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Shape Identification Using Acoustic Measurements: 
A Numerical Investigation Using BIE and Shape 

Differentiation 

Marc BONNET 
Laboratoire de Mecanique des Solides (CNRS, Ecole Polytechnique, Mines, Pants et Chaussees), 

Ecole Polytechnique, 91128 Palaiseau Cedex, FRANCE. 

1 Preliminaries.

The purpose of this paper is to study numerically the problem of identifying a rigid 3D finite 
body n imbedded in an infinite acoustical medium n. = 'R3 - n (wave velocity c) . The cavity
is subjected to a known harmonic incident pressure p1 (x) exp(-iwt), which satisfies Helmholtz'
equation (Ll + k2)p1 = 0 inside n. (with k = w/c. The scattered pressure field Pr(x) induced by
the presence of the obstacle (i.e. the solution of the direct problem) satisfies the so-called 'state 
equation': { (Ll + k2)p = 0 in n. 

P,n + P�n = 0 on r = an. = an 
(radiation condition) 

a 
( (·),n =an(·))

where the unit normal n is directed outside n., i.e. is interior to r.

( 1) 

The shape of n., ie the surface r, is unknown, and p defined by (1) depends on r: p =Pr· Extra
data is necessary if one is to solve the inverse problem, e.g. 

p(x) = p(x) on C (2)

C being a surface, or curve, exterior to r, on which the pressure field is measured. Thus r is 
classically sought as 

where: 

min J(r) , J(r) = J(Pr, r)r 

J(p, r) = 4 k I p(y)- P(y) 12 dCy

(3) 

(4) 

The nonlinear minimization problem (3) is best solved (in terms of both computational efficiency 
and accuracy) using gradient methods, such as BFGS of conjugate gradient ( 11). These algorithms 
need repeated computations of the derivative of J(r) with respect to r (or, in practice, the design 
parameters which define the current location of r). These derivatives may be computed using 
finite-difference methods. However, this is computationally expensive (because the evaluation of 
each partial derivative needs a complete solution of (1) on a perturbed geometry r + 6G) and may
be poor in terms of accuracy. 

Hence an analytical differentiation of ( 4) is investigated instead. Its derivation relies on the 
shape differentiation approach, and two approaches are presented here: the direct differentiation 
approach (DDA) (section 3) and the adjoint problem approach (section 4).

The basic nature nature of the inverse problem under consideration (to search an unknown surface) 
suggests the use of boundary integral equations (BIE) and boundary elements for the numerical 
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modelling of the direct problem (1). In the present problem, this indication is made even stronger 
by the infinite character of the domain a •. 

Any solution p(x) of Helmholtz' equation satisfies a well-known BIE derived from third Green's
formula. In the present paper, we use its regularized version (1), (2), which reads: 

1p(x) + £ {p(y)(G,n(x,y) - G'.'n(x,y)) + (p(y) - p(x)JG?n(x, y) - q(y)G(x, y)} dSy = 0 (5)

In (5), G(x,y) = eikr /(47rr) and G°(x,y) = 1/(47rr) are the dynamic and static Green functions,
while r =II x - y II, (·),n = n.(y)(·),a = n.(y)lJ(·)/lJy., q = lJp/lJn. The coefficient 'Y in (5)
depends only on the boundedness of the domain under consideration: 'Y = 1 (infinite medium),
1/2 (half-space), 0 (bounded domain). For a given domain, eqn. (5) holds for interior and bound­
ary points x using the same1, which is therefore not to be mistaken with the conventional free-term
coefficient. In the sequel, as infinite domains are considered, eqn. (5) will be used with 'Y = 1. 
The integrand in eqn. (5) is weakly singular, provided p(x) E Co•a(r), thanks to the regularizing
effect of the term (p(y) - p(x)), and contains no Cauchy principal value (CPV ) integral. This
point will prove crucial for the derivation of the rate BIE in section 3 below, as well as for all 
numerical computations. For p(x) solution of (1), one puts q(y) = -P�n(Y) in (5).

2 The shape differentiation approach.

The shape differentiation approach deals with derivatives of functionals with respect to variable 
domains or boundaries (e.g. J(r)) involving fields which themselves depend on the geometry,
notably the solutions of boundary-value problems like pr(y). 

Let r denote the current location of the unknown boundary during the minimization process, and 
consider a further (small) evolution of the surface r defined by means of a normal 'velocity' field
8(y): 

y Er ...... y + 8(y)n(y)r i.e. r(r) = r + 8nr ( r 2:: 0, r 'small' ) (6) 
while the measurement area C is kept fixed (8(y) = 0 Vy E C). Definition (6) is considered only
for small values of r, consistently with the fact that we are only interested here by derivatives
for r = 0, i.e. for the current r (in the sequel, derivatives with respect to r are always taken for
T = 0 ).
The SDA defines several kinds of derivatives with respect tor for fields u(y, r). In a BIE approach
of shape differentiation, it seems natural to use 'material' derivatives, i.e. to 'follow' the field u
while the field point y moves according to (6), in order to use only the information available on
the boundary as it 'moves'. When, as here, the geometrical transformation is described by means 
of a normal velocity field 8, the 'transformation derivative' 1'L [9] of u = u(y, t) is introduced:

l'L(y,O) = U,r(Y + 8nr,r) lr=O = U,r(y,O) + 8(y)u,n(y,O) (7) 

Various formulas are given in the literature (see e.g. (9), [7]) for the derivative of integrals with
respect to variable volumes n or surfaces r, among which:

d� k a(y, r) dVy

d� £ a(y,r)dSy 

[ a,r(y,r)dVy + [ a(y,r)8(y)dSylo lao 
l { a.r(Y, r) + (a,n(Y, r) - 2K(y)a(y, r)) 8(y)} dSy
l {�(y, r) - 2K(y)a(y, r)8(y)} dSy

(8) 

(9) 
( 10 ) 

where K(y) denotes the mean curvature at y E r. Equations (9), (10) hold only for a closed 

smooth surface, while in equation (8) 8 refers to the unit normal n directed towards the exterior 

of n. Generalization of above formulas to piecewise smooth surfaces is available [9] but will not 

be used here. 
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3 Rate BIE: the direct differentiation approach. 

In this approach, ( 4) is differentiated with respect to T directly, using eqn. (10). material derivative
of integrals [9]. This yields:

d
� J(r) = fc (pr(Y) - p(y)) Pr(Y) dCy

in which the fact that C is fixed has been taken into account. 

(11) 

The use of (11) implies, in turn, the calculation of pr. This is achievable by deriving from the
state BIE (5) a rote BIE, in which the fields (pr, ir) appear. The rate BIE is indeed obtained
upon application of formula (10) to (5). The validity of the differentiation of (5) using (10) relies
upon the weakly singular character of the acoustic BIE ( 4) (as opposed to conventional CPV
BIEs, for which extreme care must be taken when considering their differentiation with respect 
to a parameter).
As a result of this differentiation process, the rate BIE reads, in the present context:

Pcx) + J {Pcy)[G,n(x,y) - G?n(x,y)J + [iJ{y)- Pcx)JG?n(x,y)- q(y)G(x,y)} dSy =

J q(y) {[B(y)n,(y) - B(x)n,(x)]G,,(x, y) - 2K(y)B(y)G(x, y)} dSy

- J io(y)nr(Y) - B(x)nr(x)] { DrsP(y)G,,(x,y) - k2p(y)G(x,y)} dSy (12) 

where Drs is the tangential differential operator given by eqn. (30) of Appendix A. The derivation
of (12) uses the integration by parts formula (35) and:

d 
dT G(x,y) = [B(y)n,(y) - B(x)n,(x)]G,,(x,y) 

Remark 1 The rate BIE as given by (12) is valid for a smooth surface, without edges or corners
(but the present approach can be extended to piecewise smooth surfaces). 

Remark 2 All integrands in eqn. (12) are weakly singular, thanks to the regularizing effect of

[Pcy)- Pcx)], [B(y)n,(y) - B(x)n,(x)] and (p(y) - p(x)]. 
Remark 3 The validity of the derivation of (12) relies upon the validity of the differentiation of

(5) using (10). In this respect, the weakly singular character of the acoustic BIE (5) is crucial.
At any stage of the derivation, all integrals are at most weakly singular. In contrast, a very 
close attention should be exercised with respect to the handling of exclusion neighbourhoods 
and subsequent limit processes, were the same approach to be applied to conventional strongly 
singular BIEs. 

As a consequence of (1), the expression of qr= -(P�n)* on r is given (see appendix B) by:

(P�n)* = (2Kp�n - kV) B - D,(BD,p1) 
and the right-hand side F(p, q)B in (12) becomes

F(p, q)B = - fr P�n(Y)(B(y)n,(y) - B(x)n,(x))G,,(x, y) dSy

(13) 

+ fr { D,(BD,p1)(y) - (B(y)nr(Y) - B(x)nr(x))DrsP(Y)} G,,(x, y) dSy (14)

The representation formula for interior values p(x) may also be differentiated with respect to the
variable domain. The result is: 

Pcx) = -1 { [B(y)p�n(y)+ p'r(Y)]G,n(x, y)
+B(y) (k2(pr + l)(y)G(x,y) - D,(pr + l)D,G(x, y)) }  dSy (15)
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Then, in order to evaluate the derivative (11), one has to 

1. Solve the state HIE (5) for the unknown Pr·
2. Solve the rate BIE (14) for the unknown Pr· This must be done successively with each 8 in

turn (or rather, in practice, with a finite number of 8s associated to design variables).
3. Compute the field Pr on the measurement surface C using representation formula (15).

4. Insert, for each 8, Pr and Pr in dJZ) (11). 

Indeed, as soon as the state BIE (5) is solved, the right-hand side :F(p,q)8 of (12) is completely
known. The successive solution of (14) for various fJs may seem at first sight to be a formidable 

computational task. However, as the same integral operator governs the fields p in (5) and P 
in (12), the actual solution of (12) needs only, for each 8, the building of its right-hand side
:F(p, q)8 followed by a backsubstitution using the already factored matrix. In other words, each
computation of the derivative needs the building and factorization of only one matrix. 

The field Pr appears clearly to be a linear form over e. Thus, with sufficiently regular r, 8 and
p1, lliesz representation theorem may be used to state the existence of a kernel ifrp(x,y) (the
derivative of p with respect to r, such that:

• f ap P(x) = Jr {)f (x, y)8(y) dSy (16) 

hence the terminology of 'shape differentiation'. As a result, dJ/dr itself is, from (11) and the
previous remarks, a linear form over 8, and the shape derivative kernel *J(y) may be defined as 
well. 

The DDA has also been applied to Galerkin type BIEs in [8], for crack identification problems 
governed by Laplace's equation. As Galerkin-type BIEs are weakly singular (they are regularized
by integrating by parts twice), the DDA approach does not raise difficulties.

4 The adjoint problem approach. 

This is an alternative approach for deriving an analytical expression, which is known e.g. in the 
field of structural shape optimization [7] (see also [6] for thermal inverse problems) . The problem
(3) may be viewed as a constrained optimization problem, where J(p, r) is to be minimized under
the constraint p = Pr (1). The latter can be expressed in weak form as:

A(p, w; r) = f (V'p. V'w - k2pw) dVy + f wp1n dSy = 0 Vw E v }� k ' 
where V = { w E H1(l!), w(y) = 0 (y E S)}. A lagrangian functional l is introduced: 

l(p, w, r) = J(p, r) + A(p, w; r) 

( 17) 

(18) 

where w is the Lagrange multiplier. Upon application of formulas (8), (9), taking into account 

identity ( 13) and using identity (34 ) , the stationarity of l is expressed as 

&l &l 
&pP,T + &ro 

{ P,r(p-p)dCy+ { (V'P,r·Y'w-k2p,rw)dVyle lo, 
j 8 [Y' sw · V' s(p + p1) -k2w(p + p1)] dSy 

( 19) 

(20) 

(21) 
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Now the choice of the Lagrange multiplier w is restricted in such a way that f,;£ = 0 for 9 = 0,
that is, we put: 

8£ 
apP,r = 0, Vp,T E v (22}

This leads, in view of eqn. (20}, to introduce the adjoint field wr as the solution of the following
adjoint problem: 

{ (6. + k2)w = -(p - p}6c inn.
Wn = 0 On f 
(radiation cond1t1on) 

The adjoint problem is equivalently formulated in terms of a BIE: 

w(x) + fr { w(y)n,(y)[G,,(x,y) -G'?,(x,y)) + [w(y)-w(x})n,(y)G?,(x,y)} dSy

(23}

= fc[p(y)-fl(y))G(x,y)dCy (24} 
Finally the shape derivative of J is given by:

�: = :T £(Pr, wr, r) =fr () [v swr · V s(Pr + p1) -k2wr(Pr + p1)] dS (25}
Then, in order to evaluate the derivative dJ /dr, one has to 

1. Solve the state BIE (5) for the unknown pr.
2. Solve the adjoint BIE (24} associated to the adjoint problem (23} for the unknown wr.
3. Insert Pr and wr in dJ /dr (25).
Remark 1 The adjoint problem approach is not specifically HIE-oriented. Indeed, its establish­

ment uses weak forms of boundary-value problems and is therefore equally well suited for FEM 
numerical treatments. 

Remark 2 The adjoint field w does not depend on 9. Therefore, the adjoint problem approach
needs the solution of two distinct boundary-value problems. 

Remark 3 As for the DDA, the state and adjoint problems use the same integral operator.
Therefore, each computation of the derivative needs the building and factorization of only one 
matrix. 

5 Numerical implementation and examples. 

Numerical tests for the solution of the inverse problem using shape differention have been con­
ducted, for 3D situations. The basic numerical tool is the regularized collocation BIE (5), which
is implemented in our BEM research code ASTRID. Isoparametric 8-noded curved surface ele­
ments were used throughout the present study, and r is made of 24 elements, which amounts to
74 nodes. The incident wave p1(y) is here taken as a plane wave propagating along Ox3 in the
positive direction. 

Here the unknown surface r is searched as an ellipsoid. This choice reduces the inverse problem
to the search of 9 design parameters di, ... , dg (coordinates xa, Ya, za of the center, Euler angles
t/>,9,1/J and principal axes a, b, c, in this order}, it has been made in order to test the method on 
situations with moderate number of design parameters. In the next step (left for future work), 
mesh nodes coordinates will be taken as the design parameters. The following one-to-one mapping 
between r and the unit sphere S is used:

l YI 
Y2 
Y3 

xa + r11aY1 + r12bY2 + ·1·13cY3 
Ya + r21aY1 + r22bY2 + r23cY3 
YG + T31aY1 + T32bY2 + T33cY3 

(26) 
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where r;; = r;;(</>, (J, T/J) are the components of the rotation which thansforms the coordinate axes 

onto the principal axes of the ellipsoid (several (</>,9,f/J) triplets may define the same rotation). 

Hence, taking T = d;, 9;(y) is defined by considering an increment 6d; added to d;: 

6y = &y 6d; = 9;(y)6d;
od; 

{27) 

To be more precise, the sphere S is meshed using 24 elements (3 per octant) and the mesh of

f is defined by applying the mapping (26) between the nodes of S and of f. Hence eqn. (27) 
defines the nodal values of (J, the latter being is interpolated using the same shape functions as
the geometry. 

In all computations, the measurement surface C was a sphere of radius 10 metres, centered at the 

origin, and the wave velocity was equal to unity. Two meshes of measurement points were used 

(respectively 24 elements, 74 points and 96 elements, 290 points). The elements (and the shape 
functions associated) were used for the computation of integrals like ( 4) or (25) over C. In some
cases, measurement noise has been artificially introduced by multiplication of the data values by 
1 + r, r being random numbers uniformly distributed in [--f, €],with f = 10-3, 10-2, 10-1 ).

Both conjugate gradient (CG) and BFGS variable metric algorithms have been applied to the 
minimization problem (3), using programs from [10]. All numerical computations have been done
in double precision complex arithmetic, on HP-Apollo 400 type workstations. 

Numerical results are presented below for four situations. Each of them is defined by the data of 
'true' and initial values of (d1, • • •  , d9), according to the table 1 below. In the last example (case 
4 ), the 'true' obstacle is not an ellipsoid but a rectangular box of sides 2a, 2b, 2c, in order to test
the performance of the method on a case where the searched-for shape differs from the true one. 

As the same ellipsoid can result from many combinations of Euler angles and permutations of 
principal axes, it is difficult to measure the accuracy of the identification of r by means of a
mere comparison of the identified parameters d; with those defining the 'true' r, used to compute
the simulated data. Instead, the relative errors ev, eA, e1 for the volume, boundary area and 
geometrical inertia tensor (with respect to the fixed origin and axes have been computed (the 
indicator e1 being very sensitive to the orientation of r in space), together with the ratio Jn/Jo,
where Jn = J(f n), r n being the current r after the n-th iteration of the minimization process.
Our numerical values of Jfinal/ Jo, ev, eA, e1 obtained for the cases defined in table 1 are displayed
in tables 2, 3, 4, 5. 
remark 1 Cases 1,2,3, where the 'true' cavity is also an ellipsoid, exhibit very good convergence

and accuracy, especially for non-perturbed data. 

remark 2 The convergence and accuracy remain good for case 4, where the 'true' cavity is a
rectangular box and exact convergence is hence impossible. The 'final' ellipsoid found by the 
algorithm has very similar volume and inertia tensor than the box (see table 5) and slightly 
different area. It even seems to be less sensitive to data noise. 

remark 3 At least in the range € = 10-3 to 10-1 ], the error indicators ev, eA, e1 vary linearly
with fin the results presented here, while Jjinal/ J0 vary quadratically. The numerical solution 
of the inverse problem hence behaves well with respect to measurement noise. This is probably 
a consequence of the strong assumption made on the unknown geometry, which is described 
using only 9 parameters. 

remark 4 Both CG and BFGS minimization methods have been tried, using library routines and
without any optimization attempt. Neither of them seems to be significantly more accurate 

than the other: the final convergence and accuracy are similar. The CG method seems to 
exhibit slower convergence in the final stage. 
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6 Concluding comments. 

A very strong assumption has been made here on the shape of f, and this is probably one of
the reasons of the good convergence of the nonlinear optimization here. and of the fairly good 
behaviour with respect to data noise. 

Hence, a crucial step in the numerical tests will be to relax this a priori information and to allow 
the search for more general surfaces, notably by using the node coordinates as the design variables. 
In this event, difficulties are expected: 

• The general inverse problem is expected to be ill-posed (high sensitivity to data noise), and
undesirable oscillations in the recovered shape off are to be expected. Hence, in the formula­
tions outlined in sections 4 and 3 above, the functional J(f) may be replaced by J(f) + aO(f),
where a > 0 and O(f) is a (positive) stabilizing functional (Tikhonov regularization (12]), in
order to cater for the ill-posedness by adding qualitative a priori information. For instance,
one may consider O(f) = fr(D,n.)2dS, which is expected to damp oscillations. This achieves
a trade-off between accuracy and stability with respect to data noise.

• Element distortion may occur as the minimization proceeds, and must be controlled.

The assumption made on f in the results presented here may indeed be viewed as a regularization,
as some selection has been done in the space of parameters (i.e. of all possible f). 
The work presented here Finally, let us mention that rate BIEs or the adjoint problem approach 
can be derived for elastodynamics as well; work is under progress. 
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Case 1 True 

(w/c = 1) Initial 

Case 2 True 

(w/c = .25) Initial 

Case 3 True 

(w/c = 1) Initial 

Case 4 (box) True

(w/c = .5) Initial 

xa Ya za 
0.0 0.0 0.0 

2.0 - 1.0 1.0 

1.0 1.0 0.5 

0.0 0.0 0.0 

1.0 1.0 0.5 

1.0 1.0 0.5 

1.0 0.0 - 2.0 

0.0 0.0 0.0 

0.0 0.0 0.0 1.0 2.0 1.0 

1.0 2.0 3.0 0.5 0.5 0.5 

0.4 0.9 0.6 1.0 2.0 1.0 

0.0 0.0 0.0 5.0 5.0 5.0 

0.4 0.9 0.6 1.0 2.0 1.0 

0.4 0.9 0.6 1.2 2.4 1.2 

0.4 0.9 0.6 1.0 3.0 1.0 

0.0 0.0 0.0 1.5 1.5 1.5 

Table 1: Wavenumber values and 'true' and initial ( d1, • . .  , d9) used in the numerical calculations.

I Case 1 II € = 0. I € = 10-3 I € = 10-2 I € = 10-1 I 
Jfinai/Jo 3.04 10-5 3.43 10-6 1.35 10-5 7.88 10-4

ev 6.98 10-4 1.28 10-3 6.41 10-3 5.80 10-2

eA 5.44 10-4 9.42 10-4 4.59 10-3 4.00 10-2

e1 6.58 10-3 6.7810-3 1.33 10-2 1.08 10-1 

Table 2: Results for case 1 (convergence after about 40 CG iterations).
I Case 2 II € = 0. I € = 10-3 I € = 10-2 I € = 10-1 I 

Jfinai/Jo 1.57 10-12 7.14 10-11 6.5110-9 6.1010-1 

ev 1.4 8 10-5 5.65 10-4 5.3510-3 5.3110-2

eA 1.34 10-4 6.16 10-4 3.8110-3 l.8410-2

e1 3.20 10-4 1.29 10-3 6.54 10-4 7.7310-2

Table 3: Results for case 2 (convergence after about 90 BFGS iterations).
I Case 3 II € = 0. I € = 10-3 I € = 10-2 I € = 10-1 I 

Jfinai/Jo 4.78 10-9 3.44 10-7 3.45 10-5 3.50 10-3 

ev 3.48 10-6 5.41 10-4 5.42 10-3 5.43 10-2

eA 7.61 10-6 3.48 10-4 3.41 10-3 3.40 10-2

e1 1.75 10-5 7.82 10-4 7.73 10-3 7.82 10-2

Table 4: Results for case 3 (convergence after about 25 CG iterations).
I Case 4 II € = 0. I € = 10-1 I 

Jfinai/ Jo 2.79 10-4 8.85 10-4

ev 1.68 10-2 3.66 10-2

eA 1.51 10-1 1.25 10-1 

e1 5.1110-2 2.31 10-2 

Table 5: Results for case 4 (convergence after 32 BFGS iterations) .
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A Tangential differential operators and integration by parts. 
Let S be a twice continuously differentiable closed ( C2) surface, of unit normal n (open surfaces can be
considered as well, see e.g. (5]). Consider a scalar field u(y), y ES, which may be undefined outside S (e.g. 
u = n;(y), u = O(y)). In this case, the cartesian derivatives u,; are generally meaningless, and one has to 
introduce tangential differential operators. The domain of definition of u is extended in a neighbourhood V 
of S by introducing a continuation il of u outside S defined as: 'v'(y E V), u(y) = u(P(y)), where P(y) is
the orthogonal projection of y onto S. Clearly the restriction of il to Sis equal to u. Moreover the normal 
derivative of il is equal to zero, i.e. the vector Vil is tangent to S; therefore it may be used to define the 
tangential gradient V su of the function u; 

Vsu = Vsil = Vil (28) 

If u is an arbitrary scalar function defined in V, one has, consistently with (28): 

V su = Vu - nu,n = er Dru= er(U,r - nru,n) (29) 

which defines the tangential partial derivatives Dru (using the notation 0,n = 8/8n(·)). In the following, 
the symbol ( ' ) will be omitted, keeping in mind when necessary the extension. The operator 

Draf = (nrf,, - n,J,r)

is also introduced. From (29), Dr.J = nrD,f - n,Drf: Dr.J is a tangential differential operator. 

An interesting consequence of (29) is the following identity for the Laplace operator: 

�u U,nn - 2Ku,n + D,D,u

2K = -D,n, 

The classical Stokes' identity for a vector field U defined over V reads: 

1 n · rot(U)dS = 0 

(30) 

(31) 

(32) 

(33) 

Application of identity (33) to U = (n /\ ei )f and U = n /\ (ej /\ n)f yields integration by parts identities 
associated to the tangential differential operators (29), (30): 

1 (-nrKJ + Drf)dSy

1 DraudSy 

0 

0 for any fixed pair r, s, 

(34) 

r,s=l,2,3 (35) 

Identity (35) is very interesting for BEM formulations: it allows integration by parts on surfaces using 
ordinary partial derivatives (i.e. without separation of tangential and normal derivatives) , thanks to eqn. 
(30). It is a key tool for regularization techniques [6]. 

B Some auxiliary formulas for shape differentiation. 

The following formulas hold (they can be found e.g. in [9)): 

(u,,)' 

A combined application of (36) and (37) leads to: 

(u,nf =;,,n -u,nO,n - D,uD,O 
Moreover, if u(y, r) = u(y), then: 

,"', (y) = O(y)u,n(Y) 
(u,n)' = Ou,nn - D,uD,O 

(36) 

(37) 

(38) 

(39) 

(40) 

In the particular case u = p1, eqn. (40) holds and identity (31), combined with Helmholtz' equation, gives 
eqn. (13). 
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