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Introduction

The difficulty in solving 3D crack problem using B.I.E methods have been re cognized in the past [START_REF] Bui | An integral equation method for solving the problem of plane crac k of arbitrary shape[END_REF], [START_REF] Weaver | Three-dimensional crac k analysis[END_REF], [START_REF] Putot | Une nouvelle methode d'equations integrales pour certains pro hlcmes <le fissures planes[END_REF]. It might be explained by the conjunction of two serious mathematical difficulties : the singularities of the kernels which result in Cauchy principal value integrals, and the high variation of the crack displacement near the crack front.

To overcome these difficulties, R>lch et al. [START_REF] Polch | Buried crac k analysis with an advanced traction B.I.E algoritm[END_REF] proposed the improvement of the interpolation procedure, using for instance quadratic 8-nodes elements.

!lowever, considering mathematical formulations of B. I. E which use systemati cally non singular kernels and which we call the regularization technique appears to be a better approach. A review of methods of regularizations of integrals can be found in [S]. In recent works [START_REF] Polch | .E solutions for flat crac k s[END_REF], [START_REF] Rizzo | A boundary integral equation me thod for radiation and scattering of elastic waves in.three dimensions[END_REF], [START_REF] Bonnet | Methode des equations integrales regularisees en elastodyna mique[END_REF] accurate results have been obtained by the regularization technique which was combined with an advanced interpolation procedure.

The regularization method was applied to B.I.E for 3D plane cracks [START_REF] Bui | New trends in B.I.E. methods[END_REF], [START_REF] Polch | .E solutions for flat crac k s[END_REF].

In this paper, we reconsider the 3D curved crack problem which was formula ted in tenns• of sin& > Ular B. I. E by Levan and Royer [START_REF] Levan | Integral equations for three-dimensional problems[END_REF] in the static case, and by V. Sladek and J. Sladek [START_REF] Sladek | Dynamic stress intensity factors studied by boun dary integro-differential equation[END_REF] in the dynamic case. We shall present the regular integral equations, for smooth cracks as well as for kinked and crossed cracks. We will not discuss the nt.unerical aspects of the new equa tions, which are beyond the scope of the paper.

Notations

We consider the problem of a 3D curved crack embedded in an infinite elastic body. The crack surface S is assumed to be sectionally smooth and coincides with the lower face S of the crack, Fig. 1, whose unit normal is n(x). We i. e the crack displacement discontinuity, and f=n i (x). Therefore the deriva tives f . are meaningless, unless e. are the basis vectors of the plane of a ,] J crack. For curved cracks, we have to extend, in some way, the domain of definition of f, for example by introducing the function t (x)

t (x) = f(P(x)) x ED , P(x) ES ( 3 
)
where D is :rneigbourhood of S, P(x) is the orthogonal projection onto S.

Clearly, the restriction of t to the surface S is equal to f. Moreover the normal derivative of t is equal to zero, i. e the vector grad t is tangent to S; therefore it may be used to define the tangential gradient grad s f of the function f(x). For the consistency of notations, we put grad s = grad -no/an. 

f n grad t dS = J f (y)r (y) ds s " as Y ( 4 
)
where r is the unit tangent vector to as. In the following, unless stated otherwise, we shall omit the symbol ( " ) keeping in mind when necessary the extension (3). The j-component of v Y f then reads

(V Y f). =e. v Y f(y) J JM pq v Y = n i._ -n i._ pq pay q qay p (5) 
In some applications, f=<I>., the i-component of the crack discontinuity being 1 equal to zero along the crack border, the line integral in Eq. ( 4) vanishes identically. For the kinked crack , Eq. ( 4) applies to each domain s 1 or s 2 .

The line integral term also vanishes because the contributions to the line integrals, along the common boundary r of s 1 and s 2 , are of opposite sig n, due to the continuity of <I>. across r. For the crossed cracks, the line inte-
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gral does not vanish, as ob served by Levan and Royer [START_REF] Levan | Integral equations for three-dimensional problems[END_REF] in their quasi statjc analysis of curved cracks .

Sin gu lar B. I. E for curved cracks

Our aim here is not to repeat in full details the derivation of the singular B.I.E, but rather to outline some key steps of the method of derivation used in [START_REF] Levan | Integral equations for three-dimensional problems[END_REF], [START_REF] Sladek | Dynamic stress intensity factors studied by boun dary integro-differential equation[END_REF], which we generalize for a complex geometry of cracks in elasto dynamics. Classically, the perturbation field u(x) caused by the crack which 

The boundary condition on the crac k is t(x) = -F(ax,n(x))u inc (x). Fonnally, the traction vector t1(x) = -c1 k n (x) ( <1>. (y)n (y) -3 3 r."! k (x,y)dS p r p l s 1 s y r 1s ; y

(7)
is expressed hy a hypersingular integral, with a singular k ernel of order II x-yl l -3. To avoid a divergent integral, we consider as the first step, that x belongs to D, but not to S, and we replace n(x) by A(x). In the second step we integrate by parts, using Eq.( 4) and setting f=4i i r. � s; k " In the last step, we investigate the limit of the integral as x .... P(x). These steps lead to the Cauchy principal value integrals, which are indicated by the symbol ( * ) * = c1 k n (x) [ -J vY <1>.(y)r."! k (x,y) dS + p r p S rs 1 1s ; y

+ µ � J <I>. (y)n (y)E"!, k (x,y) dS ] , x € S S 1 r 1, y (8) 
where µ �=pw 2 • Eq.( 8) have been derived by -µ � J <I>. (y)n (y)E".°'. k (x,y) dS

S 1 r 1, y * + yX <I>. (x) J r.� • k (x,y) dS ]+ line integral rs 1 S 1 s , y (10) 
where the static k ernel � o is used for removing singularities. By virtue of the presence of the term �C.:�0, the first integrand is not singular, while the second one, if we assume a Holder condition on the tangential derivati ves Y� s � i (y), has a wea k integrable singularity. The third integral also con verges in the ordinary sense. The fourth integral over each subdomain S a is a Cauchy principal value integral only when x belongs to the same S • In a this case, using k nown values of the components of � o and ta k ing care of the singular nature of the integral when we perform the integration by parts, we arrive at an expression using regular integrals I. and J. k [8] the integrands, as well as the term r ar/an are of order 0(1/r). Therefore, any classical interpolation procedure, using for instance polar coordinates with the pole x, is suitable for the implementation of Eq.( 10) in a B.I.E code. Finally, it should be noticed that the line integral term of Eq.( 10) is regular for interior points x ES . With the normal vectors as indicated 
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 12 shall use the same notation for the spatial position of a point and its vec fixed Cartesian basis vectors). The trac tion vector on S, associated with any continuously differentiable displace ment field u(x) in R3, is given by t(x)=F u(x), where F denotes the diffe rent i al operator F(ax, n(x)) Zµn. t grad + Xn div + µnACurl (In the above, (t) is the transposition of tensor, X and /1 are the Lame cons tants. The following notations are also used : L w = µA + (X + µ)grad div + pw 2 Id Elastic moduli tensor : Elastodynamic operator We shall consider the Stokes displacement tensor E w (x, y) which is the funda mental solution of the operator L( y) in which differentiations are made with respect to y. The case w=Q corresponds to Kelvin's tensor E 0 (x, y). We recall that E�• k (x, y) is the i-component of the displacement field at y, due to the harmoni� point force along e k -direction, acting on x. The tensor E w possesses the well-known symmetry properties E w (x, y)= t E w (x, y)=E w (y, x) and a weak singularity like llx-yll -l when X-+Y• A stronger singularity is found in the fundamental traction tensor T w (x, y, n(y)) = F(ay, n(y))E w (x, y), which behaves like the tensor T 0 as llx-yll -2 , or more precisely 11T w -T 0 1!=0(w2 ) as x-+y. Introducing the stress tensor 'f. w , one can write T w as follows (Tangential o p erators To reduce the singularities of kernels, we are led to perform an integration by parts of integrals over curved surfaces. In order to do so, several ma thematical identities using tangential operators are required. Consider first a field f(x) function of points x on S. The function f is not defined + outside S, as illustrated by the following examples f=<I>. (x)=u. (x )-u. (x ) ,

•h

  • • d inc ( ) E113 b d • t f th receives t e inc1 ent wave u x , x , , can e expresse in erms o e crack discontinuity as followsu k (x) = J <I>. (y) �. k (x,y,n(y)) dS

2 ,+

 2 J. Sl ade k and V. Slade k (11] for smooth surface. The above equations hold for the k in k ed crac k , as explained in the preceeding section. When there are more than two crac k branches s1, s s3 •• , a line integral term appears in the right hand side of the above equation and is given by (x € S , x � r) {line integral} = I !c l k n (x) r <I>. (y)r."! • k (x,y) T. (y)t. dS (9) a t. p r p la s 1 lS, J JrS y a Regular B.I.E for curved crac k s The technique employed in many wor k s is based on the singularity exclusion method. Applying this method to Eq.(8), we obtain t1(x) =-c1 k n (x)[J v Y <1>.(y)[r."! • k (x,y) -r.� s • k (x,y)] dS Y p J cvY <1>. (y) -r <1>. (x) ]r.� k (x,y) dS Y S rs 1 rs 1 1s ;

+

  y)..!.] dSr y J a s a ..!_ v. (y) dS r 1 y J is k (x) = Ii i k1 s (x) + Ii s k1 i (x) + + J {3r .r -2n.(y)n (y) } n k (y) _..!__ 2 � ar dS Y S • , 1 ,s 1 s r u n l y ; a + J {2n. (y)n (y) -r .r } n k (y)K(y) d � S 1 s , 1 ,s r a -J (o Y (n.n k ) + D�(n n k ) } dS Y + J fn. (y)n k (y)li (y) + n (y)nk(y)v. (y) -v k (y)r . r } ds y the above, differentiations of r =II x-yll are made with respect to y, K(y) stands for the sum of principal curvatures K=1 /R 1 + 1 /R 2 , and v = n A r • In Eq.(13) we put D�=e .• grad S . The integrals I. and J. k are regular because

a in Fig. 1 , 2 + 6

 126 there exists a relation between the crac k discontinuities at.r, (14) which constitutes, with Eq.(10), the regular B.I.E of 30 crac k problem. Fundamental t ensors a nd kernels i :?.k(x, y)=[(l+J3 2 )6.k+ (1-J3 2 )r .r k l /811µr kr .+li.kr .-li .. r k)+3(1-J3 2 )r .r .r k ]/411µr 2 k(x, y) = .--[ (1-213 )6 .. (G(k L r)) k + 6 . k (G(Lr)) . + . k (G(Lr)) . + -2 (G(Lr) -G( k L r)) . ' k ] k r)=exp(i k r) I r , k ={ k L 'k. f }, !<. i •= w p /µ, k L =w p I (>.. +2µ), J3 =µ/ (>.. +2µ).
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Fig. 1 .

 1 Fig.1. Smooth crac k , k inked crac k and crossed crac k .