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ABSTRACT. This communication, which builds on previous work on cavity identification, is con-
cerned with the use of topological derivative as a tool for wave-based probing of elastic or
acoustic media for buried objects. A formulation for computing the topological derivative field,
based on an adjoint solution, is presented. Numerical results is included to illustrate the utility
of topological derivative for outlining the inclusion location and size.

RÉSUMÉ. Cette communication, qui fait suite à des travaux antérieurs sur l’identification de ca-
vités, développe le gradient topologique pour la détection d’inclusions pénétrables par mesures
élastodynamiques ou acoustiques. Une formulation permettant son calcul du champ de gra-
dient topologique au moyen d’un état adjoint est présentée. Des exemples numériques illustrent
l’aptitude de cet outil à estimer l’emplacement et la taille d’une inclusion.

KEYWORDS: identification of inclusions, elastodynamics, inverse scattering, adjoint field method,
topological derivative.

MOTS-CLÉS : identification d’inclusions, élastodynamique, diffraction inverse, méthode de l’état
adjoint, dérivée topologique.

1 Preliminaries. This communication builds on previous work on cavity identifi-
cation [BON 04]. Let

�
denote a finite elastic body bounded by the external surface�

, divided into complementary subsets
�

N and
�

D supporting prescribed tractions and
displacements, respectively. An unknown inclusion (or a set thereof) � true, bounded
by the closed surface(s) � true and characterized by elastic moduli � true and mass den-
sity � true, is embedded in

�
with perfect bonding conditions on � true. The reference

medium, i.e. that of the matrix
�
	 � true surrounding the inclusion, has elastic mod-

uli � and mass density � . On applying a steady-state traction � on
�

N with angular
frequency � (chosen so as not to be an eigenfrequency of any of the boundary-value
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problems appearing in the ensuing developments), an elastodynamic state 
 true arises
which solves the problem ����� true � , where ����� � denotes the transmission problem
for a generic inclusion � , defined by the equations����� ��� � � ��� ������� � in ��	 � �! �#" �$� �%����� � in � �&(' �*)+� �,� on

�
N
�- .�/�0� � on

�
D
�- ' ' �+) )*� ' ' &(' �+)1) )+��� � on � � [1]

Here � ��� � is the Navier linear partial differential operator for the reference medium,
i.e. � �$� �%23��465 ��� �74829�;: �<�>= 2 , and � " �$� � is defined similarly for the inclusion
medium;

&?' �*);@BA ' �*)!51C denotes the traction vector associated with the displacement� through Hooke’s law with the relevant elastic moduli.

For the inverse scattering problem of interest, where the location, topology, geom-
etry and material parameters of � true are being sought, the trace of 
 true on

�
, denoted

by 
 obs, is assumed to be available over the measurement region
� obs D �

N. Let 
 "
denote the solution to the forward problem for a given excitation � and a trial inclu-
sion � " bounded by � " : 
 " is then governed by problem ����� " � , equation [1]. To
solve such inverse problem, a misfit cost function is set up in order to minimize the
difference between 
 obs and 
 " . Generic cost functions having the formatE ��� "  � "  � " �F�HGJI

obs K ��
 " �$L �! L � d �;M [2]

are considered. The commonly used output least-squares cost function corresponds to
the particular case where N K � 2/ L �>� � 2 �$L �(O 
 obs �$L �P�(5 � 2 ��L �(O 
 obs �$L �Q� .
2 Topological derivative. To aid a subsequent gradient-based minimization ofE � � � for identifying � true  � true  � true on the basis of 
 obs, the development of topo-
logical derivative for the cost functionals of form [2], which would facilitate a rational
selection of the necessary initial “guess” for � true  � true  � true, is investigated. To this
end, let �SR?��T o �U� T o :6V(W , where WXDZY\[ is a fixed bounded open set with boundary]

and volume ^ W ^ containing the origin, define the region of space occupied by an
inclusion of (small) size V`_Ba containing a fixed sampling point T o. Following e.g.
[GAR 01], one is in particular interested in the asymptotic behavior of

E ���bR  � "  � " �
for infinitesimal Vc_da . With reference to this limiting behavior, the topological
derivative ef��T o � of the cost functional

E ��� R  � "  � " � at T o for an inclusion-free body
is defined through an expansion of the form:E ��� R  � "  � " �F� E �7g  � "  � " �;:ih � Vj� ^ W ^kel��T o �m:,n � h � Vj�Q� � Vpo Diam � � � [3]

where the function h defines the asymptotic behavior of
E ��� R  � "  � " � for Vqo

Diam � � � and is such that h � Vj�srta as V�rua . This definition is not restricted to
spherical infinitesimal inclusions (for which W is the unit ball,

]
the unit sphere and^ W ^ �wv<xzy({ ). In general, the value e���T o � is expected to depend on the shape of W .

One is here interested to find locations T o where ef��T o � attains lowest negative values.

With reference to [3], the evaluation of
E ���bR  � "  � " � requires the knowledge of

the elastodynamic solution 
 R to the forward problem �����#R?��T o �|� , equation [1]. It is
thus convenient to decompose the total displacement field 
 R as 
 R � 
 :~}
 R , where
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}
 R denotes the scattered field and 
 is the free field defined as the response of the
inclusion-free (reference) solid due to the given excitation � , so that� �$� � 
 �0� � in � �! &(' 
 )*� �i� on

�
N
�- 
 �H� � on

�
D
�- [4]

For infinitesimal V the scattered field is expected to vanish, i.e. �1��� RQ�b� ^ }
 R ��T � ^ �qa��Ti� ��� � , whereas the free-field, by its definition [4], does not depend on V . One may
expand

E � � R � with respect to }
 R asE ��� R  � "  � " �>� G�I
obs K ��
 R �$L �! L � d � M� E �7g  � "  � " �;: GJI

obs

Re ��� K� 
6� 
#�$L �! L�� 5 }
 R ��L �%� d � M :,n �Q� }
 R � � [5]

where
E �7g  � "  � " � is the value of

E
for the inclusion-free medium, and with the

convention � K� 2 @ � K� 2 R

O�� � K� 2 I � 2 R
� Re � 29�* �2 I

� Im � 29� � [6]

By means of [3] and [5], the topological derivative of
E � � � can be recast as:ef��T o �F� �1���RP�b� �h � Vj� ^ W ^ G�I obs

Re � � K� 
/� 
S��L �! L � 5 }
 R �$L � � d �mMj� [7]

One now has to evaluate the leading contribution of the integral in [7] for Vpo � .
3 Adjoint field approach. Define the adjoint field �
��$L � as the solution to the elas-
todynamic boundary-value problem� �$� � �
 ��� � in � �- �& � � K� 
 � on

� obs �- �& �l� � on
�

N

	�� obs �! �
 �l� � on
�

D
� � [8]

where 
 is the free-field defined by [4], the prescribed traction is defined in terms of
the cost function density function, and the convention [6] is employed. Now, since� �$� � 
 � � �$� � �
 ��� in

�
, the elastodynamic reciprocity theorem yields the identityG�� ' �
 5 & O 
 5 �& ) d � ��a [9]

In addition, the following reciprocity identity can be established for �
 and 
 R over
�

:G � ' �
 5 & R O 
 R 5 �& ) d � � G��+�+� 4 �
 � ��� " O � ���74 
 R O ��� " O � � � = �
 5 
 R�� d
�

[10]

On subtracting [10] from [9] and using the boundary conditions[8b,c,d], one obtainsGJ 
obs

}
 R 5 � K� 
 ��
  ¡5¢� d � �£G�� �*� 4 �
 � ��� " O � ���74 
 R O ��� " O � � � = �
 5 
 R � d
�

[11]

Substituting this identity into [7] leads to the following expression of the topological
derivative:ef��T o �F� ���1�RQ�b� �h � Vj� ^ W ^ G�� � Re � 4 �
 � ��� " O � ���74 
 R O ��� " O � � � = �
 5 
 R � d

�
[12]

One is then left with evaluating the leading asymptotic behavior of the above domain
integral for vanishing V . This task in turn requires to investigate the asymptotic behav-
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ior of 
 R � 
 :¤}
 R . This is done on the basis of an integral equation formulation of
problem ����� R ��T o �Q� , the details being left out of this communication because of space
constraints. As a result of this analysis, The scattered field }
 R in � R ��T o � is found to
have the form }
 R ��T �>�ZV<¥ � T O T oV � :
n ��¦ �
where the auxiliary field ¥ ��§ � is such that ¥ ��§ �z:Z4 
���T o � � § solves the elastostatic
transmission problem for the normalized inclusion W embedded in an infinite space
under the constant stress A ' 
 ) ��T o � at infinity.

If W has spherical or ellipsoidal shape, it is well-known [MUR 82] that such field¥ ��§ � has constant strains inside W , which can be expressed in terms of ¨ , the Eshelby
tensor of W , as ¦�© ' ¥l)+� ¨ � ' ��� " O � ��� ¨ : � )7ª+«m� ��� " O � ��� � ª+« . On substituting this
result into [12], one then finds that h � Vj�F�ZVj[ ande���T o �F� Re � 4 �
 ��¬­�k4 
 R O ��� " O � � � = �
 5 
 R�� ��T o � [13]

where the constant fourth-order tensor ¬®��¬ � WS �  � "  �  � " � is given by¬ � W# �  � "  �  � " �>� ' ��� " O � ��� ¨ : � ) ª+« � ��� " O � ��� � ª+« [14]

The topological derivative is established on the basis of a choice for � WS � "  � " � and
depends on that choice. In particular, one has the option of tuning the value of some
or all of � WS � "  � " � so as to obtain a pointwise optimal value e opt ��T o � . For isotropic
reference and inclusion media, detailed expressions for ¬ � W#¯|°± �²� �  |° "  P² "  � " � , not
shown for brevity, are readily established in terms of the elastic moduli °± P²J |° "  P² " .
4 The linear acoustic case. A formula similar to [13] can be established for the
linear acoustic case. Consider a reference medium

�
(wavenumber ³ , mass den-

sity � ) housing a penetrable inclusion � true (wavenumber ³ true � ³ yµ´ , mass density� true � � y(¶ ). The total field · true (e.g. the acoustic pressure) is governed by problem��¸���� true � , where �¹¸���� � denotes the generic transmission problem defined by the set
of equations

�¹¸���� �º�9» �7¼ : ³ = �%½¾��a � in �¿	 � �- �7¼ :¿´ = ³ = �%½¾��a � in � �½?Às�
Á � on
�

N
�- .½¾�0a � on

�
D
�! ' ' ½<) )+� ' ' � ª+« ½�Â À�) )+��� � on � � [15]

and can also be formulated in the form of a generalization of the Lippman-Schwinger
integral equation [MAR 03]. Considering cost functions of the formE ��� "  |¶F |´+�F�HG�I

obs K ��· "  L � d �mM [16]

where ½¾� · " solves the transmission problem � ¸ ��� " � , equation [15], one then findsE ��� R  |¶F |´+�F� E ��g  |¶F |´+�z:�V [ ^ W ^�el��T o �m:,n � V [ � [17]

where the topological derivative e���T o � is given this time byef��T o �U� Re Ã 4 �· 5$Ä � WS Q¶F %´m�(5$4 · : � ¶+´ = O � � ³ = �·Å·±ÆÅ��T o � [18]
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Figure 1. Identification of an ellipsoidal penetrable obstacle (constitutive parameters¶��Ha � v�Ç� |´9�£a �ÉÈ , center � O �  N  ¡O¹{<� , semiaxes � �  Qa � Ê  Pa � v�� aligned with the Carte-
sian coordinate frame) embedded in an acoustic half-space: distribution of e in the
horizontal plane Ë [ �,O¹{ , for ³ � � (left) or ³ �/v (right). The horizontal contour of
the “true” obstacle is shown (white ellipse).

In [18], · is the acoustic free-field while the adjoint field �· solves��¼ : ³ = � �· �Xa � in � �! �· Â À±� � K� · � on
� obs �- �· Â ÀF�la � on

�
N

	º� obs �- �· �la � on
�

D
�

and the second-order tensor Ä � WS Q¶F %´m� has been established for any inclusion shapeW and constitutive parameters � ¶F %´m� . For the simplest case where W is the unit sphere,
one has Ì�ÍÉÎ � W# |¶> %´m�F� { � � O6¶Ï�N :¿¶ÑÐ Í¢Î [19]

The limiting situation ¶6��a in [18,19] yields the expression of the topological deriva-
tive for the case of a hard (i.e. rigid) obstacle of vanishing size V .
5 Numerical example in acoustics. A penetrable ellipsoidal inclusion � true is em-
bedded in the half-space Ë [ÓÒ a . The cost function [16] with N K ��Ô �j� � Ô O · obs � ��Ô O
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Figure 2. Identification of a spherical inclusion (centre � �  PaJ ¡O¹{�� , radius a � v , pa-
rameters ° true �ÕÇ?°± P² true � � � Ç<²� � true � � � { � ) embedded in an elastic half-space,
with � � � : distribution of ef��T o � in the horizontal plane Ë [ �­O¹{ , computed with¬ � W#¯|°± �²� �  QaÅ ¡51 Qa�� , left, or ¬ � WS¯Q°± P²� �  Q° true P² true � true � , right. The horizontal con-
tour of the “true” obstacle is shown (circle).
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· obs � is set up on the basis of the synthetic measurement · obs generated on the basis of� true. The source and measurement grids, both regular with size ( N �*Ö N � ), are located
in the square area O�Ç Ò Ë «  Ë = Ò Ç on the external surface

� �q× Ë [ �BaJØ . The dis-
tribution of topological derivative ef��T o � in the plane Ë [ �~O¹{ , displayed in figure 1,
is consistent with the location of the “true” inclusion, despite the fact that the latter is
of finite size whereas the asymptotic formula [17] only holds in the limit VprÙa .
6 Numerical example in elastodynamics. The reference body

�
is a half-space

(free surface Ë [ �Úa ) with isotropic and homogeneous elastic moduli, and isotropic
inclusions are considered. Time-harmonic point forces are applied on the free surface,
and displacements recorded at measurement stations on the same surface. The case of
a spherical inclusion is first considered. Figure 2 shows the distribution of e���T o � with
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¬ defined on the basis of either an infinites-
imal spherical cavity (left) or an infinitesimal
spherical inclusion with the correct parameters° true  P² true  � true (right). The latter distribution is
consistent with the actual inclusion, whereas the
former is not, which emphasizes the important
role played by the reference parameters in the
computation of el��T o � . Finally, in figure 3, the
distribution of e opt ��T o � obtained by optimizingef��T o � pointwise with respect to ° " , for the case
of two dissimilar obstacles (a spherical elastic in-
clusion and an ellipsoidal cavity), exhibits two
negative minima at the correct locations.

Figure 3. Identification of an ellipsoidal inclusion (center � � � Ç� � � ÇJ ¡O¹{�� , axes� � � Ê  Pa � vÅ � �¢N � , parameters ° true ��Ç?°± P² true � � � Çj²J � true � � � { � ) and a spherical cav-
ity (center � O N  �O N  ¡O¹{�� , radius a � v ) embedded in an elastic half-space, with � � N :
distribution of e opt ��T o � in the horizontal plane Ë [ ��O¹{ . The horizontal contour of
the “true” obstacles are shown.
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