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We analyze particle velocity fluctuations in a simulated granular system subjected to homogeneous
quasistatic shearing. We show that these fluctuations share the following scaling characteristics of fluid
turbulence in spite of their different physical origins: (i) scale-dependent probability distribution with non-
Gaussian broadening at small time scales; (ii) spatial power spectrum of the velocity field showing a
power-law decay, reflecting long-range correlations and the self-affine nature of the fluctuations; and
(iii) superdiffusion of particles with respect to the mean background flow.
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tainly not much sense because of a drastically different
physics that underlies these fluctuations. In particular,

words, the Fouier mode k � 0 of the total strain is im-
posed, corresponding to a large-scale forcing. This driving
The key role of fluctuations in quasistatic (QS) flow of
granular media has been noted by several authors referring
basically to stress fluctuations in time or the inhomoge-
neous distribution of forces in space [1,2]. Amazingly, few
studies have been reported about the fluctuations of particle
velocities under macroscopically homogeneous strain con-
ditions. Velocity fluctuations have been observed to occur
in a correlated fashion, though their scaling properties have
not yet been analyzed [3,4]. Other recent studies concern
mainly Couette flows where the strain is localized in the
vicinity of the inner rotating cylinder [5].

In this Letter, we present a numerical investigation of
velocity fields in a slow granular flow where the homoge-
neity of shearing is ensured by means of biperiodic boun-
dary conditions. Thereby we obtain reliable statistics that
allows for an accurate analysis of fluctuations. The
occurrence of these fluctuations recalls the field of fluid
turbulence. There obviously the physics is fundamentally
different from that governing granular media. Never-
theless, the rich body of work devoted to the statistical
analysis of the fluctuating part of the velocity field in fluid
turbulence (cf. e.g., [6]) provides a suitable framework that
can be applied in order to characterize the analogous
fluctuating part of the velocity field in a granular medium.
This point leads quite naturally to an interesting question:
Are granular fluctuations turbulent in terms of scaling
features such as the non-Gaussian broadening of probabil-
ity density functions (pdf’s), power-law spectrum in space,
and anomalous diffusion? Although deeply rooted in fluid
dynamics (Navier-Stokes equations and inertia regime),
these key aspects of fluid turbulence may, in principle,
prove to be relevant as well within a different physical
context such as granular flows.

We will show that particle velocity fluctuations in our
QS granular flows exhibit indeed strikingly similar fea-
tures. A strict analogy with fluid turbulence makes cer-
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inertia effects are basically irrelevant in a QS granular
flow, and frictional and hard-core inelastic interactions
between particles have little in common with molecular
interactions in a fluid. But, precisely because of these
dissimilarities, the observed analogy in terms of scaling
properties is quite nontrivial, and it might lead to new
insights in both fields. In the following, we first describe
the simulated granular system and our procedures of data
analysis. Then, we present our main results focusing on the
pdf’s, correlations, and diffusion, respectively.

The investigated granular model is a two-dimensional
assembly of 4000 frictional disks with diameters uniformly
distributed between Dmin and Dmax with Dmax � 3Dmin.
The particles interact through a stiff linear repulsive force
as a function of mutual overlaps and the Coulomb friction
law. The coefficient of friction is 0.5. The equations of
motion for particle displacements and rotations are inte-
grated by means of a predictor-corrector scheme [7].

An accurate evaluation of the statistics of fluctuations
requires long-time homogeneous and steady shearing.
However, ordinary wall-type boundary conditions induce
a pronounced layering effect and the corners enhance the
local frustrations whereby large strain and stress inhomo-
geneities arise when the box shape changes. System-size
inhomogeneities may also occur due to shear localization.
In order to circumvent such unwanted effects, we used
biperiodic boundary conditions following a method similar
in spirit to that devised by Parrinello and Rahman [8].

In our simulations, the gravity was set to zero and a
confining pressure was applied along the y direction. The
width L of the simulation cell was kept constant. The
displacement field is decomposed into an affine displace-
ment field �ri � ��rix; �riy� and a fluctuating field �si �
��six; �siy� of zero mean (h�si � 0) carried by the particles
i. The system is driven by imposing �rix � �t�riy, where �
is a constant shear rate and �t is the time step. In other
2002 The American Physical Society 064302-1



FIG. 1. A snapshot of particle displacements �si with respect
to the mean background flow.
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FIG. 2. The pdf’s of the y components of fluctuating velocities
for two different integration times: 10�3 (broad curve) and 10�1

(narrow curve). The latter is fitted by a Gaussian. The error bars
are too small to be shown.
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mode was applied on a dense packing prepared by isotropic
compaction. The height of the packing increases (dilation)
in the initial stages of shearing before a homogeneous
steady state is reached where volume changes fluctuate
around zero. The focus of this Letter is the field �si

which corresponds to a spatially periodic motion of the
particles with respect to the background flow �ri.

Although our dynamic simulations involve the physical
time, the inertial effects are negligibly small and the
granular texture evolves quasistatically at time scales
well below ��1. We normalize all times by ��1 so that
the dimensionless time t in what follows will actually
represent the cumulative shear strain. We will also use
the mean particle diameter D to scale displacements. As
a result, the velocities will be scaled by �D and the power
spectra in space by �D2��2. In our simulations the time step
is �t ’ 10�7, and more than 2	 107 steps are simulated,
corresponding to a total strain larger than 2. The solid
fraction in the steady state fluctuates in the range
[0.79, 0.81] and the average coordination number is 3.8.

It is important to emphasize here that the granular nature
of our system does not allow us to apply exactly the same
procedures of data analysis as in fluid turbulence.
Turbulence studies focus mainly on velocity differences
�v measured at a fixed point of a fluid over a time interval
� or between two points separated by a distance r. In
contrast, the particle-scale granular motion involves a
discrete displacement field that is carried by individual
particles. Thus, our natural framework is Lagrangian
rather than Eulerian. These differences are certainly im-
portant for a one-to-one comparison, but here we basically
consider turbulence as a reference field from which we
extract tools to characterize granular fluctuations.

Another distinctive feature of granular flow is that, due
to collisions, the velocities are discontinuous in time. As
the positions are better behaved, we characterize the fluc-
tuating motions of the particles by ‘‘tracer’’ velocities
defined from particle displacements �si by

vi�t; t
 �� �
1

�

Z t
�

t
�si�t0�dt0; (1)

where � is the time resolution. Since we are concerned with
steady flow, the statistical properties of v are independent
of t (though, as shown below, they crucially depend on ��.
Hence, accurate statistics can be obtained by cumulating
the data from different time slices of a single simulation
running for a long time.

Figure 1 shows a snapshot of fluctuating velocities vi for
a short time lag � � 10�7. We see that large-scale
well-organized displacements coexist with a strongly in-
homogeneous distribution of amplitudes and directions on
different scales. Eddylike structures (though without the
singular vorticity concentrated in the core of these eddies)
appear quite frequently, but they survive typically for
strains � less than 10�3. After such short times, large-
scale eddies break down and new (statistically uncorre-
064302-2
lated) structures appear. This behavior is radically different
from turbulence where the eddies survive long enough to
undergo a significant distortion due to fluid motion [6].

We consider now the pdf’s of the components vi
x�t; t


�� and vi
y�t; t
 �� as a function of time resolution �. The

pdf’s of vi
y are shown in Fig. 2 for a short integration time

� � 10�3, and for a long integration time � � 10�1. The
pdf has changed from a nearly Gaussian shape at large � to
a non-Gaussian shape with broad stretched exponential
tails extending nearly to the center of the distribution at
small �.

In order to characterize this non-Gaussian broadening of
the pdf’s, we calculated the flatness F � hv4

yi=hv
2
yi � 3,
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which is zero for a Gaussian distribution and 3 for a purely
exponential distribution. The values of F as a function of �,
shown in Fig. 3, are consistent with zero at large � �� >
10�1� and rise to 5 for our finest time resolution (� �
10�7� . A strictly similar behavior was observed for the
component vx.

The broadening of the exponential tails of the pdf’s at
increasingly smaller scales is a hallmark of fully developed
turbulence (for velocity differences) [9]. It is attributed to
the phenomenon of intermittency, i.e., strong localized
energy transfers at small scales. In a QS granular flow,
the basic physical mechanism underlying the fluctuations
is the mismatch of the uniform strain field applied at
the boundaries or in the bulk, with mutual exclusions of
the particles. As a result, the local strains deviate from the
mean (global) strain. The observation of a transition toward
a Gaussian distribution for large time lags is a sign of loss
of correlation and/or exhaustion of large fluctuations in the
increment of displacement which occur at different times.
Unfortunately, the rich multifractal scaling of velocity
fluctuations is out of reach within the present investigation
due to demanding statistics [10]. The analogy with turbu-
lence, however, suggests further study along such routes.

In order to quantify the extent of correlations in space,
we estimated the power spectrum E of velocity fluctuations
both along and perpendicular to the flow and at different
times. The Fourier transform was performed over the
fluctuating velocity field defined on a fine grid by inter-
polating the velocities from particle centers. The power
spectra were quite similar along and perpendicular to the
flow, and for different snapshots of the flow. The averaged
spectrum on one-dimensional cross sections is shown in
Fig. 4. It has a clear power-law shape k�� ranging from the
smallest wave number k � D=L, corresponding to scale L,
up to a cutoff around k � 0:5, corresponding to nearly two
particle diameters. The exponent is � ’ 1:24 ’ 5=4 over
1 decade (to be compared with the exponent 5=3 as a
hallmark of 3D turbulence for the spectrum of velocity
differences). This means in practice that the fluctuating
velocity field is self-affine with a Hurst exponent H �
��� 1�=2 � 0:12 [11].
0.0 0.1 0.2 0.3 0.4
τ

-1

0

1

2

3

4

5

F

FIG. 3. Flatness F of the distribution of velocity fluctuations as
a function of the integration time �.
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Because of the peculiar behavior of the velocity field
(discontinuous in time), one might expect that the power
spectrum is sensitive to the time resolution �. However, we
checked that the value of � is independent of �. It is also
noteworthy that the presence of long-range correlations in
displacements, reflected in the value of �, is in strong
contrast with the observed correlation lengths of nearly
10D for contact forces [2].

The long-time behavior may be studied by considering
the effective diffusion of the particles. Normal diffusion
implies that the root-mean-square (rms) relative displace-
ments � in a given direction varies in proportion to the
square root of time. In 3D fluid turbulence at high
Reynolds numbers, the long-time pair diffusivity of sus-
pended particles is anomalous, following the Richardson
law � / �3=2, reflects the Kolmogorov-Obukhov velocity
spectrum [6].

We analyzed the kinematic diffusion of single particles
in our QS granular flow. One example of a single particle
trajectory with respect to the background strain is shown in
Fig. 5. We see that the fluctuating displacement is of the
order of the mean particle diameter for a strain of the order
of unity. Figure 6 shows the rms relative displacement ����
of all particle pairs initially in contact, as a function of time
along x and y directions. This clearly corresponds to a
superdiffusion behavior� / ��, with � ’ 0:9 for both
components over nearly 3 decades of strain. Particle self-
diffusivities exhibit a similar law. Since large-scale struc-
tures are short lived, this anomalous diffusion scaling
cannot be solely attributed to velocity correlations. It
reveals, above all, the long-time configurational memory
of a granular medium in QS flow.

We note that Fig. 6 shows no anisotropy for the diffu-
sion. In fact, the steric exclusion effects dominate over the
large-scale strain field for small diffusive displacements
(below one particle diameter), and hence the anisotropy
may be weak at such scales. Moreover, we observe no
crossover to normal scaling within the investigated strain
range. We cannot exclude that for larger strains, when two
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FIG. 4. Averaged power spectrum of the x and y components of
the fluctuating velocity field with � � 10�7 for one-dimensional
cross sections along the mean flow. For the units, see the text.
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FIG. 5. Diffusive trajectory of one particle with respect to
the mean background flow expressed in the unit of mean particle
diameter D for a cumulative shear strain of 2. The displace-
ments may be compared with the approximate cell dimensions
60D	 70D.
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particles are more widely separated, a normal diffusion law
is recovered.

In summary, we analyzed fluctuating particle displace-
ments with respect to the background quasistatic shear
flow in a model granular medium. These fluctuations
were shown to have the following scaling characteristics:
(i) the pdf’s undergo a transition from stretched exponen-
tial to Gaussian as the time lag is increased, (ii) the spatial
power spectrum of the velocity field obeys a power law,
reflecting long-range correlations and the self-affine nature
of the fluctuations, and (iii) the fluctuating displacements
have a superdiffusive character. These observations contra-
dict somehow the conventional wisdom which disregards
kinematic fluctuations in macroscopic modeling of plastic
flow in granular media. Several basic aspects of quasistatic
granular flow (elementary representative volumes, mean
field approximation, memory effects, and mixing) are thus
concerned by these findings [12].

There appears an evident analogy with the scaling
features of turbulence that was also discussed throughout
this Letter. Of course, this analogy does not imply that a QS
granular flow can be considered as turbulent in the standard
sense of fluid dynamics. In particular, because of the
fundamentally different origin of granular fluctuations, a
direct reference to the underlying physics of turbulence can
be misleading. But, the observed analogy in terms of
scaling characteristics is consistent enough to upgrade
kinematic fluctuations in quasistatic granular flows to the
rank of a systematic phenomenology which could be
coined by the term ‘‘granulence’’ as compared to ‘‘turbu-
lence’’ in fluids.

Interestingly, this analogy works with three-dimensional
turbulence, although our data concern a two-dimensional
granular flow. The energy cascade in turbulence is gov-
erned by inertia, and two- and three-dimensional systems
064302-4
do differ significantly in this respect. In quasistatic gran-
ular flow, the fluctuating velocity field is a consequence of
the geometrical compatibility of the strain with particle
arrangements, and dissipation is mainly governed by fric-
tion at the particle scale. The difference between two- and
three-dimensional systems may thus be less crucial, but it
was not investigated in the present work. Quite independ-
ently of its physical origins, this analogy is suggestive
enough to be used as a promising strategy towards a refined
probabilistic description of granular flow in the plastic
regime.
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