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CONVEX CHAINS IN Z
2

NATHANAËL ENRIQUEZ

Abstract: A detailed combinatorial analysis of lattice convex polygonal lines of N
2 joining 0 to

(n, n) is presented. We derive consequences on the line having the largest number of vertices as well

as the cardinal and limit shape of lines having few vertices. The proof refines a statistical physical

method used by Sinai to obtain the typical behavior of these lines, allied to some Fourier analysis.

Limit shapes of convex lines joining 0 to (n, n) and having a given total length are also characterized.

1. Introduction

In 1926, Jarńık found an equivalent of the maximal number of integral points that a
portion of length n of a strictly convex function can interpolate. He obtained an explicit
constant times n2/3. This work was at the origin of many works of Diophantine analysis,
and we refer the reader to the papers of W. Schmidt [11] and Bombieri and Pila [6] for more
recent results, discussions and open questions on this subject.

One may slightly change Jarńık’s framework, and consider the set of integral points which
are interpolated by the graph on [0, n] of an increasing and strictly convex function satisfying
f(0) = 0 and f(n) = n. It turns out that this question is related to another family of works
we shall discuss now.

In 1979, Arnol’d [1] considered the question of the number of equivalence classes of convex
lattice polygons having a given integer as area (we say that two polygons having their vertices
on Z

2 are equivalent if one is the image of the other by an automorphism of Z
2). Later,

Vershik changed the constraint in this question and raised the question of the number, and
typical shape, of convex lattice polygons included in a large box [−N,N ]2. In 1994, three
different solutions to this problem were found by Bárány [3], Vershik [13] and Sinai [12].
To be more precise, let Πn be the set of convex polygonal lines Γ joining 0 to (n, n), we
shall sometimes refer at convex chains, such that the vertices of Γ are points of Z

2 and
the angle between each side of Γ and the horizontal axis is in the interval [0, π/2]. They

prove, firstly, that the cardinal of Πn is of the order exp(n2/3(3(ζ(3)/ζ(2))1/3 + o(1)), when
n goes to infinity. Secondly, they prove that the number of vertices constituting a typical

line is equivalent, when n goes to infinity, to
n2/3

(ζ2(3)ζ(2))1/3
. Finally, they prove that the

limit shape of a typical convex polygonal line is the arc of a parabola, which maximizes the
affine perimeter. Later, Vershik and Zeitouni [15] proved, for a class of analogous problems,
a large deviation principle involving the affine perimeter of the line. Finally, Bárány and
Prodromou, while considering the maximal number of vertices for a lattice polygon included
in a convex set, proved recently in [6] the analog of Jarńik’s result, and they showed that

the largest number of vertices for an element of Πn is equivalent to 3
(

n
π

)2/3
.

The nature of these results shows that this problem is related to both affine differential
geometry and geometry of numbers. Indeed, the parabola found as limit shape coincides
with the convex curve inside the square having the largest affine perimeter. Furthermore,
the appearance of the values of the Riemann zeta function shows the arithmetic aspects
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2 N. ENRIQUEZ

of the problem. One could show indeed that if the lattice Z
2 was replaced by a Poisson

Point Process having intensity one (which can be thought as the most isotropic “lattice”
one can imagine), the constants (ζ2(3)ζ(2))−1/3 = 0, 749 and 3(ζ(3)/ζ(2))1/3 = 2.702 would
be merely raised respectively to 1 and 3 in probability (cf. the concluding remarks at the
end of the paper).

In section 3, we precise the combinatorial aspect of the result of [3], [12], [13]. We obtain,
for any positive number c, a logarithmic equivalent of the number of lines having [cn2/3]
vertices. This question is reminiscent of other ones considered, for instance, by Arratia
and Tavaré [2] or Vershik and Yakubovich [14] who were studying combinatorial objects
(permutations, polynomials over finite field, Young tableaux...) having a specified num-
ber of summands (according to the setting, we call summands, cycles, irreducible divisors
etc...). In both cases, like in Sinai’s approach, the method, borrowed from classical ideas of
statistical physics, relies on the introduction of a grand canonical ensemble which endows
the considered combinatorial object with a parametrized probability measure. Then, the
strategy consists in calibrating the parameters of the probability in order to fit with the
constraints one has to deal with. Concretely, in our question, it turns out that one can
add one parameter in Sinai’s probability distribution that makes it possible to take into
account, not only the location of the extreme point of the chain but also the number of ver-
tices it contains. The asymptotic of the number of lines having [cn2/3] vertices can finally
be expressed in terms of the polylogarithm functions Li2 and Li3.

In section 4, we deduce from this analysis the result of [6] about the largest number of
vertices for an element of Πn. We show how the proof of this result, using our analysis,
suggests the more direct argument ”à la Jarńik” presented in [6].

In section 5, we derive results about the cardinal and limit shape of lines having few
vertices, answering a question of Vershik: it turns out that there is a limit shape for lines
having for instance [

√
n] vertices which is, a little bit surprisingly, still the arc of parabola.

In section 6, we go back to Jarńık’s problem. In addition to Jarńık’s result we recover,
we give the asymptotic of the number of chains, typical number of vertices, and limit shape,
which is an arc of a circle, in this different framework.

Furthermore, one may mix both type of conditions and the statistical physical method
still applies. In section 7, we obtain, for the convex lines joining 0 to (n, n) and having a
given total length, a continuous family of convex limit shapes which interpolates the diagonal
of the square and the two sides of the square, going through the above arc of parabola and
arc of circle.

2. A one-to-one correspondence

We start this paper by reminding the correspondence between finite convex polygonal
lines issuing from 0 whose vertices define increasing sequences in both coordinates and finite
subsets of the set of pairs of coprime positive integers each of them affected with a positive
integer.

More precisely, let Π denote the set of finite planar convex polygonal lines Γ issuing from
0 such that the vertices of Γ are points of Z

2 and the angle between each side of Γ and
the horizontal axis is in the interval [0, π/2]. Now consider the set X of all pairs (x1, x2) of
coprime positive integers including the pairs (0, 1) and (1, 0).

We present the following correspondence which is borrowed from Sinai [12]:

Lemma 1. [12] The space Π is in one-to-one correspondence with the space C0(X) of finite
nonnegative integer-valued functions ν(x) on X (where ν(x) is said to be finite if ν(x) 6= 0
only for finitely many x).
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Proof: An element of Π is defined by the set of its sides since the sides are ordered ac-

cording to their slope. Now, each side is defined by a vector (y1, y2) one can write y.(
y1

y
,
y2

y
)

where y := g.c.d.(y1, y2). Now (
y1

y
,
y2

y
) ∈ X and we define ν(

y1

y
,
y2

y
) = g.c.d.(y1, y2).

Conversely, given ν ∈ C0(X), we order the (finite) set of points x such that ν(x) > 0,

according to the increasing values of
x2

x1
, and obtain a finite sequence of points x(j). Now,

the polygon with consecutive sides ν(x(j))x(j) is convex. �

3. A detailed combinatorial analysis

Let us introduce now the following parametrized probability distribution on C0(X), which,
by the correspondence of Lemma 1, corresponds to a probability distribution on Π:

∀ν ∈ C0(X), Qz1,z2,λ(ν) =
∏

(x1,x2)∈X

(zx1
1 zx2

2 )ν(x)λ1ν(x) 6=0

1 +
λzx1

1 zx2
2

1 − zx1
1 zx2

2

=
∏

(x1,x2)∈X

(zx1
1 zx2

2 )ν(x)λ1ν(x) 6=0
1 − zx1

1 zx2
2

1 + (λ − 1)zx1
1 zx2

2

where z1, z2 ∈ [0, 1[, and λ > 0.

Taking λ = 1, the probability Qz1,z2,1 is nothing but the two-parameter probability dis-
tribution introduced by Sinai. Under Qz1,z2,λ, the variables (ν(x))x∈X are still independent,
like in Sinai’s framework, but follow a geometric law only for λ = 1.

Loosely speaking, compared to Sinai’s probability distribution, Qz1,z2,λ corresponds to the
introduction of a penalization of the probability by a factor λ each time a vertex appears.

Now, we define Π(n1, n2, N) the set of polygons with endpoint (n1, n2) having N vertices,
and we denote by N (n1, n2, N) its cardinal.

Since Qz1,z2,λ(ν) depends only on
∑

x∈X

x1ν(x),
∑

x∈X

x2ν(x), and
∑

x∈X

1ν(x)6=0, we deduce

that the conditional distribution induced by Qz1,z2,λ on Π(n1, n2, N) is uniform, and we can
write

N (n1, n2, N) = z−n1
1 z−n2

2 λ−N
∏

(x1,x2)∈X

(

1 − zx1
1 zx2

2

1 + (λ − 1)zx1
1 zx2

2

)−1

Qz1,z2,λ(Π(n1, n2, N)) (⋆)

In order to get a logarithmic equivalent of N (n1, n2, N), our strategy is to choose the
three parameters so that

Ez1,z2,λ(
∑

x∈X

x1ν(x)) =
∑

(x1,x2)∈X

x1λzx1
1 zx2

2

(1 − zx1
1 zx2

2 )(1 + (λ − 1)zx1
1 zx2

2 )
= n1 (1)

Ez1,z2,λ(
∑

x∈X

x2ν(x)) =
∑

(x1,x2)∈X

x2λzx1
1 zx2

2

(1 − zx1
1 zx2

2 )(1 + (λ − 1)zx1
1 zx2

2 )
= n2 (2)

Ez1,z2,λ(
∑

x∈X

1ν(x)6=0) =
∑

(x1,x2)∈X

λzx1
1 zx2

2

1 + (λ − 1)zx1
1 zx2

2

= N (3)

This will indeed lead to an estimation of Qz1,z2,λ(Π(n1, n2, N)) which will be much bigger
than exponentially small (see lemma 2 below).

Now, our asymptotic setting is the following: n1 = n2 = n → +∞, and N/n2/3 → c. Let
us note that we could have chosen a more general setting, taking n2/n1 converging to an
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arbitrary constant, but this does not add any difficulty and just make the computations less
readable, whereas the final result can be guessed from the case n1 = n2.

Theorem 1. For all λ > 0,

ln(N (n, n, [c(λ)n2/3])) = n2/3(e(λ) + o(1))

where c(λ) and e(λ) are positive functions on ]0,+∞[, defined by :

c(λ) =
λLi2(1 − λ)

1 − λ
× 1

ζ(2)1/3(ζ(3) − Li3(1 − λ))2/3

e(λ) = 3

(

ζ(3) − Li3(1 − λ)

ζ(2)

)1/3

− λ ln(λ)Li2(1 − λ)

1 − λ
× 1

ζ(2)1/3(ζ(3) − Li3(1 − λ))2/3

Remark: The function e(λ) is maximal for λ = 1, and, in this case,

c(1) =
1

(ζ(2)ζ(3)2)1/3

e(1) = 3

(

ζ(3)

ζ(2)

)1/3

This implies the results of [3], [13] and [12] about the typical behavior of a convex chain, in
a straighter manner than by the original arguments.

We refer the reader to Figure 1 which represents the graphic of (c(λ), e(λ)) for λ ∈]0,+∞[.

Proof: Let us consider parameters zi, so that z1 = z2 = z with z of the form z = 1− δ
n1/3

where the new parameter δ is itself depending on n, but is bounded from above and below
by two strictly positive constants. Equality (1) then writes

n1/3
∑

(t1,t2)∈ 1

n1/3
X

λt1(1 − δ
n1/3 )n

1/3(t1+t2)

(1 − (1 − δ
n1/3 )n

1/3(t1+t2))(1 + (λ − 1)(1 − δ
n1/3 )n

1/3(t1+t2))
= n

Now, using Theorem 459 of the book of Hardy and Wright [8], saying that the set X has
density 1

ζ(2) in N
2, we get that the previous sum is equivalent to

(

1

ζ(2)

∫ +∞

0

∫ +∞

0

λt1e
−δ(t1+t2)

(1 − e−δ(t1+t2))(1 + (λ − 1)e−δ(t1+t2))
dt1dt2

)

× n

Using a linear change of variable, si := δti , and the identity

λX

(1 − X)(1 + (λ − 1)X)
=

1

1 − X
− 1

1 − (1 − λ)X

the previous expression writes
(

1

ζ(2)δ3

∫ +∞

0

∫ +∞

0

s1

1 − e−(s1+s2)
− s1

1 − (1 − λ)e−(s1+s2)
ds1ds2

)

× n

Using the series expansion 1
1−ae−(s1+s2) =

∑

k≥0 ake−k(s1+s2), we get finally the following

expressions:

n

ζ(2)δ3
(
∑

k≥1

1

k3
−
∑

k≥1

(1 − λ)k

k3
) =

n

ζ(2)δ3
(ζ(3) − Li3(1 − λ))

(The series expansion on the left hand side does make sense only if the value of λ is
restricted to [0, 1] , but the expression in terms of the polylogarithm function Li3 is well
defined for all λ > 0, and coincide with the computed integral)
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We therefore get a first condition on the parameters δ and λ:

δ3
∼
∞

1

ζ(2)
(ζ(3) − Li3(1 − λ)) (5)

Of course, in our symmetric setting, the equality (2) yields the same condition. Let us now
write equality (3):

∑

(t1,t2)∈ 1

n1/3
X

λ(1 − δ
n1/3 )n

1/3(t1+t2)

1 + (λ − 1)(1 − δ
n1/3 )n

1/3(t1+t2)
= [cn2/3]

In the same way as previously, we deduce
(

1

ζ(2)

∫ +∞

0

∫ +∞

0

λe−δ(t1+t2)

1 − (1 − λ)e−δ(t1+t2)
dt1dt2

)

× n2/3
∼
∞

cn2/3

The left hand side of the equality writes:

λ

δ2ζ(2)

∑

k≥1

(1 − λ)k−1

k2
× n2/3 =

λ

δ2ζ(2)

Li2(1 − λ)

1 − λ
n2/3

Hence, the second condition on the parameters δ and λ writes:

λ

δ2ζ(2)

Li2(1 − λ)

1 − λ
∼
∞

c

Now, back to N (n1, n2, N), we use (⋆) and replacing z1 and z2 by (1 − δ
n1/3 ), we get:

N (n, n, [cn2/3]) = (1 − δ
n1/3 )−2nλ−[cn2/3]×

exp







∑

(t1,t2)∈ 1

n1/3
X

ln

(

1 − (1 − λ)(1 − δ

n1/3
)n

1/3(t1+t2)

)

− ln

(

1 − (1 − δ

n1/3
)n

1/3(t1+t2)

)






×

Qz1,z2,λ(Π(n, n, [cn2/3]))

This leads to

N (n, n, [cn2/3]) = Qz1,z2,λ(Π(n, n, [cn2/3]))×

exp

(

n2/3

(

2δ − c ln λ +
1

ζ(2)

∫

R
2
+

ln(1 − (1 − λ)e−δ(t1+t2)) − ln(1 − e−δ(t1+t2))dt1dt2 + o(1)

))

Using again the linear change of variable, si := δti and afterwards the series expansion

ln(1 − ae−δ(t1+t2)) = −
∑

k≥1

ak e−kδ(t1+t2)

k
, we get

N (n, n, [cn2/3]) = Qz1,z2,λ(Π(n, n, [cn2/3]))×

exp

(

n2/3

(

2δ − c ln λ +
1

δ2ζ(2)
(ζ(3) − Li3(1 − λ)) + o(1)

))

Using (5) this can be simplified into:

N (n, n, [cn2/3]) = Qz1,z2,λ(Π(n, n, [cn2/3])) × exp
(

n2/3 (3δ − c ln λ + o(1))
)

We now have to remark that, according to a type of local limit theorem proved few
lines below, the quantity Qz1,z2,λ(Π(n, n, [cn2/3])) decreases polynomially. We derive the
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expression of c(λ) from (5) and Bárány, and the corresponding value of the exponent e(λ) =
3δ − c(λ) ln(λ). �

Let us now come back to the estimation of Qz1,z2,λ(Π(n, n, [cn2/3])) which is governed by

a kind of local limit theorem for the variables
∑

x∈X

x1ν(x),
∑

x∈X

x2ν(x), and
∑

x∈X

1ν(x)6=0.

Lemma 2. In the framework of the proof of Theorem 1, Qz1,z2,λ(Π(n, n, [cn2/3])) = O( 1
n5/3 )

Proof: like in the case of the usual local limit theorem for the sum of iid random vari-
ables (see [7]), the proof is based on Fourier analysis. However, a dominated convergence
argument, like in the local limit theorem, doesn’t work and we have to be finer.

We use a real test function h on R
3, whose Fourier transform has a compact support, and

we are led to the proof of

E[h(
∑

X

x1ν(x) − n,
∑

X

x2ν(x) − n,
∑

X

1{ν(x)6=0} − [cn2/3])] = O(
1

n5/3
)

In the sequel, we will use, for short, the notations X1, X2, X3 for the random variables
∑

X x1ν(x),
∑

X x2ν(x),
∑

X 1{ν(x)6=0}, and the overline notation Z to denote the centered
variable Z − E[Z] associated to a random variable Z. We will also use the notation C to
denote a positive constant whose value may change along the lines.

We can now transform the previous expectation into
∫

R3 ĥ(t1, t2, t3)dµ̂X1,X2,X3
(t1, t2, t3)

where µ̂X1,X2,X3
denotes the Fourier transform of the distribution measure µX1,X2,X3

of

the triplet of random variables (X1,X2,X3), which is a 2π-periodic function in its three
variables, since we deal with integer valued random variables.

Therefore, we have to deal with
∫

[−π,π]3 l(t1, t2, t3)dµ̂X1,X2,X3
(t1, t2, t3) where l(t1, t2, t3) =

∑

k1,k2,k3∈Z
ĥ(t1 + k1, t2 + k2, t3 + k3) (let us remark that this sum is actually finite).

Now, since all the variables ν(x) are independent,

dµ̂X1,X2,X3
(t1, t2, t3) = (

∏

X

φx(t1, t2, t3))dt1dt2dt3

where φx(t1, t2, t3) = E[ei(t1x1ν(x)+t2x2ν(x)+t31ν(x) 6=0)].

Now, denoting by ρx = zx1
1 zx2

2 , we get

V ar(ν(x)) =
λρx((1 + ρx)(1 + (λ − 1)ρx) − λρx)

(1 − ρx)2(1 + (λ − 1)ρx)2

Cov(1ν(x)6=0, ν(x)) =
λρx

(1 + (λ − 1)ρx)2

and

V ar(1ν(x)6=0) =
λρx(1 − ρx)

(1 + (λ − 1)ρx)2

From these formulas, we deduce the expression of the covariance matrix Γx of the random
vector (x1ν(x), x2ν(x), 1ν(x)6=0). Now, after summing the matrices Γx, and approximating
the sums on the set X by integrals, we obtain that the covariance matrix of the vector
X1,X2,X3, is equivalent when n goes to infinity to

Γn =





n4/3A n4/3B nD

n4/3B n4/3A nD

nD nD n2/3E
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(one can state indeed a result of the form: for two given integers k, l, and for a continuous

function f ,
∑

X

xk
1x

l
2f(ρx) ∼

∞

(

6

π2

∫

R
2
+

sk
1s

l
2f(e−δ(s1+s2))ds1ds2

)

n
2+k+l

3 as soon as the integral

on the right hand side is finite.)

Our task is now to prove that
∫

[−π,π]3 l(~t)dµ̂X1,X2,X3
(~t) ∼

∞

∫

[−π,π]3 l(~t) exp(−1
2〈~t,Γn~t〉)d~t

which is easily seen, after a linear change of variable, to be equivalent to some constant

times l(0)

n5/3 .

Let In := [−n−2/3 log n, n−2/3 log n]2 × [n−1/3 log n, n−1/3 log n]. We partition the domain
[−π, π]3 into In ∪ ([−π, π]3 \ In).

On In,

|∏X φx(~t) − exp(−1
2〈~t,Γn~t〉)| ≤ | exp(−1

2
〈~t,Γn~t〉) − exp(−1

2

∑

X

〈~t,Γx~t〉)|

+ exp(−1

2
〈~t,
∑

X

Γx~t〉)
∣

∣

∣

∣

∣

exp(
1

2

∑

X

〈~t,Γx~t〉 + ln φx(~t)) − 1

∣

∣

∣

∣

∣

Since Γn ∼
∞

∑

X Γx, the integration of the first term of the rhs contributes only like o( 1
n5/3 ).

Concerning the second term of the rhs,
∣

∣

∣

∣

∣

exp(
1

2

∑

X

〈~t,Γx~t〉 + ln φx(~t)) − 1

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

2

∑

X

〈~t,Γx~t〉 + ln φx(~t)

∣

∣

∣

∣

∣

e| 12
∑

X〈~t,Γx~t〉+ln φx(~t)|

Now, using the fact that, on In ,|φx| is bounded away from 0, we get, on In, that

| ln φx(~t) − (1 − φx(~t))| ≤ |1 − φx(~t)|2

and
∣

∣

1
2

∑

X〈~t,Γx~t〉 + ln φx(~t)
∣

∣ ≤
∑

X

|1 − φx(~t)|2 +
1

6

∑

X

E[|〈~t, (x1ν(x), x2ν(x), 1ν(x)6=0)〉|3]

≤ C

(

∑

X

(t41x
4
1 + t42x

4
2 + t43)f(ρx) +

∑

X

(|t1|3x3
1 + |t2|3x3

2 + |t3|3)g(ρx)

)

for suitable functions f and g.

This last expression is therefore dominated by a constant times t41n
2 + t42n

2 + t43n
2/3 +

|t1|3n5/3 + |t2|3n5/3 + |t3|3n2/3, which is, on In, a o(t21n
4/3 + t22n

4/3 + t23n
2/3) = o(〈~t,Γn~t〉).

Therefore, the integral on In of |∏X φx(~t) − exp(−1
2〈~t,Γn~t〉)| contributes like o( 1

n5/3 ).

Finally, it remains to prove that the integral of |∏X φx(~t)| over [−π, π]3 \ In is o( 1
n5/3 ).

Actually, we will prove that, outside In, for all x ∈ X, |∏X φx(~t)| ≤ exp(−C(ln n)2).

If we denote t′ := (t1, t2), so that ~t = (t′, t3), a straightforward computation gives

|φx(~t)| =
1 + 4ρx

(1+(λ−1)ρx)2
sin2 t′.x

2 − 4λρx

(1+(λ−1)ρx)2
sin2 t′.x+t3

2 + 4λρ2
x

(1+(λ−1)ρx)2
sin2 t3

2

1 + 4ρx

(1−ρx)2
sin2 t′.x

2

Hence,

|
∏

X

φx(~t)| ≤ exp

(

−C
∑

X

u(ρx) sin2 t′.x
2

+ v(ρx) sin2 t′.x + t3
2

− ρxv(ρx) sin2 t3
2

)
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with

u(ρx) :=
4λρ2

x(2 + (λ − 2)ρx)

(1 − ρx)2(1 + (λ − 1)ρx)2

v(ρx) :=
4λρx

(1 + (λ − 1)ρx)2

From the simple inequality u(ρx) ≥ 2ρxv(ρx), we deduce

|
∏

X

φx(~t)| ≤ exp

(

−C
∑

X

ρxv(ρx)

(

2 sin2 t′.x
2

+
1

ρx
sin2 t′.x + t3

2
− sin2 t3

2

)

)

Now, for M > 2, the quadratic form 2x2 + M(x + y)2 − y2 is positive definite, and one
can deduce that there exists C > 0, such that,

∀x, y ∈ R, 2 sin2 x + M sin2(x + y) − sin2 y > C sin2 x.

Let us consider, firstly, the case |t′| ∈ [ ln n
n2/3 , 1

n1/3 ]. We first observe that, since the functions

|φx| are smaller than 1, it is enough to get an upper bound of
∏

X∩[Aδ.n2/3,+∞[2

|φx(~t)|, where Aδ

is a positive real number which satisfies e−2δAδ < 1/3. This implies that, on the considered
domain, 1

ρx
> 3, and that , for |t′| ∈ [ ln n

n2/3 , 1
n1/3 ],

∏

X∩[Aδ.n2/3,+∞[2

|φx(~t)| ≤ exp

(

−Cn2/3

∫

[Aδ,+∞[2
u(e−δ(s1+s2)) sin2(n1/3(t′.~s))ds1ds2

)

≤ exp(−C(lnn)2)

In the case |t′| > 1
n1/3 , and |t3| < lnn

n1/3 , the number of points of X such that t′.x belongs

to the same period of the sinus is less than n1/3, so that when we estimate the sum on X by

an integral on [0,+∞[2, the terms sin2 t′.x+t3
2 and sin2 t′.x

2 can be replaced by some positive

constant times their mean value i.e. 1
2 .

Hence,

∏

X∩[Aδ.n2/3,+∞[2

|φx(~t)| ≤ exp

(

−Cn2/3

∫

[Aδ,+∞[2
u(e−δ(s1+s2))ds1ds2

)

≤ exp(−Cn2/3)

The last case, when |t3| ≥ ln n
n1/3 and |t′| ≤ ln n

n2/3 , is treated in the same way as the first
case, after observing that, for M > 2,

∀x, y ∈ R, 2 sin2 x + M sin2(x + y) − sin2 y > C sin2 y.

�

4. The cardinal of the longest convex chain

In this section we are seeking an equivalent of the maximal number of vertices for an
element of Πn, or equivalently, the maximal number of integral points that an increasing
convex function satisfying f(0) = 0 and f(n) = n can interpolate. This question and its
counterpart, concerning the maximal convex lattice polygons incribed in a convex set , was
recently solved in [6].

We present a first proof, using Theorem 1, and afterwards the proof of [6], which is more
direct. Moreover, we show how the first proof can suggest the second one. Let us mention
here that the aim of [6] was to get an equivalent of the maximal cardinal of the vertices of
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a lattice polygon included into a given convex set. The following result was the stepping
stone of their proof.

Theorem 2. [6] Let L ∈ Πn. We denote by card(L) the cardinal of the set of vertices of L.
Then

max
L∈Πn

card(L) ∼
n→+∞

3
(n

π

)2/3
≃ 1, 40.n2/3

Proof 1 (using Theorem 1): we first notice that e(λ) vanishes when λ goes to infinity. In
the same time,

c(λ) ∼
λ→+∞

−Li2(1 − λ)

ζ(2)1/3(−Li3(1 − λ))2/3

Now, we use the equivalent

Lin(x) ∼
x→−∞

−(ln(−x))n

Γ(n + 1)

to obtain limλ→+∞ c(λ) =
Γ(4)2/3

(

π2

6

)1/3

Γ(3)

=
3

π2/3

Since, for large values of λ, c(λ) becomes arbitrary close to 3
π2/3 , and the corresponding

values e(λ) remain strictly positive, we get obviously that

lim inf
n→+∞

maxL∈Πn card(L)

n2/3
≥ 3

π2/3

Now, let ε > 0, and suppose

lim sup
n→+∞

maxL∈Πn card(L)

n2/3
≥ 3(1 + 2ε)

π2/3

Then, for arbitrary large n, there is a chain L ∈ Πn having cardinal [(1 + ε) × 3
(n

π

)2/3
].

But, for δ > 0, we observe that by just picking [(1− δ)3
(n

π

)2/3
] vertices among the vertices

of L, we get a set of convex chains having cardinal [(1− δ)3
(n

π

)2/3
] whose cardinal is equal

to







[(1+ε)3

(n

π

)2/3
]

[(1−δ)3

(n

π

)2/3
]






= exp

(

3ε + δ
π2/3 n2/3(1 + o(1)

)

. Choosing δ small enough to get

e(
3(1 − δ)

π2/3
) < 3

ε − δ

π2/3

we obtain a contradiction �

Proof 2 (direct [6]): Let us denote by Ψ the function defined by Ψ(n) = maxL∈Πn card(L).

This function is increasing, and we shall prove the existence of a sequence an of integers

such that: an → +∞, an+1

an
→ 1, and Ψ(an) ∼

n→+∞
3
(

an
π

)2/3
.

In order to define an, we introduce the set Xn = X ∩ {(x, y) ∈ R
2
+, x + y ≤ n}.

(The introduction of the set Xn is also suggested by Proof 1. Indeed, under Qz(λ),z(λ),λ,
the limiting law of the variables ν(x) when λ → ∞, is δ1 for x ∈ Xn and δ0 for x /∈ Xn.)

We define now (an, an) as the sum of the elements of Xn.
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Since the set X has an asymptotic density 6
π2 , we obtain by projection along the line

y = x:
√

2.an ∼
n→+∞

6

π2

∫ n/
√

2

0
2x2dx =

√
2.

n3

π2

Now, the polygonal line corresponding to the function νn := 1Xn ∈ C0(X) defines an
element of Πan which realizes the maximal number of vertices for an element of Πan . In-
deed, the function νn corresponds to the choice of the card(Xn) first vectors of X, whose
projections along the line y = x are the smallest, affected with a minimal weight.

Therefore, Ψ(an) = card(Xn).

Now,

card(Xn) ∼
n→+∞

6

π2
× n2

2
=

3

π2
× n2

�

5. Chains with few vertices

We turn now to the case of chains having a number of vertices of order ns with s ∈]0, 2/3[.

Proposition 1. For all λ > 0, and s ∈]0, 2/3[,

ln(N (n, n, [cns])) = ((2 − 3s)c ln(n) + 2c − 3c ln c + o(1))ns

Proof: In this context, we will choose the parameters zi so that z1 = z2 = z with z of the
form z = 1 − δ

n1−s and λ = λ0n
3s−2. Equality (1) then writes

n2s−1
∑

(t1,t2)∈ 1
n1−s X

λ0t1(1 − δ
n1−s )n

1−s(t1+t2)

(1 − (1 − δ
n1−s )n1−s(t1+t2))(1 + (λ − 1)(1 − δ

n1−s )n1−s(t1+t2))
= n

Now, since λ tends to 0, the sum on the left hand side is equivalent to
(

1

ζ(2)

∫ +∞

0

∫ +∞

0

λ0t1e
−δ(t1+t2)

(1 − e−δ(t1+t2))2
dt1dt2

)

× n

Using a linear change of variable, si := δti and the series expansion
x

(1 − x)2
=
∑

k≥1

kxk, the

expression of the last integral reduces to
λ0

δ3
.

As a result the first condition (1) yields λ0 ∼
∞

δ3.

Let us turn to condition (3):

n3s−2
∑

(t1,t2)∈ 1
n1−s X

λ0(1 − δ
n1−s )n

1−s(t1+t2)

1 + (λ − 1)(1 − δ
n1−s )n1−s(t1+t2)

= [cns]

In the same way as in the proof of Theorem 1, we deduce
(

1

ζ(2)

∫ +∞

0

∫ +∞

0

λ0e
−δ(t1+t2)

1 − e−δ(t1+t2)
dt1dt2

)

× ns
∼
∞

cns

But the expression of the last integral reduces to
λ0

δ2
. Hence, condition (3) yields λ0 ∼

∞
δ2c.

We get finally δ ∼
∞

c and λ0 ∼
∞

c3.
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N (n, n, [cns]) = (1 − δ
n1−s )−2nλ−[cns]×

exp







∑

(t1,t2)∈ 1
n1−s X

ln

(

1 − (1 − λ)(1 − δ

n1−s
)n

1−s(t1+t2)

)

− ln

(

1 − (1 − δ

n1−s
)n

1−s(t1+t2)

)






×

Qz1,z2,λ(Π(n, n, [cns]))

This leads to

N (n, n, [cns]) = Qz1,z2,λ(Π(n, n, [cns])) × (λ0n
3s−2)−[cns] exp (ns (2δ + o(1)))

which gives the result after taking into account both conditions on δ and λ0, and proving
Qz1,z2,λ(Π(n, n, [cns])) = O( 1

n
5s
2

) which is a result analogous to Lemma 2. �

Let us observe that we can generalize Proposition 1, in the following way:

Proposition 2. Let un be a sequence of positive integers such that un = o(n
2
3 ) and un → ∞,

N (n, n, un) =

(

n2

u3
n

)un(1+o(1))

Let us now investigate the limit shape of lines of Π(n, n, [cns]).

Let us denote first by P(n,n,[cns]) the uniform measure on Π(n, n, [cns]).

We introduce the arc of parabola

L = {(x, y) :
√

y = 1 −
√

1 − x, 0 ≤ x ≤ 1} = {(x, y) : y = l(x) := (1 −
√

1 − x)2, 0 ≤ x ≤ 1}

and its ”δ, n”-neighborhood Uδ,n,

Uδ,n := {(x, y) : |y − n.l(x/n)| ≤ nδ}

The following result answers a question asked by Vershik at the end of [13] (question 3,
in the concluding remarks).

Theorem 3. For all δ > 0, c > 0, and s ∈]0, 2/3[, P(n,n,[cns])(Γ ⊂ Uδ,n) tends to 1 as
n → ∞

Proof: Let us choose a subdivision of the interval [0, π
2 ], θN

1 < θN
2 < ... < θN

N such

that maxN→∞(θN
j+1 − θN

j ) → 0. Consider Qz1,z2,λ where z1 = z2 = z with z of the form

z = 1 − δ
n1−s and λ = λ0n

3s−2, the parameters z and λ being chosen according to c and
s like in the proof of Proposition 1. We introduce the following random variables under
Qz1,z2,λ

ζj,N =
∑

x∈X : θN
j <arctan(

x2
x1

)<θN
j+1

√

x2
1 + x2

2.ν(x).

The mathematical expectation of ζj,N writes

n2s−1
∑

(t1,t2)∈ 1
n1−s X

θN
j

<arctan(
t2
t1

)<θN
j+1

λ0

√

t21 + t22(1 − δ
n1−s )n

1−s(t1+t2)

(1 − (1 − δ
n1−s )n

1−s(t1+t2))(1 + (λ − 1)(1 − δ
n1−s )n

1−s(t1+t2))

and is equivalent when n → ∞, to
(

1

ζ(2)

∫

θN
j <θ<θN

j+1

λ0

√

t21 + t22e
−δ(t1+t2)

(1 − e−δ(t1+t2))2
dt1dt2

)

× n
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which is itself equivalent, when maxN→∞(θN
j+1 − θN

j ) → 0, to

C ×
θN
j+1 − θN

j

(cos θN
j + sin θN

j )3
× n = C ′ ×

θN
j+1 − θN

j

cos(θN
j − π

4 )3
× n.

Furthermore, by moment arguments we don’t develop since they involve easy but rather long
computations, one can check that for all positive η, Qz1,z2,λ(|ζj,N − E[ζj,N ]| > η) = o( 1

nk ),
for all k.

Therefore, if d(O,w(Γ)) denotes the distance to the origin of the endpoint of Γ, we deduce
the existence of a limit shape for 1

d(O,w(Γ)) × Γ under Qz1,z2,λ.

In the frame based at the intersection of this limit shape with the second diagonal of the
unit square, with a first axis parallel to the first diagonal and a second axis parallel to the
second diagonal, the limit shape has the following parametrized description:

x(φ) = C1.
∫ φ
0

cos u
(cos u)3

du = tan φ, y(φ) = C1.
∫ φ
0

sinu
(cos u)3

du = C1 tan2 φ (−π
4 ≤ φ ≤ π

4 ),

with C1 = x(π
4 ) = 1√

2
.

Hence, y(φ) = (x(φ))2/
√

2.

This curve coincides precisely with L, and, Qz1,z2,λ(Γ 6⊂ Uδ,n) = o( 1
nk ), for all k.

Now, by the same arguments as in Lemma 2, one obtains

Qz1,z2,λ(Γ ∈ Π(n,n,[λns])) = O(
1

n
5s
2

).

Since the projection of Qz1,z2,λ on Π(n,n,[λns]) is precisely P(n,n,[λns]), we have got for all k

P(n,n,[λns])(Γ 6⊂ Uδ,n) = o(
1

nk
)

�

6. Back to Jarńık’s problem

In [9], Jarńık gives an equivalent of the maximum possible number of vertices of a convex
polygonal line having its vertices in N

2, a total length smaller than n, and whose segments

make an angle with the x-axis between 0 and π
4 . What he finds is 3. n2/3

2.(2π)1/3 . If, in order to

be closer to our setting, we ask the segments to make an angle with the x-axis between 0

and π
2 , Jarńık’s equivalent is changed into 3. n2/3

2.π1/3 (which is twice the above result for n/2).

In this section, we want to present a detailed combinatorial analysis of this set of lines,
which leads to Jarńık’s result as well as to the asymptotic of the typical cardinal of such
lines which is the analog of Bárány, Sinai and Vershik’s result when the constraint concerns
the total length.

Let us first describe Jarńık’s argument, which is a good application of the correspondence
described in section 2. It says the following: the function ν realizing the maximum can be
taken among the functions taking their values in {0, 1}. Indeed, by changing the non-zero
values of a function ν into 1, one can obtain a chain with the same number of vertices, but
with a shorter length. Now, if the number of vertices N is given, the convex chain having
minimal length, will be defined by the function ν which associates 1 to the N points of X
which are the closest to the origin. Since the set X has an asymptotic density 6

π2 , when N
is big, this set of points is asymptotically equivalent to the intersection of X with the disc

of center O having radius R satisfying 6
π2 .πR2

4 = N i.e. R = (2π
3 N)1/2. The total length
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of the line is equivalent to L =
∫ R
0 r × 6

π2 .π2 rdr = R3

π =
( 2π

3
N)3/2

π . This yields precisely

N = 3. L2/3

2.π1/3 ≃ 1, 02L2/3.

Let us notice here, that the limit shape of the line described above is an arc of a circle
and not an arc of a parabola like in the previous problem.

Let us turn now to a more precise analysis. We first introduce the following parametrized
probability distribution on C0(X):

∀ν ∈ C0(X), Q̃z,λ(ν) =
∏

(x1,x2)∈X

(z
√

x2
1+x2

2)ν(x)λ1ν(x) 6=0

1 +
λz

√
x2
1+x2

2

1 − z
√

x2
1+x2

2

=
∏

(x1,x2)∈X

(z
√

x2
1+x2

2)ν(x)λ1ν(x) 6=0
1 − z

√
x2
1+x2

2

1 + (λ − 1)z
√

x2
1+x2

2

where z ∈ [0, 1], and λ > 0.

Now, we define Π̃(n,N) the set of the polygonal lines of Π having N vertices and a total

length between n and n + 1, and we denote by Ñ (n,N) its cardinal.

Since Q̃z,λ(ν) depends only on
∑

x∈X

√

x2
1 + x2

2ν(x) and
∑

x∈X

1ν(x)6=0, we deduce that the

conditional distribution induced by Qz,λ on Π̃(n,N) is almost uniform. More precisely, its
density with respect to the uniform measure is bounded between z and 1. So that, we can
write

N (n,N) = c(z)z−nλ−N
∏

(x1,x2)∈X

(

1 − z
√

x2
1+x2

2

1 + (λ − 1)z
√

x2
1+x2

2

)−1

Q̃z,λ(Π̃(n,N)) (⋆)

with c(z) ∈ [1, 1
z ]. In order to get a logarithmic equivalent of Ñ (n,N), our strategy is to

choose the parameters z and λ according to

Ẽz,λ(
∑

x∈X

√

x2
1 + x2

2ν(x)) =
∑

(x1,x2)∈X

λ
√

x2
1 + x2

2z
√

x2
1+x2

2

(1 − z
√

x2
1+x2

2)(1 + (λ − 1)z
√

x2
1+x2

2)
= n (7)

Ez,λ(
∑

x∈X

1ν(x)6=0) =
∑

(x1,x2)∈X

λz
√

x2
1+x2

2

1 + (λ − 1)z
√

x2
1+x2

2

= N (8)

Again, this will indeed lead to an estimation of Q̃z,λ(Π̃(n,N)) which will be much bigger
than exponentially small.

Now, our asymptotic setting is the following: n → +∞, and N/n2/3 → c. Similar
computations as in section 3 yield:

Theorem 4. For all λ > 0,

ln(Ñ (n, [cJ (λ)n2/3])) = n2/3(eJ(λ) + o(1))

where cJ(λ) and eJ(λ) are positive functions on ]0,+∞[, defined by :

cJ (λ) =
π1/3

2
c(λ), eJ(λ) =

π1/3

2
e(λ)

where c(λ) and e(λ) are the functions introduced in Theorem 1.
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Corollary 1. Let δ > 0. We denote by Π̃n,n+δ the set of the polygonal lines of Π having a
total length between n and n+δ, and, by Tn,n+δ, the typical number of vertices of an element

of Π̃n,n+δ. We have got the three following asymptotics:

card(Π̃n,n+δ) = exp

(

34/3(ζ(3))1/3

(4π)1/3
n2/3(1 + o(1))

)

.

Tn,n+δ ∼
n→∞

(

3

4πζ(3)2

)1/3

n2/3 ≃ 0, 55n2/3.

max
L∈Π̃n,n+δ

card(L) ∼
n→∞

(

3

2π1/3

)

n2/3 ≃ 1, 02n2/3.

Remark: The third asymptotic is a slight refinement of Jarńık’s result, since the condition
on the total length to belong to [n, n + δ] is more restrictive than in Jarńık’s case.

7. Mixing constraints and finding new limit shapes

In this section, we consider the set Πn,L of convex polygonal lines of Πn whose total

length belongs to [Ln,Ln + 1], for L ∈]
√

2, 2[. We introduce Pn,L, the uniform distribution

on Πn,L, and we are investigating the limit shape of a line 1
nΓ under Pn,L. The shapes

corresponding to the two extreme values of L,
√

2 and 2 are respectively the diagonal and
the two sides of the square. We want now to explicit a family of convex curves (CL)L∈]

√
2,2[

interpolating these extreme situations (see Figure 2).

• For L ∈ [π2 , 2[, there exists a unique α ∈ [− 1√
2
,+∞[ such that

L =
√

2

∫
π
4

0
1

(α+cos u)3
du

∫
π
4

0
cos u

(α+cos u)3
du

.

We define the convex curve CL of length L, joining O to (1, 1), and symmetric with respect
to the second diagonal of the unit square by the following parametrized description:

xL(φ) =
√

2

∫ φ
0

cos u
(α+cos(u−π

4
))3 du

∫

π
2

0
cos u

(α+cos u)3
du

, yL(φ) =
√

2

∫ φ
0

sinu
(α+cos(u−π

4
))3 du

∫

π
2

0
cos u

(α+cos u)3
du

(0 ≤ φ ≤ π

2
).

When L tends to 2, α tends to − 1√
2
, and the curve CL converges to the two sides of the

square.

When L = 1 + ln(1+
√

2)√
2

≃ 1, 623, α = 0 and the limit shape is the arc of parabola found

in [3], [12], [13].

When L tends to π
2

+, α goes to infinity, and CL converges to the arc of the unit circle
joining O to (1, 1).

• For L ∈]
√

2, π
2 ], there exists a unique β ∈ [1,+∞[ such that

L =
√

2

∫

π
4

0
1

(β−cos u)3
du

∫
π
4

0
cos u

(β−cos u)3 du
.
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We define the convex curve CL of length L, joining O to (1, 1), and symmetric with respect
to the second diagonal of the unit square by the following parametrized description:

xL(φ) =
√

2

∫ φ
0

cos u
(β−cos(u−π

4
))3

du

∫
π
2

0
cos u

(β−cos u)3
du

, yL(φ) =
√

2

∫ φ
0

sinu
(β−cos(u−π

4
))3

du

∫
π
2

0
cos u

(β−cos u)3
du

(0 ≤ φ ≤ π

2
).

When L tends to
√

2, β tends to 1, and the curve CL converges to the first diagonal of
the square.

When L tends to π
2
−, β goes to infinity, and CL converges to the arc of the unit circle

joining O to (1, 1).

We can now define the ”n, δ”-neighbourhood VL,n,δ of CL by

VL,n,δ = {(x, y) : d((
x

n
,
y

n
), CL) ≤ δ}

and state the limit following limit shape result:

Theorem 5. For all δ > 0, L ∈]
√

2, 2[, Pn,L(Γ ⊂ VL,n,δ) tends to 1 as n → ∞

Proof: We introduce the following parametrized probability distribution Qy,z on C0(X)
which takes into account both the total length and the endpoint of Γ: for ν ∈ C0(X), we
define

Qy,z(ν) =
∏

(x1,x2)∈X

(y(x1+x2)z
√

x2
1+x2

2)ν(x)(1 − (y(x1+x2)z
√

x2
1+x2

2))

where y and z satisfy: for all (x1, x2) in X, y(x1+x2)z
√

x2
1+x2

2 ∈ [0, 1[. (The introduction of
an extra parameter λ in the definition of the probability, that would ”count” the vertices is
useless in a question of limit shape)

It turns out here that the computation of the parameters according to the conditions
that the expectations of the endpoint and total length of the chain are respectively equal
to (n, n) and Ln, are very heavy in this framework. This implies heavy formulas in the
combinatorics of these lines.

However, we know that y and z will be of the form 1 + γ
n1/3 and 1 + δ

n1/3 .

ζj,N =
∑

x∈X : θN
j <arctan(

x2
x1

)<θN
j+1

√

x2
1 + x2

2.ν(x).

The mathematical expectation of ζj,N writes

n1/3
∑

(t1,t2)∈ 1

n1/3
X

θN
j

<arctan(
t2
t1

)<θN
j+1

√

t21 + t22(1 + γ
n1/3 )n

1/3(t1+t2)(1 + δ
n1/3 )n

1/3
√

t21+t22

(1 − (1 + γ
n1/3 )n

1/3(t1+t2)(1 + δ
n1/3 )n

1/3
√

t21+t22)

and is equivalent when n → ∞, to
(

1

ζ(2)

∫

θN
j <θ<θN

j+1

√

t21 + t22e
γ(t1+t2)+δ

√
t21+t22

1 − eγ(t1+t2)+δ
√

t21+t22
dt1dt2

)

× n

which is itself equivalent, when maxN→∞(θN
j+1 − θN

j ) → 0, to

C ×
θN
j+1 − θN

j

(γ(cos θN
j + sin θN

j ) + δ)3
× n = C ′ ×

θN
j+1 − θN

j

(γ cos(θN
j − π

4 ) + δ)3
× n.
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The concentration of the normalized random chain around a limit shape CL, which is sym-
metric with respect to the second diagonal, follows like in the proof of Theorem 3. We derive
the announced parametrization of CL from the above estimation of E[ζj,N ].

When L > π
2 , we have to take γ > 0, the variable α equals δ

γ , and the condition on α

comes from the condition we had to impose on y and z. We proceed similarly for L < π
2 . �

8. Some remarks when the “lattice” is random

Let us replace now the (n + 1)2 points of [0, n]2 ∩Z
2, by a set of n2 points independently

and uniformly distributed in [0, n]2. It was observed in [5] that the probability for k points
independently and uniformly distributed in the square [0, 1]2 to form, with (0, 0) and (1, 1),

a convex chain is exactly equal to
1

k!(k + 1)!
. From this result, we can derive an analog of

Theorems 1 and 3, for the expected number of chains. Indeed, one can easily deduce that
for s ∈ [0, 1] and c > 0, the expectation of the number of chains, having a cardinal equal to
[cns], is equal to

(

n2

[cns]

)

([cns])!([cns] + 1)!
= nc(2−3s)ns

exp((3c − 3c ln c)ns + o(ns)) (9)

which is maximal for c = 1 and s = 2/3, and, in this case, the expected number of convex

chains of cardinal [n2/3] is equal to exp(3n2/3 +o(n2/3)). It is straightforward to see that the
expected number of the total number of convex chains is also equal to exp(3n2/3 + o(n2/3)),
and a moment method show that, in probability, the cardinal of a typical convex chain is
equivalent to n2/3. Let us remark finally that, in the case of chains having cns vertices, with
s < 2/3, the main term nc(2−3s)ns

is common to both Theorem 3 and formula (9).

Now, the question of the largest cardinal of a convex chain is delicate in the random case.
We believe but we are not able to prove that there is an equivalent, in probability, of this
quantity when n goes to infinity. Indeed, Kingman’s sub-additive ergodic theorem is of no
direct help here, since the concatenation of two convex chains is not necessarily convex.
Nevertheless, from (9), one can say, that, with an asymptotically overwhelming probability,

this cardinal is less than e.n2/3.

One can even slightly ameliorate this result in the following manner: suppose there exists
d ∈]0, e[, such that with an asymptotically positive probability, there will be a chain having

length [dn2/3]. When such a chain exists, since every sub-chain of a convex chain is also
a convex chain, we get that, for all c ∈]0, d[, there are, with an asymptotically positive

probability, at least
(

[dn2/3]

[cn2/3]

)

convex chains having cardinal [cn2/3]. Therefore, the expected

number of such chains is at least exp
(

((d − c) ln d
d−c + c ln d

c )n + o(n)
)

. Now, using (9), the

real d must satisfy that, for all c ∈]0, d[,

((d − c) ln
d

d − c
+ c ln

d

c
) ≤ 3c(1 − ln c)

Some numerical computations yield d ≤ 2, 65.

We deduce that, in the context of n random uniformly distributed points, the longest
convex chain, is with an asymptotically overwhelming probability, smaller than 2, 65.n2/3,
which is, as we intuitively expected, bigger than the 1, 40.n2/3 found in Theorem 2. Note
that the lower bound obtained by just considering the extremal points of the convex hull of
the points of the Poisson process which are situated above the parabola, which is, by a result
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of Rényi and Sulanke [10] and their followers, equivalent to 2
(3π)1/3 Γ(5/3)n2/3 = 0, 85.n2/3,

does not give a better lower bound than the typical behavior.

0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

Fig. 1: The graph of (c(λ), e(λ)).

The point of maximal e-coordinate corresponds to typical chains [3][12][13].

The point of maximal c-coordinate corresponds to chains of maximal cardinal [6].

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Fig. 2: Limit shapes of different lengths. Successively:

L =
√

2 (diagonal), L = 1, 454, L = 1, 516, L = π
2

(circle), L = 22/3 (parabola),

L = 1, 716, L = 1, 861, and L = 2 (sides of the square).
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[4] Bárány, I.; Prodromou, M. On maximal convex lattice polygons inscribed in a plane convex set. Israel
J. Math. 154 (2006), 337–360
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