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ABSTRACT

We prove in this paper that the length of the Wadge hierarchy of ω-context-free lan-
guages is greater than the Cantor ordinal εω , which is the ω

th fixed point of the ordinal
exponentiation of base ω. We show also that there exist some Σ0

ω-complete ω-context-
free languages, improving previous results on ω-context-free languages and the Borel
hierarchy.
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1. Introduction

In the sixties Büchi studied the ω-languages accepted by finite automata to prove
the decidability of the monadic second order theory of one successor over the in-
tegers. Since then the so called ω-regular languages have been intensively studied,
see [Tho90, PP04] for many results and references. The extension to ω-languages
accepted by pushdown automata has also been investigated, firstly by Cohen and
Gold, Linna, Nivat, see Staiger’s paper [Sta97] for a survey of this work, including ac-
ceptance of infinite words by more powerful accepting devices, like Turing machines.
A way to investigate the complexity of ω-languages is to consider their topological
complexity. Mc Naugthon’s Theorem implies that ω-regular languages are boolean
combinations of Π0

2
-sets. We proved that ω-context-free languages (accepted by push-

down automata with a Büchi or Muller acceptance condition) exhaust the finite ranks
of the Borel hierarchy, [Fin01a], that there exist some ω-context-free languages (ω-
CFL) which are analytic but non Borel sets, [Fin03a], and that there exist also some
ω-CFL which are Borel sets of infinite rank, [Fin03b].
On the other hand the Wadge hierarchy of Borel sets is a great refinement of the

1A short version of this paper appeared in the Proceedings of the International Workshop on
Logic and Complexity in Computer Science held in honour of Anatol Slissenko for his 60th birthday,
Créteil, France, 2001, [Fin01d]
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Borel hierarchy and it induces on ω-regular languages the now called Wagner hier-
archy which has been determined by Wagner in an effective way [Wag79]. Its length
is the ordinal ωω. Notice that Wagner originally determined this hierarchy without
citing links with the Wadge hierarchy. The applicability of the Wadge hierarchy to
the Wagner hierarchy was established by Selivanov in [Sel94, Sel95]. The Wadge hi-
erarchy of deterministic ω-context-free languages has been recently determined by
Duparc: its length is the ordinal ω(ω2), [Dup03]. We proved in [Fin01b] that the
length of the Wadge hierarchy of (non deterministic) ω-context-free languages is an
ordinal greater than or equal to the first fixed point of the ordinal exponentiation of
base ω, the Cantor ordinal ε0.
We improve here this result and show that the length of the Wadge hierarchy of ω-
context-free languages is an ordinal strictly greater than the ωth fixed point of the
ordinal exponentiation of base ω, the ordinal εω. In order to get our results, we use
recent results of Duparc. In [Dup01, Dup95a] he gave a normal form of Borel ∆0

ω-sets,
i.e. an inductive construction of a Borel set of every given degree in the Wadge hierar-
chy of ∆0

ω-Borel sets. In the course of the proof he studied the conciliating hierarchy
which is a hierarchy of sets of finite and infinite sequences, closely connected to the
Wadge hierarchy of non self dual sets. On the other hand the infinitary languages,
i.e. languages containing finite and infinite words, accepted by pushdown automata
have been studied in [Bea84a, Bea84b] where Beauquier considered these languages as
process behaviours which may or may not terminate, as for transition systems studied
in [AN82]. We study the conciliating hierarchy of infinitary context-free languages,
considering various operations over conciliating sets and their counterpart: arithmeti-
cal operations over Wadge degrees.
On the other hand we show that there exists some Σ0

ω-complete ω-context-free lan-
guage, using results of descriptive set theory on sets of ω2-words and a coding of
ω2-words by ω-words.
The paper is organized as follows. In section 2 we recall some above definitions and
results about ω-languages accepted by Büchi or Muller pushdown automata. In sec-
tion 3 Borel and Wadge hierarchies are introduced. In section 4 we show that the class
of infinitary context-free languages is closed under various operations and we study
the effect of these operations on the Wadge degrees. In section 5 we prove our main
result on the length of the Wadge hierarchy of ω-context-free languages. In section 6
we construct some Σ0

ω-complete ω-context free language.

2. ω-Regular and ω-Context-Free Languages

We assume the reader to be familiar with the theory of formal languages and of ω-
regular languages, [Tho90, Sta97]. We shall use usual notations of formal language
theory. When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak , where ai ∈ Σ for i = 1, . . . , k ,and k is an integer ≥ 1. The length of x
is k, denoted by |x| . The empty word has no letter and is denoted by λ; its length is
0. For x = a1 . . . ak, we write x(i) = ai and x[i] = x(1) . . . x(i) for i ≤ k and x[0] = λ.
Σ? is the set of finite words (including the empty word) over Σ.
The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . ., where
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for every i ≥ 1 ai ∈ Σ. When σ is an ω-word over Σ, we write σ = σ(1)σ(2) . . . σ(n) . . .,
where for all i σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.
The prefix relation is denoted v: the finite word u is a prefix of the finite word v
(respectively, the infinite word v), denoted u v v, if and only if there exists a finite
word w (respectively, an infinite word w), such that v = u.w. The set of ω-words over
the alphabet Σ is denoted by Σω. An ω-language over an alphabet Σ is a subset of
Σω.
For V ⊆ Σ?, the ω-power of V is the ω-language: V ω = {σ = u1 . . . un . . . ∈ Σω |
∀i ≥ 1 ui ∈ V − {λ}}. For any family L of finitary languages, the ω-Kleene closure
of L, is : ω −KC(L) = {∪n

i=1Ui.V
ω
i | ∀i ∈ [1, n] Ui, Vi ∈ L}.

For V ⊆ Σ?, the complement of V (in Σ?) is Σ? − V denoted V −. For a subset
A ⊆ Σω, the complement of A is Σω − A denoted A−. When we consider subsets of
Σ≤ω = Σ? ∪Σω , if A ⊆ Σ≤ω then A− = Σ≤ω−A, (this will be clear from the context
so that there will not be any confusion even if A ⊆ Σ? or A ⊆ Σω).
Recall that the class REGω of ω-regular languages is the class of ω-languages accepted
by non-deterministic finite automata with a Büchi or Muller acceptance condition. It
is also the ω-Kleene closure of the class REG of regular finitary languages.
Similarly the class CFLω of ω-context-free languages (ω-CFL) is the class of ω-
languages accepted by non-deterministic pushdown automata with a Büchi or Muller
acceptance condition. It is also the ω-Kleene closure of the class CFL of context-free
finitary languages, [CG77, Sta97].
Let Σ be a finite alphabet. A subset L of Σ≤ω is said to be an infinitary context-
free language iff there exists a finitary context-free language L1 ⊆ Σ? and an ω-CFL
L2 ⊆ Σω such that L = L1 ∪ L2. The class of infinitary context-free languages will
be denoted CFL≤ω.

3. Borel and Wadge Hierarchies

We assume the reader to be familiar with basic notions of topology which may be found
in [Mos80, Kec95, LT94, Sta97, PP04] and with the elementary theory of ordinals,
including the operations of multiplication and exponentiation, which may be found
in [Sie65]. For a finite alphabet X , we consider Xω as a topological space with the
Cantor topology. The open sets of Xω are the sets in the form W.Xω, where W ⊆ X?.
A set L ⊆ Xω is a closed set iff its complement Xω − L is an open set. Define now
the Borel Hierarchy on Xω:

Definition 3.1 For a non-null countable ordinal α, the classes Σ0

α and Π0

α of the
Borel Hierarchy on the topological space Xω are defined as follows:
Σ0

1
is the class of open subsets of Xω.

Π0

1
is the class of closed subsets of Xω.

and for any countable ordinal α ≥ 2:
Σ0

α is the class of countable unions of subsets of Xω in ∪γ<αΠ0

γ.
Π0

α is the class of countable intersections of subsets of Xω in ∪γ<αΣ0

γ.
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Notice that the above definition of Borel classes Σ0

α and Π0

α, for a limit ordinal α, is
the usual one in descriptive set theory, as given in the textbooks [Mos80, Kec95].
In particular, the class Σ0

ω is not the union of the classes Σ0

n
for integers n ≥ 1 but it

strictly contains ∪n≥1Σ
0

n
= ∪n≥1Π

0

n
consisting of Borel sets of finite rank. Moreover

classes Σ0

ω and Π0

ω are distinct and are incomparable for the inclusion relation.
We shall say that a subset of Xω is a Borel set of rank α, for a countable ordinal α,
iff it is in Σ0

α ∪Π0

α but not in
⋃

γ<α(Σ0

γ ∪Π0

γ).

In particular a Borel set has Borel rank ω iff it is in (Σ0

ω ∪Π0

ω) but is not a Borel set
of finite rank.
Introduce now the Wadge Hierarchy which is in fact a huge refinement of the Borel
hierarchy:

Definition 3.2 (Wadge [Wad84]) Let X, Y be two finite alphabets. For E ⊆ Xω

and F ⊆ Y ω, E is said to be Wadge reducible to F (E ≤W F ) iff there exists a
continuous function f : Xω → Y ω, such that E = f−1(F ).
E and F are Wadge equivalent iff E ≤W F and F ≤W E. This will be denoted by
E ≡W F . And we shall say that E <W F iff E ≤W F but not F ≤W E.
A set E ⊆ Xω is said to be self dual iff E ≡W E−, and otherwise it is said to be non
self dual.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
The equivalence classes of ≡W are called Wadge degrees.
WH is the class of Borel subsets of a set Xω, where X is a finite set, equipped with
≤W and with ≡W .
Remark that in the above definition, we consider that a subset E ⊆ Xω is given
together with the alphabet X .
We can now define the Wadge class of a set F :

Definition 3.3 Let F be a subset of Xω. The Wadge class of F is [F ] defined by:
[F ] = {E | E ⊆ Y ω for a finite alphabet Y and E ≤W F}.

Recall that each Borel class Σ0

α and Π0

α is a Wadge class.
And that a set F ⊆ Xω is a Σ0

α (respectively Π0

α)-complete set iff for any set E ⊆ Y ω,
E is in Σ0

α (respectively Π0

α) iff E ≤W F .

Theorem 3.4 (Wadge) Up to the complement and ≡W , the class of Borel subsets
of Xω, for a finite alphabet X, is a well ordered hierarchy. There is an ordinal |WH |,
called the length of the hierarchy, and a map d0

W from WH onto |WH | − {0}, such
that for all A, B ∈WH:
d0

W A < d0
W B ↔ A <W B and

d0
W A = d0

W B ↔ [A ≡W B or A ≡W B−].

The Wadge hierarchy of Borel sets of finite rank has length 1ε0 where 1ε0 is the
limit of the ordinals αn defined by α1 = ω1 and αn+1 = ωαn

1 for n a non negative
integer, ω1 being the first non countable ordinal. Then 1ε0 is the first fixed point of
the ordinal exponentiation of base ω1. The length of the Wadge hierarchy of Borel
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sets in ∆0

ω = Σ0

ω ∩Π0

ω is the ωth
1 fixed point of the ordinal exponentiation of base

ω1, which is a much larger ordinal. The length of the whole Wadge hierarchy of Borel
sets is a huge ordinal, with regard to the ωth

1 fixed point of the ordinal exponentiation
of base ω1. It is described in [Wad84, Dup01] by the use of the Veblen functions.
There is an effective version of the Wadge hierarchy restricted to ω-regular languages:

Theorem 3.5 For A and B some ω-regular sets, one can effectively decide whether
A ≤W B and one can compute d0

W (A).

The hierarchy obtained on ω-regular languages is now called the Wagner hierarchy
and has length ωω. Wagner [Wag79] gave an automata structure characterization,
based on notion of chain and superchain, for an automaton to be in a given class and
then he got an algorithm to compute the Wadge degree of an ω-regular language.
Wilke and Yoo proved in [WY95] that one can compute in polynomial time the Wadge
degree of an ω-regular language. There is an effective extension of the Wagner
hierarchy: the Wadge hierarchy of ω-languages accepted by Muller deterministic one
blind (i. e. without zero-test) counter automata [Fin01c]. This hierarchy has an
extension to deterministic ω-context-free languages as well as to deterministic Petri
net ω-languages which has length ω(ω2) [DFR01, Dup03, Fin01e] but we do not know
yet whether these extensions are decidable.
The Wadge hierarchy of ω-languages accepted by deterministic Turing machines has
been very recently determined by Selivanov: its length is the ordinal (ωCK

1 )ω, where
ωCK

1 is the first non-recursive ordinal, [Sel03a, Sel03b].
The Wadge hierarchy restricted to (non deterministic) ω-CFL is not effective: we
have shown in [Fin01a, Fin01b, Fin03a] that one can neither decide the Borel rank
nor the Wadge degree of a Borel ω-CFL. In fact one cannot even decide whether an
ω-CFL is a Borel set.

4. Operations on Conciliating Sets

4.1. Conciliating Sets

We sometimes consider here subsets of X? ∪Xω = X≤ω, for an alphabet X , which
are called conciliating sets in [Dup01, Dup95a].

Definition 4.1 Let X be a finite or countably infinite alphabet. A conciliating set
over the alphabet X is a subset of the set X≤ω = X? ∪Xω of finite or infinite words
over X.

Remark 4.2 We shall only consider in the sequel conciliating sets defined over a
finite alphabet, except that we shall state Definition 4.20 and Proposition 4.21 in a
more general case.

In order to give a “normal form” of Borel sets in the Wadge hierarchy, J. Duparc
studied the conciliating (Wadge) hierarchy which is a hierarchy over conciliating sets
closely related to the Wadge hierarchy. Recall the definition of the conciliating Wadge
game:



6 O. Finkel

Definition 4.3 ([Dup01]) Let XA, XB be two finite alphabets. For A ⊆ X≤ω
A and

B ⊆ X≤ω
B , the conciliating Wadge game C(A, B) is a game with perfect information

between two players, player 1 who is in charge of A and player 2 who is in charge of
B.
Player 1 first writes a letter a1 ∈ XA, then the two players alternatively write letters
an of XA for player 1 and bn of XB for player 2.
Both players are allowed to skip even indefinitely if they want to.
Then after ω steps, the player 1 has written a (finite or infinite) word x ∈ X≤ω

A and

the player 2 has written a (finite or infinite) word y ∈ X≤ω
B .

Player 2 wins the play iff [x ∈ A ↔ y ∈ B], i.e. iff [(x ∈ A and y ∈ B) or (x /∈
A and y /∈ B)], otherwise player 1 wins.

A strategy for player 1 is a function σ : (XB ∪ {s})? → (XA ∪ {s}). And a strategy
for player 2 is a function f : (XA ∪ {s})+ → XB ∪ {s} (s for “skip”).
A strategy σ is a winning strategy (w.s.) for player 1 iff he always wins a play when
he uses the strategy σ, i.e. when he writes at step n the letter an = σ(b1...bn−1) if
an 6= s and he skips at step n if s = σ(b1...bn−1).
A winning strategy for player 2 is defined in a similar manner.
Without loss of generality we can consider that players are allowed to write a finite
word instead of a single letter at each step of a play [Dup01].

Definition 4.4 For A ⊆ X≤ω
A and B ⊆ X≤ω

B , A ≤c B iff player 2 has a winning
strategy in C(A, B). Then A <c B iff A ≤c B but not conversely and A ≡c B iff
A ≤c B ≤c A.

It turned out that in the conciliating Wadge hierarchy every conciliating set is non
self dual. The Wadge hierarchy and the conciliating Wadge hierarchy are connected
via the following correspondence: first define Ad for A ⊆ Σ≤ω and d a letter not in
Σ by : Ad = {x ∈ (Σ ∪ {d})ω | x(/d) ∈ A}, where x(/d) is the sequence obtained
from x when removing every occurrence of the letter d. Then for A ⊆ Σ≤ω such that
Ad is a Borel set, (we shall say in that case that A is a Borel conciliating set), Ad is
always a non self dual subset of (Σ ∪ {d})ω and the correspondence A→ Ad induces
an isomorphism between the conciliating hierarchy and the Wadge hierarchy of non
self dual Borel sets. This is due to the fact that for two conciliating sets A and B,
A ≤c B iff Ad ≤W Bd.
Martin’s Theorem states that Borel Gale-Stewart games are determined: in such
infinite games one of the two players has a winning strategy, see [Kec95]. This implies
the following result.

Theorem 4.5 Let XA, XB be two finite alphabets and A ⊆ X≤ω
A , B ⊆ X≤ω

B be
such that Ad and Bd are Borel sets. Then the conciliating Wadge game C(A, B) is
determined: one of the two players has a winning strategy.

From now on we shall first concentrate on non self dual sets as in [Dup01] and we
shall use the following definition of the Wadge degrees which is a slight modification
of the previous one:



On the length of the Wadge hierarchy of ω-context free languages 7

Definition 4.6

(a) dw(∅) = dw(∅−) = 1

(b) dw(A) = sup{dw(B) + 1 | B non self dual and B <W A}
(for either A self dual or not, A >W ∅).

Recall the definition of the conciliating degree of a conciliating set:

Definition 4.7 Let A ⊆ Σ≤ω be a conciliating set over the alphabet Σ such that Ad

is a Borel set. The conciliating degree of A is dc(A) = dw(Ad).

We recall now some properties of the correspondence A → Ad when context-free
languages are considered:

Proposition 4.8 ([Fin01a]) a) If A ⊆ Σ? is a context-free (finitary) language,
or if A ⊆ Σω is an ω-CFL, then Ad is an ω-CFL.

b) If A is the union of a finitary context-free language and of an ω-CFL over the
same alphabet Σ, then Ad is an ω-CFL over the alphabet Σ ∪ {d}.

We are going now to introduce several operations over conciliating sets: the operation
of sum, of exponentiation and of iterated exponentiation. And we shall study their
counterpart which are ordinal arithmetical operations over Wadge degrees.

4.2. Operation of Sum

Definition 4.9 ([Dup01]) Assume that XA ⊆ XB are two finite alphabets, XB−XA

containing at least two elements, and that {X+, X−} is a partition of XB − XA in

two non empty sets. Let A ⊆ X≤ω
A and B ⊆ X≤ω

B , then

B + A =df A ∪ {u.a.β | u ∈ X?
A, (a ∈ X+ and β ∈ B) or (a ∈ X− and β ∈ B−)}

This operation is closely related to the ordinal sum as it is stated in the following:

Theorem 4.10 ([Dup01]) Let XA ⊆ XB, XB − XA containing at least two ele-

ments, A ⊆ X≤ω
A and B ⊆ X≤ω

B such that Ad and Bd are Borel sets. Then (B + A)d

is a Borel set and dc(B + A) = dc(B) + dc(A).

Remark 4.11 As indicated in Remark 5 of [Dup01], when A ⊆ Σ≤ω and X is a
finite alphabet, it is easy to build A′ ⊆ (Σ ∪ X)≤ω, such that (A′)d ≡W Ad. In fact
A′ can be defined as follows: for σ ∈ (Σ ∪X)≤ω, let σ ∈ A′ ↔ σ′ ∈ A, where σ′ is σ
except that each letter not in Σ is removed. Then in the sequel we assume that each
alphabet is as enriched as desired, and in particular we can always define B + A (or
in fact another set C such that Cd ≡W (B + A)d).

Consider now conciliating sets which are union of a finitary CFL and of an ω-CFL.
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Proposition 4.12 ([Fin01b]) Let XA ⊆ XB such that {X+, X−} is a partition of

XB − XA in two non empty sets. Assume A ⊆ X≤ω
A , A, A− ∈ CFL≤ω, B ⊆ X≤ω

B

and B, B− ∈ CFL≤ω. Then B + A and (B + A)− are in CFL≤ω.

Definition 4.13 Let A ⊆ X≤ω
A be a conciliating set over the alphabet XA. Then A.n

is inductively defined by A.1 = A and A.(n + 1) = (A.n) + A, for each integer n ≥ 1.

4.3. Operation of Exponentiation

We are going now to introduce the operation of exponentiation of conciliating sets
which was firstly defined by Duparc in his study of the Wadge hierarchy [Dup01].

Definition 4.14 (Duparc [Dup01]) Let Σ be a finite alphabet and �/∈ Σ, let X =
Σ ∪ {�}. Let x be a finite or infinite word over the alphabet X = Σ ∪ {�}.
Then x� is inductively defined by:
λ� = λ,
and for a finite word u ∈ (Σ ∪ {�})?:
(u.a)� = u�.a, if a ∈ Σ,
(u. �)� = u� with its last letter removed if |u�| > 0,
i.e. (u. �)� = u�(1).u�(2) . . . u�(|u�| − 1) if |u�| > 0,
(u. �)� = λ if |u�| = 0,
and for u infinite:
(u)� = limn∈ω(u[n])�, where, given βn and v in Σ?,
v v limn∈ω βn ↔ ∃n∀p ≥ n βp[|v|] = v.
(The finite or infinite word limn∈ω βn is determined by the set of its (finite) prefixes).

Remark 4.15 For x ∈ X≤ω, x� denotes the string x, once every � occuring in x
has been “evaluated” to the back space operation ( the one familiar to your computer!),
proceeding from left to right inside x. In other words x� = x from which every interval
of the form “a � ” (a ∈ Σ) is removed.

For example if u = (a �)n, for n an integer ≥ 1, or u = (a �)ω, or u = (a ��)ω,
then (u)� = λ. If u = (ab �)ω then (u)� = aω and if u = bb(� a)ω then (u)� = b.

Let us notice that in Definition 4.14 the limit is not defined in the usual way:
for example if u = bb(� a)ω the finite word u[n]� is alternatively equal to b or to
ba: more precisely u[2n + 1]� = b and u[2n + 2]� = ba for every integer n ≥ 1
(it holds also that u[1]� = b and u[2]� = bb). Thus Definition 4.14 implies that
limn∈ω(u[n])� = b so u� = b.
We can now define the operation A→ A∼ of exponentiation of conciliating sets:

Definition 4.16 (Duparc [Dup01]) For A ⊆ Σ≤ω and � /∈ Σ, let X = Σ∪ {�}
and A∼ =df {x ∈ (Σ ∪ {�})≤ω | x� ∈ A}.

The operation ∼ is monotone with regard to the Wadge ordering and produce some
sets of higher complexity, as we shall see below. We shall need the notion of cofinality
of an ordinal which may be found in [Sie65, CK73] and which we briefly recall now.
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Definition 4.17 Let α be a limit ordinal, the cofinality of α, denoted cof(α), is the
least ordinal β such that there exists a strictly increasing sequence of ordinals (αi)i<β ,
of length β, such that for all i < β, αi < α, and supi<β αi = α. This definition
is usually extended to 0 and to the successor ordinals: cof(0) = 0 and cof(α + 1) =
1 for every ordinal α.

The cofinality of a limit ordinal is always a limit ordinal satisfying: ω ≤ cof(α) ≤ α.
The ordinal cof(α) is in fact a cardinal [CK73]. Then if the cofinality of a limit ordinal
α is ≤ ω1, only the following cases may happen: cof(α) = ω or cof(α) = ω1. In this
paper we shall not have to consider cofinalities which are larger than ω1.

We can now state that the operation of exponentiation of conciliating sets is closely
related to ordinal exponentiation of base ω1:

Theorem 4.18 (Duparc [Dup01]) Let A ⊆ Σ≤ω be a conciliating set such that Ad

is a ∆0

ω-Borel set and dc(A) = dw(Ad) = α + n with α a limit ordinal and n an
integer ≥ 0. Then (A∼)d is a ∆0

ω-Borel set and there are three cases:

a) If α = 0, then dc(A
∼) = (ω1)

dc(A)−1

b) If α has cofinality ω, then dc(A
∼) = (ω1)

dc(A)+1

c) If α has cofinality ω1, then dc(A
∼) = (ω1)

dc(A)

Consider now this operation A→ A∼ over infinitary context-free languages.

Theorem 4.19 ([Fin01a, Fin01b]) Whenever A ⊆ Σω (respectively, A ⊆ Σ≤ω) is
in CFLω, (respectively, in CFL≤ω), then A∼ is in CFLω, (respectively, in CFL≤ω).

And A, A− ∈ CFL≤ω implies that A∼, (A∼)
−

= (A−)
∼
∈ CFL≤ω

4.4. Operation of Iterated Exponentiation

In this section we are going to define a new operation A → A• which can be called
iterated exponentiation. It will involve an infinite number of erasers so each eraser will
be coded over a fixed finite alphabet and we shall see how a pushdown automaton will
be able to guess, in a non deterministic way, that the erasing operations are correctly
achieved in an input word.
One can already iterate the operation of exponentiation of sets. We shall use, in order
to simplify our proofs, a variant A≈ of A∼ we already introduced in [Fin01a, Fin03b].
A≈ is defined as A∼ with the only difference that in the definition 4.14, we write:
(u. �)� is undefined if |u�| = 0, instead of (u. �)� = λ if |u�| = 0. Then one can
show, as in [Fin01a], that if A ⊆ Σ≤ω and dc(A) ≥ 2 (hence A− 6= ∅), then A∼ and
A≈ are (conciliating) Wadge equivalent.
We define now, for a set A ⊆ Σ≤ω: A≈.0 = A, A≈.1 = A≈ and A≈.(k+1) = (A≈.k)≈,
where we apply k+1 times the operation A→ A≈ with different new letters �1, �2,
�3, . . . , �k+1. But this way, from a Borel conciliating set of finite rank, we obtain
only (conciliating) Borel sets of finite ranks, of Wadge degree <1 ε0. A way to get
sets of higher degrees, is to use the supremum of the sets A≈.i. More generally we set
the following definition.
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Definition 4.20 Let Σ be a finite or countably infinite alphabet containing at least
two letters a and b and let (Ai)i∈N be a family of subsets of Σ≤ω. Then supi∈N

Ai =df⋃
i∈N

ai.b.Ai.

Let us recall now the following result. Notice that we give it in the general case
of a countable (and possibly infinite) alphabet although we have only defined the
conciliating Wadge hierarchy for conciliating sets defined over a finite alphabet (in
order to simplify the presentation).
In fact the following proposition will only be used later in the case of a finite alphabet
Σ, but we state it here (without details) in a more general case in order to give an
indication of what we could obtain (all the A≈.i are defined over the same infinite
alphabet Σ ∪ {�1, �2, . . . �k . . .}).

Proposition 4.21 ([Dup01]) Let Σ be a finite or countably infinite alphabet con-
taining at least two letters a and b and let (Ai)i∈N be a family of subsets of Σ≤ω with
(Ai)

d Borel. Assume moreover that ∀i ∈ N ∃ji ∈ N such that dc(Ai) < dc(Aji
).

Then (supi∈N Ai)
d is Borel and dc(supi∈N Ai) = supi∈N dc(Ai).

Let us return now to the case of the supremum supi∈N
A≈.i =

⋃
i∈N

ai.b.A≈.i of
the sets A≈.i. It is defined over an infinite alphabet, and any infinitary context-free
language is defined over a finite alphabet. So we have first to code this set over a finite
alphabet. The conciliating set A≈.n is defined over the alphabet Σ ∪ {�1, . . . , �n}
hence we have to code every eraser �j by a finite word over a fixed finite alphabet.
We shall code the eraser �j by the finite word α.Bj .Cj .Dj .Ej .β over the alphabet
{α, B, C, D, E, β}. We shall construct below a pushdown automaton accepting an
infinitary language close to the coding of supi∈N A≈.i, for A ∈ CFL≤ω. It will need
to read four times the integer j characterizing the eraser �j and this justifies our
coding of the erasers.
Remark first that the morphism:
Fn : (Σ ∪ {�1, . . . , �n})? → (Σ ∪ {α, β, B, C, D, E})?

defined by Fn(c) = c for each c ∈ Σ and Fn(�j) = α.Bj .Cj .Dj .Ej .β for each integer
j ∈ [1, n], where B, C, D, E, α, β are new letters not in Σ, can be naturally extended
to a function:
F̄n : (Σ ∪ {�1, . . . , �n})≤ω → (Σ ∪ {α, β, B, C, D, E})≤ω.
Using Wadge games, we can now state the following lemma, (but no proof is given
here).

Lemma 4.22 Let A ⊆ Σ≤ω be such that Ad is a ∆0

ω-Borel set and dc(A) ≥ 2.
Then dc(F̄n(A≈.n)) = dc(A

≈.n) holds for every integer n ≥ 2. If moreover, ∀n ≥ 1,
dc(A

≈.n) < dc(A
≈.(n+1)) then dc(supi≥1 F̄i(A

≈.i)) = supi≥1 dc(A
≈.i).

We would like now to apply the above lemma to construct, from an infinitary context-
free language A such that Ad is a ∆0

ω-Borel set and dc(A) ≥ 2, another infinitary
context-free language of Wadge degree supi≥1 dc(A

≈.i).
But we can not show that, whenever A ∈ CFL≤ω, then supn≥1 F̄n(A≈.n) is in

CFL≤ω. This is connected to the fact that the finitary language {BjCjDjEj | j ≥ 1}
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is not a context-free language. But its complement is easily seen to be context-free.
Then we shall sligthly modify the set supn≥1 F̄n(A≈.n), in the following way. We can
add to this language all (≤ ω)-words in the form an.b.u where there is in u a segment
α.Bj .Ck.Dl.Em.β, with j, k, l, m integers ≥ 1, which does not code any eraser, or
codes an eraser �j for j > n.
Define first the following context-free finitary languages over the alphabet
X� = (Σ ∪ {α, β, B, C, D, E}) :
LB = {an.b.u.Bj | n ≥ 1 and j > n and u ∈ (X�)?}
LC = {an.b.u.Cj | n ≥ 1 and j > n and u ∈ (X�)?}
LD = {an.b.u.Dj | n ≥ 1 and j > n and u ∈ (X�)?}
LE = {an.b.u.Ej | n ≥ 1 and j > n and u ∈ (X�)?}
L(B,C) = {u.α.Bj .Ck.Dl.Em.β | j, k, l, m ≥ 1 and j 6= k and u ∈ a+.b.(X�)?}
L(C,D) = {u.α.Bj .Ck.Dl.Em.β | j, k, l, m ≥ 1 and k 6= l and u ∈ a+.b.(X�)?}
L(D,E) = {u.α.Bj .Ck.Dl.Em.β | j, k, l, m ≥ 1 and l 6= m and u ∈ a+.b.(X�)?}
It is easy to show that each of these languages is a context free finitary language
thus L = LB ∪ LC ∪LD ∪ LE ∪ L(B,C) ∪ L(C,D) ∪ L(D,E) is also context-free because
the class CFL is closed under finite union. Then L.(X�)≤ω is an infinitary CFL.
Remark that all words in supn≥1 F̄n(A≈.n) belong to the infinitary regular language

R = a+.b.(Σ ∪ (α.B+.C+.D+.E+.β))≤ω . Consider now the language L.(X�)≤ω ∩ R.
A word σ in this language is a word in R, having an initial segment in the form an.b,
with n ≥ 1, and containing a segment α.Bj .Ck .dl.Em.β with j, k, l, m ≥ 1 which does
not code any eraser �i or codes such an eraser but with i > n. Define now

A• = sup
n≥1

F̄n(A≈.n) ∪ [L.(X�)≤ω ∩R]

We shall show that the operation A→ A• conserves the context-freeness of infinitary
languages and that if A is a ∆0

ω-set of Wadge degree≥ 2 then A• and supn≥1 F̄n(A≈.n)
are Wadge equivalent. So we shall be able to construct, from such an infinitary
context-free language A, another infinitary context-free language of Wadge degree
supi≥1 dc(A

≈.i).

Theorem 4.23 If A ⊆ Σ≤ω is an infinitary context-free language then A• is an
infinitary context-free language over the alphabet X� = (Σ ∪ {α, β, B, C, D, E}).

Proof. It relies on a technical construction of a pushdown automaton accepting A•

from a pushdown automaton accepting A. The idea of the construction is already in
[Fin03b], where A was assumed to be an ω-regular language and where we proved
only the existence of some ω-context-free languages which are Borel sets of infinite
rank. We shall give here a similar construction in the more general case of an infinitary
context-free language A.
Let then A ⊆ Σ≤ω be an infinitary context-free language (A may contain finite and
infinite words). We can write A = A1 ∪A2 where A1 ⊆ Σω is an ω-CFL and A2 ⊆ Σ?

is a finitary context-free language. Then A• = A•
1 ∪A•

2 holds by definition of A•.
The ω-language A1 ⊆ Σω is accepted by a Muller pushdown automaton A1. Remark
that in that case all sets A≈.n

1 as well as supn≥1 F̄n(A≈.n
1 ) contain only infinite words.
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We shall find a MPDA B accepting an ω-CFL L(B) such that

sup
n≥1

F̄n(A≈.n
1 ) ⊆ L(B) ⊆ A•

1 = sup
n≥1

F̄n(A≈.n
1 ) ∪ [L.(X�)≤ω ∩ R]

Thus we shall have A•
1 = L(B) ∪ [L.(X�)≤ω ∩ R] and this will imply that A•

1 is in
CFL≤ω because the class CFL≤ω is closed under finite union.
It is easy to have L(B) ⊆ R because if L(B′) is an ω-CFL which is not included
into R one can replace it by L(B) = L(B′) ∩ R which is then an ω-CFL such that
L(B) = L(B′) ∩ R ⊆ R.
Recall now that L.(X�)≤ω ∩R is the set of all (finite or infinite) words in R but not
in ∪n≥1a

n.b.F̄n(Σ ∪ {�1, . . . , �n})
≤ω.

Thus, in order to define the MPDA B, we have only to consider the behaviour of B
when reading ω-words in ∪n≥1a

n.b.F̄n(Σ ∪ {�1, . . . , �n})ω and we have to find a
MPDA B such that L(B) contains such a word an.b.u if and only if u ∈ F̄n(A≈.n

1 ).

So we have to look first at ω-words in F̄n(A≈.n
1 ). In such a word u ∈ F̄n(A≈.n

1 ),
there are (codes of) erasers �1, . . . , �n. In order to simplify our notations, we shall
sometimes write in the sequel �j= α.Bj .Cj .Dj .Ej .β and call eraser either �j or
its code α.Bj .Cj .Dj .Ej .β. The ω-word u is in F̄n(A≈.n

1 ) if and only if after the
operations of erasing ( with the erasers �1, ..., �n ) have been achieved in u, then
the resulting word is in A1.
Because of the inductive definition of the sets A≈.n

1 , the operations of erasing have to
be done in a good order: in an ω-word which contains only the erasers �1, ..., �n,
the first operation of erasing uses the last eraser �n, then the second one uses the
eraser �n−1, and so on . . .
We now informally describe the behaviour of the MPDA B when reading an ω-word
an.b.u with u ∈ F̄n(Σ ∪ {�1, . . . , �n})

ω. The MPDA B will generalize the MPDA
accepting A≈

1 constructed in [Fin01a].
After the reading of the initial segment in the form an.b, the MPDA B simulates
the MPDA A1 until it guesses, using the non determinism, that it begins to read a
segment w which contains erasers which really erase and some letters of Σ or some
other erasers which are erased when the operations of erasing are achieved in u.
Then, using the non determinism, when B reads a letter c ∈ Σ and guesses that this
letter will be erased it pushes it in the pushdown store, keeping in memory the current
global state (consisting in the stack content and the current state of the finite control)
of the MPDA A1.
In a similar manner, when B reads the code �j= α.Bj .Cj .Dj .Ej .β of an eraser and
guesses that this eraser will be erased (by another eraser �k with k > j), it pushes
in the store the finite word γ.Ej .ε (coding the eraser �j in the stack), where γ, ε are
in the stack alphabet of B.
But B may also guess that the eraser �j= α.Bj .Cj .Dj .Ej .β will really be used as an
eraser. In that case B has to pop from the top of the pushdown store either a letter
c ∈ Σ or the code γ.Ei.ε of another eraser �i, with i < j, which is erased by �j .
It would be easy for B to check whether i < j when reading the initial segment α.Bj

of �j .
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The pushdown automaton B has also to ensure that the operations of erasing are
achieved in a good order. This can be done, using our coding of erasers containing
four times the integer j characterizing �j . We refer to [Fin03b] where this behaviour
of B is described.
Consider now A2 ⊆ Σ?. Then supn≥1 F̄n(A≈.n

2 ) may contain finite and infinite words.
Then supn≥1 F̄n(A≈.n

2 ) = L1 ∪ L2 where L1 is a finitary language and L2 is an ω-

language over the alphabet X�. Following the same ideas as in the preceding case
(where A1 ⊆ Σω) we can construct a pushdown automaton B′ accepting a finitary
context-free language L(B′) and a Muller pushdown automaton B′′ accepting an ω-
CFL L(B′′) such that: L1 ⊆ L(B′) ⊆ L1 ∪ [L.(X�)≤ω ∩ R], and L2 ⊆ L(B′′) ⊆
L2 ∪ [L.(X�)≤ω ∩ R]. Then it turns out that A•

2 = L(B′) ∪ L(B′′) ∪ [L.(X�)≤ω ∩ R]
is in CFL≤ω.
Consider now again the infinitary context-free language A ⊆ Σ≤ω. It turns out that
A• = A•

1∪A•
2 is an infinitary context-free language because the class CFL≤ω is closed

under finite union. �

The operation A→ A• provides a kind of infinite iteration of the operation A→ A∼.
Thus the above theorem will enable us to get some infinitary context-free languages
of larger Wadge degrees than those we could previously obtain.

In order to give precisely the Wadge degree of A• from the Wadge degree of A we
introduce now some notations for ordinals. For an ordinal α we define ω1(1, α) = ωα

1

and for an integer n ≥ 1, ω1(n+1, α) = ω
ω1(n,α)
1 . If α ≤ 1ε0 the limit of the sequence

of ordinals ω1(n, α) is the ordinal 1ε0. And if α > 1ε0 the limit of the sequence of
ordinals ω1(n, α) is the first fixed point of the operation of ordinal exponentiation
of base ω1 which is greater than (or equal to) α. We shall denote it 1ε0(α). Then
one can enumerate the sequence of the ω first fixed points of the operation α → ωα

1 ,
which are: 1ε0,

1ε1 = 1ε0(
1ε0 + 1), 1ε2 = 1ε0(

1ε1 + 1), and for each integer n ≥ 0:
1εn+1 = 1ε0(

1εn + 1). The next fixed point is the ωth fixed point, denoted 1εω, and
it is also the limit of the sequence of fixed points 1εn, for n ≥ 0: 1εω = supn∈ω(1εn).
The sequence of fixed points of the operation of exponentiation of base ω1 continues
beyond this ordinal because, for each ordinal α, there exists such a fixed point which
is greater than α. These fixed points are indexed by ordinals and they are defined
by induction on the ordinals. For every successor ordinal β + 1, the ordinal 1εβ+1 is
defined as above by: 1εβ+1 = 1ε0(

1εβ + 1). And for a limit ordinal δ the ordinal 1εδ

is defined by 1εδ = supβ<δ(
1εβ).

If A is a ∆0

ω-Borel set then its Wadge degree is smaller than the ordinal 1εω1
which is

the (ω1)
th fixed point of the operation of ordinal exponentiation of base ω1. But for

all ordinals δ < ω1 the ordinal 1εδ has cofinality smaller than ω1. Thus dw(A) cannot
be a fixed point of cofinality ω1 of the operation of ordinal exponentiation of base ω1.
The following Proposition easily follows from this fact and from Theorem 4.18.

Proposition 4.24 Let A ⊆ Σ≤ω be a conciliating set such that Ad is a ∆0

ω-Borel set
and dc(A) ≥ 2. Then dc(A

∼) > dc(A).
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Remark 4.25 Let A ⊆ Σ≤ω be such that Ad is a ∆0

ω-Borel set and dc(A) ≥ 2. Then
one can easily show by induction that ∀n ≥ 1 dc(A

≈.n) < dc(A
≈.(n+1)). So this

additional hypothesis we have made in Lemma 4.22 is in fact always satisfied.

The counterpart of the operation A → A• with regard to Wadge degrees is given
precisely by the following theorem.

Theorem 4.26 2 Let A ⊆ Σ≤ω be such that Ad is a ∆0

ω-Borel set and dc(A) ≥ 2.

(1) If dc(A) is a fixed point (of cofinality ω) of the operation of exponentiation of
base ω1: α→ ωα

1 , then dc(A
•) = 1ε0(dc(A) + 1).

(2) If dc(A) is not a fixed point of the operation α→ ωα
1 , then dc(A

•) = 1ε0(dc(A)).

(3) dc(A
•) is the first fixed point of this operation which is strictly larger than dc(A)

and (A•)− ≡c A• ∪ a≤ω holds.

Proof. Let A ⊆ Σ≤ω be such that Ad is a ∆0

ω-Borel set and dc(A) ≥ 2. We
can prove that A• and supn≥1 F̄n(A≈.n) are conciliating Wadge equivalent, using the
conciliating Wadge game, and examining in detail several cases which can happen.
Then items (1) and (2) of Theorem 4.26 can be easily derived from Theorem 4.18
and Proposition 4.21. It follows from items (1) and (2) that dc(A

•) is the first fixed
point of the operation of ordinal exponentiation of base ω1 which is strictly larger
than dc(A).
We can now prove that player 1 has a winning strategy in the conciliating Wadge
game C(A•, A• ∪ a≤ω) and also in the conciliating Wadge game C(A• ∪ a≤ω, A•).
This implies that neither A• ∪ a≤ω ≤c A• nor A• ≤c A• ∪ a≤ω hold. Then it follows
from the properties of the conciliating hierarchy that (A•)− ≡c A• ∪ a≤ω. �

If A is an infinitary context-free language then A• and A•∪a≤ω are infinitary context-
free languages. So if moreover Ad is a ∆0

ω-Borel set and dc(A) ≥ 2 then there exists
an infinitary context-free language which is conciliating Wadge equivalent to (A•)−.
This fact will be useful in next section.
Remark also that in particular if 2 ≤ dc(A) <1 ε0, i.e. if Ad is Borel of finite rank
and of Wadge degree ≥ 2, then dc(A

•) =1 ε0, and A• is a Borel set of rank ω.

5. Wadge Hierarchy of Infinitary Context-Free Languages

If we consider the operation of ordinal exponentiation of base ω: α → ωα, one can
define in a similar way as above the successive fixed points of this operation. These
ordinals are the well known Cantor ordinals ε0, ε1, . . . and εω is the ωth such fixed
point, [Sie65].
From the above closure properties of the class CFL≤ω under the operations of sum, of
exponentiation and of iterated exponentiation, and using the correspondence between
these operations and the arithmetical operations over ordinals, one can show the
following:

2In the short version [Fin01d] of this paper which appeared in the proceedings of LCCS 01 we
omitted the distinction between items (1) and (2) of this theorem.
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Theorem 5.1 The length of the conciliating hierarchy of infinitary languages in
CFL≤ω is greater than or equal to εω. The length of the Wadge hierarchy of ω-
context-free languages in CFLω ∩∆0

ω is greater than or equal to εω.

Proof. We firstly define a strictly increasing function H from εω into 1εω. This
function is defined as follows: first H(n) = n for each integer n and H(εi) = 1εi for
each integer i ≥ 0. Next if α is a non null ordinal < εω, it has an iterated Cantor
normal form of base ω [Sie65]: α = ωαj .mj + ωαj−1 .mj−1 + . . . + ωα1 .m1,
where j > 0 is an integer, εω > α ≥ αj > αj−1 > . . . > α1 are ordinals and
mj , mj−1, . . . , m1 are integers > 0. And where each αi itself is written in Cantor
normal form of base ω, and so on. Then one can inductively define H ′(α) and H(α) in

the following way. We first set H ′(α) = ω
H(αj )
1 .mj+ω

H(αj−1)
1 .mj−1+. . .+ω

H(α1)
1 .m1,

and we distinguish now two cases:

First case. H ′(α) = β + n with β a limit ordinal of cofinality ω, β 6= 1εi for all
integers i ≥ 0, and n an integer ≥ 0.
In that case we set H(α) = H ′(α) + 1.

Second case. H ′(α) = β + n with β a limit ordinal of cofinality ω1 or β = 1εi for
some integer i ≥ 0, and n an integer ≥ 0.
In that case we set H(α) = H ′(α).

So the shift we introduce in the first case is used to avoid the ordinal H(α) to be a
limit ordinal of cofinality ω, different from 1εi for all integers i ≥ 0, while the function
H remains strictly increasing.

Let us give now some examples. For α = ε2 + 4, the above definition leads to
H(α) = 1ε2 + 4, while for α = ε2 + ε1 + 4 it holds that H(α) = 1ε2 + 1ε1 + 5.
For α = ε2.3 + ω(ε1+ωω) + ω(ωω+2), the above definition leads to

H(α) = 1ε2.3 + ω
(1ε1+ω

ω1

1
)

1 + ω
(ω

ω1

1
+2)

1 ,

and for

α = ε4.3 + ω(ε3+ε1) + ω(ε2+ε1+5) + ε2 + 3

it holds that

H(α) = 1ε4.3 + ω
( 1ε3+

1ε1+1)
1 + ω

( 1ε2+ 1ε1+6)
1 + 1ε2 + 4

It is easy to show that the function H is stricly increasing, thus the image H(εω) is
of order type εω, and so is H(εω)− {0}.

We can now follow Definition 32 of [Dup01] and define a conciliating context-free
language Ω(H(α)) of degree H(α), for each non null ordinal α < εω.
We shall need also to define a conciliating context-free language Ω(H ′(α)) of degree
H ′(α) in the case H ′(α) is an ordinal of cofinality ω different from 1εi for all integers
i ≥ 0.
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Let δ be a non null ordinal in H(εω). Then δ < 1εω hence δ admits an iterated
Cantor normal form of base ω1, [Sie65]:

δ = ω
δj

1 .νj + ω
δj−1

1 .νj−1 + . . . + ωδ1

1 .ν1

where j > 0 is an integer, 1εω > δ ≥ δj > δj−1 > . . . > δ1 are ordinals and
νj , νj−1, . . . , ν1 are non null ordinals < ω1, and each δi itself is written in Cantor
normal form of base ω1, and so on . . .
But here each ordinal νi is an integer because δ ∈ H(εω) and for each i, δi ∈ H(εω)
also holds. Then one can inductively define the set

Ω(δ) = Ω(ω
δj

1 ).νj + Ω(ω
δj−1

1 ).νj−1 + . . . + Ω(ωδ1

1 ).ν1

where Ω(ωβ
1 ) with β < 1εω and β ∈ H(εω) is defined by:

a) If β = 0, then Ω(ωβ
1 ) = Ω(1) = ∅.

b) If β = n > 0 is an integer, then Ω(ωβ
1 ) = Ω(β + 1)∼.

c) If β = γ + n where γ is an ordinal of cofinality ω1 and n is an integer ≥ 0, then

Ω(ωβ
1 ) = Ω(β)∼.

d) Let β = ωβ
1 = 1εi, for some integer i, 0 ≤ i < ω.

We shall construct some infinitary context-free languages of (conciliating)
Wadge degrees 1εi, for 0 ≤ i < ω. Let A ∈ CFL≤ω such that dc(A) = 2
(for example A = ∅+ ∅ where ∅ is the empty conciliating set,which is of Wadge
degree 1) then dc(A

•) = 1ε0(dc(A)) = 1ε0. Denote Ω(1ε0) = A•. The ordinal
dc(A

•) = 1ε0 is a fixed point of the operation of exponentiation of base ω1

which has cofinality ω. Thus if A•.2 = (A•)• then

dc(A
•.2) = 1ε0(dc(A

•) + 1)) = 1ε0(
1ε0 + 1) = 1ε1

by Theorem 4.26 (1). Next we can iterate this construction, defining inductively
for integers j ≥ 2 the sets A•.j = (A•.(j−1))•. Then one can prove by induction
that for each integer j ≥ 2

dc(A
•.j) = 1ε0(dc(A

•.(j−1)) + 1)) = 1ε0(
1εj−2 + 1) = 1εj−1

Then we denote Ω(1εi) = A•.(i+1) and dc(Ω(1εi)) = 1εi holds for every integer
i ≥ 0.
Remark that the above construction is a particular case of Duparc’s construction
of a conciliating set Ω(ωβ

1 ) of degree ωβ
1 when β is an ordinal of cofinality

ω. Indeed the ordinals 1εj , for 0 ≤ j < ω, have cofinality ω because 1ε0 =
supn≥1 ω1(n, 2) and 1εj+1 = supn≥1 ω1(n, 1εj +1) holds for every integer j ≥ 0.

e) If β = 1εi + n where i is an integer ≥ 0 and n is an integer > 0, then Ω(ωβ
1 ) =

Ω(β − 1)∼.

f) If β = γ + n where γ is an ordinal of cofinality ω, n is an integer > 1, and

γ 6=1 εi for all integers i ≥ 0, then Ω(ωβ
1 ) = Ω(β − 1)∼.
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g) Let β = γ + 1 where γ is an ordinal of cofinality ω, and γ 6=1 εi for all integers
i ≥ 0.
In that case there exists an ordinal α < εω such that γ = H ′(α) and β =
H(α) = H ′(α) + 1.
The Cantor normal form of base ω of the ordinal α is:

α = ωαj .mj + ωαj−1 .mj−1 + . . . + ωα1 .m1

where j > 0 is an integer, εω > α ≥ αj > αj−1 > . . . > α1 are ordinals and
mj , mj−1, . . . , m1 are integers > 0.
And we have defined H ′(α) by

H ′(α) = ω
H(αj)
1 .mj + ω

H(αj−1)
1 .mj−1 + . . . + ω

H(α1)
1 .m1

so we can inductively define

Ω(H ′(α)) = Ω(ω
H(αj )
1 ).mj + Ω(ω

H(αj−1)
1 ).mj−1 + . . . + Ω(ω

H(α1)
1 ).m1

and we set

Ω(ωβ
1 ) = Ω(β − 1)∼ = Ω(γ)∼ = Ω(H ′(α))∼

h) Notice that it is not necessary to define Ω(ωβ
1 ) in the case of an ordinal β of

cofinality ω and different from 1εi for all integers i ≥ 0. This case cannot happen
here because of the shift we introduced in the first case of the definition of the
ordinal H(α).

The closure properties of the class CFL≤ω under the operations of sum, of expo-
nentiation and of iterated exponentiation imply that, for every ordinal δ ∈ H(εω),
Ω(δ) ∈ CFL≤ω holds and the complement of Ω(δ) is (conciliating) Wadge equivalent
to some conciliating set in CFL≤ω.
By our construction and by Theorems 4.10, 4.18 and 4.26 (or using Theorem 33 of
[Dup01]) dc(Ω(δ)) = δ < 1εω holds for every δ ∈ H(εω), the length of the conciliating
hierarchy of infinitary context-free languages is greater than or equal to εω.
We consider now the Wadge hierarchy of ω-context-free languages. For each non null
ordinal α < εω, the ω-language Ω(H(α))d is a Borel set in the class CFLω ∩∆0

ω

and dw(Ω(H(α))d) = dc(Ω(H(α))) = H(α).
This proves that the length of the Wadge hierarchy of ω-context-free languages in
CFLω ∩∆0

ω is greater than or equal to the ordinal εω. �

6. Σ0

ω-Complete ω-Context-Free Language

With the operations we have studied above, one cannot reach, from a (conciliating)
Borel set of finite rank, a Borel set of Wadge degree 1εω. And every (conciliating) set
that we can generate is of Wadge degree < 1εω. In particular one cannot construct,
from known ω-CFL of finite Borel rank, an ω-context-free language being a Σ0

ω-
complete Borel set. Indeed the Wadge degree of a Σ0

ω-complete Borel set is 1εω1
, i.e.
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the (ω1)
th fixed point of the operation of ordinal exponentiation of base ω1, which is

a much larger ordinal than 1εω.
However we are going to show in this section that there exist some Σ0

ω-complete
ω-context-free language, using other methods and results about sets of ω2-words.

The set Σω2

is the set of ω2-words over the finite alphabet Σ. It may also
be viewed as the set of (infinite) (ω × ω)-matrices whose coefficients are letters

of Σ. If x ∈ Σω2

we shall write x = (x(m, n))m≥1,n≥1. The infinite word
x(m, 1)x(m, 2) . . . x(m, n) . . . will be called the mth column of the ω2-word x and
the infinite word x(1, n)x(2, n) . . . x(m, n) . . . will be called the nth row of the ω2-

word x. Thus an element of Σω2

is completely determined by the (infinite) set of its
columns or of its rows.
The set Σω2

is usually equipped with the product topology of the discrete topol-
ogy on Σ (for which every subset of Σ is an open set), see [Kec95, PP04]. For this

topology on Σω2

, the basic open sets are the sets of ω2-words with a fixed two-
dimensional prefix. This topology may be defined by the following distance d. Let
x and y be two ω2-words in Σω2

such that x 6= y, then d(x, y) = 2−n, where
n = min{p ≥ 1 | ∃(i, j) x(i, j) 6= y(i, j) and i + j = p}.

Then the topological space Σω2

is homeomorphic to the above defined topological
space Σω. The Borel hierarchy on Σω2

is defined from open sets in the same manner
as in the case of the topological space Σω. The notion of Σ0

α (respectively Π0

α)-
complete sets are also defined in a similar way.
Notice that the topological space Σω2

has already been used in a very closely work on
the topological complexity of infinitary rational relations accepted by 2-tape Büchi
automata [Fin03c].

Recall now that the set S = {x ∈ {0, 1}ω
2

| ∃m∃∞n x(m, n) = 1}, where ∃∞ means

“there exist infinitely many”, is a Σ0

3
-complete subset of {0, 1}ω

2

, [Kec95, p.179]. It is
the set of ω2-words having at least one column in the Π0

2
-complete subset R = (0?.1)ω

of {0, 1}ω. In a similar manner we can prove the following result:

Lemma 6.1 Let L ⊆ Σω be a Σ0

ω-subset of Σω which is of Borel rank ω. Then the

set L = {x ∈ Σω2

| ∃m x(m, 1)x(m, 2) . . . x(m, n) . . . ∈ L} of ω2-words over Σ having

at least one column in L is a Σ0

ω-complete subset of Σω2

.

In order to simplify our proofs we shall use in the sequel the following variant of
lemma 6.1 which can be proved with a slight modification.

Lemma 6.2 Let L ⊆ Σω be a Σ0

ω-subset of Σω which is of Borel rank ω. Then the

set Le = {x ∈ Σω2

| ∃m ≥ 1 x(2m, 1)x(2m, 2) . . . x(2m, n) . . . ∈ L} of ω2-words over

Σ having at least one column of even index in L is a Σ0

ω-complete subset of Σω2

.

In order to use these results we shall firstly define a coding of ω2-words over Σ by
ω-words over the alphabet (Σ∪{C, B}) where C and B are new letters not in Σ. Let
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us call, for x ∈ Σω2

and p an integer ≥ 2:

T x
p+1 = {x(p, 1), x(p− 1, 2), . . . , x(2, p− 1), x(1, p)}

the set of elements x(m, n) with m + n = p + 1 and

Ux
p+1 = x(p, 1).x(p− 1, 2) . . . x(2, p− 1).x(1, p)

the sequence formed by the concatenation of elements x(m, n) of T x
p+1 for increasing

values of n. We also call

V x
p+1 = (Ux

p+1)
R = x(1, p).x(2, p− 1) . . . x(p− 1, 2).x(p, 1)

the reverse image of Ux
p+1. Thus Ux

p+1 and V x
p+1 are finite non empty words over Σ

and Ux
2 = V x

2 = x(1, 1).

We shall code an ω2-word x ∈ Σω2

by the ω-word h(x) defined by

h(x) = V x
2 .C.Ux

3 .B.V x
4 .C.Ux

5 .B.V x
6 .C . . . C.Ux

2k+1.B.V x
2k+2.C . . .

The word h(x) begins with x(1, 1) = V x
2 followed by a letter C; then the word h(x)

enumerates the elements of the sets T x
p+1 for increasing values of the integer p. More

precisely for every even integer 2k ≥ 2 the elements of T x
2k+1 are enumerated by the

sequence Ux
2k+1, followed by a letter B, followed by the elements of T x

2k+2, enumerated
by the sequence V x

2k+2, followed by a letter C, and so on . . .

Let then h be the mapping from Σω2

into (Σ∪{C, B})ω such that, for every ω2-word
x over the alphabet Σ, h(x) is the code of the ω2-word x as defined above. It is easy
to see, from the definition of h and of the order of the enumeration of letters x(m, n)
(they are enumerated for increasing values of m + n), that h is a continuous function

from Σω2

into (Σ ∪ {C, B})ω.

Lemma 6.3 Let Σ be a finite alphabet. If L ⊆ Σω2

is Σ0

ω-complete then h(L) ∪

h(Σω2

)− is a Σ0

ω-complete subset of (Σ ∪ {C, B})ω.

Proof. The topological space Σω2

is compact thus its image by the continuous
function h is also a compact subset of the topological space (Σ ∪ {C, B})ω. The set

h(Σω2

) is compact hence it is a closed subset of (Σ∪ {C, B})ω. Then its complement

(h(Σω2

))− is an open (i.e. a Σ0

1
) subset of (Σ ∪ {C, B})ω.

On the other hand the function h is also injective thus it is a bijection from Σω2

onto
h(Σω2

). But a continuous bijection between two compact sets is an homeomorphism

therefore h induces an homeomorphism between Σω2

and h(Σω2

). By hypothesis L

is a Σ0

ω-subset of Σω2

thus h(L) is a Σ0

ω-subset of h(Σω2

) (where Borel sets of the

topological space h(Σω2

) are defined from open sets as in the cases of the topological

spaces Σω or Σω2

).

The topological space h(Σω2

) is a topological subspace of (Σ ∪ {C, B})ω and its
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topology is induced by the topology on (Σ∪{C, B})ω: open sets of h(Σω2

) are traces

on h(Σω2

) of open sets of (Σ ∪ {C, B})ω and the same result holds for closed sets.
Then one can easily show by induction that for every ordinal α ≥ 1, Π0

α-subsets

(resp. Σ0

α-subsets) of h(Σω2

) are traces on h(Σω2

) of Π0

α-subsets (resp. Σ0

α-subsets)

of (Σ∪{C, B})ω, i.e. are intersections with h(Σω2

) of Π0

α-subsets (resp. Σ0

α-subsets)
of (Σ ∪ {C, B})ω.

But h(L) is a Σ0

ω-subset of h(Σω2

), hence there exists a Σ0

ω-subset T of (Σ∪{C, B})ω

such that h(L) = T ∩ h(Σω2

). But h(Σω2

) is a closed i.e. Π0

1
-subset of (Σ∪ {C, B})ω

and the class of Σ0

ω-subsets of (Σ ∪ {C, B})ω is closed under finite intersection, thus
h(L) is a Σ0

ω-subset of (Σ ∪ {C, B})ω.

Now h(L)∪(h(Σω2

))− is the union of a Σ0

ω-subset and of a Σ0

1
-subset of (Σ∪{C, B})ω

therefore it is a Σ0

ω-subset of (Σ ∪ {C, B})ω because the class of Σ0

ω-subsets of (Σ ∪
{C, B})ω is closed under finite (and even countable) union.

In order to prove that h(L) ∪ (h(Σω2

))− is Σ0

ω-complete it suffices to remark that

L = h−1[h(L) ∪ (h(Σω2

))−]. This implies that h(L) ∪ (h(Σω2

))− is Σ0

ω-complete
because L is assumed to be Σ0

ω-complete. �

Lemma 6.4 Let Σ be a finite alphabet and h be the coding of ω2-words over Σ defined
as above. Then h(Σω2

)− = (Σ ∪ {C, B})ω − h(Σω2

) is an ω-CFL.

Proof. Remark first that h(Σω2

) is the set of ω-words in (Σ∪{C, B})ω which belong
to

Σ.C.Σ2.B.Σ3.C.Σ4.B . . . C.Σ2k .B.Σ2k+1.C . . .

In other words this is the set of words in (Σ ∪ {C, B})ω which are in (Σ?.C.Σ?.B)ω

and have k + 1 letters of Σ between the kth and the (k + 1)th occurrences of letters

in {C, B}. It is now easy to see that the complement of the set h(Σω2

) of codes of
ω2-words over Σ is the union of the sets C1 and C2 where:

• C1 = (Σ ∪ {C, B})ω − (Σ?.C.Σ?.B)ω hence C1 is the complement of the ω-
regular language (Σ?.C.Σ?.B)ω so it is also an ω-regular language thus C1 is
an ω-CFL.

• C2 is the set of ω-words over (Σ ∪ {C, B}) which may be written in the form
w.u.C.t or w.u.B.t where w ∈ (Σ?.{C, B})k, for k ≥ 0, and u ∈ Σ? and |u| 6=
k + 1 and t ∈ (Σ ∪ {C, B})ω. It is easy to show that

C = {w.u | w ∈ (Σ?.{C, B})k for an integer k ≥ 0 and u ∈ Σ? and |u| 6= k + 1}

is a context-free finitary language, thus C2 = C.{C, B}.(Σ ∪ {C, B})ω is an ω-
CFL.

Now h(Σω2

)− = C1 ∪ C2 is an ω-CFL because CFLω is closed under finite union. �

Let L ⊆ Σω be an ω-CFL over the alphabet Σ and

Le = {x ∈ Σω2

| ∃m ≥ 1 x(2m, 1)x(2m, 2) . . . x(2m, n) . . . ∈ L}
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We cannot show that h(Le) is an ω-CFL but we shall find an ω-CFL Ce ⊆ (Σ ∪

{C, B})ω such that, for every ω2-word x ∈ Σω2

, h(x) ∈ Ce if and only if x ∈ Le. We
are now going to describe the ω-language Ce. A word y ∈ (Σ ∪ {C, B})ω is in Ce if
and only if it is in the form

y = Uk.t(1).u1.B.v1.t(2).w1.C.z1.t(3) . . .

. . . t(2n + 1).un+1.B.vn+1.t(2n + 2).wn+1.C.zn+1.t(2n + 3) . . .

where k is an integer ≥ 1, Uk ∈ (Σ?.C.Σ?.B)k−1.(Σ?.C), and for all integers i ≥ 1,
t(i) ∈ Σ and ui, vi, wi, zi ∈ Σ? and |vi| = |ui| and |zi| = |wi|+ 1,
and the ω-word t = t(1)t(2) . . . t(n) . . . is in the ω-language L.

We now state the following result.

Lemma 6.5 Let L ⊆ Σω and let Le ⊆ Σω2

and Ce ⊆ (Σ ∪ {C, B})ω be defined as

above. Then Le = h−1(Ce), i.e. ∀x ∈ Σω2

h(x) ∈ Ce ←→ x ∈ Le.

Proof. Let L ⊆ Σω be an ω-language over the alphabet Σ and let Le ⊆ Σω2

and Ce ⊆ (Σ ∪ {C, B})ω be defined as above. Assume now that an y ∈ Ce, writ-

ten in the above form, is the code h(x) of an ω2-word x ∈ Σω2

, then t(1).u1 =
Ux

2k+1 = x(2k, 1)x(2k − 1, 2) . . . x(1, 2k). So in particular x(2k, 1) = t(1) holds. Next
v1.t(2).w1 = V x

2k+2 then x(2k, 2) = t(2) holds because the elements of T x
2k+2 and

the elements of T x
2k+1 are enumerated in reverse orders in the code of x and because

|u1| = |v1|. Then |z1| = |w1|+ 1 implies that x(2k, 3) = t(3).
By construction this phenomenon will happen further. One can easily show by induc-
tion on integers n that letters t(n) are successive letters of the (2k)th column of x. For
that purpose assume that for some integer n ≥ 1 it holds that t(2n+1) = x(2k, 2n+1).
By definition of the code h(x) we know that

Ux
2k+2n+1 = x(2k + 2n, 1)x(2k + 2n− 1, 2) . . . x(1, 2k + 2n) = zn.t(2n + 1).un+1

and t(2n + 1) = x(2k, 2n + 1) implies that |un+1| = (2k + 2n) − (2n + 1) = 2k − 1.
Thus |vn+1| = |un+1| = 2k − 1. But it holds also that

V x
2k+2n+2 = x(1, 2k + 2n + 1)x(2, 2k + 2n) . . . x(2k + 2n + 1, 1) = vn+1.t(2n + 2).wn+1

therefore t(2n + 2) = x(2k, 2n + 2) and |wn+1| = (2k + 2n + 1)− (2k) = 2n + 1. But
|zn+1| = |wn+1|+ 1 = 2n + 2 and

Ux
2k+2n+3 = x(2k+2n+2, 1)x(2k+2n+1, 2) . . .x(1, 2k+2n+2) = zn+1.t(2n+3).un+2

thus t(2n + 3) = x(2k, 2n + 3). Then we have proved by induction that:
t = t(1)t(2) . . . t(n) . . . = x(2k, 1)x(2k, 2) . . . x(2k, n) . . .

Thus if a code h(x) of an ω2-word x ∈ Σω2

is in Ce then x has a column of even
index in L, i.e. x ∈ Le. Conversely it is easy to see that every code h(x) of x ∈ Le

may be written in the above form of a word in Ce (remark that if x ∈ Le has several
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columns of even indices in L then h(x) has several written forms as above, the integer
k determining one of the columns of even index of x being in L).

Then we have proved that for every ω2-word x ∈ Σω2

h(x) ∈ Ce if and only if x ∈ Le.
�

Lemma 6.6 Let L ⊆ Σω be an ω-CFL over the alphabet Σ and let Le ⊆ Σω2

and
Ce ⊆ (Σ ∪ {C, B})ω be defined from L as above. Then Ce is an ω-CFL over the
alphabet Σ ∪ {C, B}.

Proof. Assume that L ⊆ Σω is an ω-CFL and let Le ⊆ Σω2

and Ce ⊆ (Σ ∪ {C, B})ω

be defined from L as above. Let D1 and D2 be the following finitary languages:

D1 = {u.B.v | u, v ∈ Σ? and |u| = |v|},

D2 = {w.C.z | w, z ∈ Σ? and |z| = |w|+ 1}.

It is easy to see that D1 and D2 are context-free finitary languages over the alphabet
Σ ∪ {C, B} thus D = D1 ∪ D2 is also a context-free finitary language.

Recall now the definition of substitution in languages: a substitution f is defined by
a mapping Σ→ P (Γ?), where Σ = {a1, a2 . . . , an} and Γ are two finite alphabets, f :
ai → Li where ∀i ∈ [1; n], Li is a finitary language over the alphabet Γ. This mapping
is extended in the usual manner to finite words: f(x(1) . . . x(n)) = {u1 . . . un | ∀i ∈
[1; n] ui ∈ f(x(i))}, where x(1), . . . , x(n) are letters in Σ, and to finitary languages
E ⊆ Σ?: f(E) = ∪x∈Ef(x).
The substitution f is called λ-free if for every i ∈ [1; n] Li does not contain the empty
word. In that case the mapping f may be extended to ω-words: f(x(1) . . . x(n) . . .) =
{u1 . . . un . . . | ∀i ≥ 1 ui ∈ f(x(i))}; and to ω-languages E ⊆ Σω by f(E) =
∪x∈Ef(x). Let F be a family of languages, if for every i ∈ [1; n] the language Li

belongs to F the substitution f is called a F-substitution.
Let then g be the substitution Σ → P ((Σ ∪ {C, B})?) defined by: a → a.D where
D is the context-free language defined above. Then g is a λ-free substitution. But
the languages a.D are context-free and CFLω is closed under λ-free context-free
substitution [CG77] thus the ω-language g(L) is context-free.
The class CFLω is closed under intersection with ω-regular languages, therefore the
ω-language g(L) ∩ (Σ?.B.Σ?.C)ω is context-free. But it is easy to see that

Ce = (Σ?.C.Σ?.B)?.(Σ?.C).[g(L) ∩ (Σ?.B.Σ?.C)ω].

Thus Ce is an ω-context-free language because the class CFLω is closed under left
concatenation by regular (finitary) languages. �

We can now state the main result of this section.

Theorem 6.7 There exist some ω-context-free languages which are Σ0

ω-complete
Borel sets.
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Proof. We already know that there exist some ω-context-free languages which are
Σ0

ω-sets of Borel rank ω. Let then L be such an ω-CFL and let Le ⊆ Σω2

and
Ce ⊆ (Σ ∪ {C, B})ω defined from L as above. By Lemma 6.2 the set Le is a Σ0

ω-

complete subset of Σω2

then by Lemma 6.3 the ω-language h(Le) ∪ h(Σω2

)− is a
Σ0

ω-complete subset of (Σ ∪ {C, B})ω. But Lemma 6.5 states that Le = h−1(Ce),

and this implies that h(Le) ∪ h(Σω2

)− = Ce ∪ h(Σω2

)−. On the other hand we have

proved in Lemmas 6.4 and 6.6 that the ω-languages h(Σω2

)− and Ce are context-
free. Thus their union is an ω-context-free language which is a Σ0

ω-complete subset
of (Σ ∪ {C, B})ω. �

We know that the Wadge degree of the Σ0

ω-complete Borel set Ce ∪ h(Σω2

)− is the
ordinal 1εω1

. On the other hand it is easy to see that this set has same degree if we
consider it as a conciliating set. So we can now state the following result, improving
Theorem 5.1 of preceding section.

Theorem 6.8 The length of the conciliating hierarchy of infinitary context-free lan-
guages, which are Borel of rank ω, is strictly greater than εω. The length of the Wadge
hierarchy of ω-context-free languages in CFLω ∩Σ0

ω is strictly greater than εω.

7. Concluding Remarks

We have improved previous results on Wadge and Borel hierarchies of ω-context-free
languages. We have proved the existence of more than εω Wadge degrees of ω-context-
free languages. And we have also given an inductive construction of an ω-context-free
language in each of these degrees and also of a Büchi or Muller pushdown automaton
accepting it, using the previous work of Duparc on the Wadge hierarchy of Borel sets.
The question remains open to determine all the Borel ranks and the Wadge degrees
of ω-context-free languages.
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