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ABSTRACT 

 
In this communication we present the first results of a project 
whose goal is to remove artifacts from 
electroencephalographic epileptic signals. More precisely the 
present objective   is to remove ocular (blinking)   artifacts in 
simulated and real EEG signal using  Independent 
Component Analysis and wavelet denoising algorithms.   
 

1.INTRODUCTION 
 

Epilepsy is one of the most common brain disorders. It is 
characterized by repeated seizures, which range from the 
shortest lapse in attention to severe, frequent convulsions. 
They can occur from several times a day to once every few 
months. The seizures are caused by bursts of excessive 
electrical activity in the brain. This electrical activity is 
measured by the electroencephalogram (EEG), a recording of 
potential changes on the scalp caused by brain activity. The 
EEG is the main method of putting in evidence the epileptic 
activity of the brain. 
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Fig 1. Example of EEG 
   
Independent Component Analysis (ICA) is a method for 
solving the blind source separation problem. It is a way to 
find a linear transformation of the measured sensor signals 
such that the resulting source signals are as statistically 
independent from each other as possible. ICA not only 
decorrelates the signals (2nd order statistics) but also reduces 
higher – order statistical dependencies [1].  

 
In EEG recordings the sensors are placed on the scalp within 
a few centimetres of each other. Therefore, the sensors record 
overlapped brain activity transmitted by volume conduction 
from different dynamic neocortical processes. An example of 
normal EEG (5 channels in average reference montage)  is 
shown in figure 1(a).  
 
EEG channels also record other signals, such as noise or 
artifacts, supposed  independent from brain processes. These 
perturbations overlap with neural brain activity and may be 
present in all sensors. Obviously they increase the difficulty 
of EEG interpretation. Therefore, a useful tool would be a 
method able to remove noise and external artifacts as eye or 
muscle activities.  
One current hypothesis is that this artifacts are independent 
from brain activity, either  normal or pathologic. Under this 
hypothesis and considering these signals non Gaussian, a 
frequently used method is blind source separation (BSS) by 
independent component analysis (ICA) [1,2]. Using ICA as a 

tool to blindly separate overlapping EEG signals and artifacts 
into independent components, one can eliminate artifact 
sources and reconstruct “proper” EEG recordings, more 
easily used for further analysis.   
This paper is structured as follows: after this brief 
introduction, the second section is dedicated for the 
presentation of the signal processing methods, we have used: 
the first subsection presents source separation algorithms 
(more detailed in section on the algorithm was chosen), the 
second one presents wavelet denoising techniques and the 
last subsection introduces the evolution crieteria we have 
used to test the selected algorithms. 
The third section of the paper presents our results,  mainly on 
simulated signals, and justifies the choices we have made 
concerning the algorithms. This section ends with an example 
of real EEG processing. The last section concludes this paper 
and indicates same possible perspectives for the future work.  
 

2. METHOD 
 

2.1 Source separation 
 
The goal of blind source separation  is to recover independent 
sources given only sensor observations. This sensor 
observation are modelled as linear mixtures of independent 
source signals. The term blind indicates that both the source 
signals and the way the signals were mixed are unknown. 
Several algorithms for BSS were developed in the last 15 
years. Some of the most important are described in [2] and 
implemented in ICALAB [14] toolbox under MATLAB. 
 
2.1.1 Independent Component Analysis 
 

 
The mixing ICA model can be represented as:  

n(k)As(k)x(k) +=                             (1) 
where x is an N-dimensional vector containing the mixed 
signals (sensors), A∈RNxN is the unknown nonsingular 
mixing matrix, s is an N-dimensional vector of independent 
source signals. The vector n is an additive noise assumed to 
be zero mean, temporally white and independent from the 
source signals (k being the time index after sampling). 
 
The goal of ICA is to find a linear transformation W of the 
dependent sensor signals x that makes the outputs as 
independent as possible: 
 

WAs(k)Wx(k)y(k) ==                        (2) 



 
where y is an estimate of the sources. The sources are exactly 
recovered when W is the inverse of A.  
 
As it was pointed out by different authors ([1, 2]), obtaining 
the exact inverse of the A matrix is in most of the cases 
impossible, therefore source separation algorithms aim to 
find a W matrix such as the product WA should be a 
permuted diagonal and scaled matrix. Consequently, sources 
can be recovered up to their order (permutation) and their 
amplitude (scale). 
Different types of algorithms were proposed in the last 10 to 
12 years. Most of them suppose that the sources are 
stationary and are based explicitly or implicitly on high order 
statistics (HOS) computation. Therefore, Gaussian sources 
cannot be separated, as they don’t  have higher than 2 statistic 
moments. Another type of algorithms does not make the 
stationarity hypothesis, and uses the non stationary structure 
of the signals (i.e. their time or frequency structure) to 
separate them. These methods use second order statistics 
(SOS) only, and they are called  SOS algorithms. As EEG 
signals are highly non stationary, this type of algorithms is 
the most widely used. We briefly introduce in the next 
section  these algorithms and we describe more precisely the 
specific method that we have used. 
 
2.1.2 Second Order Statistics Algorithms  
 
Temporal, spatial and spatio-temporal decorrelations play 
important roles in EEG/MEG data analysis. These techniques 
are based only on second-order statistics (SOS). They are the 
basis for modern subspace methods of spectrum analysis and 
array processing and are often used in a preprocessing stage 
in order to improve convergence properties of adaptive 
systems, to eliminate redundancy or to reduce noise [9].  
The simplest SOS algorithm is spatial decorrelation or 
whitening, which is often considered a necessary condition 
for stronger stochastic independence criteria. In fact, 
whitening (or data sphering) is an important pre-processing 
step in a variety of BSS methods. After whitening, the BSS 
or ICA tasks usually become somewhat easier and well-
posed, because the subsequent separating (unmixing) system 
is described by an orthogonal matrix for real-valued signals 
and a unitary matrix for complex-valued signals and weights.  
Based on the same second-order statistic, for non-stationary 
signals one can compute different whitening transformations. 
Using these different transforms, one can obtain spatio-
temporal and time-delayed decorrelation, which can be used 
to identify the mixing matrix and to perform blind source 
separation of coloured sources [2,11]. 
On the other hand, conventional whitening exploits the equal-
time correlation matrix of the data x, so that the effect of 
additive noise can not be removed. A more robust whitening 
method lies in utilizing time-delayed correlation matrices that 
are not sensitive to the white noise [2,9,13].  
 
2.1.3 Robust SOBI 
 
Recall the model introduced by (1). In a second order 
statistics framework, source signals s are assumed to be 
mutually uncorrelated and temporally correlated (instead of 
independents). Computing a separating matrix on this model 
can be difficult because of the noise, which influences the 
correlation between the signals. Contrary to the sources, no 
assumptions are made on the distribution or the spatial 
correlation properties of the noise vector n, which is 
nevertheless considered white (individual components of the 

vector are not autocorrelated). Hence, its covariance matrix at 
lag 0 Rn(0)= E[n(k)n(k)T], can be a full matrix which is 
generally unknown, while any time delayed correlation 
matrix Rn(i)=E[n(k)n(k-i)T] will be null. Given the above 
assumptions, the correlation matrices of the observation have 
the following structure [2,12]: 
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The robust SOBI (SOBI-RO) algorithm combines robust 
whitening and time-delayed decorrelation. This algorithm, 
introduced in [12], improves  the classical SOBI method [11] 
by integrating robust whitening [2,12,13] instead of simple 
whitening, the main objective being the elimination of the 
influence of the white noise. 
 
The first step (robust whitening) consists, in the general case, 
in finding a matrix Q that decorrelates the signals in x for 
several (small) time lags. This method is described in detail 
in [2,12,13]. In our case, we have utilized the ICALAB [14] 
implementation, which exploits equation (4) for a single time 
lag i=1. Then, the matrix Rx(1) is diagonalized by an eigen-
decomposition: 
 

T
ccx UdiagU(1)R ]...[ 22

1 Nλλ=                  (5) 
 
The whitening matrix Q will be obtained from the eigen-
vectors matrix Uc and a the diagonal eigen-values matrix: 
 

T
cUdiagQ 1

1 ]...[ −= nλλ                  (6) 
 
Using this Q matrix, one can compute whitened signal       
z(k-i)=Qx(k-i) for different time lags (the default option 
under ICALAB is 100 time lags).  
 
The second step of SOBI-RO is the same as in classical SOBI, 
namely an approximate joint diagonalization of the different 
Rz(i) matrices, computed according to equation (4). This 
approximate diagonalization aims to minimize the sum of the 
squared off-diagonal elements of these matrices [11,13]. The 
result of this operation will be an orthonormal matrix V, and 
the final estimation for the demixing matrix W will be: 
 

QVW T=                                     (7) 
 
2.2 Wavelet denoising  
 
Besides ocular or muscular artefacts (for which we intent to 
apply BSS methods), real EEG recordings are contaminated 
with noise. The previously presented robust whitening 
partially deals with this noise.  A nowadays classical solution 
for noise removal from non-stationary signals is wavelet 
denoising, which we considered for improving the separation 
results.  
The basic idea is simple: by decomposing the signal on a 
wavelet basis (discrete wavelet transform DWT), we obtain a 
representation of the signal that concentrates most of its 
energy in few wavelet coefficients having large absolute 
values. On the contrary, noise energy distribution doesn’t 
change (for noises modelled as random uncorrelated 
processes), which means that its energy will not be retained 
by large value coefficients. 



Consequently, performing a partial reconstruction of the 
signal using only these large coefficients (by inverse DWT) 
leads to an almost noise-free version of the signal (see [3,15] 
for a broader presentation of wavelet denoising framework). 
The main problem is choosing the threshold, which means 
responding to the question: where to fix the frontier between 
small and large wavelet coefficients?  
Tens of algorithms have been proposed in the last years, the 
most well known being Donoho’s universal thresholding [5]. 
This algorithm computes a threshold which, asymptotically, 
ensures that no gaussian noise will be left in the denoised 
signal. The first consequence is an apparently noise-free 
signal, visually very satisfactory (hence the VisuShrink name 
given to the algorithm), but a sometimes important drawback 
is the elimination of possibly informative parts of the signal.  
In EEG case, it is of great importance not to loose 
information potentially useful to medical diagnosis. 
Moreover, EEG informative signals often have small 
amplitudes, and their wavelet coefficients can have rather low 
values. Therefore, a high threshold as proposed by 
VisuShrink is not appropriate. 
Two other methods seemed adapted to our case: SURE 
denoising [5] and minimal iterative denoising [3], the two of 
them offering low thresholds (and thus preserving most of the 
signal but eliminating less noise).   
The first one (as the universal thresholding also) propose a 
one step thresholding, the value of the threshold being 
computed considering a Gaussian noise hypothesis for which 
a robust estimation of variance is made. The SURE (Stein 
Unbiased Risk Estimator) method has the important property 
that it adapts itself to the signal (i.e. the threshold depends on 
the signal, not only on the estimated noise, as for universal 
thresholding). 
Iterative minimal denoising does not make any assumptions 
on the noise and it adapts itself to the distribution of the 
wavelet coefficients, modelled as a generalized Gaussian. 
Unlike the previous methods, the threshold is obtained by 
iterative outlier detection, the convergence of the algorithm 
being assured and depending on the shape of the wavelet 
coefficients distribution. Its main utility was proved for 
sparse signals, which is not always the case in EEG.  
These methods were tested on the same simulated signals (for 
completeness, universal thresholding was also tested, but the 
results are not reported here). The evaluation of their results 
was done by two methods: the first one oriented strictly on 
the denoising aspect, the second one considering the whole 
processing chain (denoising plus source separation). The 
evaluation criteria are detailed in the next section. 
 
2.3 The evaluation criteria  
 
For denoising algorithms evaluation, we have used the 
classical criterion of the mean squared error (MSE) between 
the original signals and their denoised versions, for the xi 
components of the vector x (ith sensors, i=1…N), we have : 
 

(∑
=

−=
M

k
iii kxkx

M
MSE

1

2)(ˆ)(1 )                    (8) 

where  is the denoised signal and M is the length of the 
signal. As we are in a multi-channel set-up (multiple 

simulated sources mixed to obtain the same number of 
recordings), the denoising quality criterion was  the average 
MSE for the N signals (MSEavg). 

)(ˆ kxi

To validate the separation method, we have chosen two 
criteria: 
- a first one computed on the signals: the  mean correlation 
(r) between the simulated sources  (s(k)) and the estimate 
independent components (y(k)).  
 

( )
ys

sy
ysr σσ

,cov= (9) 
 
For this criterion, we have computed the correlation between 
each estimated source and all of the original sources, and we 
have chosen the maximum value. In this way, each estimated 
source corresponds to one original source, and the value of 
the correlation coefficient between the two of them is 
retained. The mean value (over the N sources) of the retained 
correlation coefficients gives the average correlation 
coefficient ravg.  
- a second one computed on the mixing-demixing system: the 
index of separability IS [2]. The index is computed form the 
N×N transfert matrix G between the original sources and the 
estimated ones after separation:  

 
WAG=                                        (10) 

In order to obtain the IS is necessary to take the absolute 
value of elements of G and to normalize the lines gi by 
dividing each element by the maximum absolute value of the 
line. The lines of the resulting matrix G’ will be: 
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The separability index is obtained by: 
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For perfect separation, the two criteria should have the values 
ravg=1 and IS=0. 
 

3. RESULTS 
3.1 Simulated EEG 

 
To choose the most appropriate algorithm for our application 
we decided to test the algorithms with simulated signals in 
order to compare the results with known reference sources. 
We created 4 simulated sources having frequencies close to 
the real brain signals and one ocular blinking artefacts source 
(fig. 2(a)).  These sources were mixed using 5 random 
matrices to obtain signals similar to the EEG, in frequency 
and form (fig.2(b)). Three types of test were performed:  
 
1. The first one works directly on the simulated EEG signals 
(figure 2(b)). The goal of this test was to choose a source 
separation algorithm in ideal conditions (no noise). Twenty 
ICA algorithms were tested. The best 10 results (considering 
the previous defined separation criteria)  are presented table I. 
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Fig 2. Simulated signals and results 
 

Algorithms ravg  IS 
AMUSE 0,996032 0,06 
Evd2 0,99378 0,07 
Evd 24 0,97204 0,18 
SOBI 0,989832 0,07 
SOBI - RO 0,998324 0,0098 
SOBI-BPF 0,985576 0,02 
Jade td 0,99434 0,13 
FASTICA tan 0,996772 0,088 
SANG 0,998512 0,08 
ThinICA 0,99816 0,09 

Table I. Comparison of algorithms in simulated signals 
 
From the results of the table I, we decided to use  the SOBI-
RO algorithm to remove the ocular artifacts. This result 
confirms our bibliographical research, which indicate that 
second order statistics ICA algorithms perform well on non-
stationary EEG signals [4,6,7].  
 
2. In order to better approximate real EEG signals, we added 
different types of noise (Gaussian and Uniform white noise 
with signals to noise ratios from 20 dB to 0 dB).  
Besides  the two separation criteria (ravg and IS), we have also 
considered the denoising quality criterion (MSEavg). Several 
simulations were performed for different random noises. The 
mean results (over all simulations) are presented table II and 
table III. The figure 2(c) show the simulated noisy signals 
and 2(e) the independent components without denoising.   
 

 ravg  IS MSEavg 

  20dB 0,8904 0,0725 0.5931 
   15dB 0,8243 0,0814 0.1875 
   10dB 0,7295 0,1086 0.0593 
  5dB 0,6014 0,1473 0.0188 
  0dB 0,4552 0,1757 0.0059 

Table II. Separation of noisy signals (Gaussian noise) 
 

 ravg  IS MSEavg 

  20dB 0,8927 0,0919 0.0492 
   15dB 0,8106 0,1064 0.0156 
   10dB 0,7302 0,1074 0.0049 
  5dB 0,6088 0,1339 0.0016 
  0dB 0,4531 0,1733 0.0005 

Table III. Separation of noisy signals (Uniform noise) 
 
3. Finally, we introduced a wavelet denoising step before the 
ICA. Two denoising methods were tested, SURE [5] (the 

results are presented table IV and table V), and iterative 
minimal denoising (table Vl and table Vll) [3]. Both of them 
propose low denoising thresholds, and therefore ensure a 
minimal distortion of the informative signal. An example 
independent components after wavelet denoising is presented 
figure 2(f). 
 

 ravg  IS MSEavg 

  20dB 0,9137 0,0837 0.1952 
   15dB 0,8705 0,1267 0.0730 
   10dB 0,7981 0,1569 0.0287 
  5dB 0,7223 0,1729 0.0107 
  0dB 0,6029 0,1805 0.0037 

Table IV. Separation of denoised signals (SURE, Gaussian noise) 
 
 
 
       
 
 
 

 
Table V. Separation of denoised signals (SURE,Uniform noise) 

 
 ravg  IS MSEavg 

  20dB 0,9122 0,1062 0.1786 
   15dB 0,8708 0,1298 0.1015 
   10dB 0,7787 0,2008 0.0447 
  5dB 0,6781 0,2113 0.0166 
  0dB 0,5724 0,2252 0.0088 

Table Vl. Separation of denoised signals (Minimal, Gaussian noise) 
 

 ravg  IS MSEavg 

  20dB 0,9117 0,1058 0.0368 
   15dB 0,8727 0,1327 0.0147 
   10dB 0,7832 0,1918 0.0080 
  5dB 0,6860 0,2089 0.0044 
  0dB 0,5918 0,2270 0.0030 

Table Vll. Separation of denoised signals (Minimal, Uniform noise) 
 

3.2. Application on real EEG 
 
EEG signals were recorded using 10/20 international system 
and average reference montage[16]. We considered 8 seconds 
of EEG, sampled at 256 Hz. Source separation using SOBI-
RO algorithm was performed on the 24 channels, both with 
and without wavelet denoising.  

 ravg  IS MSEavg 

  20dB 0,9241 0,0880 0.0186 
   15dB 0,8683 0,1376 0.0073 
   10dB 0,8339 0,1444 0.0025 
  5dB 0,7707 0,1656 0.0008 
  0dB 0,6542 0,1922 0.0003 



The 24 “proper” (i.e. without blinking artifact) EEG channels 
were reconstructed by multiplying the estimated sources with 
the inverse of the separation matrix. Figure 1(b) shows 
independent components real EEG signals before denoising. 
Figure 3, presents the same estimated source signals using a 
denoising step before the separation: iterative minimal 
denoising (a) and SURE denoising (b).  
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[7] Sutherland, M.T., and Tang A.C. “ Blind source 
separation can recover systematically distributed neuronal 
sources from “resting” EEG”, Proceedings of the Second 
International Symposium on Communications, Control, and 
Signal Processing (ISCCSP 2006), Marrakech, Morocco, 
March 13-15.  

Fig 3. Separated sources on denoised EEG 
 

4. CONCLUSION AND PERSPECTIVES 
 
We can conclude that the algorithm SOBI-RO works well in  
EEG source separation and particularly for identifying eye 
artifacts. This conclusion is supported by the bibliography, by 
the simulated results and by our first tests on real EEGs. 
It is more difficult to evaluate the role of the denoising step: 
our first criterion (correlation with the original sources) 
shows better performance, but the index of separability is 
lower. Further tests are needed to decide if this step is useful, 
both on simulated signals and mainly on real EEGs. 
Obviously, medical validation is necessary in this latter case 
Considering the denoising methods, the SURE algorithm has 
better performances than the iterative minimal denoising. 
This conclusion is supported by both the MSE criterion and 
the two separation criteria. 
This work has several perspectives: first of all, we intent to 
test other methods of denoising, using different types of 
simulated signals and noises (coloured, other distributions).  
The joint diagonalization that we have used in this paper 
considers a fixed number of time-lags, but another way of 
using it is to compute correlation matrices on different 
windows instead of time lags (including ictal periods). 
Moreover, this type of method can be applied considering 
decorrelation in different frequency bands instead of time 
lags or windows. 
Another possibility is to perform ICA to separate the wavelet 
transforms of the recorded signals instead of the actual 
signals.  
On real EEG signals, our goal is to facilitate analysis 
algorithms (using correlation and coherence) developed in 
our team for lateralization and classification [8]. The results 
of these 2 methods will serve as a validation for our source 
separation and denoising algorithms. Of course, the final 
objective is to obtain medical validation.  
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