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Introduction

The energy release rate G(s), function of the arc length s along the front ar of a crack r: { G(s)ol(s) ds = -oW

lar ( 1 
)
where oW is the perturbation of the elastic potential energy at equilibrium W induced by a crack front normal extension Of, the load being kept fixed, is one of the basic quantities involved in elastic fracture mechanics. In linear fracture mechanics, G is linked to the stress intensity factors K1(s), Ku(s), Ku1(s) through Irwin formula:

l+ v [ 2 2 ] 1 G(s) = -2 -K1(s) + Ku(s) + -Km (s) µ 2µ ( 2 ) 
(µ: shear modulus, v: Poisson ratio). In addition, G has a clear thermodynamical meaning (Nguyen [6)) and plays a key role in Griffith-type crack ffic tension criterions.

Thus the consideration of perturbations of W under fictitious body changes associated to vir tual crack extensions provides a computational tool for elastic crack analysis. In the first numerical applications derivatives of W are evaluated using small finite crack perturbations and finite differ ences (Hellen [5)). In later works (e.g. Delorenzi [START_REF] Delorenzi | On the energy release ra.te a.nd the I-integral for 3-D crack configura[END_REF], Destuynder et al. [START_REF] Destuynder | LESCURE s. -Quelques rema.rques sur la. meca.nique de la. rupture eJ.astique[END_REF]) the concept of material differentiation is applied to W, leading to rigorous formulations for G. This approach has led to FEM implementations (Wadier & Malak [3)). The present paper deals with a BIE formulation of the virtual crack extension approach in 3D elasticity.

Material differentiation

Let us consider a three-dimensional elastic body !l p whose shape changes according to a geometrical transformation given in Lagrangian form:

y E !1 0 --+ yP = �(Y;p) E f!P where ("Vy E !l) �(y; 0) = y (3) 
The parameter p acts as a fictitious time and the "initial" configuration !l = !1 0 is conventionally associated with p = 0. A given domain evolution considered as a whole admits many different representations [START_REF] Wadier | MALAK 0. -The theta method applied to the analysis of 3D-elastic-plastic cracked bodies[END_REF]. The initial transformation velocity 9(y) is defined by

9(y) = �. P (y;O) ( 4 
)
The material derivative j(y) of a generic field f(y, p) in the domain transformation, taken at p = 0, is defined as:

j(y) = Jim [f(y6P, op) -f(y,O)]op-1 = f, p(Y) + Vf(y).9(y) fi p -o (5) 
and the material derivative of a generic surface integral is then given by the formula [START_REF] Petryk | Time derivatives of integrals and functionals defined on varying volume and surface domains[END_REF]:
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where divs() denotes the surface divergence of a vector field. The above definitions still hold when the geometrical transformation (3) depends on a finite number pi, ... ,pn of parameters.

BEM formulation for the energy release rate

The external boundary an of the elastic body !1 is split into Sr (prescribed traction t = tD) and Su (prescribed displacement u: u. = u.D). No body forces are present. A crack r, with upper and lower traction-free faces r ± and unit normal n directed from rto r+' is embedded in n. In order to use only usual displacement BIE formulations, the so-called "multiregion approach" [START_REF] Cruse | Boundary Element Analysis in Computational Fracture Mechanics[END_REF] is considered: n is split into two subdomains n+, nseparated by a surface S containing the crack r (figure 1). The cracked solid equilibrium is then formulated in terms of two elastic problems on n+, ncoupled by perfect bonding conditions on S -r). The energy release rate G associated with the cracked solid n and the loading u.D, tD is defined by (1), or, equivalently by: f

G( 8.v ) ds = -W \18 Ee ( 7 
)
lar
where v is the unit normal to the crack front ar exterior to r and tangent to r. Also, 0 denotes the set of virtual crack extensions, that is, those transformation velocities 8 associated with geometrical transformations�(-; p) which describe a crack extension: one has

8.n = 0 on r 8 = 0 on Sv.,Sr (8) 
Thus only regular virtual crack extensions (i.e. without kinking) are considered. Moreover, in eq.

( 7 ) the variation W of W is taken for constant loading (u.D, tD) so that one has

ii.= 0 (ons;=) t = 0 (on sf} t = 0 (on r±)

Now, for linear elastic problems, one has the well-known boundary-only expression of the potential energy at equilibrium W:

W = ! { t.u.DdS-! { tD.u.dS 2 ls. 2 lsr
The variation W of Wi n a crack extension thus stems from application of formula [START_REF] Nguyen | Bifurcation and stability in dissipative media (plasticity, friction, fracture)[END_REF] to the above equation, and is expressed in terms of the material derivatives (ii., t) as follows:

W = ! { t.u.D dS-! { tD.udS ( 10 
)
2 ls.

2 lsr The primary elastic variables ( u , t) and their material derivatives (u, t) are respectively governed by the following BIEs [START_REF] Bonnet | Regularized BIE formulations for first-and second-order shape sensitivity of elastic fields[END_REF]: = { ([Ot(Y) -Ot(x)] { U;�t(x, y) -Dtju;(y)Efj(x, y)} + U;k(x, y)divs8(y)] dSy (12) lan in terms of the Kelvin fundamental displacement U,k and stress Efj and using the tangential differential operator DtjO = ntO,j -njO,t•

f [u;(y) -u;(x)]Efj(x,
A BE discretization of [START_REF] Tanaka | New crack elements for boundary element analysis of elastostatics considering arbitrary stress singularities[END_REF] for each boundary an+, an-, using 8or 9-noded surface elements, is set up. The three basic steps involved in the computation of G using the present approach are:

1 -SOLUTION OF THE PRIMARY BIE. The coupled elastostatic problems on !1 = n+ U n are numerically solved: the usual BEM linear system

[A] {u} + [B]{t} = {O}
is built and, after appropriate column switches, the governing system on the vector { v} of elasto static unknowns has the form: adjacent to the crack front ar and let A 1 ' ... 'A NC be the NC mesh nodes located on ar (figure 1 ).

[K] {v} = {g0} ( 
The local numbering of nodes on each element along ar is arranged so that the curve (6 = -1), associated with the nodes 1,2,3, is located on ar (e = (�i. where the pair (U", i'") satisfies the matrix equation:

where the right-hand side {/1}(u, t;Bk) comes from the discretization of the right-hand side of eq. ( 12) with 9 = Bk. The above equation, together with homogeneous boundary conditions, leads to the governing linear systems of equations for the vector {ilk} of unknown derivatives:

(19)

The same matrix [K] appears in (13) and (19), because the present construction of 9 is such that the Dirichlet and Neumann parts S!;, sj; remain fixed and thus are material surfaces. Then eq. ( 18) is substituted into [START_REF] Newman | An empirical stress-intensity factor equation for the surface crack[END_REF] so that a linear matrix equation for the NC unknowns G k is readily obtained from the following discretized form of the variational equation (7 ) :

4 Numerical examples EXAMPLE 2 -SEMI-ELLIPTICAL SURFACE CRACK. A semi-elliptical surface crack (see figure 3 for the geometrical notations) is situated in the symmetry plane y3 = 0 of a rectangular parallelip iped subjected to a uniform tension p along the axialdirection (mode J). Owing to geometrical symmetry, only one-quarter of the boundary is discretized (136 9-noded boundary elements); the crack front itself supports 13 nodal values of G and 9. Two variant meshes Ml and M2 (figure 3)

were used, with respectively uniform (a8 = 7r/24, mesh Ml) and non-uniform (a8 = 7r/32 (resp. 7r/l6) for 8 E (0, 7r/4) (resp. 8 E [7r/4, 7r/2)), mesh M2) angular spacing between crack front nodes, the crack edge being located at 8 = 0. Itoh [START_REF] Tanaka | New crack elements for boundary element analysis of elastostatics considering arbitrary stress singularities[END_REF]. The latter were obtained using a sophisticated special crack-front element which allows for the modelling of both the square-root crack front singularity and the crack edge singularity (whose exponent differs from -1/2 except for v = 0), and are thus expected to provide the better reference solution near the crack edge. Our results show an improvement in reproducing the small peak near the crack edge when mesh M2, which is finer than Ml near the crack edge, is used; generally speaking, they agree reasonably well with the reference ones. For comparison sake, figure 4 also shows the values of K7 obtained by extrapolation of the crack opening displacement, which tend to be somewhat poorer than those obtained using the present approach, despite the use of quarter-node elements along the crack front. ,.., 
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  y)nj(Y) dSy -[ t;(y)U ;k(x, y) dSy = 0 (11) lan lan f [ u;(y)-u;(x)]Efj(x,y) nj(y)f i;(y)U;k(x,y)d Sy lan lan

•

  Figure l: Left: multi region modelling of cracked solids; right: crack surface (shaded area: E(ar)). 2 -SOLUTION OF THE DERIVATNE BIE. This step involves the construction of a discrete set of admissible transformation velocity fields 9 E 0. Denote by E(or) the set of boundary elements

  6) being the antecedent ofy in the parent element). In order to take into account the known fact that W ultimately depends only on the normal extension velocity (9.v) of the crack front, transformation velocities of the following form are introduced: NC 9(y) = E okB k (e> (14) k=l in terms of NC scalar nodal values O k = (9.v)(A k ) and vector interpolation functions B k . The latter are built so that 9(y) = 0 outside E(ar) and, on any element E. E E(ar): (15) where ,.,t is the antecedent of the crack front node in the parent element At E E. c E(or) and the local numbering k = 1,2,3 is used. The definition of B k (E) (in local numbering) uses a continuation v(6,12) of the unit normal v(�i,-1) to ar: (16) where a1(e) = Y,e. and Si. S2, S3 are the class ical one-dimensional quadratic shape functions; /(�) = (3 -� -{ 2 )/4 with quarter-node elements (allowing for a linear variation off in the physical space) or JU)= (1-�)/2 with ordinary elements. The interpolation of (9.v) on r takes the form of a standard one-dimensional interpolation: NC (9.v)(y) = L:o.1: S.1: U 1 ) (17) k=l The definition (16) is then substituted into the derivative BIE (12). Due to the linearity of the right hand side of (12) with respect to 9, one has NC NC u= L: okir k i = L: oki'"

3 -

 3 SOLUTION OF THE GOVERNING VARIATIONAL EQUATION FOR G. The energy release rate is interpolated, along ar using the quadratic shape functions S k and nodal values G k = G(A k).

EXAMPLE 1 -

 1 ROUND BAR WITH A PENNY-SHAPED AXIAL CRACK. An internal penny-shaped plane era.ck of radius R1 is situated in the symmetry plane y3 = 0 of a cylindrical bar (axis Oy3, length 2H, external radius R > Ri) subjected to a uniform tension p along the axialdirection (mode J). Two different meshes (figure2) were used for one-eighth of the structure. The numerical values obtained for G at the crack front nodes (figure2) show good agreement with the known semi-analytical solution for K1 (Tada, Paris & Irwin (9)) reference solution (figure2).

  Numerical values of the non-dimensional SIF K7Q/(p..;;ro) were obtained from the values of G computed with the present method using (2), with Q = E(k) and k2 = 1 -(b/a)2 (b � a) or k2 = 1 -(a/b)2 (a � b); E(k) denotes the complete elliptic integral of the second kind. They are compared (figure 4) to other numerical results from Newman and Raju (10} and Tanaka and
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 23504 Figure 2: Example 1: comparison between numerical results and reference solution (upper: coarse mesh, lower: fine mesh)