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Introduction

In elaboration of fiber composites or coatings, a very important point is the realisation of a perfect interface between the fiber and the matrix or between the coating and its substrate. Some interfacial defects may appear like delamination or like presence of undesirable matter between layers of the laminates. It is very important to localize such defects and also to determine their intensity (quality of the interface). As defects are located inside the materials, they cannot be observed or detected directly but it is already possible to obtain qualitative information from measurements done on free surfaces away from the interface. We present in this paper a numerical method to identify and quanti f y interfacial defects in materials using thermal data usually obtained using non destructive testing methods like infrared thermography.

Modelisation of interfacial defects

The problem adressed here is a two layer material as shown f i gure 1. The boundary surface Sm is plane and infinite as well as the interface S; located at a known depth. Moreover, the second layer extends to infinity in depth. lnfrared thermography is a means to detect possible interfacial defects. To do so, a known thermal flux is applied on the surface Sm and in the same time, a thermal detector measures the temperature on this surface. The modelling of this problem is indicated on f igure 2 .. The two homogeneous layers occupy respectively the geometrical domainsQ1 and Q2. For each domain Qn, the thermal properties are the specific heat en, the density P n and the thermal conductivity kn-To model the interface and its defects, we define an interface thermal resistance R(x), that is, the temperature jump is proportional to the heat flux q(x,t) across S;: l l T l l (x,t) = -R(x) q(x,t) [START_REF] Press | Numeri cal recipes: the art of sci enti fic computing[END_REF] where aT q(x,t) = -k± ay (x,h±,t) T(x, y,t) is the temperature field and IHI denotes the jump operator across Si : l l f l l ( x) = f(x, h 2 , t )-t( x, h1 ,t ).

Besides, the temperature evolution in the conductive medium is governed by the well known homogeneous transient heat conduction equation:

di v(kn'VT)-PnCn aT = 0 n = 1, 2 (2) 
at

The known thermal flux applied on Sm is: aT g(x,t) = -k1 ay (x,t)

(3)
and as in any transient problem we need to precise also the initial conditions which are:

T(x,y,O) = o in n1 un 2 (4)

Identification problem

The identification problem consists in determining the interface resistance R(x) from the measurable data e.g. the temperature T m(x,t) for x E Sm and t E [O, -r ]. -r repre sents the duration of the measurements.

If T R ( x, y, t) denotes the temperature field governed by equations ( 1), ( 2), ( 3) and ( 4), one can remark that the temperature measurement on Sm acts as a overspecified data and allows one to reconstruct the interface resistance R(x). To do so, R(x) is treated as a minimizer of the least-squares functional J(R):

J(R)=� r f [ T(x,t)-Tm(x,t)] 2 dSdt 0 Sm under the constraint T(x,t)=TR(x, 0 ,t) i nSmx[O,-r ] (5) (6)
Hence the reconstruction problem leads to a non-linear constrained least-squares problem.

Calculation of the gradient for the minimization

As the minimization problem has no explicit solution, a way to minimize the functional J is to use non-linear optimisation algorithms. The most efficient ones, e.g. conjugate gradient or BFGS variable metric [START_REF] Press | Numeri cal recipes: the art of sci enti fic computing[END_REF] , need not only J(R) but also its gradient with res pect to the design variable R. The latter could be computed using finite difference formulae, but it is far safer, from the point of view of accurancy and efficiency, to use an exact expression of the gradient. However, differentiation of (5) is by no means a trivial matter, since J depends f unc tionall y on R .

Let the set V of scalar functions v( x, y, t) { ( x, y) e n1 u n 2 ; t e [ 0, -r ]} be defined as:

V = { v(x,y,t), v e L2, Vv e L2, v(x, y,O) = o} (7)
The temperature field T R solves the following variational formulation, which is equiva lent to equations ( 1), ( 2), ( 3) and ( 4); find Te V such that: \iweV J {kVT•Vw+ aT w}dQ=J gwds+J J I T I J l l w l l d s

(8) n i:) t Sm S;

R

In order to express the gradient of the functional J under the constraint (6), let us introduce the Lagrangian £:

L(T,w,R) = f {� f (T-T m) 2 dS + f gwdS + f l l T �wl l dS O Sm Sm S1
-J 0 ( kvT-Vw+�� w)dQ }dt

One has evidently J(R) = L(T, w,R) if the constraint (6) is satisfied. The gradient of J will thus be investigated by means of the gradient of £. As £is a functional, we intro duce an evolution of the functions T, w, R defined by the parameter T/ and the pseudo velocities t, w, R:

w(ri )=w+riw R(ri)=R+riR (10) 
Then the derivativei3£/i3ri of the functional£ considered as a function of T/ is a linear form of the functions t, w, R. In the following, all derivatives with respect to T/ will be implicitely taken for T/ = 0. The result is a sum of three linear forms as follows:

d £ . . d T/ =L . r(T)+L , w(w)+L , R(R) (11) 
L , r(t )= J:{t m (T-Tm)TdS+ fs 1 l l T � w l l d s-J 0 (kVT •Vw+�; w)dQ}dt L , w(w) = { {t m gwdS+ fs 1 l l T �w l l d s -J n ( kVT . vw + �� w )an }dt L, R ( R) = -J" J l l T�kw l l R dS dt

O S1
where L , t represents the linear tangent application with respect to the field f.

The gradient of J is also determined by its linear form of the function R:

(12)

a J = J (R) dT/ , R
and the important result is:

if

{ �: : � then ()J d.l -= -or J ,R = L,R dT/ dT/ (13) (14) 
The second condition of ( 13) is obtained when T is the solution of the problem governed by equations. ( 1), (2) , (3) and ( 4). The first condition of (13) gives a variational equation on wand its solution, w R

, is called the adj oint state. A detailed examination of this equation shows that w is equivalently governed by the following final-boundary value problem:

l lWl l (X,t) = -R(x)q(x,t) where a w q(x,t) = -k± ay (x,h ±,t)

(15) div(knVw) +PCn �; = 0 n=1,2 (16) k1 �; (x,O,t) = -[ T(x,O,t)-T m(x,t)] on Sm (17) T(x,y,-r )=O in n1 un2 (18) 
It is apparent in (16) that w is governed by the backwar d heat equation: the evolution problem for w must be solved from t = -r to t = O.

Numerical identification

Resolution procedure

To realize the identification of the interface resistance R, we propose to use a tran sient thermal code which can take into account jumps of temperature at the interface. The minimisation of J is performed by a succession of iterations. Each iteration, in which R is fixed, consists in four steps:

-direct computation of the temperature Tfollowing the equations ( 1), (2) , (3), and (4);

-reverse computation of the adjoint state wfrom equations ( 15), ( 16), (17), and (18); computation of J ,R from equations ( 12) and ( 14); -modification of R which leads to a decrease of J.

One must remark that the computation of the adjoint state w can be done with the same code that computes the temperature T if the following transformation is respected:

w(x,y,t) = co(x,y,-r-t)

1 D results

A first investigation was done on a 1 D model to test the identification method using the calculation of the gradient of J. All the thermal fields were assumed to be uniform along the x-axis and to depend only on y and t . Simulated data with a known resistance R were used for the imposed flux g and for the measured temperature Tm• Several cases were studied depending on the conductivity of the two layers, on the simulated resistance and on the noise added to the measured temperature (see table 1). To indicate the eff ects of noise, the reconstructed value of R is given within a range corresponding to twice the value of J min• With no noise the reconstruction is always perfect whereas the presence of noise leads to inaccurate values especially if the duration of the measurements is short.

Conclusions

The detection of internal interfacial defects found in laminates or coatings can be per formed with the identification method presented above based on a minimization pro blem. This numerical method is all the more efficient since it quantifies the defects through the thermal resistance R and allows the use of optimization algorithms with gradient. We propose an exact expression of the gradient which needs no more compu tation than a classical transient thermal problem. This method of defect identification may be generalized to more complicated geome tries and to other boundary conditions. It is also possible to consider the depth location of the interface as an unknown function and this leads to the calculation of the gradient of J with respect to a surface location. Futhermore, the inverse problem decripted above is ill-posed [START_REF] Tikhonov | Solutions of ill -posed problems[END_REF] due to the nature of the integral operators involved [START_REF] Bonnet | Problemes inverses pour /'equa tion de la chaleur : application au contr6/e non destructif thermique[END_REF] and due to unavoidable noise of the measured data.

As a consequence, the procedure needs to be regulari zed in order to stabilize its solution and avoid erroneous results caused by noised data. The regularization consists in introducing a stabilizati on functional S(R) which incorporates a priori informations like physically relevant range of values, rough estimate of the location of defects, expected regularities ... 
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 1 Fig. 1. -Thermography on a laminate with interfacial defects.

Fig. 2 .

 2 Fig. 2. -Modelisation of the interfacial defects.

  

  

  

Table 1 .

 1 -Results of a 1 D example.