≤N n t } e f z (0,s) -1 1 {0≤θ≤m 1 (s,Z n s -,i)} + e f z (A i (Z n s -),s) -1 1 {m 1 (s,Z n s -,i)<θ≤m 2 (s,Z n s -,i)} Q(ds, di, dθ) (4.56)
admits a unique solution (D n t ) t∈[0,T ] which is a P n -exponential martingale:

D n t = exp n Z n t , f z t -Z n 0 , f z 0 - t 0 R d + v(a)∇ a f z s (a) + ∂f z s ∂s (a) Z n s (da) ds - t 0 E ψ(f z ) dm Z n ,T s ds - t 0 E ρ (ψ(f z )) dm Z n ,T s ds , (4.57) 
Under the probability P ′n := D n T • P n , the compensator of the random measure Q is:

q(ds, di, dθ) = 1 {i≤N n t } e f z (0,s) 1 {0≤θ≤m 1 (s,Z n s -,i)} + e f z (A i (Z n s -),s) 1 {m 1 (s,Z n s -,i)<θ≤m 2 (s,Z n s -,i)} ds n(di) dθ. (4.58)
Proof. We wish to perturb the birth and death rate of the particles, so that the new rates are multiplied by 1 + h z (a, u, s) = e ψ(f z )(a,u,s) , u ∈ {0, 1}. This is why we introduce SDE (4.56). For the proofs, we refer to Jacod and Shiryaev [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] n log P ′n (O) = 0. From (4.57), from Proposition 4.21, from the fact that z is continuous and that h z and f z are continuous and bounded, we obtain the following convergence in probability:

lim n→∞ 1 n log D n T = lim n→∞ Z n t , f z t -Z n 0 , f z 0 - t 0 R d + v(a)∇ a f z s (a) + ∂f z s ∂s Z n s (da)ds - t 0 E ψ(f z )dm Z n ,T s ds - t 0 E ρ (ψ (f z )) dm Z n ,T s ds = t 0 E h z ψ(f z )dm z,T s ds - t 0 E ρ (ψ (f z )) dm z,T s ds = I T ξ 0 (z),
by (4.22) and (4.29). Since: 

1 n log D n T ≤ C(T, f z ∞ ) 1 + sup t∈[0,T ] Z n t ,
E P ′n 1 O P ′n (O) 1 n log D n T ≤ t 0 E [h z ψ(f z ) -ρ (ψ(f z ))] dm z,T ds = I T ξ 0 (z).
This concludes the proof of Theorem 4.4.

Application to problems of exit of domains

We deduce from Theorem 4.4 some estimates on times of exit of domains. The computations that we present are inspired by results obtained by Freidlin and Ventzell [START_REF] Freidlin | Random Perturbations of Dynamical Systems[END_REF], Dembo and Zeitouni [START_REF] Dembo | Large Deviation Techniques and Applications[END_REF] (Section 5) in finite dimension, and Da Prato and Zabczyk [START_REF] Da Prato | Stochastic Equations in Infinite Dimensions[END_REF] (Chapter 12). We adapt these works to the case of our measure-valued processes. This allows us to control the probability of exit of a tube around the deterministic solution (Section 5.1) and to give estimates for the exit time of a neighborhood of an attractive domain of the deterministic limit solution in the particular case of logistic age-structured populations.

In the proofs, the distance W 1 appears naturally since the consideration of an age-structure leads us to introduce functions f of C 1 b (R d + , R) such that ∇ a f is bounded. These functions are Lipschitz continuous. The total variation norm arise since we do not know if the perturbations h z are Lipschitz continuous. However, under the constraint that z ∈ G, these perturbations remain bounded. The difficulty will be to deal with these two distances. We have:

∀µ, ν ∈ M F (R d + ), W 1 (µ, ν) ≤ µ -ν T V . (5.1) 
We denote by B T V (µ, r) (resp. B W 1 (µ, r)) the . T V -ball (resp. the W 1 -ball) of radius r > 0, centered in µ ∈ M F ( X ). d D,T is the Skorohod distance on D T (see. [START_REF] Billingsley | Convergence of Probability Measures[END_REF][START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]).

Exit times from tubes and pits

Proposition 5.1. Let R > 0, δ > 0 and let K(R) and B W 1 (K(R), δ) be the sets defined by:

K(R) = z ∈ D T , I T ξ 0 (z) ≤ R and K(R) δ = z ∈ D T , ∃z ′ ∈ K(R), d D,T (z, z ′ ) < δ .
Under Assumptions 2.1, 2.4, 4.2: (i) ∀R > 0, ∀δ > 0, ∀ε > 0, ∃n 0 ∈ N * , ∀n ≥ n 0 , P (Z n ∈ K(R) δ ) ≥ 1e -n(R-ε) .

(ii) ∀z ∈ G, ∀δ > 0, ∀ε > 0, ∃n 0 ∈ N * , ∀n ≥ n 0 , P (d D,T (Z n , z) < δ) ≥ e There exists a unique classical solution to PDE (1.5) that describe the large population limit of the microscopic process and we have an explicit expression (Proposition 5.4). Under Assumption 5.3, the behaviour of the solution of (1.5) is moreover known: there exists a unique nontrivial stable stationary solution to which every solution starting from a nonzero initial condition converge (Proposition 5.5). These are results due to [START_REF] Busenberg | A class of nonlinear diffusion problems in age-dependent population dynamics[END_REF][START_REF] Gurtin | Nonlinear age-dependent population dynamics[END_REF][START_REF] Marcati | On the global stability of the logistic age dependent population growth[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF].

The estimates given by Section 5.1 tell us that the microscopic stochastic process behaves as its deterministic approximation on compact time intervals, and we prove in Proposition 5.6 that for sufficiently large T > 0 and n, Z n T finds itself with "large probability" in a neighborhood of the stationary solution m(a)da of (1.5).

However, the same Proposition 5.6 indicates that in long time, (Z n ) n∈N * does not converge to m(a)da, but to the null measure. The realizations (Z n t ) t∈R + almost surely leave the neighborhood of m(a)da to drive the population to extinction.

Proposition 5.4. Under Assumptions 2.1, 2.4, 3.1, if ∃m 0 ∈ C 1 b (R + , R + ), ξ 0 (da) = m 0 (a)da: (i) (Z n ) n∈N * converges
in probability in D to the weak measure solution (ξ t ) t∈R + of (1.5). (ii) For every t ∈ R + , ξ t is absolutely continuous with respect to the Lebesgue measure on R + . The family of the densities (m(., t)) t∈R + is the unique classical solution of (1.5). It belongs to

C 1 (R 2 + , R + ) ∩ L 1 (R 2 + , R + )
and its explicit expression is given by: ∀a

∈ R + , ∀t ∈ R + , m(a, t) = M 0 ν(a, t) 1 + M 0 t 0 +∞ 0 ν(α, s)dα ds , with: ν(a, t) = m 0 (a-t) M 0 Π(a -t, a) si a ≥ t, B(t -a)Π(a, 0) si a < t,
Π being defined in (5.2) and for g * n the n th -convolution of the function g with itself:

B(t) = B 0 * +∞ n=0 g * n (t) , B 0 (t) = 1 t≥0 +∞ 0 b(a+t) n 0 (a) N 0 Π(a, a+t)da, g(a) = b(a)Π(0, a)1 a≥0 .
Proof. Existence and uniqueness of a weak function solution are particular cases of Corollary 3.4 and Proposition 3.5. The computations of [START_REF] Busenberg | A class of nonlinear diffusion problems in age-dependent population dynamics[END_REF][START_REF] Gurtin | Nonlinear age-dependent population dynamics[END_REF][START_REF] Marcati | On the global stability of the logistic age dependent population growth[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF] tell us that (1.5) admits a classical solution. This provides regularity information and an explicit expression of the function solution of (1.2) in this case. 

lim t→+∞ m(a, t) = λ 1 e -λ 1 a Π(0, a) η +∞ 0 e -λ 1 α Π(0, α)dα =: m(a), (5.3) 
the following limit being uniformly in age on the bounded interval of R + .

(iii) m is exponentially asymptotically stable and

∀ξ 0 ∈ M F (R d + ), ∀R > 0, ∃T 1 = T 1 (R, ξ 0 ) ≥ 0, ∀t ≥ T 1 , W 1 (ξ t , ξ) < R, where ξ(da) = m(a)da.
Proof. These assertions are proved in [START_REF] Busenberg | A class of nonlinear diffusion problems in age-dependent population dynamics[END_REF][START_REF] Marcati | On the global stability of the logistic age dependent population growth[END_REF][START_REF] Webb | Theory of Nonlinear Age-Dependent Population Dynamics[END_REF] and Proposition 5.6.4 of [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF].

Proposition 5.6. If ∃m 0 ∈ C 1 b (R + , R + ), ξ 0 (da) = m 0 (a)da: (i) For n ∈ N * . P-a.s. lim t→+∞ Z n t , 1 = 0. (ii) ∀ε > 0, ∀ς > 0, ∃T 1 = T 1 (ς) > 0, ∃n 1 = n 1 (ε, T 1 (ς)) ∈ N * , ∀n ≥ n 1 , P(W 1 (Z n T 1 , ξ) > ς) ≤ ε. Proof.
Let n ∈ N * be fixed. The idea in the proof of Point (i) is to dominate stochastically ( Z n t , 1 ) t∈R + by the following process (Y n t ) t∈R + with values in (1/n)N:

Y n t = Z n 0 , 1 + t 0 E 1 {i≤nY n s -} 1 n 1 0≤θ<b(A i (Z n s -)) -1 b(A i (Z n s -))≤θ<b(A i (Z n s -))+d+ηY n s - Q(ds, di, dθ) + t 0 E 1 n 1 {Y n s -=0, i∈[[1,n]], θ∈[0,1]} + 1 {i≤nY n s -} 1 0≤θ< b-b(A i (Z n s -)) Q ′ (ds, di, dθ). (5.4) 
Q is the Poisson point measure introduced in Definition 2.5 and Q ′ is an independent copy. The second term of (5.4) implies that 0 is not an absorbing state for Y n and, when Y n t > 0, completes the births events so that the birth rate is b. Let us prove that Y n is recurrent positive. This process is irreducible. Its generator A is defined by: ∀F

∈ C((1/n)N, R + ), ∀i ∈ N, AF (i/n) =1 i>0 F i + 1 n -F i n b i n + F i -1 n -F i n d + η i n i n + F 1 n -F (0) 1 i=0 (5.5) 
If we choose for F the Lyapounov function V n : i/n → i/n, then ∀i ∈ N,

AV n i n = i n 2 b -d -η i n 1 i>0 + 1 n 1 i=0 ≤ - 1 n V n i n + ( b -d) 2 4n 3 η ∨ 1 n , (5.6) since b -d -ηi/n < -1 for i > n b + 1 -d /η, and 
sup 0<i≤ n( b+1-d) η i n 2 b -d -η i n ≤ ( b -d) 2 4n 3 η .
The inequality (5.6) is of the form ∀i ∈ N, AV n i n ≤ -cV n i n + c ′ . A criterium of Meyn et Tweedie ( [START_REF] Meyn | Stability of markovian processes iii: Foster-lyapunov criteria for continuous-time processes[END_REF], Theorems 6.1 and 7.1) then entails that Y n is recurrent positive.

A sufficient condition for Point (i) to be proved is that

P (∃t ∈ R + , Y n t = 0) = 1. Let C > 1 and τ C = inf {t > 0, Y n t = 0 or Y n t = C/n}. Since (Y n t ) t∈R + is recurrent positive, P C/n Y n τ C = 0 > 0 (under P C/n , Y n starts from C/n). P (∃t ∈ R + , Y n t = 0) = P Y n τ C = 0 + P Y n τ C = C/n et ∃t ∈ R + , Y n t+τ C = 0 =P Y n τ C = 0 + P Y n τ C = C/n P C/n (∃t ∈ R + , Y n t = 0) , by the strong Markov property =P Y n τ C = 0 + P Y n τ C = C/n P C/n Y n τ C = 0 + P C/n Y n τ C = C/n et ∃t ∈ R + , Y n t+τ C = 0 =P Y n τ C = 0 + P Y n τ C = C/n +∞ ℓ=0 P C/n Y n τ C = 0 P C/n Y n τ C = C/n ℓ , by recursion =P Y n τ C = 0 + P Y n τ C = C/n P C/n Y n τ C = 0 1 -P C/n Y n τ C = C/n = P Y n τ C = 0 + P Y n τ C = C/n = 1.
This concludes the proof. Point (ii) is a consequence of Proposition 5.1.

Assumption 5.7. Assume that the functions a → b(a) and a → d(a) are Lipschitz continuous from R + to R + , with constants L b and L d . We assume that the limit ξ 0 of (Z n 0 ) n∈N * in (M F (R + ), w) is absolutely continuous with respect to the Lebesgue measure, with a density

m 0 ∈ C 1 (R + , R + ) ∩ L 1 (R + , R + ).
For numerous applications (see [START_REF] Tran | Modèles particulaires stochastiques pour des problèmes d'évolution adaptative et pour l'approximation de solutions statistiques[END_REF], Chapter 6 for instance), it is of great interest to evaluate the time during which the microscopic process stays in the neighborhood of the stationary stable solution m(a)da of its deterministic approximation. Let 0 < γ < ξ, 1 . We study the problem of exit from the domain B W 1 ( ξ, γ) using the results of Theorem 4.4. Results are stated in Propositions 5.8 and 5.13. Notice that for this choice of γ, this neighborhood does not contain the null measure. The exit time of B W 1 ( ξ, γ) is:

T n = inf t ≥ 0, | Z n t / ∈ B W 1 ( ξ, γ) .
(5.7)

Step 3: We now establish (5.15). Let p := 1e -n(I T ξ (z)+3ε) . Assume that for k ∈ N * , we have shown that for ξ 0 ∈ B W 1 ( ξ, γ):

P (T n > k(T + T 1 )) ≤ p k . (5.20)
By the strong Markov property and since on

{T n > k(T + T 1 )}, Z n k(T +T 1 ) ∈ B W 1 ( ξ, γ) converges to ξ k(T +T 1 ) ∈ B W 1 ( ξ, γ): P (T n > (k + 1)(T + T 1 )) ≤E P Z n k(T +T 1 ) (T n > T + T 1 ) 1 T n >k(T +T 1 ) ≤p P (T n ≥ k(T + T 1 )) ≤ p k+1 .
(5.21)

By recursion, we obtain (5.20) for every k ∈ N * .

Step 4: We deduce for ξ 0 ∈ B W 1 ( ξ, γ) :

E T n T + T 1 = +∞ k=0 k+1 k P T n T + T 1 > t dt ≤ +∞ k=0 P (T n > k(T + T 1 )) ≤ 1 1 -p = e n(I T ξ (z)+3ε) , (5.22) 
by definition of p. Then lim sup n→+∞

1 n log E (T n ) ≤ I T ξ (z) + 3ε.
The choice of ε > 0 is arbitrary and the Proposition is proved. Remark 5.12. In order to obtain the inequalities (5.17) and (5.19), the fact that we only have a local minoration in (4.10) is not restrictive, since we consider deviations with respect to the path ξ, which belongs to G (4.9).

Proof of Lemma 5.10. Let ε > 0, δ ∈]0, 1] and µ 0 ∈ B T V (ξ 0 , δ). We have sup t∈[0,T ] z t + z µ 0 t , 1 ≤ (2 ξ 0 , 1 + 1)e bT =: A T independent of µ 0 and δ.

Let

φ ∈ C 1 b (R + , R + ) such that φ ∞ ≤ 1. Let t ∈ [0, T ] and (f : (a, s) → φ(a + t -s)) ∈ C 1 b (R + × R + , R).
With a computation similar to (3.1): Thanks to Point (i), there exists δ > 0 such that for all µ 0 ∈ B(z 0 , δ), the right hand side of (5.25) is upper bounded by ε.

| z t -z µ 0 t , φ | ≤ R + φ(a + t)z 0 (da) -
with the convention θ k+1 = +∞ si Z n τ k ∈ B c W 1 ( ξ, γ). τ k is the first time of exit from B W 1 ( ξ, γ) \ B W 1 ( ξ, ρ) after θ k , and if Z n τ k ∈ B W 1 ( ξ, ρ), θ k+1 is the first time of exit of B W 1 ( ξ, 2ρ). Notice that the exit time T n is one of the τ k , k ∈ N.

Let q ∈ N * and T 0 = T ( V , ρ) as given by Lemma 5.16. The event {T n ≤ qT 0 } implies that there exists k ∈ [[0, q]] such that either T n = τ k or one of the q first "excursions" [τ k-1 , τ k ] for k ∈ [ [1, q]] is of length upper bounded by T 0 . In this last case, one of the trajectories [τ k-1 , θ k [ is covered in less than T 0 . Thus: 

P (T n ≤ qT 0 ) ≤
(T n = τ 0 ) 1 T n >τ k-1 =P P Z n θ k Z n σ ρ ∈ B c W 1 ( ξ, γ) 1 T n >τ k-1 ≤ e -n( V -δ/2) , (5.34) 
by noticing that for sufficiently large n, Z n θ k belongs to B W 1 ( ξ, γ). By choice of T 0 , by the strong Markov property: ∀n ≥ n 0 , ∀k ∈ N * ,

P (θ k -τ k-1 ≤ T 0 ) ≤P sup t∈[0,T 0 ]
W 1 (Z n t , Z n 0 ) ≥ ρ ≤ e -n( V -δ/2) .

(5.35) By (5.33), (5.34), (5.35) : ∀q ∈ N * , P (T n ≤ qT 0 ) ≤P (T n = τ 0 ) + 2qe -n( V -δ/2) .

(5.36)

Since {T n = τ 0 } = {Z n σ ρ ∈ B c W 1 ( ξ, γ)}, then, for the choice of q = [e n( V -δ) /T 0 ] + 1: P T n ≤ e n( V -δ) ≤P (T n ≤ qT 0 ) ≤ P Z n σ ρ ∈ B c W 1 ( ξ, γ) +

4

T 0 e -nδ/2 .

(5.37)

The right hand side of (5.37) converges to 0 when n → +∞, as: For z ∈ A(T ) and by choice of γ, sup t∈[0,T ] ( ξ t , 1 + z t , 1 ) ≤ 4 ξ, 1 e bT := A T , which is finite and does not depend on ξ 0 ∈ B W 1 ( ξ, γ) nor on z ∈ A(T ). We then deduce that: by compactness of A(T 1 ) with paths that do not vanish (by choice of γ and since they remain in adh(B W 1 ( ξ, γ))). Notice that the constant C 2 does not depend on the particular choice of the initial condition ξ 0 ∈ B W 1 ( ξ, γ) \ B W 1 ( ξ, ρ) nor on the path z ∈ A(T ). Let now T > 0 be such that T > J T 1 with J ∈ N * . We have: (1 + h z j )ψ(f )dm z,T s ds, which is an equation obtained by the perturbation of (1.2) with h z j (a, u, s) = h z (a, u, (j-1)T 1 +s) for s ∈ [0, T 1 ]. By (5.44) and by recursion I T ξ 0 (z) ≥ JC 2 . This proves (5.40).

| z t -ξ t ,
I T ξ 0 (z) ≥
Proof of Lemma 5.15. Let us prove Point (i). Let ρ ∈]0, γ/2[. Let R > 0 be such that V (R) < +∞. By Lemma 5.14 :

∃T 2 > 0, ∃n 0 ∈ N * , ∀n ≥ n 0 , P (σ ρ > T 2 ) < e -nV (R) , (5.46) where V (R) is defined in (5.9). For T > 0, we define:

A(T ) := z ∈ D([0, T ], M F (R + )) | ∃t ∈ [0, T ], z t / ∈ B W 1 ( ξ, γ) (5.47) 
which is closed since z → sup t∈[0,T ] W 1 (z t , ξ) is continuous. From (5.9): ∀ξ 0 ∈ B W 1 ( ξ, 2ρ), inf z∈A(T 2 ) I T 2 ξ 0 (z) ≥ V (2ρ). Using the large deviation upper bound (Theorem 4. (the existence of such R is given by (i)) Then ∃n 0 ∈ N * , ∀n ≥ n 0 , P Z n σρ ∈ B c W 1 ( ξ, γ) ≤ e -nV (R)+nε , and:

P Z n σρ ∈ B W 1 ( ξ, ρ) = 1 -P Z n σρ ∈ B c W 1 ( ξ, γ) ≥ 1 -e -n(V (R)-ε) .
Choosing ε < V (R) and letting n tend to +∞ completes the proof.

1 . 2 . 3 .

 123 It gives birth to a new individual of age zero with rate b(a) ∈ R + . Let U : R d + × R d + → R dc be an interaction kernel, d c ∈ N * being the number of interactions taken into account. For a, α ∈ R d + , U (a, α) models the action of an individual of ages α on an individual of ages a. The death rate of our individual is modelled by d(a, ZU (a)), with d : R d + × R dc → R + and where ZU (a) = R d + U (a, α)Z(dα), Our individual ages with the speed v(a) ∈ R d + .

  a)∇ a f s (a) + ∂f s ∂s (a) + f s (0)b(a)f s (a)d(a, ξ s U (x, a)) ξ s (da) ds. (1.2)

  ∂m ∂t (a, t) = -∂m ∂a (a, t) -(d(a) + ηM t ) m(a, t) m(0, t) = +∞ 0 b(a)m(a, t)da, m(a, 0) = m 0 (a), M t =

Figure 2 :

 2 Figure 2: The interpretation is that the state of the population at time t is obtained by considering

  (3.6) and (3.7), we obtain that da-almost surely on R * + , and ∀t ∈ R + , ∂ ∂t m(a, t) + ∇ a (v(a)m(a, t)) = -d a, R + U (a, α)m(α, t)dα m(a, t). (3.8) Let us now consider test functions f ∈ C 1 b (R + , R) with arbitrary support. From (3.7) and (3.6): ∀t

Definition 4 . 3 .

 43 For ξ 0 ∈ M F (R d + ) and z ∈ D T , let us define I T ξ 0 (z) by:

Lemma 4 . 7 .

 47 Under Assumptions 2.4, 2.1, 4.2. (i) ∀L > 0, ∃N = N (T, L, C 0 ) > 0, ∃n 0 ∈ N * , ∀n > n 0 , P (τ n N > T ) ≤ e -nL , andP (ζ n N > T ) ≤ e -nL , C 0 being defined in Point 2 of Assumptions 2.10. (ii) ∀φ ∈ K, ∀L > 0, ∃C = C(φ, T, L, C 0 ) > 0, ∃n 0 ∈ N * , ∀n > n 0 , P sup t∈[0,T ] Z n t , φ > C ≤ e -nL .Sketch of the proof of Point (ii) of Proposition 4.6. Let us introduce the following sets for C > 0 and φ ∈ C b

e

  γs ρ ψ (φ) e -γs dm Z n ,> e γT (L + 2C 0 C(φ) + ξ 0 , φ ) ≤ P sup t∈[0,T ] M n,γ,nφ t -Ξ n,γ,nφ t > nL ≤ e -nL , by the Doob inequality and Point (iii) of Proposition 3.3.

Lemma 4 . 15 .

 415 Under Assumptions 2.1, 2.4, for z ∈ D T , (i) Γ ρ,z is convex continuous, (ii) Let f ∈ C b (R d + × [0, T ], R). ∂Γ ρ,z (ψ(f )) is a singleton {ν} characterized by: ∀g ∈ B b (E × [0, T ], R), ν, g = T 0 Eg e ψ(f ) -1 dm z,T s ds. (4.30)

  +ε . Proof. For R > 0, δ > 0 and z ∈ D T , K(R) c δ is closed in D T and {y ∈ D T | d D,T (z, y) < δ} is open. The results are then consequences of Theorem 4.4. Remark 5.2. Since {y | d D,T (y, ξ) < δ} ∩ G = ∅, the lower bound of (4.10) provides information for the times of exit from tubes centered on the solution ξ of (1.2).

Assumption 5 . 3 .

 53 In the following, we assume that R 0 > 1, implying that b > d since: b/d = +∞ 0 be -da da ≥ R 0 > 1.

Proposition 5 . 5 .

 55 Under Assumption 5.3: (i) The following equation: 1 = +∞ 0 e -λ 1 a b(a)Π(0, a)da, admits a unique solution λ 1 > 0.(ii) The solution m(a, t) of (1.5) has the following long-time behaviour:

0 z s -z µ 0 s T V ds ( 5 . 23 )

 0523 )(h z + 1)dm z,T s ds -t 0 E ψ(f )(h z + 1)dm z µ 0 ,T s ds ≤ z 0µ 0 T V + ( h z ∞ + 1) b + d + 2ηA T t Taking the supremum in φ ∈ C 1 b (R + , R + ) bounded by 1 gives: z tz µ 0 t T V ≤δ exp ( h z ∞ + 1) b + d + 2ηA T T ,(5.24)by Gronwall's Lemma and by choice of µ 0 . Choosing δ = min 1, εe -( h z ∞ +1)[ b+ d+2ηA T ]T , we have δ ∈]0, 1] and can upper bound the right hand side of (5.24) by ε, which proves Point (i). Now let us consider Point (ii). For f z defined in Proposition 4.14 and using (4.29):I T µ 0 (z µ 0 ) -I T z 0 (z) ≤ h z ψ(f z )ρ(ψ(f z )) ∞ T b + d + 2ηA T sup t∈[0,T ] z tz µ 0 t T V .(5.25)

P

  (T n = τ k ) + P min 1≤k≤q (θ kτ k-1 ) ≤ T 0 + P (T n = τ 0 ) (5.33)By Markov strong property and by (5.29), ∃n 0 > 0, ∀n ≥ n 0 , ∀k ∈ N * ,P (T n = τ k ) =P P Z n θ k

  lim n→+∞ P Z n σρ ∈ B c W 1 ( ξ, γ) = 0,(5.38)by Lemma 5.15.Proof of Lemma 5.14. If ξ 0 ∈ B W 1 ( ξ, ρ), Lemma 5.14 is true. Assume that ρ ≤ W 1 ( ξ, ξ 0 ). Then,ξ 0 ∈ B W 1 ( ξ, γ) \ B W 1 ( ξ, ρ). Let L > 0. It is sufficient to show that: ∃T = T (L) > 0, lim sup n→+∞ 1 n log P (σ ρ > T ) < -L.By Point (iii) of Proposition 5.5:∀ξ 0 ∈ B W 1 ( ξ, γ), ∃T 1 (ρ, ξ, γ) > 0, ∀t ≥ T 1 , W 1 (ξ ξ 0 t , ξ) < ρ/2. Let T ≥ T 1 . If the path (Z n t ) t∈[0,T ] remains in B W 1 ( ξ, γ) \ B W 1 ( ξ, ρ), we have necessarily W 1 (Z n T , ξ ξ 0 T ) > ρ/2. The sequence (L(Z n )) n∈N * being exponentially tight, ∃K(L, T ) ⊂ D T compact, ∃n 0 ∈ N * , ∀n ≥ n 0 , P (Z n / ∈ K(L, T )) ≤ e -nL .The following set:A(T ) = adh z ∈ D T , ∀t ∈ [0, T ], z t ∈ B W 1 ( ξ, γ) \ B W 1 ( ξ, ρ) ∩ K(L, T ).(5.39) is compact, does not contain ξ by choice of T and ∀z ∈ A(T ), I T ξ 0 (z) > 0 (Lemma 5.11). Then:lim sup n→+∞ 1 n log P (σ ρ > T ) ≤ max lim sup n→+∞ 1 n log P (Z n ∈ A(T )) , lim sup n→+∞ 1 n log P (Z n / ∈ K(L, T )) ≤ maxinf z∈A(T ) I T ξ 0 (z), -L < 0.It remains to show that for sufficiently large T , inf z∈A(T )I T ξ 0 (z) > L. (5.40) Let z ∈ A(T ) starting from ξ 0 ∈ B W 1 ( ξ, γ) \ B W 1 ( ξ, ρ) with T ≥ T 1 . Let φ ∈ C 1 (R + , R) be bounded by 1, t ∈ [0, T ] and f : (a, s) ∈ R 2 + → f s (a) = φ(a + ts) ∈ R.We have:z tξ t , φ = t 0 R + (b(a)φ(ts)φ(a + ts) (d(a)η z s ,1)) (z sξ s )(da)ds t 0 R + φ(a + ts)η ( z sξ s , 1 ) ξ s (da) ds + t 0 E ψ(f )h z dm z,T s ds.

1 T 0 E 1 0 E dm z,T 1 s ds ρ * ρ 2 e

 10112 φ | ≤ b + d + 2ηA T t 0 sup u∈[0,s] z uξ u T V ds + t 0 E |h z |dm z,T s dsTaking the supremum in φ in the left hand side, by Gronwall's inequality and by (5.1):sup t∈[0,T ] W 1 (z t , ξ t ) ≤ sup t∈[0,T ] z tξ t T V ≤ T 0 E |h z |dm z,Ts ds e ( b+ d+2ηA T )T .(5.41)Since sup t∈[0,T ] W 1 (z t , ξ t ) ≥ ρ/2: dm z,T s ds e -( b+ d+2ηA T )T and since ρ * is an increasing function onR + : d + ηA T )A T T e -( b+ d+2ηA T )T ,(5.42)On the other hand, by Jensen's inequality: 42) and(5.43), and forT = T 1 : d + ηA T 1 )A T 1 T 1 e -( b+ d+2ηA T 1 )T 1 ≥ inf z∈A(T 1 )T -( b+ d+2ηA T 1 )T 1 ( b + d + ηA T 1 )A T 1 T 1 := C 2 > 0,(5.44) 

ρ

  * (h z j )dm z j ,T s ds,(5.45) where ∀t ∈ [0, T 1 ], z j t = z (j-1)T 1 +t is a path in A(T 1 ) which solves:∀ (f : (a, s) → f s (a)) ∈ C 1 b (R + × [0, T 1 ], R), z j t , f t = z (j-1)T 1 , f 0 +

1 n

 1 n 0 ∈B W 1 ( ξ,γ)\B W 1 ( ξ,ρ) (Z n ∈ A(T 2 )) ≤inf z∈A(T 2 ) n σ ρ ∈ B c W 1 ( ξ, γ) ≤ max lim sup n→+∞ 1 n log P (σ ρ > T 2 ) , lim sup n→+∞ 1 n log P (Z n ∈ A(T 2 )) ≤ max (-V (R), -V (2ρ)) .By (5.10), lim ρ→0 lim supn→+∞ log P Z n σ ρ ∈ B c W 1 ( ξ, γ) ≤ -V (R), and letting R tend to 0, we obtain the result of Point (i), since the left hand side does not depend on R.Let us consider Point (ii). Let ε > 0, ρ ∈]0, γ/2[ and R > 0 satisfying V (R) < +∞ and:lim sup n→+∞ 1 n log P(Z n σ ρ ∈ B c W 1 ( ξ, γ)) ≤ -V (R) + ε 2 .

  Assume that the size N n t of the population at time t ∈ R + is finite. Under Assumptions 2.4, there exists a positive constant C (say b + d) such that the global jump rate at time t ∈ R + is upper bounded by CN n t -(1 + N n t -), which is finite. Hence, it is possible to define the sequence of event times (T n k ) k∈N * of Z n almost surely. Since it forms an increasing sequence,

	T n ∞ := lim k→+∞ T n k is well defined. It is proved in [45] (Sections 2.2, 2.3 and 3.1) that:
	Theorem 2.6. Existence and uniqueness of the solutions of (2.5)
	Under Assumptions 2.1, 2.4 and Point 1 of Definition 2.5, T n ∞ = +∞ P-a.s. and SDE (2.5) admits for every n ∈ N * a unique pathwise solution (Z n t ) t∈R + ∈ D.
	Since for t ∈ R + , N n t and Z n t , |a| are finite but unbounded, we introduce the following stopping times: let N ∈ R * + ,

  which can not be upper bounded independently of N . Hence, (2.16) is satisfied. Letting N tend to infinity in (2.15) gives (2.11) by Fatou's lemma.

  Point 2 is for instance satisfied if lim |u|→+∞ d(a, u) = +∞ (this happens for the logistic model). Proposition 2.11. Under Assumptions 2.1, 2.4, 2.10 :

  We replace ξ s (da) in (1.2) by m(a, s)da and differentiate with respect to time. ∀t ∈ R + ,

	following Proposition linking (1.2) and (1.3, 1.4) is proved in Section 3.2.4 of [45]:
	Proposition 3.7. For d = 1 and under the Assumptions of Proposition 3.5, the weak function
	solution (a, t) → m(a, t) of (1.2) is well defined. If this solution belongs to C 1 b (R 2 + , R + ) and if ∀t ∈ R + , ∂ ∂t R + m(a, t)da = R + ∂m ∂t (a, t)da, then it is the classical solution of (1.3, 1.4).
	Proof.

  Proposition 4.6. Under Assumptions 2.1, 2.4, 4.2: (i) Let (ϕ r ) r∈N * be a denumberable dense family of C 1 0 (R d + , R), and let us set

  Lemma 4.8. Under Assumptions 2.1, 2.4, 4.2, for C 0 and n 0 defined in Assumptions 4.2, for

	The proof of Lemma 4.7 is based of the following Lemma 4.8, where we establish a sufficient
	condition to obtain the upper bounds of Lemma 4.7.

e -nL ≤ e -nL (2e -nL )

1e -nL (4.14)

by Point (ii) of Lemma 4.7. This yields (4.12).

  v∇ a φγφ e -γs ds -

	0	t	E	ψ(φ)e -γs dm Z n ,T s	ds,
	is a local martingale starting from 0 (Point (iii) of Proposition 2.8). Let us define Ξ n,γ,φ t	:= Ξ n,Ψ

t with the notation of

(2.18)

. By the Assumption (4.15):

t 0 Z n

s , v∇ a φγφ e -γs ds +

  .19) We now prove Point (i) of Lemma 4.7. Noticing that P (τ n N ≤ T ) = P sup t∈[0,T ] Z n t , 1 ≥ N , it is sufficient, by Lemma 4.8, to prove that (4.15) is satisfied for φ ≡ 1. This is fulfilled since (4.19) is satisfied for φ ≡ 1 and γ > e b.

	We proceed in a similar way to establish the deviation inequality for ζ n N . For φ defined by:
	∀a ∈ R d + , φ(a) = 1 + |a| = 1 +	d i=1 a 2 i , (4.19) becomes:
	R +	exp e -γt b(a) +	d i=1	2v i (a)a i |a|	-γ -γ|a| Z n t (da) ≤ 0.
	By Assumptions 2.1 and since	d i=1 a i	2	≤ C(d) d i=1 a 2 i , we have d i=1	2v

i (a)a i |a| ≤ 2v C(d) + |a| . Then, (4.19) is satisfied for γ > e b + C(d)2v. By Lemma 4.8: lim sup n→+∞ 1 n log P (ζ n N ≤ T ) = lim sup n→+∞ 1 n log P sup t∈[0,T ]

  , Theorems 3.24 p.159 and 5.19 p.181. Proposition 4.21. Under Assumptions 2.1, 2.4, 4.2, for z ∈ D T satisfying Assumption 4.19 and under (P ′n ) n∈N * of Proposition 4.20, the sequence (Z n ) n∈N * converges in probability to z.Assumptions 2.4 are still satisfied. We can then prove, with proofs similar to the ones of Section 3 (Corollary 3.4), that Z n converges weakly to z in P ′n -probability.We are now able to prove the lower bound announced in(4.46). of Proposition 4.17. We have P n (O) = P ′n (O)E P ′n 1 O dP n dP ′n /P ′n (O) (these terms may all be equal to zero). By Jensen's inequality and the definition of D n

	Proof. Birth and death rates are perturbed by continuous bounded functions:
			b(a) ↔ e f z (0,s) b(a), d(a, Z n s U (a)) ↔ e -f z (a,s) d(a, Z n s U (a)).	(4.59)
	Proof T :		
	lim inf n→∞	1 n	log P n (O) ≥ lim inf n→∞	1 n	log P ′n (O) + lim inf n→∞	E P ′n -	1 O P ′n (O)	1 n	log D n T .
	By Proposition 4.21, lim n→+∞ log P ′n (O) → 0, which implies: lim inf n→∞	1

  1 2 , we obtain, by Point 2 of Assumptions 2.10 and by Proposition 2.8:

	lim sup n→∞

  5.2 Exit times from the neighborhood of a stationary state of the Logistic age-structured population Recall the example of the logistic population structured by a scalar age presented in the introduction. Let us introduce the probability Π(a 1 , a 2 ) that an individual of age a 1 lives until age a 2 and the net reproduction rate R 0 .

	Π(a 1 , a 2 ) = exp -

n log P (Z n / ∈ K L ) ≤ -L.

For R > 0 and G defined in (4.9):

V (R) = inf I T z 0 (z) | T > 0, z ∈ D T , W 1 (z 0 , ξ) < R, z T / ∈ B W 1 ( ξ, γ) , (5.9)

(5.10)

When the set in (5.8) (resp. (5.9)) is empty, V (resp. V (R)) is infinite. The estimates given in the following sections (Propositions 5.8 and 5.13) are then automatically satisfied. Notice that V is well defined in R + ∪ {+∞}: (V (R)) R>0 is an increasing sequence when R ↓ 0 and:

(5.11)

Notation:

Recall that ξ is the solution of (1.2) starting from ξ 0 ∈ M F (R + ), which is the limit of Z n 0 for the weak convergence. Until the end of this section, we will consider ξ 0 ∈ B W 1 ( ξ, γ). We denote by ξ µ 0 ∈ C(R + , M F (R + )) the solution of (1.2) starting from the initial condition µ 0 ∈ M F (R + ).

For z ∈ D T such that I T ξ 0 (z) < +∞ with T > 0, there exists h z ∈ L ρ * ,z such that z is the solution of (4.7) perturbed by h z . We denote by z µ 0 the solution of this equation perturbed by h z starting from µ 0 ∈ M F (R + ).

Upper bound of the exit time

Proposition 5.8. Let ξ 0 ∈ B W 1 ( ξ, γ). Under Assumptions 2.4, 4.2, 4.19, 5.7:

The following corollary, obtained by the Markov inequality, give us an interpretation of this result: the exit time T n is upper bounded by e n V up to an exponentially small probability. The proof of Proposition 5.8 relies on the following lemmas. Lemma 5.10, proved in the end of this section, establishes a result of continuity with respect to the initial condition. Lemma 5.11 shows that z → I T ξ 0 (z) wanishes only at ξ. Its proof stands in [START_REF] Graham | A large deviation principle for a large star-shaped loss network with links of capacity one[END_REF] page 490. Notice that the results given by these lemmas use the total variation norm. Indeed, we do not know if the perturbations h z are Lipschitz continuous. However, under the constraint that z ∈ G in the definition of V and in the lower bound of Theorem 4.4, these perturbations remain bounded.

Lemma 5.11. Let T > 0. We have I T ξ 0 (z) = 0 is and only if z = ξ, the unique weak measure solution of (1.4)-(1.3) starting from ξ 0 .

We do this assumption since the upper bound (5.12) is based on the lower bound in (4.10). In order to establish the Proposition 5.8, it is sufficient to prove that:

The left hand side does not depend on z, and we can take the infimum in z in the right hand side, which gives (5.12) by (5.8).

In order to obtain (5.14), we establish an upper bound of the form:

where C(z, T ) is a nonnegative constant. For this purpose, we lower bound the probability P (T n ≤ kC(z, T )) by the probability that (Z n t ) t∈[0,kC(z,T )] goes through the neighborhood of

Step 1 : We begin with bounding below the exit probability of B W 1 ( ξ, γ) when the initial condition is "near" ξ, by using the parth z.

Let us consider the perturbed evolution equation (4.7) satisfied by z starting from ξ and let µ 0 ∈ M F (R + ).

By Point (i) of Lemma 5.10,

We deduce by the triangular inequality:

and thus z µ 0 T / ∈ B W 1 ( ξ, γ). By Point (ii) of Lemma 5.10:

Assume that ξ 0 ∈ B T V ( ξ, δ 0 ∧δ 2 ). We can lower bound the probability of exit of B W 1 ( ξ, γ) by the probability that the path stays in a tube of radius δ 1 around z ξ 0 : ∀ε > 0, ∃n 0 ∈ N * , ∀n ≥ n 0 ,

(5.17) by Proposition 5.1 and by (5.16).

Step 2 : We now consider an initial condition ξ 0 ∈ B W 1 ( ξ, γ) satisfying Assumption 5.7. By Proposition 3.5, the marginals ξ t of the solution of (1.2) are absolutely continuous with respect to the Lebesgue measure. By Point (iii) of Proposition 5.5,

(5.18)

, we obtain from (5.17), and from the strong Markov property:

where the lower bound for P (d D,T 1 (Z n , ξ) ≤ δ 3 ) is obtained by Proposition 5.1 and Lemma 5.11.

Lower bound of the exit time

We now consider the probability P(T n > e n(V -δ) ) for δ > 0. We rely on the large deviation upper bound (4.10). The skeleton of the proof looks like its counterpart in finite dimension (see [START_REF] Dembo | Large Deviation Techniques and Applications[END_REF], Section 5), but the proofs of all the technical lemmas have to be changed, when dealing with our measure-valued processes. Another difficulty is that V is possibly infinite.

Proposition 5.13. Let ξ 0 ∈ B W 1 ( ξ, γ). Under Assumptions 2.4, 4.2, 5.7 :

1. If V < +∞, then ∀δ > 0, lim n→+∞ P T n > e n(V -δ) = 1.

2. If V = +∞, then ∀V > 0, lim n→+∞ P T n > e nV = 1.

Let ρ ∈]0, γ/2[. For such ρ, we define the following stopping times:

(5.26)

). The proof of Proposition 5.13 is based on the following lemmas, proved at the end of the section. The interesting vase is when ρ ≤ W 1 (ξ 0 , ξ), ξ 0 ∈ B W 1 ( ξ, γ) \ B W 1 ( ξ, ρ). The estimates of Lemmas 5.14, 5.15 and 5.16 are automatically satisfied if ρ > W 1 (ξ 0 , ξ).

Lemmas 5.14, 5.15 and 5.16 tell us that the following probabilities are exponentially small: 1. the probability that the path (Z n s ) s∈[0,t] remains in the set B W 1 ( ξ, γ)\B W 1 ( ξ, ρ) when t → +∞, 2. the probability that Z n leaves this set by leaving B W 1 ( ξ, γ), 3. the probability that Z n "strongly" deviates from its initial condition Z n 0 in short time. Notice that the use of W 1 is fundamental in the proof of Lemma 5.16.

Proof of Proposition 5.13. Let δ > 0 and let:

with an arbitrary V > 0 as in the terms of the Proposition. By Lemma 5.15, ∃ρ ∈]0, γ/2[, lim sup n→+∞

, and: ∃n 0 ∈ N * , ∀n ≥ n 0 ,

(5.29)

We define the following stopping times: ∀k ∈ N, θ 0 =0 (5.30)

Proof of Lemma 5.16. Let T > 0 and c > 0. By Point (i) of Lemma 4.7, there exists N = N (c, T ) > 0 such that:

With the notation of Definition 2.5:

where N (t) is a Poisson random variable with parameter tN ( b + d + ηN ). We deduce:

Since: Thanks: I am greatly indebted to Sylvie Méléard for having proposed this subject to me and for her constant support during this work. I also wish to thank Christian Léonard for numerous helpful discussions and pertinent corrections.