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Abstract

We study the large time behavior of Lipschitz continuous, possibly un-

bounded, viscosity solutions of Hamilton-Jacobi Equations in the whole

space IR
N . The associated ergodic problem has Lipschitz continuous so-

lutions if the analogue of the ergodic constant is larger than a minimal

value λmin. We obtain various large-time convergence and Liouville type

theorems, some of them being of completely new type. We also provide

examples showing that, in this unbounded framework, the ergodic behav-

ior may fail, and that the asymptotic behavior may also be unstable with

respect to the initial data.
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problems, large time behavior, geodesics.

AMS Subject Classification : 35B40, 35F20, 35F99, 35B37

1 Introduction

Recently a lot of works have been devoted to the study of large time behaviour
of solutions of Hamilton-Jacobi Equations

ut +H(x,Du) = 0 in IRn × (0,+∞), (1)

u(x, 0) = u0(x) in IRn. (2)
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The usual assumptions are: H ∈ C(IRn×IRn) and u0 ∈W 1,∞(IRn) are periodic
in x, while H(x, p) is convex and coercive in p, i.e.

H(x, p) → +∞ as |p| → +∞ uniformly w.r.t. x ∈ IRn. (3)

As a consequence of these assumptions, the solutions of (1)-(2) are Lipschitz
continuous and periodic in x and, in good cases, they are expected to remain
uniformly bounded in x and t and to converge uniformly as t→ +∞ to solutions
of the stationary equation which are also Lipschitz continuous and periodic in x.
In particular, a key feature in these results is the boundedness of the solutions,
both of the evolution and stationary equations. A notable exception to this
are the papers of Contreras [9] and Fathi & Maderna [14], where the periodicity
assumption is dropped, and where the existence of possibly unbounded solutions
of the stationary equation is looked for.

The aim of the present paper is to present a systematic study of cases where
one has non-periodic and - this is the main point - unbounded solutions, in
particular for the limiting stationary equation. In the periodic setting, one
first solves a so-called ergodic problem, namely a stationary Hamilton-Jacobi
Equation of the type

H(x,Du) = λ in IRn. (4)

where both the function u and the constant λ are unknown. From Lions, Pa-
panicolaou & Varadhan[18], there exists a unique constant λ = λ such that (4)
has a Lipschitz continuous, periodic solution. It is worth remarking that the
actual interest of this result is to produce a bounded solution, and this is where
periodicity plays a key role. The connection with large time behaviour in (1)
is then the following : on the one hand, one can prove that the solution u of
(1)-(2) satisfies

u(x, t)

t
→ −λ as t→ +∞ uniformly in IRn (5)

and, on the other hand, that

u(x, t) + λt→ u∞(x) as t→ +∞ uniformly in IRn , (6)

where u∞ is a solution of (4) with λ = λ. It is worth pointing out that, if a
property like (5) can be obtained rather easily as a consequence of standard
comparison results for equation (1), the more precise asymptotic behaviour (6)
is, on the contrary, a far more difficult result ; in fact, the asymptotic behaviour
of solutions of (1)-(2) remained an open problem for a long time. Namah &
Roquejoffre [20] were the first to break this difficulty under the following addi-
tional assumptions

H(x, p) ≥ H(x, 0) in IRn × IRn and max
IRn

H(x, 0) = 0. (7)

This assumption seems to be a bit restrictive but, on one hand, it covers several
interesting cases and, on the other hand, this result does not require strong
convexity assumptions on H in p.
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Then a second type of result was obtained by Fathi [12] whose proof was
based on dynamical systems type arguments and in particular on the so-called
Mather set which is (roughly speaking) an attractor for the geodesics associated
to the representation formula of u. Contrarily to [20], the results of [12] use
rather strong convexity assumptions on H (and also far more regularity) but
do not need (7). In fact, (7) can be interpreted, in the strictly convex case,
as a special assumption on the Mather set. Fathi’s results were extended to
time-dependent hamiltonians in one space variable in [8].

The most general result is this direction is the one of Barles & Souganidis
[6], which generalizes both results of [20] and [12], and which can even handle
some special cases where H is not convex in p. The key assumption is on the
quantity Hp(x, p) · p−H(x, p) which, in some sense, measures the attractivity
of the Mather set. Natural questions are then : can such results be obtained
without assuming periodicity? Are they true (with some natural modifications
of statements) for unbounded Lipschitz continuous solutions? Are these results
”stable” under (non-periodic) small pertubations? A negative answer is given by
a counter-example due to Barles & Souganidis [7], which shows that the above
results are wrong if one drops the periodicity assumption on u0, even if u0

remains bounded and Lipschitz continuous. This counter-example emphasizes
that the behaviour at infinity of u0 may play a role to deduce the behaviour of
u as t→ +∞.

It is to be noted that such ergodic problems arise also in homogenization the-
ory (the so-called “cell problems”) and a related question to ours is whether the
periodicity assumption on H can be removed while keeping bounded solutions
(the “correctors”): we refer to Ishii[16] for the existence of bounded approximate
correctors in the almost periodic framework and to Lions & Souganidis [19] for
a complete discussion of this problem, not only in the deterministic framework
but also for equations with a stochastic dependence.

The main results of our paper is that convergence results survive under more
stringent assumptions and, if we insist on weakening the assumptions on u0 as
much as possible, Liouville type theorems are still available. To summarize, we
prowe the following.

(i) Under assumption (3) and if H is bounded, uniformly continuous on IRn×
B(0, R) for any R > 0, there exists λmin ∈ IR such that the ergodic
problem (4) has solutions if and only if λ ≥ λmin.

(ii) If we assume, in addition, that H(x, p) is convex in p and that u0(x) −
φ(x) → 0 as |x| → +∞, where φ is a solution of the ergodic problem
for some λ > λmin, then the solution u of the Cauchy Problem (1)-(2)
satisfies

lim
t→+∞

(u(x, t) − λt− φ(x)) = 0 locally uniformly in IRn.

(iii) Under suitable additional assumptions on H of strong convexity type, if
u is a solution of (1) in IRn × IR such that there exists a sub-solution φ
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of the ergodic problem for some λ ≥ λmin for which u(x, t) − λt − φ(x)
remains bounded on IRn × IR, then there is a solution u of (4) such that
u(x, t) = λt+ u(x).

We complement these positive results by describing various pathologies aris-
ing when the boundedness assumptions on the solution of (1) is removed. In
particular, even the ergodic behavior may fail as is shown in Section 3.

The present paper is organized as follows : in Section 2 we state and prove
the result concerning the solutions of (4). Section 3 is devoted to the description
of various troubles encountered in the unbounded context: loss of stability and
uniform convergence, loss of the property (5). In Section 4, we provide the
results on the convergence of the solution of (1)-(2) as t → +∞, thus covering
Point (ii) above. Finally, we prove the Liouville-type result - Point (iii) above -
in Section 5.

2 Bounded and unbounded solutions of the er-

godic equations

The following theorem is proved in Fathi & Mather[13] in the strictly convex
case, using the Lax-Oleinik formula. We provide here an alternative proof, also
valid in the nonconvex case.

Theorem 2.1 Assume that H is bounded, uniformly continuous on IRn×B(0, R)
for any R > 0 and that (3) holds. Then there exists λmin ∈ IR such that, for
any λ ≥ λmin, there exists a Lipschitz continuous solution of (4).

Proof. 1. We first prove that, if

λ > sup
x∈IRn

H(x, 0),

then (4) has a Lipschitz continuous solution. To see this, we first notice that
0 is a subsolution of the equation. Then we consider R > 0 and the Dirichlet
problem

H(x,Du) = λ in BR(0), u = 0 on ∂BR(0). (8)

If CR > 0 is large enough and the vector p ∈ IRn has a large enough norm, then
the function x 7→ CR + p.x is a positive super-solution to (8). Consequently,
by the Perron’s method, combining classical arguments of Ishii[15] (see also [5])
and the version up to the boundary of Da Lio[11], one easily shows that (8) has
a Lipschitz continuous solution that we call uR. Then the function

vR = uR − uR(0)

vanishes at 0 and, by (3), its gradient is uniformly bounded in R. Using Ascoli’s
theorem together with the classical stability result for viscosity solutions gives
the convergence of a subsequence (vRn

)n to a solution of (4).
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2. Denote by λmin the infimum of all λ such that (4) has solutions. We claim
that λmin is not −∞: indeed, any solution of (4) satisfies, almost everywhere:

H(x,Du) ≥ inf
(x,p)∈IRn×IRn

H(x, p).

Consequently, λmin has to be larger than the above right-hand side.
3. Let us prove that (4) has a solution for λ = λmin. Without loss of generality
we may assume the existence of a sequence (λn)n converging to λmin for which
there is a solution un to (4). Then the family (vn)n given by vn = un − un(0)
is relatively compact in C(IRn) and using again Ascoli’s theorem together with
the classical stability result for viscosity solutions yields a solution uλmin

to (4)
for λ = λmin.
4. In order to conclude that (4) has solutions for all λ ≥ λmin, we repeat exactly
the argument of Step 1 above, except for a slight point : instead of using 0 as
a subsolution, we use uλmin

and we replace in (8), the boundary condition by
“u = umin on ∂BR(0)”. •

At that point, it is worth making the following comment: if we assume that
H is periodic in x, then, as pointed out at the beginning of the introduction, we
know from [18] that there is λ such that the ergodic problem has a bounded and
periodic solution if and only if λ = λ. We notice here that there is no reason
why we should have λ = λmin; indeed we always have λ ≥ λmin, but the strict
inequality may hold: indeed, consider in one space dimension

H(x, p) = |p− 1|.

Then we have λmin = 0 - just because x 7→ x solves the ergodic problem with
λ = 0 and clearly λmin ≥ 0- and λ = 1 - simply because x 7→ 0 is periodic in x
and solves the ergodic problem with λ = 0. We refer to [14] for a related study.

3 Some pathologies of the unbounded setting

We analyze in this section various troubles occurring in the non-periodic, un-
bounded setting. A first example - constructed on the Barles & Souganidis
model [6] shows that, in the unbounded setting, ergodic behaviour is very eas-
ily lost. In a second paragraph we study some instabilities with respect to the
Hamiltonian. Such instabilities are already present in the periodic setting, but
the very strong convergence property makes them less visible.

3.1 A counter-example to the ergodic behaviour

The counter-example is provided in the following

Theorem 3.1 There exists a Lipschitz continuous initial data u0 in IR, such
that, if u is the solution of

ut − ux +
1

2
|ux|

2 = 0 in IR× (0,+∞) , (9)
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then
u(0, t)

t
does not converge as t→ +∞.

Proof. The solution of (9) associated with a Lipschitz continuous initial data
u0 is given by the Oleinik-Lax formula

u(x, t) = inf
y∈IR

(

u0(y) +
|x+ t− y|2

2t

)

.

Let (an)n∈IN be a strictly increasing sequence of non-negative real numbers such
that

lim
n

an+1

an

= +∞ . (10)

We consider the Lipschitz continuous initial data u0 defined in the following
way

u0(y) = 0 for y ≤ a0 ,

and for any k ∈ IN

u′0(y) =

{

0 if y ∈ (a2k+1, a2k+2) ,
−1 if y ∈ (a2k+2, a2k+3) .

Now we examine u(0, t). Since −1 ≤ u′0(y) ≤ 0 in IR, one checks easily that the
infimum in the Oleinik-Lax formula is achieved at y which satisfies

t ≤ y ≤ 2t .

For k ∈ IN large enough, we first consider the case when t ∈ (a2k+1,
1

2
a2k+2) :

since u0 is constant on this interval and taking account of the property of y
above, one has clearly y = t and therefore

u(0, t) = u0(a2k+1).

Using this for tk =
1

4
a2k+2 > a2k+1 (we recall that (10) holds and that k is

chosen large enough), we deduce

u(0, tk)

tk
=

4u0(a2k+1)

a2k+2
→ 0 as k → ∞ .

Indeed, since u0 is Lipschitz continuous with a Lipschitz constant equal to 1,
|u0(a2k+1)| ≤ a2k+1 and the above property is a consequence of the choice of the
sequence (an)n∈IN . Now we perform the same argument but for t in intervals of

the form (a2k,
1

2
a2k+1). This time, the optimization provides

y = 2t ,

and

u(0, t) = u0(2t) +
t

2
.
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But u0(2t) = u0(a2k)− (2t− a2k) and therefore by choosing t′k = 1
4a2k+1 (again

t′k > a2k by (10) and the fact that k is chosen large enough), we have

u(0, t′k)

t′k
=

1

t′k

(

u0(a2k) − (2t′k − a2k) +
t′k
2

)

→ −
3

2
,

by using again the main properties of u0 and the sequence (an)n∈IN . Therefore

we have two different limits for the sequences

(

u(0, tk)

tk

)

k

and

(

u(0, t′k)

t′k

)

k

with

tk, t
′
k → +∞, and the counter-example is complete. •

3.2 Instability with respect to the initial data

Let us formulate the following very simple question : under “good conditions”
on H and u0, what can we say about the large time behaviour of the solution
uε of

uε
t +H(x,Duε) = εf(x) in IRn × (0,+∞) ,

uε(x, 0) = u0(x) + εg(x) in IRn ,

where, say, f, g are C∞-function with compact supports and ε ≪ 1? Is there
some stability with respect to the initial data and the right-hand side of the
equation?

We denote by ϕ a C∞ function with compact support such that min
IRn

ϕ =

ϕ(0) = −1 and we first consider the case f = 0, g = ϕ and u0 ≡ 0. If we consider
the Hamilton-Jacobi Equation

uε
t +

1

2
|Duε|2 = 0 in IRn × (0,+∞)

then, by the Oleinik-Lax formula, uε is given by

uε(x, t) = inf
y∈IRn

(

εg(y) +
|x− y|2

2t

)

and it is easy to see that uε(x, t) → −ε locally uniformly while, for any t, uε(x, t) →
0 as |x| → +∞. In this case, the perturbation has a (slight) effect and changes
a little bit the asymptotic behaviour of the solution.

If, on the other hand, we consider the pde

uε
t − e ·Duε +

1

2
|Duε|2 = 0 in IRn × (0,+∞)

where e ∈ IRn − {0}, then the solution is given by

uε(x, t) = inf
y∈IRn

(

εg(y) +
|x+ te− y|2

2t

)

and, this time, uε(x, t) → 0 locally uniformly as t→ +∞, while uε(−te, t) ≡ −ε.
Here the behaviour seems to be the same as it was without the perturbation
but we loose anyway again the uniform convergence in IRn.
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These two examples show that the effects of the perturbation can be rather
different (depending on H) but, in both cases, the uniform convergence in IRn

as t→ +∞ cannot be true anymore and one has to switch to a local convergence
type requirement. Unfortunately we are unable to provide any general result in
this direction. Moreover we can point out that if, in the second example above,
we remove the assumption that g has a compact support then we are exactly
in the setting of the counter-example of Barles & Souganidis [7] and therefore
we do not have convergence anymore. The effect of the perturbation εf is even
stronger : to show this, let us consider now the case when f = ϕ, g ≡ 0 and the
pde is the following

uε
t + |Duε|2 = εf(x) in IRn × (0,+∞). (11)

The problem is here that, if we consider the stationary equation

|Du|2 = εf(x) + λ in IRn,

then there is no λ for which this pde has a bounded solution. This is a striking
difference with the Lions, Papanicolaou & Varadhan result and this shows that
there is no hope to have a result like (6) with a bounded u∞. Fortunately, here,
if we choose λ = ε, an approach of the type [20] applies and we are able to show
that uε(x, t)−εt→ u∞(x) as t→ +∞, locally uniformly where u∞ is a solution
of

|Du∞|2 = εf(x) + ε in IRn.

This result is a consequence of Theorem 4.1 in Section 4.

3.3 Outline of the rest of the paper

We examine in the rest of the paper the large time behaviour of solutions of (1)-
(2) i.e. the validity of a property like (6); again we consider the case when u0 is
a Lipschitz continuous, possibly unbounded, function and of course ”uniformly”
has again to be replaced by ”locally uniformly”. We obtain in this direction two
types of results for convex Hamiltonians which are in some sense complemen-
tary : the first one is a generalization of the result of [20] in this non-periodic
and even unbounded framework : here we need u0 to be bounded from below for
reasons explained below. As a consequence we can analyse completely equation
(11).

The second type of result is more original : we assume that H is convex
and u0(x) − φ(x) → 0 at infinity where φ is solution of (4) for some λ. We
prove that, if λ > λmin, then u(x, t) + λt → φ(x) locally uniformly as t → +∞.
Therefore, in this case, the large time behaviour of solution is governed by the
behaviour for large x of the initial data: we point out that both the “λ” which
is selected and the limit of u(x, t)+λt depends on φ, i.e. on the behaviour of u0

for large x. Such a behaviour was already observed but with a far less generality
in Barles [3]. In the case when H satisfies an assumption of the type (7), this
behaviour shows, on the one hand, that λmin is the only constant for which (4)
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has a solution which is bounded from below, and, on the other hand, it justifies
the assumption “u0 bounded from below” made in Theorem 4.1 below: indeed
in this case, the behaviour is always governed by λmin = 0.

The interpretation of this result is rather clear from its proof : for λ > λmin,
the geodesics have to go to infinity. This is why in this framework, the behaviour
of u0 at infinity plays a key role in the determination of the behaviour of u as
t→ +∞. This is completely different under Condition (7), where the geodesics
are attracted by the compact set K := {x ∈ IRn; H(x, 0) = 0}.

4 Large-time convergence

Theorem 4.1 (Unbounded version of Namah & Roquejoffre [20]) Un-
der the assumptions of Theorem 2.1, if u0 is a bounded from below, Lipschitz
continuous function and if H is convex in p and satisfies

H(x, p) ≥ H(x, 0) in IRn × IRn , (12)

with max
IRn

H(x, 0) = 0, the set K := {x ∈ IRn;H(x, 0) = 0} is a non-empty

compact subset of IRn and

lim sup
|x|→+∞

H(x, 0) < 0 , (13)

then the solution u of (1)–(2) converges as t → +∞ to a solution of (4) with
λ = λmin = 0.

Before providing the proof of this result, we complement it by the

Theorem 4.2 Assume that the assumptions of Theorem 2.1 hold and that H
is convex in p. If the initial data u0 satisfies

lim
|x|→+∞

(u0(x) − φ(x)) = 0 , (14)

where φ : IRn → IR is a solution of (4) for some λ > λmin, then we have

u(x, t) + λt→ φ(x) locally uniformly in IRn as t→ +∞.

Proof of Theorem 4.1. 1. We start by some basic estimates. Since u0 is
bounded from below, we can consider M = ||(u0)

−||∞ and since u0 is Lipschitz
continuous we can introduce its Lipschitz constant K. We notice that −M is
a subsolution of (1), while for x0 ∈ K and C large enough, C|x − x0| + C is a
supersolution of (1). By choosing in particular C > K, we have

−M ≤ u0(x) ≤ C|x − x0| + C in IRn ,

and, by the maximum principle, we have

−M ≤ u(x, t) ≤ C|x− x0| + C in IRn × (0,+∞) .
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On the other hand, we also have - see [20] for a proof:

|ut(x, t)|, |Du(x, t)| ≤ C̃ in IRn × (0,+∞) ,

for some large enough constant C̃ depending only on H and u0.
2. Using similar sub and supersolutions and repeating the argument of the proof
of Theorem 2.1, we see that one has a solution of (4) for λ = 0 and therefore
λmin ≤ 0. But, for λ < 0, no solution can exists since H(x, p) − λ > 0 on K,
therefore λmin = 0.
3. On the compact set K, H(x, p) ≥ 0 for any p and therefore u(x, t) is a de-
creasing function of t. This implies the uniform convergence of u to a continuous
function ϕ; we refer to [20] for a more detailed proof of this fact.
4. On IRn\K, we use the half-relaxed limit method and introduce

u(x) := lim sup
y→x

t→+∞

u(y) , u(x) := lim inf
y→x

t→+∞

u(y) .

These functions are respectively sub and supersolutions of the Dirichlet problem

H(x,Dw) = 0 in IRn −K ,

w = ϕ on K .

It is worth pointing out that, because of the estimates of Step 1, u and u are
Lipschitz continuous on IRn; we also have u ≥ u and u = u = ϕ on K.
5. The final point consists in comparing u and u. The fact that the constants are
strict sub-solutions does not seem to apply easily here due to the unboundedness
of the domain. We use instead a remark of Barles [4] (See also [5], p. 40): for
a given closed bounded convex set C with nonempty interior and containing 0
in its interior, consider its gauge - with respect to 0 - jC(p) defined as

jC(p) = inf{λ > 0 :
p

λ
∈ C}.

We have p ∈ C if and only if jC(p) ≤ 1, and p ∈ ∂C if and only if jC(p) = 1.
For ε > 0 small, we are going to argue in the domain Oε := {x : H(x, 0) <

−ε}. Because of condition (13), if ε is small enough, the ∂Oε remains in a
compact subset of IRn and, for any x ∈ ∂Oε, d(x,K) ≤ ρ(ε) where ρ(ε) → 0 as
ε→ 0.

In Oε, since 0 is in the interior of the convex set

C(x) = {p ∈ IRn : H(x, p) ≤ 0},

we can transform the equation H(x,Dw) = 0 into G(x,Dw) = 1, where

G(x, p) = jC(x)(p).

The function G satisfies the same assumptions as H and is is also homogeneous
of degree 1 in p. Then we may use the Kruzhkov’s transform

w(x) := − exp(−u(x)) , w(x) := − exp(−u(x)) .
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The functions w and w are respectively sub and supersolutions of

G(x,Dw) + w = 0 in IRn −K .

Moreover, w and w are bounded and even Lipschitz continuous.
Finally, on ∂Oε, we have u− oε(1) ≤ ϕ ≤ u+ oε(1) by the above mentioned

property on ∂Oε and this yields w ≤ w + oε(1) on ∂Oε.
A standard comparison result then applies - see [10], [17] - and shows that

w ≤ w + oε(1) in Oε. By letting ε tends to zero, we obtain that w ≤ w in
IRn − K and therefore the same inequality holds for u and u. By standard
arguments, this implies the local uniform convergence of u to the continuous
function u∞ := u = u in IRn. •

Proof of Theorem 4.2. We prove this result in the case when H is superlinear
in p and when L, the Lagrangian associated to H , is also superlinear in p since
this case contains most of the interesting ideas. The other cases follow from
suitable (easy) adaptations of the arguments, in particular by changing the
type of Oleinik-Lax formula we are going to use below.

We recall that L is given, for x ∈ IRn and v ∈ IRn by

L(x, v) = inf
p∈IRn

(p.v −H(x, p)) , (15)

and that the solution u is given by the Oleinik-Lax formula

u(t, x) = inf
γ(t)=x

(

u0(γ(0)) +

∫ t

0

L(γ(s), γ̇(s)) ds

)

, (16)

the infimum being taken on the space of absolutely continuous paths γ such
that γ(t) = x. We point out that the first simplification in the additional
assumptions we made above is that this formula takes such a simple form since,
in particular, L is finite for any x and v.

This infimum (and this is where the superlinearity of L plays a role) is
attained for an absolutely continuous curve (γt(s))s∈[0,t]

(∗).
The proof of Theorem 4.2 relies on a lemma which is almost as important

as the theorem itself.

Lemma 4.1 Under the assumptions of Theorem 4.2, for any x ∈ IRN , we have

lim
t→+∞

|γt(0)| = +∞. (17)

Let us notice that this lemma implies the following statement of independent
interest: if λ > λmin, then there is no bounded extremals associated to a solution
φ of (4), even though there might be bounded solutions - for instance in the
periodic setting. This is a striking difference with the Namah-Roquejoffre case
where the set K attracts the geodesics.

(∗)In more general cases, one may just use approximate minimizers.
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Proof. We first remark that −λt + φ is a solution of the evolution equation;
therefore by the contraction principle

||u(x, t) + λt− φ(x)||∞ ≤ ||u0 − φ||∞ , (18)

and since the right-hand side of (18) is finite by (14), we deduce that the function
u(x, t) + λt− φ(x) is uniformly bounded.

We may assume, without loss of generality, that λ = 0 and λmin < 0.
Because of Theorem 2.1, for every small enough ε > 0, there is a solution to (8)
with λ = −ε. We choose such a ε and denote by φ−ε a corresponding solution.

We assume, by contradiction, that the lemma is false and that there exists a
sequence (tn)n converging to +∞ and such that γtn

(0) remains bounded. Since
εt+ φ−ε is a solution of (1), by the Oleinik-Lax formula, we have

εtn + φ−ε(x) = inf
γ(tn)=x

(

φ−ε(γ(0)) +

∫ tn

0

L(γ, γ̇)ds

)

,

while, by the optimality of γtn

u(x, tn) = u0(γtn
(0)) +

∫ tn

0

L(γtn
, γ̇tn

)ds .

Therefore

εtn + φ−ε(x) ≤ φ−ε(γtn
(0)) +

∫ tn

0

L(γtn
, γ̇tn

) ds

= φ−ε(γtn
(0)) − u0(γtn

(0)) + u(tn, x)

This property is a contradiction for n large enough since the left-hand side
tends to infinity with n, while the right-hand side remains bounded because of
the assumption on γtn

(0) for the two first terms and the estimate (18) for the
last one. •

We come back to the proof of Theorem 4.2. For ε > 0, by (14), there exists
ρε > 0 such that

sup
|x|≥ρε

|u0(x) − φ(x)| ≤ ε. (19)

On the other hand, from Lemma 4.1, there is tε > 0 such that, for t ≥ tε,
Formula (16) becomes

u(t, x) = inf
|γ(0)|≥ρε

(

u0(γ(0)) +

∫ t

0

L(γ, γ̇) ds

)

. (20)

Similarly, by applying Lemma 4.1 to the solution φ− λt, we have

−λt+ φ(x) = inf
|γ(0)|≥ρε

(

φ(γ(0)) +

∫ t

0

L(γ, γ̇) ds

)

. (21)
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Combining (19) and (20) together with the property | inf(· · · ) − inf(· · · )| ≤
sup | · · · − · · · |, yields

|u(x, t) + λt− φ(x)| ≤ sup
|γ(0)|≥ρε

|φ(γ(0)) − u0(γ(0))| ≤ 2ε .

This provides the pointwise convergence. But since, for t > 0, the function x 7→
u(x, t) +λt− φ(x) is in a compact subset of C(IRn), this pointwise convergence
implies the local uniform convergence. •

We notice the following consequence of Theorem 4.2.

Theorem 4.3 Assume that λ > λmin and that φ1, φ2 are two solutions of the
ergodic problem (4) associated to λ. If

lim
|x|→+∞

(φ1(x) − φ2(x)) = 0 , (22)

then φ1 = φ2.

This is once again in sharp contrast with the periodic case.

5 Entire Solutions of Hamilton-Jacobi Equations

and Asymptotic Behavior

In this section we are interested in the solutions v ∈ UC(IRn×IR)(†) of Hamilton-
Jacobi Equations set for all t ∈ IR, namely

vt + F (x,Dv) = 0 in IRn × IR . (23)

We are going to show that, under suitable conditions on F , v is in fact inde-
pendent of time, and is therefore solution of the stationary equation. Our key
assumptions are

(H1) There exists a viscosity subsolution φ ∈ UC(IRn) of F (x,Dφ) = 0 in IRn

such that v − φ is bounded.

(H2) F is bounded uniformly continuous in IRn ×B(0, R) for any R > 0.

(H3) There exists a continuous function m : [0,+∞) → IR+ such that m(0+) =
0 and, for all x, y ∈ IRn and p ∈ IRn,

|F (x, p) − F (y, p)| ≤ m(|x− y|(1 + |p|)) .

and,

(H4)



















there exist η > 0 and ψ(η) > 0 such that, if |F (x, p+ q)| ≥ η and
F (x, q) ≤ 0 for some x ∈ IRn, p, q ∈ IRn, then, for all µ ∈ (0, 1],

µF
(

x, µ−1p+ q
)

≥ F (x, p+ q) + ψ(η)(1 − µ).

(†)If A ⊂ IRm, UC(A) is the space of uniformly continuous functions on A.
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It is worth noticing that if F is C1 in p, then (H4) reduces to

(H4)′







Fp(x, p+ q) · p− F (x, p+ q) ≥ ψ(η),

for any x ∈ IRn, p, q ∈ IRn such that |F (x, p+ q)| ≥ η and F (x, q) ≤ 0.

We show below that (H4) and (H4)’ are satisfied if F satisfies suitable
(strong) convexity properties.

The result about the solutions u of (23) is the following

Theorem 5.1 Assume that (H1)–(H4) hold. Then any solution v of (23) de-
pends only on x, and is therefore a solution of F = 0 in IRn.

Before commenting this result, we state its main consequence on the asymptotic
behaviour of solutions of (1)-(2).

Corollary 5.1 Assume that H satisfies (3) and (H2), that u0 is Lipschitz con-
tinuous in IRn and that there exists a solution φ of (4) for some λ ≥ λmin such
that u0 − φ is bounded in IRn. If H − λ satisfies (H4), then every function in
the ω-limit set of u(·, t) + λt (in the sense of the local uniform convergence) is
a solution of (4).

This result may seem somewhat surprising, even in the bounded case, if we
compare it to the counter-example of [7] which shows that the (local uniform)
convergence of u(·, t) + λt as t → ∞ may fail. It is worth pointing out anyway
that Corollary 5.1 does apply to this counter-example (since the nonlinearity
satisfies strong convexity properties) and this demonstrates that Theorem 5.1
is not sufficient to ensure such local uniform convergence as t → ∞. Again
the problem we face here is the difference between local and global uniform
convergence: under the assumptions of Corollary 5.1, if we have a sequence
(u(·, tn) + λtn)n which converges uniformly in IRn, we can conclude as in [6]
that u(·, t) + λt converges as t → +∞, but this is wrong with only a local
uniform convergence.

The assumptions (H4), (H4’) are similar to the ones used in [6] : the only
difference is that, on one hand, they concern here the whole set {|H | ≥ η} and
not only the set {H ≥ η}, and on the other hand, that it has to hold for x in the
whole space IRn while in [6] several types of different behaviours can be mixed.

In [6], this assumption was a key condition to prove that, roughly speaking,
a solution v of such equation for t ≥ 0, satisfies

||(vt)
−||∞ → 0 as t→ ∞ ;

here this stronger formulation leads us to

||vt||∞ → 0 as t→ ∞ .

In order to understand why, we reproduce the formal argument provided in [6]
in the simpler case where φ = 0 - in fact, this formal argument is valid as soon

14



as φ is C1 and Dφ is uniformly continuous in IRn - so that the transformation
ṽ := v − φ can be done - and F is smooth.

The Kruzhkov transform w = − exp(−v) provides a solution of

wt − wF (x,−
Dw

w
) = 0 in IRn × IR ,

and if we set z = wt, it solves the linear equation

zt + (Fp · p− F )z + Fp ·Dz = 0 in IRn × IR ,

where we have dropped the arguments of Fp · p − F and Fp to simplify the
notations. Next we consider m(t) = ‖z(·, t)‖∞; if m(t) = z(x, t), we have

Dz(x, t) = 0 and the equation for w implies that z(x, t) = wF (x,−
Dw

w
); there-

fore if m(t) ≥ η, F satisfies the same type of inequality and therefore (H4) says
that (Fp · p− F ) ≥ ψ(η) > 0. It then follows, that as long as m(t) ≥ η

m′ + ψ(η)m = 0 ,

this implies that m(t) → 0 as t→ ∞.
The proof of Theorem 5.1 will make this formal proof more precise ; since it

is very similar to the proof in the Appendix of [6], we will just sketch it, pointing
out the main adjustments. Now we check assumption (H4) ; a typical case we
have in mind is the case when, on one hand, we consider Lipschitz continuous
solutions, and, on an other hand, F is C2 in p for any x and satisfies, for some
β > 0

Fpp(x, p) ≥ βId in IRn × IRn .

By the convexity of F , one has

µF (x, µ−1p+ q) − F (x, p+ q) ≥ −(1 − µ)F (x, q) +
β

2
µ(1 − µ)|p|2 .

Since we consider Lipschitz continuous solutions we can assume that |p|, |q| ≤
K for some large enough constant K and, thanks to assumption (H2), there
exists a modulus of continuity m for F on IRn × B(0,K). Now, assume that
|F (x, p+ q)| ≥ η and F (x, q) ≤ 0; if F (x, q) ≥ −η/2, we have at the same time
|F (x, p+ q) − F (x, q)| ≤ m(|p|) and |F (x, p+ q) − F (x, q)| ≥ η/2 and therefore

|p| ≥ χ(η) > 0. And (H4) is satisfied because of the term
β

2
µ(1 − µ)|p|2, the

other one being positive. If on the contrary, F (x, q) ≤ −η/2, then the term
−(1 − µ)F (x, q) provides the positive sign.

These computations shows that (H4) is related to the strict convexity of F .
Strict convexity is not optimal, but the counterexample

vt + |vx + α| − |α| = 0 in IR × IR

analyzed in [6], shows that H must not be too far from being strictly convex.
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Proof of Corollary 5.1. Since u0 − φ is bounded and since φ(x) − λt is a
solution of (1), the comparison principle for viscosity solutions yields

||u− φ(x) + λt||∞ ≤ ||u0 − φ||∞ .

We set ũ(x, t) = u(x, t)+λt. By the above inequality, ũ−φ is uniformly bounded
and ũ is a solution of

ũt + F (x,Dũ) = 0 in IRn × (0,+∞) ,

where F (x, p) = H(x, p) − λ in IRn × IRn.
If w is in the ω-limit set of ũ, then there exists a sequence (tp)p converging

to +∞ such that ũ(·, tp) converges locally uniformly to w. We set vp(x, t) =
ũ(x, tp + t). The function vp is a viscosity solution of

(vp)t + F (x,Dvp) = 0 in IRn × (−tp,+∞) ,

and extracting if necessary a subsequence (since vp is uniformly bounded and
Lipschitz continuous), we may assume that vp converges locally uniformly to
Lipschitz continuous function v, defined on IRn×IR, such that v−φ is bounded.
Moreover by stability result for viscosity solutions, v solves (23).

Since φ is a solution of F = 0, we can use Theorem 5.1 and deduce that v is
independent of t and is a solution of F = 0. But, since v(x, t) = v(x, 0) = w(x),
we have proved that w is a solution of H = λ. •

Proof of Theorem 5.1 (sketch). Changing φ in φ − C for some constant
C > 0 large enough, we can assume that v− φ ≥ 1 in IRn × IR. Then for η > 0,
we introduce the functions

µ+
η (t) = max

x∈IRn,s≥t

[v(x, s) − φ(x) + 2η(s− t)

v(x, t) − φ(x)

]

,

µ−
η (t) = min

x∈IRn,s≥t

[v(x, s) − φ(x) − 2η(s− t)

v(x, t) − φ(x)

]

.

The functions µ+
η , µ−

η : IR → IR are Lipschitz continuous, and µ+
η ≥ 1, µ−

η ≤ 1
in IR. The key point of the proof is to show that µ+

η is a subsolution of the
variational inequality

min (µ′(t) + kψ(η)(µ(t) − 1), µ(t) − 1) = 0 in IR ,

and that µ−
η is a supersolution of the variational inequality

max (µ′(t) + kψ(η)(µ(t) − 1), µ(t) − 1) = 0 in IR ,

for some constant k > 0. The proof of this fact for µ−
η is given in the Apendix

of [6] and for µ+
η , the proof is almost the same with few minor changes.

We deduce from these properties and the uniqueness results for these varia-
tional inequalities, that µ+

η (t), µ−
η (t) ≡ 1; indeed by choosing T > 0 large

|µ+
η (t) − 1|, |µ+

η (t) − 1| ≤ C̃ exp(−kψ(η)T ) ,
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where C̃ = max(||µ+
η (t) − 1||∞, ||µ

+
η (t) − 1||∞). And letting T → ∞ provides

the results.
This equality being valid for any η, we deduce that v is independent of time.

•
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