
HAL Id: hal-00122005
https://hal.science/hal-00122005

Submitted on 3 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Regular BIE for three-dimensional cracks in
elastodynamics

Marc Bonnet, Huy Duong Bui

To cite this version:
Marc Bonnet, Huy Duong Bui. Regular BIE for three-dimensional cracks in elastodynamics. IU-
TAM Symposium, 1987, San Antonio, United States. pp.41-48, �10.1007/978-3-642-83003-7_5�. �hal-
00122005�

https://hal.science/hal-00122005
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Regular 8.1.E. forThree-Dimensional Cracks 
in Elastodynamics 
M. BONNET and H. D. BUI

Electricite de France, Dept. r.t.1N, Clamart and 
Ecole Polytechnique, 91128 Palaiseau, France 

Sl.UIUilary 

In this paper, a regular B.I. E is proposed for 3D curved cracks in elastody
namics. We first derive the singular integral equations for smooth cracks as 
well as for kinked and crossed cracks, which generalize the B.I.E given by 
several authors. Then we apply the regularization technique to the equations. 

Introduction 

The difficulty in solving 3D crack problem using B.I.E methods have been re

cognized in the past [1], [2], [3]. It might be explained by the conjunction of 

two serious mathematical difficulties : the singularities of the kernels which 

result in Cauchy principal value integrals, and the high variation of the 

crack displacement near the crack front. 

To overcome these difficulties, R>lch et al. [4] proposed the improvement of 

the interpolation procedure, using for instance quadratic 8-nodes elements. 

!lowever, considering mathematical formulations of B. I. E which use systemati

cally non singular kernels and which we call the regularization technique 

appears to be a better approach. A review of methods of regularizations of

integrals can be found in [S]. In recent works [6], [7], [8] accurate results 

have been obtained by the regularization technique which was combined with 

an advanced interpolation procedure. 

The regularization method was applied to B.I.E for 3D plane cracks [5], [6]. 

In this paper, we reconsider the 3D curved crack problem which was formula

ted in tenns· of sin&>Ular B. I. E by Levan and Royer [9] in the static case, 

and by V. Sladek and J. Sladek [11] in the dynamic case. We shall present

the regular integral equations, for smooth cracks as well as for kinked and 

crossed cracks. We will not discuss the nt.unerical aspects of the new equa

tions, which are beyond the scope of the paper. 



Notations 

We consider the problem of a 3D curved crack embedded in an infinite elastic 

body. The crack surface S is assumed to be sectionally smooth and coincides 

with the lower face S
-

of the crack, Fig. 1, whose unit normal is n(x). We 

shall use the same notation for the spatial position of a point and its vec

tor position x=xiei (e1 
, e2, e3 are fixed Cartesian basis vectors). The trac

tion vector on S, associated with any continuously differentiable displace

ment field u(x) in R3, is given by t(x)=F u(x), where F denotes the diffe

rential operator

F(ax, n(x)) Zµn.
t 

grad + Xn div + µnACurl (1) 

In the above, (t) is the transposition of tensor, X and /1 are the Lame cons

tants. The following notations are also used : 

Lw = µA+ (X+µ)grad div + pw
2 

Id 

Elastic moduli tensor 

: Elastodynamic operator 

We shall consider the Stokes displacement tensor E
w

(x, y) which is the funda

mental solution of the operator L(
y) 

in which differentiations are made

with respect to y. The case w=Q corresponds to Kelvin's tensor E
0

(x, y). We

recall that E�·k(x, y) is the i-component of the displacement field at y, due

to the harmoni� point force along e
k

-direction, acting on x. The tensor E
w 

possesses the well-known symmetry properties E
w

(x, y)=
t
E

w
(x, y)=E

w
(y, x) and 

a weak singularity like llx-yll-
l 

when X-+Y· A stronger singularity is found

in the fundamental traction tensor T
w

(x, y, n(y)) = F(ay, n(y))E
w

(x, y), which 

behaves like the tensor T
0 

as llx-yll-
2

, or more precisely 11T
w

-T
0

1!=0(w2) as 

x-+y. Introducing the stress tensor 'f.w, one can write T
w

as follows

(2) 

Tangential operators 

To reduce the singularities of kernels, we are led to perform an integration 

by parts of integrals over curved surfaces. In order to do so, several ma

thematical identities using tangential operators are required. Consider 

first a field f(x) function of points x on S. The function f is not defined 
+ -

outside S, as illustrated by the following examples f=<I>. (x)=u. (x )-u. (x ) ,
1 1 1 



i. e the crack displacement discontinuity, and f=n
i

(x). Therefore the deriva

tives f . are meaningless, unless e. are the basis vectors of the plane of a ,] J 
crack. For curved cracks, we have to extend, in some way, the domain of de-

finition of f, for example by introducing the function t(x)

t(x) = f(P(x)) x ED , P(x) ES (3) 

where D is :rneigbourhood of S, P(x) is the orthogonal projection onto S. 

Clearly, the restriction oft to the surface S is equal to f. Moreover the 

normal derivative oft is equal to zero, i. e the vector g radt is tangent to 

S; therefore it may be used to define the tangential gradient grads f of the

function f(x). For the consistency of notations, we put grads= grad - no/an.

Thus grads f = grad t = grad
S

t . Another tangential operator, vY = n(y) 
,..

grad ,

possesses the property 

f n grad t dS = J f (y)r (y) ds
s " as Y 

(4) 

where r is the unit tangent vector to as. In the following, unless stated 

otherwise, we shall omit the symbol (") keeping in mind when necessary the

extension (3). The j-component of vYf then reads

(VYf). =e. vY f(y)J JM pq vY = n i._ - n i._pq pay
q 

qay
p 

(5) 

In some applications, f=<I>. ,  the i-component of the crack discontinuity being 
1 

equal to zero along the crack border, the line integral in Eq. (4) vanishes 

identically. For the kinked crack, Eq. ( 4) applies to each domain s
1 or s2.

The line integral term also vanishes because the contributions to the line 

integrals, along the common boundary r of s1 
and s2, are of opposite sign,

due to the continuity of <I>. across r. For the crossed cracks, the line inte-
1 

gral does not vanish, as observed by Levan and Royer [9] in their quasi sta-

tjc analysis of curved cracks . 

Singular B. I. E for curved cracks 

Our aim here is not to repeat in full details the derivation of the singular

B.I.E, but rather to outline some key steps of the method of derivation used 

in [9], (11], which we generalize for a complex geometry of cracks in elasto

dynamics. Classically, the perturbation field u(x) caused by the crack which 
· h · · d inc 

( ) E113 b d · t f th receives t e inc1 ent wave u x , x , , can e expresse in erms o e 

crack discontinuity as follows 



uk(x) = J <I>. (y) �.k(x,y,n(y)) dS 
s 1 1, y (6) 

The boundary condition on the crack is t(x) = -F(ax,n(x))uinc(x). Fonnally,
the traction vector 

t1(x) = -c1 k n (x) ( <1>. (y)n (y) -3
3 r."! k(x,y)dS p r p ls 1 s yr 1s ; y (7) 

is expressed hy a hypersingular integral, with a singular kernel of order 
II x-yll -3. To avoid a divergent integral, we consider as the first step, that 
x belongs to D, but not to S, and we replace n(x) by A(x). In the second step 
we integrate by parts, using Eq.(4) and setting f=4iir.�s ;k" In the last step,
we investigate the limit of the integral as x .... P(x). These steps lead to the 
Cauchy principal value integrals, which are indicated by the symbol (* ) 

* 

= c1 k n (x) [-J vY <1>.(y)r."! k(x,y) dS +p r p S rs 1 1s ; y 

+ µ � J <I>. (y)n (y)E"!,k(x,y) dS ] , x € S 
S 1 r 1, y (8) 

where µ�=pw2• Eq.(8) have been derived by J. Sladek and V. Sladek (11] for
smooth surface. The above equations hold for the kinked crack, as explained 
in the preceeding section. When there are more than two crack branches s1, 
s2, s3 •• , a line integral term appears in the right hand side of the above
equation and is given by (x € S , x � r) 

{line integral} = I !cl k n (x) r <I>. (y)r."! ·k(x,y) T .  (y)t. dS (9) 
a 

t. p r p la s 1 lS, J JrS y 
a 

Regular B.I.E for curved cracks 
The technique employed in many works is based on the singularity exclusion 
method. Applying this method to Eq.(8), we obtain 

t1(x) =- c1 k n (x)[J vY <1>.(y)[r."! ·k(x,y) -r.�s·k(x,y)] dSYp r p S rs 1 1s , 1 , 

+ J cvY <1>. (y) - r <1>. (x) ]r.� k(x,y) dSYS rs 1 rs 1 1s ; 

- µ� J <I>. (y)n (y)E".°'.k(x,y) dS 
S 1 r 1, y 

* 

+ yX <I>. (x) J r.� ·k(x,y) dS ]+ line integralrs 1 S 1s , y (10) 



where the static kernel �o is used for removing singularities. By virtue of
the presence of the term �C.:�0, the first integrand is not singular, while 
the second one, if we assume a Holder condition on the tangential derivati
ves Y�s�i(y), has a weak integrable singularity. The third integral also con
verges in the ordinary sense. The fourth integral over each subdomain S a 
is a Cauchy principal value integral only when x belongs to the same S • Ina 
this case, using known values of the components of �o and taking care of the
singular nature of the integral when we perform the integration by parts, we 
arrive at an expression using regular integrals I. and J. k [8] J IS 

J �� dS s IS ;k y
a 

- K(y)..!.] dS -r y J 
as a 

..!_ v. (y) dS r 1 y

J isk (x) = Ii ik1s (x) + Ii sk1i (x) + 

+ J {3r .r - 2n.(y)n (y)} nk(y)_..!__2 �
ar dS Y S · , 1 ,s 1 s r u n ly; a 

+ J {2n. (y)n (y) -r .r } nk(y)K(y) d� 
S 1 s , 1 ,s r 

a 
- J (oY(n.nk) + D�(n nk)} dS Y + 

S s 1 1 s r 
a 

+ J fn. (y)nk(y)li (y) + n (y)nk(y)v. (y) -vk(y)r . r }dsy a� 1 s s 1 , 1 ,s r a 

(11) 

(12) 

(13) 

In the above, differentiations of r =II x-yll are made with respect to y, K(y) 
stands for the sum of principal curvatures K=1 /R1 + 1 /R2, and v = n Ar • In
Eq.(13) we put D�=e . •  gradS . The integrals I. and J. k are regular because1 1 -2 1 lS 

the integrands, as well as the term r ar/an are of order 0(1/r). Therefore, 
any classical interpolation procedure, using for instance polar coordinates 
with the pole x, is suitable for the implementation of Eq.(10) in a B.I.E 
code. Finally, it should be noticed that the line integral term of Eq.(10) 
is regular for interior points x ES . With the normal vectors as indicated 

a 

in Fig. 1, there exists a relation between the crack discontinuities at.r, 
(14) 

which constitutes, with Eq.(10), the regular B.I.E of 30 crack problem. 



Fundamental t ensors a nd kernels 
i:?.k(x, y)=[(l+J32)6.k+ (1-J32)r .r kl /811µr

1, 1 ,1 ' 

r.?.,k(x, y)=-[132(6.kr .+li.kr .-li .. r k)+3(1-J32)r .r .r k]/411µr2l J , 1 , J J , 1 lJ , , 1 ,J , 

w 1 2 r. "k(x, y) = .--[ (1-213 )6 .. (G(kLr)) k + 6 .k(G(Lr)) . + LJ , 'Ill 1) , 1 'T , J 
2 + 6 .k(G(Lr)) . + -2(G(Lr) -G(kLr)) . 'k ]J ·1 , 1 kf "T , l J 

2 2 2 2 2 
whe re G(kr)=exp(ikr) I r , k={kL'k.f}, !<.i·=w p /µ, kL =w p I (>..+2µ), J3 =µ/ (>..+2µ).

n 

Fig.1. Smooth crack, kinked crack and crossed crack. 
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