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Coding on countably infinite alphabets

Stéphane Boucheron, Aurélien Garivier and Elisabethsiaas

Abstract

This paper describes universal lossless coding stratégiemmpressing sources on countably infinite alphabets.
Classes of memoryless sources defined by an envelope conditi the marginal distribution provide benchmarks
for coding techniques originating from the theory of ungadrcoding over finite alphabets. We prove general upper-
bounds on minimax regret and lower-bounds on minimax redoeyl for such source classes. The general upper
bounds emphasize the role of the Normalized Maximum Likalth codes with respect to minimax regret in the
infinite alphabet context. Lower bounds are derived by taifp sharp bounds on the redundancy of Krichevsky-
Trofimov coders for sources over finite alphabets. Up to litlgaic (resp. constant) factors the bounds are matching
for source classes defined by algebraically declining (responentially vanishing) envelopes. Effective and (adtho
adaptive coding techniques are described for the colleatib source classes defined by algebraically vanishing
envelopes. Those results extend our knowledge concermiivgrgal coding to contexts where the key tools from

parametric inference are known to fail.

keywords: NML; countable alphabets; redundancy; adaptive compressimnimax;

|. INTRODUCTION

This paper is concerned with the problem of universal codinga countably infinite alphabet (say the set

of positive integersN, or the set of integer® ) as described for example by Orlitsky and Santhanam [2004).

Throughout this paper, a source on the countable alph#kista probability distribution on the set™ of infinite
sequences of symbols frofd (this set is endowed with the-algebra generated by sets of the foffif_, {z;} x A"
where allz; € X andn € N). The symbolA will be used to denote various classes of sources on the a@olynt
infinite alphabetY. The sequence of symbols emitted by a source is denoted by thealued random variable
X = (Xn)pen -
A" = {P": P € A}. For any countable set, let 91, (X') be the set of all probability measures éh

If P denotes the distribution &X, P™ denotes the distribution oX.,, = X1, ..., X,,, and we let

From Shannon noiseless coding Theorem (see Cover and T8, the binary entropy aP™, H(X;.,) =

Epn [—log P(X;.,)] provides a tight lower bound on the expected number of birsgmybols needed to en-
code outcomes oP". Throughout the paper, logarithms are in basén the following, we shall only consider
finite entropy sources on countable alphabets, and we iitipliassume thatH(X;.,) < oo. The expected
redundancyof any distribution@™ € 9, (X"), defined as the difference between the expected code length
Ep [—logQ"(X1.n)] and H(X1.y,), is equal to the Kullback-Leibler divergence (or relativérepy) D(P", Q™) =
Y xean P{x}log g:gg =Epn [log %} :

Universal coding attempts to develop sequences of codiopatilities (Q™),, so as to minimize expected

redundancy over a whole class of sources. Technically $pgakeveral distinct notions of universality have been
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considered in the literature. A positive, real-valued fiortp(n) is said to be a strong (respectively weakjversal
redundancy ratdor a class of sources if there exists a sequence of coding probabiliti€ks,),, such that for all

n, RT(Q",A") = suppc, D(P™, Q™) < p(n) (respectively for allP € A, there exists a constadt(P) such that
for all n, D(P",Q"™) < C(P)p(n)). A redundancy rate(n) is said to be non-trivial ifim,, £p(n) = 0. Finally

a classA of sources will be said to b&ebly universalf there exists a single sequence of coding probabilities
(Q™), such thatuppc, lim,, 2 D(P™, Q") = 0 (Note that this notion of feeble universality is usuallyledlweak
universality, (se¢ Kieffer, 197§, Gyori et dl., 1p94), wavihte from the tradition, in order to avoid confusion with

the notion of weak universal redundancy rate).
The maximal redundancef Q™ with respect toA is defined by:
RT(Q™,A™) = sup D(P",Q").
PeA

The infimum of RT(Q™, A™) is called theminimax redundancyvith respect toA:

RT(A™) = inf RT(Q™, A™).

(A") oot Q" A")

It is the smallest strong universal redundancy rateAfowhen finite, it is often called the information radius of.

As far as finite alphabets are concerned, it is well-known tha class of stationary ergodic sources is feebly

universal. This is witnessed by the performance of Lempeleddes (seg¢ Cover and Thofas, 1991). It is also

known that the class of stationary ergodic sources over &efaphabet does not admit any non-trivial weak
universal redundancy rat¢ (Shiglds, 7993). On the othed htairly large classes of sources admitting strong
universal redundancy rates and non-trivial weak universéiindancy rates have been exhibited et al.,

[1998,[Catonif 2004, and references therein). In this papenvill mostly focus on strong universal redundancy

rates for classes of sources over infinite alphabets. Nateiththe latter setting, even feeble universality should
not be taken for granted: the class of memoryless process&s ds not feebly universal.

I?ﬁerI (L978) characterized feebly universal classes e argument was simplified Jy Gyorfi e l. (994),
Gyorfi et al. {199B). Recall that the entropy rdi P) of a stationary source is defined s, H(P")/n. This

result may be phrased in the following way.

Proposition 1: A class A of stationary sources over a countable alphabieis feebly universal if and only if
there exists a probability distributiof € 9t (X") such that for every? € A with finite entropy rate() satisfies
Ep log gy < oo or equivalentlyD(P', Q) < co.

Assume thatA is parameterized by and that© can be equipped with (prior) probability distributiof& in
such a way thafl — Pj'{A} is a random variable (a measurable mapping) for evey X™. A convenient way
to derive lower bounds of®*(A™) consists in using the relatidiy, [D (P}, Q™)] < RT(Q™, A™).

The sharpest lower bound is obtained by optimizing the priobability distributions, it is called the maximin
bound

sup inf  Ew[D(Pg,Q")].

Wem, () QmEM(X™)
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It has been proved in a series of papdrs (Gallaber,]1068 sBavi 1973[ Hausdlef, 7997) (and could also have
been derived from a general minimax theorem py_|Sfon, |195®&)shch a lower bound is tight.

Theorem 1:Let A denote a class of sources over some finite or countably falpphabet. For each, the

minimax redundancy ovek coincides with
REAN) = sup ot Ew(DRLQ),

where® runs over all parameterizations of countable subsets. of

If the setA™ = {P™ : P € A} is not pre-compact with respect to the topology of weak cayeece, then both
sides are infinite. A thorough account of topological issuesets of probability measures can be foundley,
). For the purpose of this paper, it is enough to recatt first, a subset of a metric space is pre-compact if for
anye > 0, it can be covered by a finite number of open balls with radiunaste > 0; second, a sequen¢&),, ),
of probability distributions converges with respect to tiopology of weak convergence toward the probability
distribution @ if and only if for any bounded continuous functianover the support of),,’'s, IEq, h — Egh. This
topology can be metrized using the Lévy-Prokhorov distanc

Otherwise the maximin and minimax average redundanciedimite and coincide; moreover, the minimax
redundancy is achieved by the mixture coding distributit(.) = [, P;*(.)W (df) whereW is the least favorable

prior.

Another approach to universal coding considierdividual sequencegsee|Feder et al|, 19192 Cesa-Bianchi and

Lu903| [200B, and references therein). Let thgret of a coding distribution@™ on stringx e N with respect
to A besupp.cy log P (x)/Q"(x). Taking the maximum with respect to € N7, and then optimizing over the

choice of @™, we get theminimax regret

P'ﬂ
R*(A™) = inf max sup log (z) .
Qrem (xm) €Nt pen  Q"()

In order to provide proper insight, let us recall the preeisgmptotic bounds on minimax redundancy and regret
for memoryless sources over finite alphabets (see ClarkeBancbf, [1990; 1994, Barron etla)., 1998, Xie and
1 ]
Barron,[199[7{ 200d, Orlitsky and Santhanam, 2004, Jai@d42Szpankowski, 1988, Drmota and Szpankowski,

P004, and references therein).

Theorem 2:Let X be an alphabet ofz symbols, and\ denote the class of memoryless processes’dhen

lim {R*(A”) - mT_l log%} = log (%)
1i7€n{R*(A") - m2— ! log%} = log (%) .

R*(A™) <
The last inequality is checked in the Appendix .

For alln > 2:

-1
logn + 2.

Remark 1: The phenomenon pointed out in TheorEm 2 holds not only forctass of memoryless sources over
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a finite alphabet but also for classes of sources that are thilggoarameterized by finite dimensional sets (see
again[Clarke and Barrpf, 199D; 1994, Barron ét[al., 1998 axié Barroph[ 1997f 20p¢, Orlitsky and Santhaham,
P004,[Catoni[ 2004).

The minimax regret deserves further attention. For a soalass A, for everyx € X", let the maximum

likelihood p(x) be defined asuppcp P"(x). If ZXENi p(x) < oo, the Normalized Maximum Likelihoododing

probability is well-defined and given by

n . p(®)
(%) = > Py

zeN? p(x)
[1997) showed that tiermalized Maximum Likelihoododing probability achieves the same regret over
all strings of lengthn and that this regret coincides with th&nimax regret

RI(A") =log 3 p(x).

xeNY

Memoryless sources over finite alphabets are special cdsesvelope classes. The latter will be of primary
interest.
Definition 1: Let f be a mapping fronlN to [0, 1]. The envelope clas&; defined by functiory is the collection

of stationary memoryless sources with first marginal distibn dominated byf:

Af={P : VzeN, P'{z} < f(z), and P is stationary and memoryless.

We will be concerned with the following topics.

1) Understanding general structural properties of minimedundancy and minimax regret.

2) Characterizing those source classes that have finitermainregret.

3) Quantitative relations between minimax redundancy gretand integrability of the envelope function.

4) Developing effective coding techniques for source @assith known non-trivial minimax redundancy rate.
5) Developing adaptive coding schemes for collections ofs® classes that are too large to enjoy even a weak

redundancy rate.

The paper is organized as follows. Sectlﬂn Il describes sstmuetural properties of minimax redundancies and
regrets for classes of stationary memoryless sources.eThogperties include monotonicity and sub-additivity.
Propositionﬂs characterizes those source classes that &dit@ regret. This characterization emphasizes the role
of Shtarkov Normalized Maximum Likelihood coding probéﬂinPropositior[b describes a simple source class for
which the minimax regret is infinite, while the minimax rediamcy is finite. Finally Propositioﬂ 3 asserts that such
a contrast is not possible for the so-called envelope casse

In Sectiorml, TheoremE4 ar@i 5 provide quantitative relasi between the summability properties of the envelope
function and minimax regrets and redundancies. Thosetsebulld on the non-asymptotic bounds on minimax
redundancy derived by Xie and Barfdn (1p97).

Sectionm’ focuses on two kinds of envelope classes. Thisisseserves as a benchmark for the two main
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results from the preceding section. In SubselV—A,doWounds on minimax redundancy and upper-bounds on
minimax regret for classes defined by envelope function 1 A Ck~* are described. Up to a factbsgn those
bounds are matching. In Subsecti@/—B, lower-bounds onimmax redundancy and upper-bounds on minimax
regret for classes defined by envelope function: 1 A Cexp~@* are described. Up to a multiplicative constant,
those bounds coincide and grow likeg” n.

In Sectionﬂ/ an@l, we turn to effective coding techniqueargd toward source classes defined by power-law
envelopes. In Sectiop]V, we elaborate on the ideas embadiBdopositior[ 4 from Sectiof] 1, and combine mixture
coding and Elias penultimate coIi975) to matchughpger-bounds on minimax redundancy described in
Sectionm’. One of the messages from SectEh IV is that therumif envelope classes defined by power laws,
does not admit a weak redundancy rate that grows at a rateskhann!/? for any 5 > 1. In Sectionml, we
finally develop an adaptive coding scheme for the union okkpe classes defined by power laws. This adaptive
coding scheme combines the censoring coding techniqudagckin the preceding subsection and an estimation

of tail-heaviness. It shows that the union of envelope elasiefined by power laws is feebly universal.

Il. STRUCTURAL PROPERTIES OF THE MINIMAX REDUNDANCY AND MINIMAX REGRET

Propositionsﬂiﬂ3 ar@ 4 below are sanity-check statemdrag:state that when minimax redundancies and regrets
are finite, as functions of word-length, they are non-desirgpand sub-additive. In order to prove them, we start
by the following proposition which emphasizes the role @& kML coder with respect to the minimax regret. At
best, it is a comment on Shtarkov’s original wotk (ShtalKb®87,[Haussler and Opper, 1p97).

Proposition 2: Let A be a class of stationary memoryless sources over a couritdinlige alphabet, the minimax
regret with respect ta\", R*(A™) is finite if and only if the normalized maximum likelihood (&lnkov) coding
probability Qg,,. is well-defined and given by

p(x)
- forx e X"
> yexn DY)

e (%) =
wherep(x) = suppey P7(%).
Note that the definition o)y, does not assume either that the maximum likelihood is aedi@n A or that
it is uniquely defined.

Proof: The fact that ifQy,, is well-defined, the minimax regret is finite and equal to

log | > #(y)

yexm

is the fundamental observation pf Shtafkpv (3987).
On the other hand, iR*(A™) < oo, there exists a probability distributiof™ on X™ and a finite number such

that for allx € X",

p(x) <7 xQ"(x),
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summing overx gives

Zﬁ(x)§r<oo.

xXEX™

Proposition 3: Let A denote a class of sources, then the minimax redund&tgA™) and the minimax regret

R*(A™) are non-decreasing functions of

Proof: As far asR* is concerned, by Theoreﬁ1 1, itis enough to check that themiaximutual information)

lower bound is non-decreasing.

For any prior distributiodV on a parameter sé (recall that{ Py : § € ©} C A, and that the mixture coding
probability Q™ is defined byQ™(A) = Ew [P;'(4)])

]EW [D(Pgl+17 QnJrl)} = 1(9, Xl:nJrl) =1 (97 (Xlzna XnJrl)) Z 1(9, Xl:n) - ]EW [D(Penv Qn)] .

Let us now consider the minimax regret. It is enough to caersile case wher&*(A™) is finite. Thus we may
rely on PropositiorﬂZ. Let andm be two positive integers. Letbe a small positive real. For any strisge X™,
let P, € A, be such thatPx{x} > p(x)(1 — €). Then

p(xa’) > Px(x) x Px(2' | x)

> p(x)(1 =€) x Px(a’ | x).

Summing over all possible’ € X we get

So that by lettinge tend to0,

|
Note that the proposition holds even thoudltis not a collection of memoryless sources. This Propositi@m be
easily completed when dealing with memoryless sources.
Proposition 4: If A is a class of stationary memoryless sources, then the amssti— R (A™) andn — R*(A™)
are either infinite or sub-additive.
Proof: Assume thatR™(A™) < co. Here again, given Theoreﬂ1 1, in order to establish subtiaidgifor RT,
it is enough to check the property for the maximin lower bauret n, m be two positive integers, and” be any

prior on © (with {Py : 6 € ©} C A). As sources from\ are memorylessX;.,, and X,, 1.+, are independent
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conditionally onf and thus

I (Xnt1m4m; 01X10)

= H (Xont1m4m|X1n) = H (Xng1imgm|X1m, )
= H (Xpt1m4m|X1n) — H (Xng1m4m|0)

< H (Xnt1m+m) — H (Xt tingml6)

=1 (XnJrl:ner; 9) .
Hence, using the fact that under eaéhy the processX,, ),cn, iS stationary:

I (Xl:n-i-m; 9) =1 (Xlzn; 9) + I(Xn+1:n+m; 9|X1n)
S 1 (Xlzn; 0) + I(XnJrl:ner; 0)
=71 (Xl;n; 9) + I(Xl;m; 9) .
Let us now check the sub-additivity of the minimax regretp@ase thatkR*(A!) is finite. For anye > 0, for

x € X" let P € A be such thafl — ¢)p(x) < P"™(x). As for x € X" andx’ € X™, P""™(xx') =

Pm(x) x P™(x'), we have for any > 0, and anyx € X", x’ € A™
(1 —e)p(xx") < p(x) x p(x).
Hence, lettinge tend to0, and summing over akk € X" +™:
R* (A™T™)

—log > i)

XEXTX EX™

<log Z p(x) + log Z p(x)

xexXn xeXxm™
= R* (A") + R* (A™).
]

Remark 2: Counter-examples witness the fact that subadditivity diirelancies does not hold in full generality.

The Fekete Lemma (s¢e Dembo and Zeitolini, [1998) leads to:

Corollary 1: Let A denote a class of stationary memoryless sources over aatdardphabet. For both minimax

redundancy?™ and minimax regref?*,

+ n + n
im w = inf M < Rt (Al) ,
n— o0 n neNL n
and
lim w — inf w < R* (Al) )
n— o0 n neNL n
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Hence, in order to prove th&™ (A™) < oo (respectivelyR* (A™) < oo), it is enough to check that™ (Al) < oo
(respectivelyR* (A') < o0).

The following Proposition combines Propositicﬂ1{|2, 3 Entl dan be rephrased as follows: a class of memoryless
sources admits a non-trivial strong minimax regret if anty dghShtarkov NmL coding probability is well-defined
for n = 1.

Proposition 5: Let A be a class of stationary memoryless sources over a countd#biite alphabet. Lep be
defined byp(z) = suppcp P{x}. The minimax regret with respect t" is finite if and only if the normalized
maximum likelihood (Shtarkov) coding probability is weléfined and :

R*(A") < 0 & Z p(z) < oo.

reNL

Proof: The direct part follows from Propositicﬂ 2.
For the converse part, ., p(z) = oo, then R*(A') = oo and from Propositiofff 3R*(A™) = oo for every

positive integem. |

When dealing with smoothly parameterized classes of seuwcer finite alphabets (s¢e Barron €t pl., 1998, Xie
L
and Barron] 20Q0) or even with the massive classes define@rimwal sourcesr(c-:siszar and ShiEIds, li996), the

minimax regret and minimax redundancy are usually of theesarder of magnitude (see Theorﬂn 2 and comments

in the Introduction). This can not be taken for granted whealidg with classes of stationary memoryless sources
over a countable alphabet.
Proposition 6: Let f be a positive, strictly decreasing function definedMrsuch thatf(1) < 1. Fork € N, let

pi be the probability mass function dN defined by:

1—f(k)ifl=0;
pe) =19 fk) ifl=k
0 otherwise.

Let A = {p1,p2,...}, let A be the class of stationary memoryless sources with first imarg . The finiteness
of the minimax redundancy with respect A& depends on the limiting behavior ¢f(k) log k: for every positive
integern:

f(k)logk —k 0o 00 & RT (A") = 00.
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Remark 3:When f (k) = @, the minimax redundanci™ (A™) is finite for all n. Note, however that this does

not warrant the existence of a non-trivial strong universalundancy rate. However, &s, f(k) = oo, minimax

regret is infinite by Propositioﬂ 5.

A similar result appears in the discussion of Theorem 3 inugster and Oppeef, 1997) where classes with finite

minimax redundancy and infinite minimax regret are calledgular.
We will be able to refine those observations after the stauemiaCoroIIary@.

Proof: Let us first prove the direct part. Assume tfdt) log k — 4. co. In order to check thakR ™ (A1) =
00, we resort to the mutual information lower bound (Theoﬂemﬁk) describe an appropriate collection of Bayesian

games.

Let m be a positive integer and létbe uniformly distributed ovef1,2, ..., m}. Let X be distributed according
to pi, conditionally ond = k. Let Z be the random variable equaltaf X = # and equal td otherwise. Obviously,

H(9|X,Z = 1) = 0; moreover, asf is assumed to be non-increasiig(Z = 0[6 = k) =1— f(k) <1— f(m)

and thus:
H(O|X)=H(Z|X)+ H(0Z,X)
<14+ P(Z=0)H(0X,Z=0)
+P(Z=1)H0|X,Z =1)
<14 (1— f(m))logm.
Hence,

RY(AY) > 1(0,X)
>logm — (1 — f(m))logm
= f(m)logm

which grows to infinity withm, so that as announce@’ (A!) = .

Let us now prove the converse part. Assume that the sequgfitéglogk)ren. is upper-bounded by some
constant. In order to check thakt (A™) < oo, for all n, by Propositiof4, it is enough to check tH%f(A}) < 00,
and thus, it is enough to exhibit a probability distributi@nover X = N such thatsup pc 41 D(P, Q) < oc.

Let Q be defined byQ (k) = A/((1V (k(logk)?)) for k > 2, Q(0),Q(1) > 0 where A is a normalizing constant

that ensures thad is a probability distribution ove#’.
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Then for anyk > 3 (which warrantsk(log k)% > 1), letting P, be the probability defined by the probability

mass functionpy:

D(Py,Q)
_ (1-f(k) f(k)k(log k)*
= (1— f(k))log T 00) + f(k)log (ﬁ)
< ~10gQ(0) + C + f(k) (2108 (k) ~ log(4))

02
< C +log m .

This is enough to conclude that

2

AQ(0)

RT(AY) < (C+1og )vD(Pl,Q)vD(P2,Q)<oo.

Remark 4:Note that the coding probability used in the proof of the @rse part of the proposition corresponds
to one of the simplest prefix codes for integers propose@).

The following theorem shows that, as far as envelope clamsesoncerned (see Definit@h 1), minimax redun-
dancy and minimax regret are either both finite of both indinithis is indeed much less precise than the relation

stated in Theorerf] 2 about classes of sources on finite alfhabe

Theorem 3:Let f be a non-negative function frody, to [0, 1], let Ay be the class of stationary memoryless

sources defined by enveloge Then

RT (A?) <oo<:>R*(A}’») < 00.

Remark 5:We will refine this result after the statement of Corollaﬂ/ 2.
Recall from Propositiofi] 5 thak* (A;}) <00 Y pen, f(k) < oo
Proof:

In order to check that

> f(k)=00= R"(A}) =00,

keNL

it is enough to check that iEkeN+ f(k) = oo, the envelope class contains an infinite collection of muyual

singular sources.

Let the infinite sequence of integefk;),  be defined recursively bf, = 0 and

h
hi+1:min{h: > f(k)>1}.

k=h;+1
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The memoryless sourck; is defined by its first marginaP! which is given by

f(m)

D)

Taking any prior with infinite Shannon entropy over thB! ; i € N} shows that

Pl(m) form e {pi+1,...,pi+1}.

RT({P!; ieNy}) =oc0.

IIl. ENVELOPE CLASSES

The next two theorems establish quantitative relations/éeh minimax redundancy and regrets and the shape
of the envelope function. Even though the two theorems détl general envelope functions, the reader might
appreciate to have two concrete examples of envelope in:nexygonentially decreasing envelopes of the form
Ce~F for appropriaten and C, and power-laws of the form’k— again for appropriate. and C. The former
family of envelope classes extends the class of sourcesfioiter (but unknown) alphabets. The first theorem holds
for any class of memoryless sources.

Theorem 4:If A is a class of memoryless sources, let the tail funcfign be defined byFy: (u) =, ., p(k),
then:

u —

_ 1
R*(A™) < inf |nFpi(u)loge + logn| + 2.

wu< 2

Choosing a sequende, ), of positive integers in such a way that, — oo while (u,logn)/n — 0, this
theorem allows to complete Propositiﬂn 5.

Corollary 2: Let A denote a class of memoryless sources, then the followingshol

R*(A") < 0o & R*(A") = o(n) and RT(A") = o(n) .

Remark 6:We may now have a second look at Proposiﬁbn 6 and The&em telsetting of Propositioﬂ 6,
this Corollary asserts that |, f(k) < oo, for the source class defined lfy a non-trivial strong redundancy rate
exists.

On the other hand, this corollary complements Thecﬁlem 3 byrting that envelope classes have either non-trivial

strong redundancy rates or infinite minimax redundancies.

Remark 7:Again, this statement has to be connected with related grtpos from| Haussler and Oppgr (1p97).

The last paper establishes bounds on minimax redundanng gsiometric properties of the source class under
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Hellinger metric. For example, Theorem 4 |n (Haussler ang&€bf199}) relates minimax redundancy and the metric

dimension of the seA™ with respect to the Hellinger metric (which coincides with metric between the square
roots of densities) under the implicit assumption that sesirlying in small Hellinger balls have finite relative

entropy (so that upper bounds in Lemma 7 there are finite)elépe classes may not satisfy this assumption.

Hence, there is no easy way to connect Theofpm 4 and resuifts (ffaussler and Opgdr, 1997).

Proof: (Theorem[|4.) Any integer. defines a decomposition of a stringc N7 into two non-contiguous
substrings: a substring made of them symbols fromx that are larger tham, and one substring made of the

n —m symbols that are smaller than

ze{u+l,...}rye{l,2,... u}n—m

MY e Y W

M=

wy (1) % S h)
<

m=0 ze{u+1,...}mi=1 ye{1,2,...,ujn—m
(2) i n\ m .
< o) Far(u) > )
m=0 ye{l,2,...,u}™

(d) = n 4=l 15s 2
< (14 Fau(u)) 277 losnt2,

Equation (a) is obtained by reordering the symbols in thegs; Inequalities (b) and (c) follow respectively from
Propositior[|4 and Propositi({rh 3. Inequality (d) is a diremhgequence of the last inequality in TheorEm 2.
Hence,

u—1
2

R*(A™) < nlog (1+ Fpi(u)) + logn + 2

-1
u2 logn + 2

< nFyu (u)loge +

The next theorem complements the upper-bound on minimartrégy envelope classes (Theorﬂn 4). It describes

a general lower bound on minimax redundancy for envelopesek

Theorem 5:Let f denote a non-increasing, summable envelope function.ffoingeger, letc(p) = >-1_, f(2k).
Let c(co) = 37,5, f(2k). Assume furthermore thatfco) > 1. Let p € N be such that(p) > 1. Letn € Ny,

e >0 and )\ €]0, 1] be such that > fc((fg) Ty - Then

; (1. n(1-X)wf(2i)
RE(A) 2 Com A0 3 (5 T e ) |

WhereC(pﬂ’L, /\7 6) = 1+ i(z)) (1 - % \/ (17)‘\5)05(53‘(21))) :

AZn f(2p)
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Before proceeding to the proof, let us mention the follownmm-asymptotic bound froin Xie and Barfdn (1j997).

Let m} denote the Krichevsky-Trofimov distribution ové®, 1}™. That is, for anyx € {0,1}", such thatn; =

Yo x; andng =n—ny
1
m (x) = _/ 6m-1/2(1 — g)o-1/2qp,
[0,1]

™

Lemma 1:(Xie and Barroh,[1997, Lemma 1) For amy> 0, there exists a(e) such that forn > 2¢(¢) the

following holds uniformly over € [c(¢)/n,1 — c(e)/n]:

W 1 m
‘D(pe,mn)—ilog%—logﬂ' <e.

The bounde(e) can be chosen as small 8.

Proof: The proof is organized in the following way. A prior probatyildistribution is first designed in such
a way that it is supported by probability distributions tisatisfy the envelope condition, have support equal to
{1,,...,2p}, and most importantly enjoys the following property. Legti¥ be the random vector frodv? defined
by Ni(x) = [{j : x,; € {2¢—1,2i}}|, wherex € X™, letting Q* be the mixture distribution ovet™ defined by
the prior, then for anyP in the support of the priorP™/Q* = P™{. | N}/Q*{. | N}. This property will provide
a handy way to bound the capacity of the channel.
Let f,n,p,e and X be as in the statement of the theorem. Let us first define a pradrability onA}c. For each

integeri betweenl andp, let u; be defined as

This ensures that the sequengg).<, defines a probability mass function ovgt,....p}. Let @ = (6;)1<i<p
be a collection of independent random variables each bliga@d according to a Beta distribution with parameters
(1/2,1/2). The prior probability = @_, W; for 8 on [0, 1]* has thus density given by
1 -1/2 -1/2
w(e)z—H(ei (1-6,) ) .

P

i=1

The memoryless source parameterizedébis defined by the probability mass functigig(2i — 1) = 6; u; and
po(2i) = (1 —0;)u; fori: 1 <i<pandpg(j) =0 for j > 2i. Thanks to the condition(p) > 1, this probability
mass function satisfies the envelope condition.

Fori < p, let the random variabl&/; (resp.N?) be defined as the number of occurrence§df— 1, 2i} (resp.
2i—1) in the sequence. Let N (resp.N") denote the random vectd¥,, ..., N, (resp.N?, ..., Ng). If a sequence
x from {1,...,2p}" containsn; = N;(x) symbols from{2i — 1,2i} for eachi € {1,...,p}, and if for each such
i, the sequence contain§ = N?(x) (n}) symbols equal t@i — 1 (resp.2i) then

p

Py ) =TT (i 07 (=09 .

i=1
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Note that when the soura2 is picked according to the pridi/ and the sequenc&;., picked according taPy,

the random vectoN is multinomially distributed with parametersand (y11, 12, . . ., pip), SO the distribution ofN

does not depend on the outcomeéfMoreover, conditionally orN, the conditional probabilityPy {- | N} is a

product distribution:

Py (x | N) = f[ (9?? (1-6,)") .

i=1

In statistical parlance, the random vect®¥sand N form a sufficient statistic fo#.

Let Q* denote the mixture distribution N’ induced byW:

Q" (x) = Ew [Fy'(x)] ,

and, for each, let m} denote the Krichevsky-Trofimov mixture ovée, 1}, then

P

Q") = [T (i mi, 0"1))

=1

For a given value olN, the conditional probability)* {- | N} is also a product distribution:

(x| N) = ﬁ 0”1”

so, we will be able to rely on:

Now, the average redundancy @f with respect toPg can be rewritten in a handy way.

Ew [D(P2.Q")] = Bw [Epg {mg Py (X1 | N)H

Q*(Xl:n | N)
from the last equation,

=Ew [Epg {EP;‘ [bg%‘lﬂ”
=Ew [Erg [D (P3(- IN),Q;(- | N))]]

=Ew [Ex[D (Py(- | N),Q*(- | N))|]
as the distribution olN does not depend of,
=En[Ew [D(Py(- | N),Q*(- | N))|]

by Fubini's Theorem.

DRAFT
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We may developD (Py (- | N),Q*(- | N)) for a given value ofN = (ni,ns,...,n,). As both Py(- | N) and
Q*(- | N) are product distributions op[?_, ({2i — 1,2i}"), we have

M=

Ew [D (P (- | N),Q"(- | N))] = Ew

D <P;:am:;>]

i=1

Ew, [D (Py,m;,,)] -

I
.Mﬁ

=1

The minimal average redundancy &f with respect to the mixing distributio” is thus finally given by:

> B [0 P;:amm]]

En [Ew, [D (P my,)]]

Ew [D (P, Q")] = En

I Mu ﬂ'M@

2_3 < ) = )" " Bw, [D (Pgmy,)] - €Y

Hence, the minimal redundancy af; with respect to prior probability¥” is a weighted average of redundancies

of Krichevsky-Trofimov mixtures over binary strings withfférent lengths.

At some place, we will use the Chebychef-Cantelli inequdlitee| Devroye et flf, 1996) which asserts that for

a square-integrable random variable:

Var(X
PriX <E[X]- ”—W(H)tz'
Besides, note that for all < 1,
1—e¢
/ dx o1— é\/g 2)
e my/x(l—x) ™
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Now, the proposition is derived by processing the rightehaitle of Equation[[l).

Under condition(1 — \) n fc(é’;) > 10 we have— < & for all i < p such thatn; > (1 — A) ny;. Hence,
Ew [D (Fg', Q"))

p 1 D(Pm m* )

>y N

Z pit (L= )" ™
=1 ny> (1o s (nl 0 6i(1—6;)
p n [
n v L ne—log - +logm —¢
7.11, 1_ i n—m; 27T d91
; 2 (m)“z (1= ) / 7/0;(1 - 6;)

>(1—N)np; e

by roposmorﬂl fronm) Xie and Barrpn (1997)

P n
n 4 5 1 n;
> (] — )1 — — —log — +logm —
I (e (1= 22 (Gon g +10em - )

i=1n;>(1-N)nu

from (@)

P n
n v s 4 5 Lo n(l =M
> il — i L2 [y [ — 1 _ I —
= Z Z (ni)ﬂz (1= pa) ( A\ TN nuie> (2 08— + logm e)

=1 n;>(1-=XN)nu;
using monotonicity ofr log «

Y

P

1 4 5 1, n(l =X
>SN (1= E 2 ) (Zrog e e -
_; 1+ < T (1—/\)nuie> <2 %8 T ome +logm —€

n g A2

invoking the Chebychef-Cantelli inequality,

1 4 5¢(p) u L, mA=NFe) o
1+>\2C(p) (1 T (1—)\)enf(2p)>;<21 & 2¢(p)me +1log )

nf(2p)
using monotonicity assumption oft

Y

IV. EXAMPLES OF ENVELOPE CLASSES

Theorems[|3,[|4 anﬂ 5 assert that the summability of the enwettiining a class of memoryless sources
characterizes the (strong) universal compressibility haft tclass. However, it is not easy to figure out whether
the bounds provided by the last two theorems are close to@hei or not. In this Section, we investigate the case
of envelopes which decline either like power laws or expdiaép fast. In both cases, upper-bounds on minimax
regret will follow directly from TheorerT[|4 and a straightfeard optimization. Specific lower bounds on minimax
redundancies are derived by mimicking the proof of Theoﬂaneitﬁer faithfully as in the case of exponential

envelopes or by developing an alternative prior as in the cégpower-law envelopes.

A. Power-law envelope classes

Let us first agree on the classical notatigie) = >, ., 7, for a > 1.

Theorem 6:Let « denote a real number larger thanandC' be such thaC((«) > 2. The source clasis .-«
is the envelope class associated with the decreasing &mgtic :  — 1 /\ < for C' > 1 anda > 1.
Then:

DRAFT January 16, 2008
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1)
n!/* Aa) log | (CC(a) " | < RY(AL.-.)

where
1 _ L (L e/
Ala) = /1 1/ (1 € )du.

2)

1/«
2Cn1) (logn)lfl/a_i_o(l)

RY(A%. ) < (

Remark 8:The gap between the lower-bound and the upper-bound is cna‘rc@hﬁlgn)l’é . We are not in a

o —

position to claim that one of the two bounds is tight, let @&awhich one is tight. Note however that as— ~o
andC = H%, classA¢ .-~ converges to the class of memoryless sources on alpHabet., H} for which the
minimax regret is% logn. This is (up to a factor 2) what we obtain by taking the limitsaur upper-bound of
R*(AZ _.). On the other side, the limit of our lower-bound whergoes tol is infinite, which is also satisfying
since it agrees with Theorefh 3.

Remark 9:In contrast with various lower bounds derived using a simiteethodology, the proof given here
relies on a single prior probability distribution on the pareter space and works for all valuesrof

Note that the lower bound that can be derived from Thedjemdf the same order of magnitude(n'/*) as

the lower bound stated here (see Apper@x II). The proofrgivere is completely elementary and does not rely

on the subtle computations described in Xie and Barfon (L1997

Proof: For the upper-bound on minimax regret, note that

c.__ ¢
k> — (a—1)ux—1’

Fac(u)=Y 1A

k>u

1
Hence, choosing.,, = (%) “ , resorting to Theorerf] 4, we get:

1/«
20"1) (logn)' ™ + 0(1).

RA(AZ ) < <

o —

Let us now turn to the lower bound. We first define a finite @edf parameters such thdty € A7 - for any
6 <€ O and then we use the mutual information lower bound on reduryda

Let m be a positive integer such that® < C¢(«).

The set{Py,0 € O} consists of memoryless sources over the finite alph&bet Each paramete is a
sequence of integer8@ = (01,60-,...,). We take a prior distribution o® such that(d;), is a sequence of
independent identically distributed random variableswiniform distribution on{1,...,m}. For any suctg, P,
is a probability distribution olN_ with supportUx>1{(k — 1)m + 6, }, namely:

Py((k — 1)m+9k) = C(Ozl)ko‘ = g?:) . (/{Tln)o‘ for k> 1. 3)

The conditionm® < C((«) ensures thaPy € A}, ..

January 16, 2008 DRAFT
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Now, the mutual information between paramefleand source outpuk’.,, is
I(BaXl:n) = Zl(elle:n)
E>1

Let Vi (x) = 1 if there exists some indexe {1,...,n} such thatx; € [(k — 1)m + 1, km], and0 otherwise
Note that the distribution ofV;, does not depend on the value &f Thus we can write:

I(@k,Xl;n) = I(ek,Xl:nlNk = O)P(]\/vlC = 0) + I(ekaXl:n|Nk = 1)P(Nk = 1).

But, conditionally onN;, = 0, 6, and X;.,, are independent. Moreover, conditionally 8 = 1 we have
PO = j| X1n
I(0p, X100 | Ntk =1)=E [1ng

- N =1| =logm.
Hence,

1(0,X1.0) =Y _ P(Ny=1)logm
k>1

= ]EPG [Zn] 1Ogm7

where Z,,(x) denotes the number of distinct symbols in striagnote that its distribution does not depend on the
value off.) As Z,, = ZkZI 1N, (z)=1, the expectation translates into a sum

w50 (- e

which leads to:

Now:

In order to optimize the bound we choose the largest possibkehich ism = [(C¢(a))Y/* |
For an alternative derivation of a similar lower-bound gsTFheorenﬂS, see Appendﬂ .

DRAFT

January 16, 2008



19

B. Exponential envelope classes

Theoremsﬂ4 anﬂ 5 provide almost matching bounds on the minme@dundancy for source classes defined by
exponentially vanishing envelopes.
Theorem 7:Let C' and o denote positive real numbers satisfying> ¢2®. The classA¢c.-«. is the envelope

class associated with functiofy, : 2 — 1 A Ce **. Then

log?n (1 0(1)) € R* (A, o) < B'(AB, ) < 5= logn + O(1)

Proof: For the upper-bound, note that

Fo(u) = Z 1ACe < go(utl)

k>u

l1—e«
Hence, by choosing the optimal valug = élogn in Theorenﬂ4 we get:
1
R (Ae-o) < o log>n + O(1).

We will now prove the lower bound using Theoreﬂn 5. The comstra’ > €** warrants that the sequence
c(p) = Sh_, f(2k) > Ce 2otz 2

1—e—2¢e

is larger thanl for all p.
If we choosep = |5 (logn —loglogn)|, thennf(2p) > Cne~losntloglosn=2e goes to infinity withn. For

e=X\=3,we getC(p,n, A\ e) =1—o(1). Besides,

P

1. n(l—X\Cre 2% p (1-NCr N
Z (2 log 2elp)e 6) =3 logn + log 2elp)e 2¢ aZz

i=1

V. A CENSORING CODE FOR ENVELOPE CLASSES

The proof of TheorenE|4 suggests to handle separately smallaage (allegedly infrequent) symbols. Such an
algorithm should perform quite well as soon as the tail b&lranf the envelope provides an adequate description
of the sources in the class. The coding algorithm suggestetthéb proof of Theorerr[|4, which are based on the
ShtarkovNML coder, are not computationally attractive. The design efriext algorithm Censor i ngCode) is
again guided by the proof of TheoreEp 4: it is parameterizedlsequence of cutofféK;);cn and handles the
i symbol of the sequence to be encoded differently accordinghether it is smaller or larger than cutdff;,
in the latter situation, the symbol is said to be censore@ Gédnsor i ngCode algorithm uses Elias penultimate
code ,5) to encode censored symbols and Krickeirskimov mixtures [Krichevsky and Trofimpv,

) to encode the sequence of non-censored symbols padlthecharkers (zeros) to witness acts of censorship.

The performance of this algorithm is evaluated on the pdemsrenvelope class\..-«, already investigated in
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Section[1V. In this section, the parametersand C' are assumed to be known.

Let us first describe the algorithm more precisely. Given a-decreasing sequence of cutoffs;);<,,, a string
x from N’} defines two stringg andx in the following way. Theit" symbolx; of x is censored if; > k;. String
x has lengthn and belongs t(ﬂ?:1 X;, where X; = {0,...K;}:

X; if X; SKZ

0 otherwise (the symbol is censored).

Symbol 0 serves as an escape symbol. Meanwhile, st&ing the subsequence of censored symbols, that is
(Xi)xi>Ki.,i§n-

The algorithm encodes as a pair of binary strings1 andC2. The first one ¢1) is obtained by applying Elias
penultimate code to each symbol frok) that is to each censored symbol. The second strii®) (s built by
applying arithmetic coding t& using side-information fronk. DecodingC2 can be sequentially carried out using

information obtained from decodingf.

In order to describe the coding probability used to encodee need a few more counters. For- 0, let n{ be
the number of occurrences of symbjoin x;.; and letn? be the number of symbols larger thaf; in x;.; (note
that this not larger than the number of censored symbots, in and that the counters; can be recovered from
x1.; andx). The conditional coding probability over alphab®t,; = {0,..., K;+1} givenx;.,; andx is derived
from the Krichevsky-Trofimov mixture ovek’;, ;. It is the posterior distribution corresponding to Jeffeeptior

on thel + K,,,-dimensional probability simplex and coumé for j running from0 to K;1:

B . _ . _ nZ +1
QXip1 =7 | X1 = X1, X = %) = Hl(iﬂil :
2
The length ofc2(x) is (up to a quantity smaller thah) given by
n—1
— ZlogQ(iHl | X1:4,%) = —log Q(X | X).
=0

The following description of the coding probability will gve useful when upper-bounding redundancy. Fat
j < K,, let s7 be the number of censored occurrences of synjbbkt n’/ serve as a shorthand faf,. Let i(5)

ben if K, < j or the largest integer such thatk; is smaller thary, thens; = n . The following holds
n—1
(n? +1/2 0 1
(ni_1 +1/2) — R T
(HF53+1/2 ) (iyo 1 1:1_[02+ Kz+21+1
Note that the sequende?);<,, is not necessarily non-decreasing.

A technical description of algorithr@ensor i ngCode is given below. The procedurél i asCode takes as
input an integer; and outputs a binary encoding gfusing exactly/(j) bits where? is defined by:¢(j) =

[logj + 2log (1 4+ logj) + 1] . The procedurdr i t hCode builds on the arithmetic coding methodology (Rissanen

L 1
and Langdon{ 1979). It is enough to remember that an aritbroetler takes advantage of the fact that a coding
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probability @ is completely defined by the sequence of conditional distidms of the: + 1th symbol given the
past up to time.

The proof of the upper-bound in Theoreﬂn 6, prompts us to dhdgs—= Xi= , it will become clear afterward

that a reasonable choice Js= (4—01) °.

o—

Algorithm 1 CensoringCode
K«—0
counts— [1/2,1/2,..]
for ¢ from 1 to n do Va
cutoff — {(4 i ) J

a—1
if cutoff> K then
for j «— K + 1 to cutoffdo
counts0] « counts$0] — count$j] + 1/2
end for
K « cutoff
end if
if 2[i] < cutoffthen
ArithCodg«[i], counts0 : cutoff)
else
ArithCodg0, counts0 : cutoff)
Cl—C1-EliasCodéx[i])
counts0] « count$0] + 1
end if
countsz[i]] <« countsz[i]] + 1
end for
C2— ArithCod«)
GG

Theorem 8:Let C' anda be positive reals. Let the sequence of cutdfis );<,, be given by

K[ (297

The expected redundancy of proced@ensor i ngCode on the envelope class..-~ is not larger than

< 4(’:"1> : logn (14 0(1)).

«
Remark 10:The redundancy upper-bound in this Theorem is within a fdetn from the lower bound(n'/«)

from Theoren{]6 .

The proof of the Theorem builds on the next two lemmas. Thé lBreama compares the length 02(x) with
a tractable quantity. The second lemma upper-bounds thegedength ofc1(x) by a quantity which is of the
same order of magnitude as the upper-bound on redundancyenecaking for.

We need a few more definitions. Lgtbe the string of lengtm over alphabet,, defined by:

x; if x; < Koy
yi =
0 else
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For0 < j < K, note that the previously defined shortharidis the number of occurrences of symboln y.
The stringy is obtained fromx in the same way a& using the constant cutofk,,.
Let m? be the Krichevsky-Trofimov mixture over alphaljer, ..., K, }:

i} Ko T(nd + 1) I(&atl
my(y) = (H 1"(1/2)2 ) F(n_|_2K

) .
I PEXY

Stringx seems easier to encode thamsince it is possible to recovérfrom y. This observation does not however
warrant automatically that the length 62(x) is not significantly larger than any reasonable codewordtlerfior
y. Such a guarantee is provided by the following lemma.
Lemma 2:For every strings € N’;, the length of theC2(x) is not larger than-logm., (y).
Proof: [Lemma[:k] Lets® be the number of occurrences ®@fn y, that is the number of symbols ia that are

larger thank,. Let
Ty= J] m,+1/2).

i=1,%;=0

Then, the following holds:

n K, l(])
7Y H L +1/2) ) H (n?  +1/2)
(s

i=1yi= = 1Yz—J

* (Mrim J/%”),H( )

where (a) follows from the fact symbolk; is censored either becausg > K, (that isy, = 0) or because
x; = j < K, andi < i(j); (b) follows from the fact that for each< n such thaty; = 0, n{ , > Yoiei x> K,
while for eachj, 0 < j < K, for eachi <i(j), n?_; > ni_l.

From the last inequality, it follows that

Kn 1 Kn et
Qx| %) > H - ZJ K iﬁ F(Sro(f/;/ . H F(SJ<1+/;>/ : (1}) i+ Q)
§ ﬁ (n +1/2) | T(s" + 1/2) ﬁ (s +1/2) (H . )
I'(s741/2) I'(1/2) iy I(1/2) i 1+ S
= mZ(Y),
where the last inequality holds sin¢&’;), is a non-decreasing sequence. "

The next lemma shows that the expected lengtbfX.,,) is not larger than the upper-bound we are looking
for.
Lemma 3:For every sourcé € Aq.-«, the expected length of the encoding of the censored syni@d(sXi.,,))

satisfies:
20

mné logn (14 0(1)).
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Proof: [Lemmaﬂ:’,] Letl <a < bandfg > 0 but 3 # 1. Recall that we use binary logarithms and note that:

/ab e = {W} ’ @)

b loge b
log logz — 7 3
/a PE [(1—6)965 ©

The expected length of the Elias encoding of censored sysmbo{X}))is:

E[lCL (X)) = Z DX, 5K,
=2 2 M
j=lz=K;+1
<> ) Ml
j=lax=K;+1
<C Z log(z) 4+ 2log (1 +logz) + 1
xOl
j=lz=K;+1
Note that forz > 27
logz > 2log(1 4 logz) + 1,
so that the last sum is upper-bounded by
n 00 27
log x 2log(1 4+ logx) + 1 —logx
C .
IO D DD D o
j=lz=K;+1 j:Kj<27 =1
Using the expressions for the integrals above, we get:
Z 1ogaac < / 1Ogaxd:1:
o= 41 T K;
_ IOgK + loge
S nR; T

Thus, ask; = \j'/®, let us denote by, the expression

7
Z 2Z210g(1—i—10ggc)—i-1—1og:10

IOL
<27/ n) 2=1
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Now, we substitute3 by 1 — 1 in Equations[(4) and5) to obtain:

. 20 P logk, + 1%
E[ICL(X})[] < CDAx+ —= > R T
j=1 j
20 In Llogj +log \ + 08¢
< )\"'a_lj; )\a—ljké

(a— o1 -1

=2 x a

aloge
9 ntl (logz + alog A + ==
gODA+7C<C+/ ( )
« x

2C 1
= mna logn (1 + 0(1)) .

We may now complete the proof of Theonﬂ’n 8.

Proof: Remember that,, = {0,..., K,}. If p is a probability mass function over alphab¥t let p*™ be
the probability mass function over™ defined byp®"(x) =[], p(x;). Note that for every stringk € N't,

KXn KXn n o~
max > max x) > max P"(x)=px).
Jemax, PP(y) 2 max p ( )_PeAcﬂ (x) = p(x)

Together with Lemmﬂz and the bounds on the redundancy of tloléd¢sky-Trofimov mixture (See Krichevsky
1

and Trofimol), this implies:

K,
IC2 (x) | < —logp (x) + - logn + O(1).

Let L(x) be the length of the code produced by algorit@ensor i ngCode on the input stringk, then

sup  Ep [L(X1:n) —log1/P"(X1.0)]

PeAq —a
S sup EP [L(Xln) - log 1/13(X1n)]
PeAq —a
S P SAup IEP HCZ (Xln)|+10gﬁ(X1n)+|Cl (Xln)”
EAL —a
< sup (|C2 (x)] + log p (x)) + Lo Ep [IC1 (Xi1:n)]
x € z‘.foc
Anw 20 1
< 5 logn + mna logn (1+o0(1)).

Q=

[e3

The optimal value is\ = (4701) , for which we get:

4C’nl>3 logn (1+0(1)).

R Q" AL) < (
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VI. ADAPTIVE ALGORITHMS

The performance o€Censori ngCode depends on the fit of the cutoffs sequence to the tail behafidhe
envelope. From the proof of Theoreﬁ[n 8, it should be clear ith@ensor i ngCode is fed with a source which
marginal is light-tailed, it will be unable to take advargagf this, and will suffer from excessive redundancy.

In this section, a sequen¢@™),, of coding probabilities is said to kepproximately asymptotically adaptivath

respect to a collectiofA,,,),mer Of source classes if for eadh € U,,,c mAr, fOr eachA,,, such thatP € A,,:
D(P",Q")/R*(A},) € O(logn).

Such a definition makes sense, since we are consideringvaassirce classes which minimax redundancies are
large but stillo( 7). If each classA,, admits a non-trivial redundancy rate such that(A”) = (557 )» the

existence of an approximately asymptotically adaptivaieeqe of coding probabilities means that A, is feebly

universal (see the Introduction for a definition).

A. Pattern coding

First, the use ofpattern codingDrlitsky et al. {2004)[ Shanhi] (2006) leads to an almost mani adaptive

procedure for small values ef, that is heavy-tailed distributions. Let us introduce tlogion of pattern using the

example of stringx = “abracadabra”which is made ofn = 11 characters. The information it conveys can be

separated in two blocks:

1) adictionary A = A(x): the sequence of distinct symbols occurringxnin order of appearance (in the
example, A = (a,b,r, ¢, d)).
2) apatterny = ¢ (x) wherev); is the rank ofx; in the dictionaryA (here,) = 1231415123).

Now, consider the algorithm coding messagéy transmitting successively:

1) the dictionaryA,, = A (x) (by concatenating the Elias codes for successive symbols);

2) and the patter,, = ¢ (x), using a minimax procedure for coding patterns as suggdst¢@rlitsky et al-
(P00%) or[Shanir[(2006). Henceforth, the latter procedsreailed pattern coding.

Theorem 9:Let Q™ denote the coding probability associated with the codiggrthm which consists in applying
Elias penultimate coding to the dictionafy(x) of a stringx from N’} and then pattern coding to the pattefr(x).

Then for anya such thatl < o < 5/2, there exists a constaf depending orv and C' such that

RT(Q™, AL ) < Kn'*logn

Proof: For a given value of® and «, the Elias encoding of the dictionary uses on average
E[|A,]] = K'n® logn
bits (as proved in AppendiEV), for some constdiit depending onv and C.
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If our pattern coder reaches (approximately) the minimatkepa redundancy

P®"(‘I’1:n)]

R},‘ (¥y.,) = inf sup Ep [log (1)

qeM (Ni) PeMmy(Ny)

the encoding of the pattern uses on average

But in [Orlitsky et al. [2004), the authors show thag, (V1.,,) is upper-bounded by (y/n) and evenO (ng)
according tq Shanfif (20D4) (actually, these bounds are satsfied by the minimax individual pattern redundancy).

This remarkably simple method is however expected to haveoas performance when is large. Indeed, it is

proved in Garivigr[(2006) thaky, (¥1.,) is lower-bounded by .84 (%) ’ (see als§ Sharif (2006) and references

therein), which indicates that pattern coding is probablyaptimal as soon as is larger thars.

B. An approximately asymptotically adaptive censoringecod

Given the limited scope of the pattern coding method, we attkmpt to turn the censoring code into an adaptive
method, that is to tune the cutoff sequence so as to modebitirees statistics. As the cutoffs are chosen in such a
way that they model the tail-heaviness of the source, weaaniad a tail-heaviness estimation problem . In order to
focus on the most important issues we do not attempt to devekequential algorithm. The+ 1th cutoff K,
is chosen according to the numberdi$tinct symbolsZ,, (x) in x.

This is a reasonable method if the probability mass funatiefning the source statistidd' actually decays like
k%- Unfortunately, sparse distributions consistent with. may lead this project astray. If, for exampl&,),, is
a sequence of geometrically distributed random varialaled, if X, = {2%J then the distribution of the&X,, just
fits in Ag.-« but obviouslyZ,,(X1.,) = Z, (Y1.n) = O (logn).

Thus, rather than attempting to handlg-oA.-«, we focus on subclasses, oW, where
Wy = {P : PeEA -, 0< hmi%fkapl(k) < limsup k*P' (k) < oo} .
k

The rationale for tuning cutoff<,, using Z, comes from the following two propositions.
Proposition 7: For every memoryless sourde € W,,, there exist constants andc, such that for all positive
integern,
ent/e < E[Z,] < cont/?.
Proposition 8: The number of distinct symbolg,, output by a memoryless source satisfies a Bernstein ingéguali

E[Zn]

P{Zn < %E[Zn]} <e s o (6)

Proof: Note thatZ, is a function ofn independent random variables. Moreovgy, is a configuration

function as defined defined by Talagrp 995) siigér) is the size of a maximum subsequencecdfatisfying
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an hereditary property (all its symbols are pairwise did}inUsing the main theorem |n Boucheron et al. (2000),

this is enough to conclude. [ |

Noting thatZ,, > 1, we can derive the following inequality that will prove uskfater on:

1 1 1
E |:—Zoc1:| =E |:Za tlz,~1 E[znl] +E [Za 7lz,<1 E[znl]

< g P (%= 3 @)

We consider here a modified version@&nsor i ngCode that operates similarly, except that
1) the stringx is first scanned completely to determifg (x);

2) the constant cutoffs,, = Z, is used for all symbols;, 1 < i < n, wherey is some positive constant.

3) the value ofK,, is encoded using Elias penultimate code and transmitteaird€fl and C2.

Note that this version of the algorithm is not sequentialause of the initial scanning.

Algorithm 2 AdaptiveCensoringCode

cutoff— u Z,,(x) {Determination of the constant cutpff
counts— [1/2,1/2,..]
for ¢ from 1 to n do
if 2[¢] < cutoffthen
ArithCodgx[i], counts0 : cutoff)
else
ArithCodg0, counts0 : cutoff)
Cl—Cl-EliasCodéx|[i])
count$0] < count$0] + 1
end if
counts$z|i]] < countsz[i]] + 1
end for
C2— ArithCod«)

C -G

We may now assert.
Theorem 10:The algorithmAdapt i veCensor i ngCode is approximately asymptotically adaptive with respect
to Uyso Wa-
Proof: Let us again denote b@l(x) andC2(x) the two parts of the code-string associated with
Let L be the codelength of the output of algorithdapt i veCensor i ngCode.

For any sourceP:

Ep [ﬁ(le)} —H(X1) =Ep [ﬁ( )+ CL (X)) + |C2 (X1.m) 1—71213 )log 5

< )
~ K, 1
< Ep [£(Kn)| +Ep[ICL (X10)[] + Ep |12 (X1.0)| ngzﬂ(k) log 575

As function ¢ is increasing and equivalent fog at infinity, the first summand is obviousIzy(IEp [Z(Kn)D.
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Moreover, if P € W, there exist<C' such thatP! (k) < % and the second summand satisfies:

PlICL(Xun)[] =Ep | Y P'(k)(K)

E>K,+1
< nCEp / g(ZC) dI]
A’Vl xa
< nCEp | 1} / 08 (W) 4, (1 + o(1))
LKy~ 1 u®

=0 (né log n)

by Proposition [{7) and Inequalit{](7).

By TheoremDZ, every string € N’} satisfies

K’Vl K
- L <z :
x)| nZP logP1 B 5 logn + 2
Hence, the third summand is upper-bounded as:
& 1 1 Ep [K"]
E C2 (X1, —n P (k)lo < logn + 2
p 12 (Xun)l = 3 P(K)log 7775 g
=0 (né log n)
which finishes to prove the theorem. [ |
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APPENDIX |

UPPERBOUND ON MINIMAX REGRET

This sections contains the proof of the last inequality ireJrIem[IZ.

The minimax regret is not larger than the maximum regret ef Krichevsky-Trofimov mixture overmn-ary

alphabet over strings of lengthh The latter is classically upper-bounded by

o (Fn+3)0(5)
tog <r<n+%>r<%>) ’

as proved for example i (Csisk4r, 1p90).
Now the Stirling approximation to the Gamma function (§$eeit@ker and Watsdr], 1996, Chapter XlI) asserts

that for anyz > 0, there exists3 € [0, 1] such that
[(z) = 2" re T/ 2reTE
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Hence,

Ln+3)0(3)) 1\ m—-1, m
log (WZ)F(%Q)) = (n—i— T) 1og(n—|— 2)—n10g (n—i— 5) - logE (8)
—(n—i—%)—i—n—i—%—i—% )
—log V27 + log V27 + log V21 — log /7 (10)
B B2 B3

) 2@+l om )

for somepi, Ba, B € [0,1]. Now, (@)+{@b)+[1L) is smaller tha + log v/2 + (7) < 2, and [B) equals:

1
log n)

-1 n+%  m-—1 m—1 n+% m-1 m—
logn + | nlog i loge | + log —— + loge —
n 2

1T : 2
But
m m—1 m—1
nlog ; =nlog <1+ - 2 %) <nni%1oge< loge,
and
mz_llogn—%% +m2_110ge—m2_110gn= m2—110g (n—:Tm%)e <0

if (n+%2)e< 2 thatis2 + 1 <1 which is satisfied as soon as andn are both at least equal t For the

smaller values ofn,n € {2,...,8} the result can be checked directly.

APPENDIXII

LOWER BOUND ON REDUNDANCY FOR POWER.AW ENVELOPES

In this appendix we derive a lower-bound for power-law eapek using Theoreﬂ 5. Let denote a real larger
than 1. Let C' be such thalC''/® > 4. As the envelope function is defined kfi(i) = 1 A C/i®, the constant
c(00) = > 5y f(2i) satisfies

o Cl/a Ol/a C Ol/a 1-
a—1 2 - - 2 +(a—1)20‘< 2 )
The condition orC' anda warrants that, for sufficiently large we havec(p) > 1 (this is indeed true fop > C''/®).

We chooser = an= for a small enough to have

(I =X)Ce

: > 10,
(2a)™ ¢(o0)

f(2p) > 10

so that condition(1 — A\)n o is satisfied fom large enough. Then

(A")>Cp,n/\ez< #—e),

=1
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whereC(p,n, \, ¢) = W (1 — %,/%), and
C\2

1. n(d—=XNnf(2)
Z <5 T e 6> =

=1

N3

P
logn — %glogz#— <llogM —e>p

2 7 2ltec(co)e

N3

o 1 1-\)nC
logn—g(pIng—pﬂLO(p))Jr<§10g( ) —e>p

21tec(o0)e

Q=

S

n « 1 a 1 1 1
= logn——(ana loga—l——nalogn—ana—i—o(na))
2 2 o

+<llogw_e>an

2 7 2ltac(co)e

Q=

[« 1 (1—)\)71'0 1
= (5(1—10ga)+§10gm_€+0(1)>GTL .

For a small enough, this gives the existence of a positive cohstauch thatR+(A}%) > nni.

APPENDIXIII

PROOF OFPROPOSITION[]

Suppose that there exi&g, ¢ andC' such that for allk > ko, ;5 < px < k%

For0 <z < %, it holds that—(2log2)z < log(l — z) < —z and thus
e—(2log2)nm < (1 _ x)n <e

Hence (agy < § forall k > 2) :

oo

kgo(l—(1—k%)n) SIE[Zn]gkz_:l<1_ (1_]%> >
i (1—6_;;—2) SE[ZW] < 1+i (1—6_%)
_ k=2

/ (1—e %) dz < E[Z,] < 1+/ (1= 555 ) au.
ko 1

But, for anyt¢, K > 0, it holds that

/OO (1 - 6_%) dr = (xn)' " 1= 4
t

a o u1+1/a

Thus, by noting that integral

is finite, we get
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APPENDIX IV

EXPECTED SIZE OF DICTIONARY ENCODING

Assume that the probability mass functiom.) satisfiesp, < = ¢ for C > 0 and allk > 0. Then, using Elias
penultimate code for the first occurrence of each symboXml, the expected length of the binary encoding of
the dictionary can be upper-bounded in the following wayt Ug be equal tol if symbol k& occurs inX;.,, and

equal to0 otherwise.

E[|An] = ZUke
- iE[Um)]
B8

k:2

o0 (210g2)Cn
§2<1—|—/ 1—6 B )1og:cdx)
1
((

21og2 Cn 1 /(21°g2)cn 1—e ((210g2) Cn) )
log du
u

o ulJrl/oc

210g2)0n)1/a1 . Bl
og u1+1/o¢

for some positive constant.
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