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Introduction
The "classical" PSO version is very simple but the user have to define some parameters (swarm size,
neighbourhoods, some coefficients). An adaptive version like TRIBES [1, 2] does not have this drawback. It is
also often more effective when the criterion takes into account only the relation "best value vs number of fitness
evaluations". However it is more time consuming, for it performs some intermediate computations in order to
take advantage of the information collected during the process. This can be quite annoying, or even unacceptabe
for some (quasi) real time applications.

That is why it is still interesting to just improve the classical version, without complicating it too much. The idea
here is to mathematically analyse the behaviour of the particles when there is no improvement over several time
steps. If the system is seen as a black box that displays only the best positions found so far by the particles, it
happens nothing seen from outside, as there certainly happens something inside, which is worthly to study.
Better parameters can be derived from such an analysis. Five of the  suggested PSO variants are tested on five
classical functions, just to bring out some that seems interesting.

Reminder of classical PSO
Principles
Particles are agents moving in a D-dimension search space. The set of this particles is the swarm, whose size is
S. At each time step, each particle is described by four features:

- its position ( )Dxxx ,...,1=
- its velocity ( )Dvvv ,...,1=
- the best position found so far ( )Dppp ,...,1=
- some information links with some other particles (its "informant group", sometimes called its

neighbourhood). These "who informs who" links, are often defined once at the beginning, but not topology
has been proved to be globally the best one. So we use here a more robust method  (see details in [1]). For
each particle K links are randomly drawn at initialisation and then before the next iteration if the previous
one didn't improve the best position found by the swarm.

Movement equations for a particle and for each dimension d are given by

( )( ) ( )( )

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ddd

dddddd

vxx

xgaleacxpaleacvcv 1,01,0 maxmax1  (Equ.  1)

where ( )Dggg ,...,1=  is the best position of the best informant.

PSO-0
We need a "reference" algorithm, called here PSO-0. It is the one described above, with the following
parameters:
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The first three values has been chosen so that they can be kept in all variants described later. The coefficient

maxc  is derived from 1c  by using the constriction method explained in  [3] (see Annexe for a quick
explanation).

Stagnation phenomena
In classical PSO as defined by equation 1 each dimension is independent. So the analysis can be performed on
just one dimension. In order to simplify notations, we write now c instead of  maxc , and we omit  the d index.
On the other hand, we will need to explicitely indicate the time step. At last, a given realisation of the random

uniform variable on [ ]c ,0  is now written kc~ , where k is used to distinguish between realisations. Equation 1 is
the rewritten as
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(Equ.  2)

We say there is stagnation if p and g (which are now just numerical values) don't change over some time steps.
In order to qualitatively observe the behaviour of the particles (along just one dimension, as already noted), we
choose some usual values for parameters  and initialisations:
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If the particle is the (local) best
In order to study the behaviour ot the best particle, let's temporarily set gp = . On figure 1 we can see a typical
evolution of the velocity: it tends towards zero, and the particle tends to its best known position, i.e. g. If the
particle were intelligent, one could say it thinks "Well, I'm already the best, and the more I see the other don't
make any improvement, the less I want to spend my energy to look for a better position". In other words, the
particle quite rapidly gives up its search. In practice, it means there are some unuseful fitness evaluations, for
anyway the particle (almost) doesn't move anymore.

However the behaviour is depending on 1c  and c. For example, with the values 0.9 and 2.1, we obtain the figure
2, which seems to be a divergent evolution. Of course such a curve can't be a proof, for the velocity may tends
towards zero later, but, at least, it is a strong presumption.  The lesson that can be drawn is there probably exists
an intermediate parameter set so that the particle keeps some activity but not diverges.
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Figure 1. PSO-0. Behaviour of the (local) best particle in case of stagnation, with some usual parameter
values
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Figure 2. PSO-0. Behaviour of the (local) best particle in case of stagnation, with some unusual parameter
values

If the particle is not the best one
Actually, the examination of what happens with a non best particle, i.e. with gp ≠ , will suggests some possible
solutions. The behaviour is indeed very different, even with usual parameter values. As we can see on figure 3
the velocity is constantly modified , without tends to zero and the position is permanently oscillating around a
"mean" one.

A deeper examination shows that the module of the velocity follows a statistical law that is exponentially
decreasing (cf. figure 4): small oscillations are frequent, more important ones are more rare, big ones are even
more rare, etc. In other words, the longer the stagnation, the more probably big moves will occur. This is a quite
desirable behaviour for then, even during stagnation, it performs a kind of local search that is  usually fruitful:
the particle will probably find a better position. So a quite obvious (small) improvement could be to do
something so that the best particle has the same behaviour.
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Figure 3. PSO-0. Behaviour of a non best particle in case of stagnation, with some usual parameter
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to an exponential decreasing probability distribution: small moves are quite frequent, big ones are rare
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Stagnation analysis
.
General iterative equation and interpretation

In the particular case 0=c , we obviously have ( ) ( )tvctv 11 =+ , and the convergence criterion is simply 11 <c
(we assume it is non negative). In the general case,  from equation 2 we can successively write
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1 +−++−+=+ txgctxpctvctv
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Quantities s~ , q~ , et w~  are realisations of the random variables S, Q et W. Let's also define QScZ +−= 1 . The
general iterative equation is then based on the three random variables Z, Q et W . It can be rewritten in a
summarized form, and by shifting the iteration ranks:

( ) ( ) ( ) ( )WgptQvctZvtv −+−−=+ 11 1 (Equ.  6)

Probability densities of S and Q can quite easily be formulated (cf. Annexe). The ones of Z and W are extremely
complicated, but anyway we can have an idea of their "shape" (by simulations), and their main features
(minimum, maximum, mean) can be computed (cf. Table 1. Details and figures are in Annexe). Note that Z and
Q have an infinite support, with a density tending towards zero for high values, and that explains the exponential
decline that we have seen in figure 3.

.
Minimun Maximum Mean

Z cc 211 −+ ∞ ( )2ln21 +− cc
Q 0 ∞ ( )2ln2
W c− c 0

(std. dev.

( )( ) 122ln1411−c )

Table 1. Main features of the three random variables of the general iterative equation

Let us try now to give the "meaning" of the three terms. The last one (W) can be seen as a "noise". The bigger
gp −  the more important the noise. This is intuitively quite sastifying: the more the particle is far from the best

position it knows, the more it tends to try big moves. Note that there is a finite maximum possible value (and a
finite minimum one). It might be better to replace this noise by a classical Gaussian one.



As Qc1−  is always negative and as Q is parameter free,  this term can be seen as a "back force", whose intensity
is only depending on 1c .

At last Z, the first one, is usually sometimes negative (back force) sometimes positive (forth force). However we
can note that the back force may exist only if cc 211 −+  is negative. Again this suggests a possible relationship,
that is to say

2
11 += c

c (Equ.  7)

This would clarify the role of each random variable: noise for W, back force for Q,  and only forth force for Z.
However, in order to find some other constraints on parameters we have to go further in our analysis.

If the particle is the best one
For the best particle we have gp =  and we clearly see from equation 6 that there is then no noise component. In
passing, it explains why the particle may converge for some parameter values.  If we consider two consecutive
time steps (don't forget we are in stagnation, so p is constant), the equation can be rewritten in a matrix form
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Then the behaviour is defined by ∏
=

t

k

kM
0

~ . To study it is quite difficult (see Annexe), but the final result is a

relation between 1c  and c that we can see on figure 4. Any pair of parameters in the convergence domain is
usable. However, in iterative optimisation, it is often a good thing to work "on the edge of chaos". So points on
the frontier curve should be better. Moreover, in order to enlarge the local search, 1c  and c should be "both as

big as possible". There are several way to formulate this, for example by maximizing the quantity cc1 . Finally,
the most promising parameters are on the curve and "around" the point
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Remember it is only for stagnation phases. If we want to use just one set of parameters, no matter there is
stagnation or not, it may be a good idea to choose say 1c  according to the equation 9, and c according to
equation 7, for example (see variant 3PD-PSO-0 below).
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If the particle is not the best one
Let's remind that our hypothesis is stagnation: neither p nor g are modified. Then, when the particle is not the
best one, that is to say when gp ≠ , it can't converge, because of  the "noise" component W. It is indeed what we
observe, no matter how small 1c  is. Actually, even for 01 =c  the particle is oscillating. However it can diverge
it this coefficient is too big.

More precisely, for the mean of W is zero, the conditions that we have found for the best particle are still valid,
except that they don't imply convergence but non divergent oscillations. This is quite a good thing for this
behaviour performs a kind of local search..

Generalisation and variants
The three distributions
We can now rewrite equation 6 in a more general way

( ) ( ) ( ) ( ) 321 11 RgptvRtvRtv −+−−=+ (Equ.  10)

where the three probability distributions have the following features

1R  is positive unimodal on a finite support

2R  is positive unimodal on a finite support

3R  is symmetrical and unimodal with a mean equal to zero

We have seen that we can choose WR =3 , QcR 12 = , and ZR =1 , with the condition ( ) 2/11 +≤ cc , but some
others are clearly possible. In particular, as 1R  is for the "forth force" and 2R−  for the "back force", we can
manipulate c and 1c  so that they are quite similar. We will see a simple example below. Starting from PSO-0,



we will now progressively add just some small modifications. Don't forget that although we are looking for
improvements we also want to keep the algorithm as fast as possible.

There will be two kinds of modification that takes advantage of our stagnation analysis:

- the ones that just define some new parameter sets, that are used no matter there is no stagnation or not (see
below variants 0, 0' and 1)

- the ones that add a rule like "if there is stagnation, then ..." (see below variants 2 and 3)

Theoretically, stagnation occurs as soon as p and gdon't change for two time steps. However, as we have seen, it
is not a good idea to do something special immediately, at least as long as the best particle is moving "enough".
So we have first to define how long should be the stagnation before to modify the moving strategy.

Defining a stagnation threshold
The underlying idea is to say there is indeed time do try something different if:

-  the local best particle has been enough time to be informed (either directly or undirectly) by a possible
better particle

- it has nevertheless not improved its best known position

Note that this criterion is not pertinent for the global best, but in order to keep the algorithm simple, we neglect
this particular case.

The probability that a given particle A is still not informed after t time steps that there exists a better particle G is
given by

( )
Kt

t S
AGp 





 −=→¬ 1
1 (Equ.  11)

where S is the swarm size and K the number of information links drawn at random (at each time step, for there is
no improvement. For detailed formulas of "temporal connexity", see  [1]) . If we want that this probability is
smaller than a threshold ε the number of time steps should be at least equal to
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(Equ.  12)

For example for 30=S , 3=K  and 0001.0=ε , we would now say there is stagnation if the local best particle
didn't improve its position from at least 91 time steps. This is the value used in some variants below.  The
additional parameter ε  is unfortunately empirical: this is the price to pay to be sure the algorithme remains fast.

Test bed
We have now in hand all what we need to test some variants on a some functions, in order to compare them. The
five functions used here are very classical, and the minimum is always zero. However, the dimension (30), the
search spaces and the required accuracies are chosen so that our "reference" algorithm PSO-0 has a success rate
never equal to zero nor to 100%  (over 100 runs with at most  40000 fitness evaluations). This success rate can
therefore be chosen as a comparison criterion, for each function. For a quick comparison the mean success rate is
even enough. In case of a tile (or almost), we will prefer the variant that gives the smaller standard deviation, for
it is then probably more robust.

Function Search space Accuracy Success rate with PSO-0
Parabola (Sphere) [ ]3020,20− 910− 32%

Griewank [ ]30300,300− 0.0001 44%

Rosenbrock [ ]3010,10− 25 21%

Rastrigin [ ]3012,5 ,12,5− 35 12%



Ackley [ ]3032,32− 0.0002 5%

Table 2. Test bed and success rate with PSO-0 (100 runs for each function, and at most 40000 fitness
evaluations for each run)

Six variants
3PD-PSO is for "Three Probability Distributions Particle Swarm Optimisation". The following variants are just a
sampling of the most obvious ones suggested by stagnation analysis. In particular we don't modify at all
distribution 2R , which is still equal to  Qc1 , and 1R  is also equal to Z, just possibly translated. Table 3
summarizes the results.

Function 3PD-PSO-0 3PD-PSO-0' 3PD-PSO-1 3PD-PSO-2 3PD-PSO-2' 3PD-PSO-3
Parabola
(Sphere)

100% 100% 100% 100% 100% 100%

Griewank 35% 49% 52% 48% 57% 53%
Rosenbrock 74% 74% 65% 77% 72% 72%
Rastrigin 58% 35% 24% 34% 39% 33%
Ackley 5% 66% 86% 70% 62% 64%
Mean 54% 65% 65% 66% 66% 64%
Std. dev. 0.33 0.22 0.27 0.23 0.20 0.22

Table 3. Results with some variants. When the success rate is equal to 100%, the mean number of fitness
evaluations is about 18000

3PD-PSO-0
This variant is simply PSO-0 with some different coefficients. That is to say stagnation is not checked. So we
need the find a "compromise", some parameters that are not bad if there is stagnation, and not bad if there is no
stagnation. As already suggested, according to the above analysis, a promising choice is
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 so that the random variable Z (the "forth force") never gives negative values. The movement equation is then
directly derived from equation 1 and can be written for dimension d

( )( ) ( )( )dddddd xgaleaxpaleavv −+−+← 1,086.01,086.072.0 (Equ.  13)

Other parameters are the same (30 particles, 3 informations drawn at random for each particles). Effectiveness is
significantly improved.

3PD-PSO-0'

Here we keep ( ) 72,02ln211 ≅=c , but we choose c so that the mean of Z (for the "forth force") is equal to the
one of Qc1  (for the "back force"). It gives ( ) ( ) 108.112ln22ln21 ≅−+=c . The velocity is then updated by

( )( ) ( )( )dddddd xgaleaxpaleavv −+−+← 1,0108.011,0108.172.0 (Equ.  14)

Effectiveness is more improved than with 3PD-PSO-0, and the standard deviation is also reduced.

3PD-PSO-1

For ( ) 72,02ln211 ≅=c , stagnation analysis suggested a possible c (i.e. maxc  in equation 1) equal to 0.86. The
idea is here to define another plausible value, and to choose c at random between them for each move. For
example value 1.48 used in PSO-0 is not arbitrary: it comes from a deterministic convergence analysis (cf.
Annexe). We can then try the variation interval
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In practice, to compute the new velocity of a particle, maxc is first chosen at random

( )caaleac ,max =

and then for each dimension d equation 1 is applied. Formally, it is equivalent to apply equation 21

( ) ( )dddddd xgbxpbvcv −+−+← 21
1

~~
(Equ.  16)

where 1~
b  et 2~

b  are two realisations of the random variable B, defined by

( )( ) 21 UUacaB −+= (Equ.  17)

1U  and 2U  being two uniform random variables on [ ]1,0 . This distribution is obviously not uniform anymore,
as we can see on figure 10. Intuitively it is more satisfying, for big moves are now less probable. The
improvement is equivalent to the one given by 3PD-PSO-0 , although the standard deviation is slightly higher.

3PD-PSO-2

In this variant, we define two sets of parameters, one for "normal" case, and one for stagnation. In the first case,
we use the parameter set of 3PD-PSO-0', and in the second case, we choose the "central point" of the promising
area that we have seen on figure 4:
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This variant is again slightly better both for the mean and the standard deviation.

3PD-PSO-2'

We have seen that in case of stagnation the local best particle has a special behaviour that rapidly induces some
unuseful fitness evaluations. Using two set of coefficients is already a way to change this, but can also modify
the movement equation so that the "noise" term is not null.

Let G be the local best particle. In order to compute its new velocity, we can consider all best known positions in
the swarm (in short, all "p"), and to keep the ones that are better that the one of G (i.e. g). Then we choose one at
random, say 2g , and in the movement equation  we replace g by 2g . So, except for the global best, the
movement equation is now similar to the one of a non best particle.

By adding  this modification to 3PD-PSO-2, the effectiveness it more or less the same and the standard deviation
is a bit smaller.

3PD-PSO-3

Finally, we have seen that the "noise" W is vaguely similar to a truncated Gaussian curve. Therefore, in case of
stagnation, it is tempting to replace it by a true Gaussian distribution. In order to not have to define a new
parameter, we can choose this Gaussian distribution with the same standard deviation that W, i.e.

( )( ) 122ln1411−= cσ  (almost 3c ).

The algorithm is then a bit more complicated. We need to memorize velocities at time t and t-1, and also the
random values that are used. Then, in case of stagnation  velocity is directly computed by equation 6. In practice,
it gives

 ( ) ( ) ( ) ( ) ( ) ( )σ,0_1~~~1 11 normalaleagptvqctvqsctv dd −−−−+−=+ (Equ.  18)



The process is not really slowed down. However applying this method to 3PD-PSO-0'  doesn't improve it (the
result is the same if applied to 3PD-PSO-2).

Conclusion
There is a slight advantage to  variant 3PD-PSO-2' (best mean and seems a bit more robust). Let's summarize the
differences compared to PSO-0:

- two sets of coefficients, one when everything goes well, and one where there is stagnation

- for the local best the set of informants is the whole swarm, and if possible a better than itself it chosen (at
random in case of a tile)

Other variants based on stagnation analysis are of course possible. In particular we could more completely
manipulate the "forth force" and "back force" components, for example by using Beta distributions. And more
tests are needed to choose the best variant.

Annexe
Mathematical developments below have been simplified. In particular the details of some tedious probability
densities are not given, for they are not really more helpul than their graphical representations to understand this
study.

Relationship between coefficients according to deterministic analysis
In [3] several constriction methods are defined, that guarantee the non-divergence of the swarm. For historical
reasons, the most commonly used gives the two coefficient 1c  and maxc as depending on an unique parameter
ϕ :
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However this can be easily rewritten as a relationship between them
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Let 1X  and 2X  be two uniform random variables on [ ]c,0 . The density of 21 XXS +=  is given by

( ) ( )dxxuxgus ∫
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−= ,

with ( ) ( )( )ccxuxg 11, =−  if x and xu − are both in [ ]c,0 , and 0 else. One can distinguish two cases (we do
suppose here c is not null):
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S support is [ ]c2,0  and the mean is the sum of the means of 1X  and 2X , i.e. cS =ˆ . Actually S can be rewritten

cUS =  where U is a uniform random variable on [ ]1,0 .
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Q study

Let  1S  and 2S  be two random variables like S. Their quotient is 21 SSQ = . The corresponding probability
density is given by

( ) ( ) ( )dxxsuxsxuq ∫
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=

To more easily compute this definite integral one can consider four cases.
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Note that Q is parameter free. The mean can be computed by noting that ( )21 1 SSQ = , as a product of two
independent random variables. This mean is then the one of ( )211 UU + . The density of this last random
variable is
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Figure 6. Q density

W study
The random variable W can be rewritten
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So we immediately see that it is symmetrical and that its mean is zero. In order to compute the maximum value,
one can note that it is reached  when 1X  is null and that in this case W is equal to 3X .  This maximum is then
equal to c. The formulas that give the density are quite complicated, for they make use of the order 2 Jonquières

function (dilogarithm) ( ) ∑
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=
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1
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k

k
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y
y . It is enough here the visualize it and to compute the standard deviation



σ . By using the fundamental theorem about the variance of a combination of random variables, and by noting
that each iX  is equal to icU , where density of iU is 1 on [ ]1,0 , we can write
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 that is to say ( )( ) 122ln1411−= cσ  , almost equal to 3c . Thanks to this information, we can define the best
Gaussian approximation of W.
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Figure 7. W density for c=1.48, and best Gaussian approximation

Z study

The random variable QScZ +−= 1  can be rewritten
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So we can see that the support is [ [+∞+− ,11 cc . We have seen that the mean of  ( )211 UU +  is ( )2ln2 .

Therefore the mean of Z is ( )2ln2ˆ
1 +−= ccZ . Note that QScZ ˆˆˆ

1 +−= , but this formula couldn't have been
directly written, for random variables S and Q are not independent. Here again, we just visualize the density
curve, without giving the too complicated formulas.
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Figure 8. Some Z densities for c1=0.72

B study

The random variable B can be rewritten ( )( ) 21 UUacaB −+= . Its support is obviously [ ]ca,  It can be seen as
the product of the two independent random variables ( )( )11 UacaX −+= and 2U . Its mean is the product of

ones of 1X  and 2U , respectively ( ) 2ca +  and 21 . The mean value is then ( ) 4ˆ caB += .

The probability density is given by
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Figure 9. B density for c=1.48

Convergence of an iterative random sequence
What follows is just a sketch of the proof.

A and B are two random variables. ta~  and tb
~

 are two realisations of A and B at time t. We consider the y

function iteratively defined by ( )0y , ( )1y , and
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We want to study the convergence of y to zero. Let's define  
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M  at time t. As the quadratic convergence implies the convergence in probability, we can study the
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We can suppose all km~ are non null (if one is null, then y is obviously convergent).  Then we can study
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This is a realisation of a random variable tH . The key point is that if its mean tĤ  tends to −∞ , then y tends to

zero. By applying the central limit theorem to tht
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, we find GtH t
ˆˆ ≈ , where Ĝ  is the mean of  the random

variable ( )MlnG = . So the condition is simply 0ˆ<G . We have
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In the particular case of stagnation analysis, we have
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so the condition is
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Note that there is trick here, for km~ and 1
~

+km are not independent. However km~ and 2
~

+km do are, so the
condition is still valid. Unfortunately the result is quite complicated. A good quadratic approximation can be
found by saying that the frontier of this convergence domain contains the three points ( )( )2ln21,0 + ,

( ) ( )( )2ln21,22ln1 + , and ( )0,1  (see figure 4), and by empirically estimating two parameters α and β :
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 time steps.

Stagnation in FIPS (Fully Informed Particle Swarm)
When more than just two particles inform a given one, the motion equations can be written
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kc  is a realisation of a random uniform variable on [ ]c,0 .

If no kp  is modified , we can deduce
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As 1~
kc ,  2~

kc  is a realisation of a random uniform variable on [ ]c,0 .

When 2=K , we retrieve equation 4, with 1pp = , and 2pg = , and for 2>K  the formulas are on the whole
quite similar.  The formula for ω~  is of course more complicated, but we can note that if all kp  are equal then
we still have 0~ =ω . In particular it would be true for the global best:   the "noise" component would  again
disappear. However, in FIPS each particle is not informed by itself, and we see here why the probability there is
no noise component is then almost null.
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