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Ecole Polytechnique, Palaiseau, France• 

1 Introduction

In e.g. shape design analysis, inverse problems or fracture mechanics, one is often 
faced with the need of computing sensitivities of functional or physical variables with 
respect to perturbations of the shape of the geometrical domain n under study. This
goal is often achieved using analytical material differentiation followed by discretiza­
tion, in the form of either the adjoint variable approach or the direct differentiation. 
In a BEM context, the latter is based on material differentiation of the relevant 
governing BIE formulation, so that a governing BIE for the field sensitivities is 
available. 

This has led some investigators to consider the material differentiation of strongly 
singular BIE formulations (e.g. Barone and Yang [1], Mellings and Aliabadi [2]). The 
actual validity of the material differentiation process when applied to Cauchy prin­
cipal value (CPV) singular integrals have not been previously questioned, although 
other kinds of analytic manipulations on these have sometimes proven tricky in the 
past (e.g. domain integrals associated with initial strains or stresses [3]). In the 
present communication, of a theoretical nature, it is established that the usual ma­
terial differentiation formula for surface integrals actually yields the correct result 
when applied to a BIE-type strongly singular integral, the result being also taken in 
the CPV sense. This result encompasses a wide range of singular kernels, including 
most usual fundamental solutions used in static or dynamic BIE formulations. 

2 Material differentiation

Let us consider, in the three-dimensional Euclidean space R3 equipped with a Carte­
sian orthonormal basis (e1, e2, e3), a body np whose shape depends on a finite
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number of shape parameters p = (pi, p2, • • .  ). The latter are treated as time-like pa­
rameters using a continuum kinematics-type lagrangian description and the "initial" 
configuration f! = f!0 conventionally associated with p = 0: 

y E f!0-+ yP = 4i(Y; p) E f!P where (Vy E f!) 4i(y; O) = y (1) 

A given domain evolution considered as a whole, as is the case e.g. in shape op­
timization, admits many different representations (1), with different geometrical 
transformations 4i. 

As :first-order derivatives with respect to p are considered here, attention is fo­
cused without loss of generality to the effect of infinitesimal variations op about 
p = 0 of a generic shape parameter p while the others are kept fixed. The initial 
transformation velocity 9(y) is defined by 

a 
9(y) = 8p 4i(y; 0) 

In other words, the geometrical transformation (1) has the form 

* 

y-+ y6P = y + 9(y)op + o(op) 

(2) 

The material derivative f (y) of a generic field f (y, p) in the domain transformation, 
taken at p = 0, is defined as: 

* 1 a 
f (y) = lim T [f(y6P, op) - f(y, o)] = -8 f(y) + v f(y).9(y) (3) 

6p->0 up p 

The material derivatives of the unit normal n and the differential area dS on a 
surface SP changing according to (1) are given [4], [5] by: 

* 
dS= div89dS n= -n.V89 (4) 

where divs denote the surface divergence of a vector. The material derivative of a 
generic regular integral over SP is then given by the formula (see e.g. Petryk and 
Mroz [4]): 

(5) 

Note that in formulas (3), (4), (5) and the sequel, all p-derivatives are understood 
for p = 0. The argument p is omitted for brevity when p = 0. 

3 Strongly singular integral on a changing sur­

face 

Let us consider CPV singular integrals of the form 

fs (p) = PV { K(x, y)u(y; p) dSy lsp 
(6) 
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where u is regular and possibly depends on p, either explicitely or implicitely (e.g. 
u is the field variable which solves a boundary-value problem over the changing 
domain 11) and K is the strongly singular kernel given by 

1 (Yi - x;) (y· - x·) (Yk - xk) K(z, y) = 2 ' ' ly-zl ly-zl ly-zl ly-zl (7) 

In the BIE context, the surface SP is any portion of the (changing) boundary an 
containing the singular point z, which is also assumed to move according to (1). 

CPV integrals are defined as the result of a limiting process where a spherical 
exclusion neighbourhood v. (z) of vanishing radius c centered at z is removed around 
z. The difficulty that arises when a changing domain is considered is that the 
geometrical transformation (1) is likely to alter the shape of v. (z) , which is not 
allowed by the definition of CPV convergence. One remedy to this is the introduction 
of a parametrization of the initial surface S on a parameter space D.: 

(8) 

This allows the changing surface SP to be also parametrized on the fixed domain D.: 

(9) 

so that one can perform the change of variable y -+ e in both ls(O) and I8 (8p). 
Of course, v. (z) is also distorted in this process. However, this particular difficulty 
has been solved by Guiggiani and Gigante [6]; as a consequence, a rigorous and 
computable expression of ls using the parametrization (9) is available and indeed 
provides a sound basis for the present discussion. 

The latter result, which we now recall, is based upon the introduction of polar 
coordinates (p, a), centered at the image T/ of the singular point z in the parameter 
space D. 

6 = 'f/1 + pcosa �2 = 'f/2 + psina 
so that e E D. � 0 =::; p =::; p(a) (no loss of generality occurs in assuming that D. is 
star-shaped around T/). Then a Taylor expansion about p = 0, i.e. y = z, gives [6]: 

yP - zP = pAP(a;p) + O(p2) 
oyP oyP . AP( a; p) = 86 1{=71 cos a+ 86 1{=71 sm a 

and the kernel function K ( z, y) takes the form 

_!_ { 1 A;(a;p)Ai(a;p)Ak(a;p) + O(p)} p2 A2(a;p) A3(a;p) 
1 2 {k(a; p) + O(p)} 
p 

with A(a;p) = IA(a;p)I. The CPV integral (6) is then given by [6]: 

(10) 

(11) 

(12) 

{2" rp(a) [ f(o:· p)] {2" 
Is(P) =lo lo 

F(p,a;p)- -;- dpda + lo 
J(o:;p)ln[p(a)A(a;p)]da (13) 
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with the notations 

F(p,a;p) = pK(zP,yP)u(y;p)J(e;p) } 
(zP = �(z;p), yP = �(y(p,a);p)) 

f(a;p) = k(a;p)u(z;p)J(71;p) 

J(e;p) being the Jacobian of the parametrization (9). Note that the last term in 
(13) accounts for the preservation of the shape of v0(z), and that k(a;p), eq. (12), 
has the following key property, strongly connected to the actual convergence in the 
CPV sense of the singular integral: 

k(a +?T;p) = -k(a;p) (14) 

4 Material derivative of the singular integral 

The formula (13) holds for any fixed p;::: 0, the parameter space t. being independent 
of p; moreover the double integral is regular because of the singularity removal 
achieved through the introduction of f(a; p). Thus the derivative w.r.t. po of (13) 
can be taken: 

with 

* 
Is = 

{2"' rp(a) [ * 1 * ] {2"' * 

lo lo 
F (p, a) - P f (a) dpda + lo 

f (a) ln[p(a.)A(a.)]da. 

* 

* [2" A (a) 
- lo 

!(a) A(a) d
a 

F (p,a) pJ(e) { K(z, y)[� (y) + u(y)div88(y)]+ k (z, y)u(y)} 
aK * 

K (z,y) 

* 
f 

[O;(y) - O;(z)],,-(z, y) uy; { ak * * } J(71) aA; 
A; u(z) + u(z)divs8(z)+ u (z) 

(15) 

(16) 

(17) 

(18) 

(note that t., i.e the function p( a), does not depend on p). Moreover, the derivatives 
* * 
A and A are given by 

* 
A (a) 

* 
A (a) 

{) { f)yP f)yP . } 
op 06 b,, cos a + 06 le=,, sm a 

{)8 {)8 . 
06 le=,, cos a + 06 le=,, sm a 

= V8(z).A(a) 
A(a).V8(z).A(a) 

A(a) 

Using the latter formulas and the expansion 

8(y) - 8(z) = pV8(z).A + 0(/) 

(19) 

(20) 

(21) 

(22) 
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* * 
about p = 0, it is easy to show that f / p is indeed the singular part of F, and also 

* * * 
that K has the same degree of singularity than K(z, y). As a result, {F - f / p} 
is regular. From (16), (18), it is then readily seen that the material derivative j s as 
given by (15) has the form 

is= PV Is {[Ku]*+ Kudiv89} dS + R 

where the residual term, given by 

remains to be examinated. Indeed, from (22), one has 

* 

f( ) A (a) = f( ) A(a) .V9(z).A(a) a 
A(a) 

a 
A2(a) 

and then, from property (14) and the definition (11) of A(a) : 
* * 

f(a+?r) A (a+?r) = -f(a) A (a) 
A(a + 7r) A(a) 

As a result, the residual integral R (24) vanishes: 

(23) 

(24) 

(25) 

Thus we have proved that the material differentiation formula (5) is generalizable 
to CPV singular integrals with the kernel (7): 

! { PV Is K(z, y )u(y ) dSy} 
= PV k {[K(z, y)u(y )]* + K(z, y )u(y )div89(y )} dSy (27) 

5 Concluding remarks 

The present result is obviously also valid for any linear combination of kernels (7); 
also, the unit normal n(y) can be incorporated without difficulty in the regular factor 
u(y) if present. Thus all usual potential or isotropic elastic BIE formulations, either 
static or dynamic, are encompassed by the present analysis. Also, the kernel (7) can 
be generalized to any combination of kernels of the form IY - zl-2 (er 181 ... 181 er) 
where the unit vector er= (y - z)/ IY - zl appears an odd number of times in the 
tensor product, for which property (14 ) still holds. 

The approach of [1] and others thus receives an a posteriori validation, at least 
when the free term present in singular BIE formulations remains constant under the 
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geometrical transformation (1). This is generally the case when dealing with smooth 
collocation points z. Although the present analysis does not answer this issue, it is 
conjectured that the present result remains true for a corner or edge point z, for 
which the free-term is likely to vary under the geometrical transformation. 

Of course, material differentiation is also applicable to regularized BIE formula­
tions (Bonnet [5], Zhang and Mukherjee [7]), and no complication arises at corner 
points in this case. 
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