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Abstract 

Thermography provides an experimental mean to control the quality of interface in laminates or in 

coatings. It is thus important to link thermal measurements obtained on free surfaces to the possible 

interfacial defects. In this paper a numerical inverse method is proposed to localize and quantify the 

defects from measured thermal data. The identification problem leads to a non-linear minimization 

problem solved using gradient methods. 

1. Introduction 

In elaboration of fiber composites or coatings, a very important point is the realisation 
of a perfect interface between the fiber and the matrix or between the coating and its 
substrate. Some interfacial defects may appear like delamination or like presence of 
undesirable matter between layers of the laminates. It is very important to localize such 
defects and also to determine their intensity (quality of the interface). As defects are 
located inside the materials, they cannot be observed or detected directly but it is 
already possible to obtain qualitative information from measurements done on free 
surfaces away from the interface. We present in this paper a numerical method to
identify and quantify interfacial defects in materials using thermal data usually obtained
using non destructive testing methods like infrared thermography. 

2. Modelisation of interfacial defects 

The problem adressed here is a two layer material as shown figure 1. The boundary
surface Sm is plane and infinite as well as the interface S; located at a known depth. 
Moreover, the second layer extends to infinity in depth. lnfrared thermography is a 
means to detect possible interfacial defects. To do so, a known thermal flux is applied 
on the surface Sm and in the same time, a thermal detector measures the temperature
on this surface. The modelling of this problem is indicated on figure 2 .. The two
homogeneous layers occupy respectively the geometrical domainsQ1 and Q2. For each 
domain Qn, the thermal properties are the specific heat en, the density Pn and the 
thermal conductivity kn- To model the interface and its defects, we define an interface 
thermal resistance R(x), that is, the temperature jump is proportional to the heat fluxq(x,t) across S;:
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l lTll(x, t) = -R(x) q(x,t) (1) 

where aT q(x,t) = -k± ay (x,h±,t)
T(x, y,t) is the temperature field and IHI denotes the jump operator across Si :ll fll( x) = f (x, h2, t )-t( x, h1,t). 

Besides, the temperature evolution in the conductive medium is governed by the well­
known homogeneous transient heat conduction equation: 

div (kn'VT)-PnCn aT = 0 n = 1, 2 (2) at 
The known thermal flux applied on Sm is:

aT g(x,t) = -k1 ay (x,t) (3)  

and as in any transient problem we need to precise also the initial conditions which are: 

T(x,y, O) = o in n1 un2 (4) 

3. Identification problem 

The identification problem consists in determining the interface resistance R(x) from
the measurable data e.g. the temperature T m(x,t) for x E Sm and t E [O, -r] . -r repre­
sents the duration of the measurements. 

If T R ( x, y, t) denotes the temperature field governed by equations (1 ), (2), (3) and (4), 
one can remark that the temperature measurement on Sm acts as a overspecified data
and allows one to reconstruct the interface resistance R(x). To do so, R(x) is treated
as a minimizer of the least-squares functional J(R): 

J(R)=� r f [T(x,t)-Tm(x,t)]2dSdt 
0 Sm 

under the constraint 

T(x,t)=TR(x,0,t) inSmx[O,-r] 

(5) 

(6) 
Hence the reconstruction problem leads to a non-linear constrained least-squares 

problem. 

4. Calculation of the gradient for the minimization 

As the minimization problem has no explicit solution, a way to minimize the functional J is to use non-linear optimisation algorithms. The most efficient ones, e. g. conjugate 
gradient or BFGS variable metric [1] , need not only J(R) but also its gradient with res­
pect to the design variable R. The latter could be computed using finite difference
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formulae, but it is far safer, from the point of view of accurancy and efficiency, to use an 
exact expression of the gradient. 

However, differentiation of (5) is by no means a trivial matter, since J depends func­tionally on R . 

Let the set V of scalar functions v( x, y, t) { ( x, y) e n1 u n2; t e [ 0 ,  -r]} be defined as:

V = { v(x,y ,t), v e L2, Vv e L2, v(x, y,O) = o} (7) 

The temperature field T R solves the following variational formulation, which is equiva­
lent to equations (1 ), (2), (3) and (4); find Te V such that:

\iweV J {kVT·Vw+aT w}dQ=J gwds+J JITIJllwllds (8) n i:)t Sm S; R 

In order to express the gradient of the functional J under the constraint (6), let us intro- 
duce the Lagrangian £: 

L(T,w,R) = f {� f (T-T m)2 dS + f gwdS + f llT�wll dS 
O Sm Sm S1 

-J0(kvT-Vw+�� w)dQ }dt (9) 

One has evidently J(R) = L(T, w,R) if the constraint (6) is satisfied. The gradient of J
will thus be investigated by means of the gradient of £. As £ is a functional, we intro­
duce an evolution of the functions T, w, R defined by the parameter T/ and the pseudo­
velocities t, w, R: 

w (ri)=w+riw R(ri)=R+riR (10) 

Then the derivativei3£/i3ri of the functional£ considered as a function of T/ is a linear
form of the functions t, w, R. In the following, all derivatives with respect to T/ will be 
implicitely taken for T/ = 0 .  The result is a sum of three linear forms as follows: 

d£ . . 
dT/ =L.r( T )+L,w(w)+L,R(R)  (11)

L,r(t)= J:{t
m 
(T-Tm)TdS+ fs1 ll T�wllds-J0(kVT·Vw+�; w)dQ}dt

L,w(w) = { {t
m 
gwdS+ fs1 llT�wllds-Jn ( kVT. vw+ �� w )an }dt

L,R ( R) = -J" J llT�kwll R dS dt 
O S1 

where L,t represents the linear tangent application with respect to the field f. 
The gradient of J is also determined by its linear form of the function R: 

(12) 
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aJ = J (R)dT/ ,R 

and the important result is: 

if { �: : � then

()J d.l -= - or J,R = L,R dT/ dT/ 

(13) 

(14)

The second condition of ( 13) is obtained when T is the solution of the problem governed 
by equations. (1 ), (2), (3) and (4). The first condition of (13) gives a variational equation
on w and its solution, wR , is called the adjoint state. A detailed examination of this
equation shows that w is equivalently governed by the following final-boundary value 
problem: 

llWll(X,t) = -R(x)q(x,t) where aw q(x,t) = -k± ay (x,h±,t) (15) 

div(knVw) +PCn �; = 0 n=1,2 (16) 

k1 �; (x,O,t) = -[T(x,O,t)-T m(x,t)] on Sm (17) 

T(x,y,-r)=O in n1 u n2 (18) 

It is apparent in (16) that w is governed by the backward heat equation: the evolution
problem for w must be solved from t = -r to t = O. 
5 .  Numerical identification 

5.1. Resolution procedure 

To realize the identification of the interface resistance R, we propose to use a tran­
sient thermal code which can take into account jumps of temperature at the interface. 
The minimisation of J is performed by a succession of iterations. Each iteration, in
which R is fixed, consists in four steps: 

- direct computation of the temperature Tfollowing the equations (1), (2), (3), and (4);

- reverse computation of the adjoint state wfrom equations (15), (16), (17), and (18); 

- computation of J,R from equations (12) and (14);

- modification of R which leads to a decrease of J. 

One must remark that the computation of the adjoint state w can be done with the same 
code that computes the temperature T if the following transformation is respected: 

w (x,y,t) = co(x,y,-r-t) 
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5.2. 1 D results 

A first investigation was done on a 1 D model to test the identification method using the 
calculation of the gradient of J. All the thermal fields were assumed to be uniform along 
the x-axis and to depend only on y and t. Simulated data with a known resistance R
were used for the imposed flux g and for the measured temperature Tm· Several cases 
were studied depending on the conductivity of the two layers, on the simulated
resistance and on the noise added to the measured temperature (see table 1). To
indicate the effects of noise, the reconstructed value of R is given within a range 
corresponding to twice the value of Jmin· With no noise the reconstruction is always
perfect whereas the presence of noise leads to inaccurate values especially if the 
duration of the measurements is short. 

6. Conclusions 

The detection of internal interfacial defects found in laminates or coatings can be per­
formed with the identification method presented above based on a minimization pro­
blem. This numerical method is all the more efficient since it quantifies the defects 
through the thermal resistance R and allows the use of optimization algorithms with 
gradient. We propose an exact expression of the gradient which needs no more compu­
tation than a classical transient thermal problem. 

This method of defect identification may be generalized to more complicated geome­
tries and to other boundary conditions. It is also possible to consider the depth location 
of the interface as an unknown function and this leads to the calculation of the gradient 
of J with respect to a surface location. 

Futhermore, the inverse problem decripted above is ill-posed [2] due to the nature of 
the integral operators involved [3] and due to unavoidable noise of the measured data.
As a consequence, the procedure needs to be regularized in order to stabilize its
solution and avoid erroneous results caused by noised data. The regularization consists
in introducing a stabilization functional S (R ) which incorporates a priori informations
like physically relevant range of values, rough estimate of the location of defects, 
expected regularities . . .  
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Table 1. - Results of a 1 D example. 
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Fig. 1. - Thermography on a 
laminate with interfacial defects. 
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Fig. 2. - Modelisation of the interfacial 
defects. 
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