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Coding on countably infinite alphabets
Stéphane Boucheron, Aurélien Garivier and Elisabeth Gassiat

Abstract

This paper describes universal lossless coding strategiesfor compressing sources on countably infinite alphabets.

Classes of memoryless sources defined by an envelope condition on the marginal distribution provide benchmarks

for coding techniques originating from the theory of universal coding over finite alphabets. We prove general upper-

bounds on minimax regret and lower-bounds on minimax redundancy for such source classes. The general upper

bounds emphasize the role of the Normalized Maximum Likelihood codes with respect to minimax regret in the

infinite alphabet context. Lower bounds are derived by tailoring sharp bounds on the redundancy of Krichevsky-

Trofimov coders for sources over finite alphabets. Up to logarithmic (resp. constant) factors the bounds are matching

for source classes defined by algebraically declining (resp. exponentially vanishing) envelopes. Effective and (almost)

adaptive coding techniques are described for the collection of source classes defined by algebraically vanishing

envelopes. Those results extend our knowledge concerning universal coding to contexts where the key tools from

parametric inference (Bernstein-Von Mises theorem, Wilkstheorem) are known to fail.

keywords: NML ; countable alphabets; redundancy; adaptive compression;minimax;

I. I NTRODUCTION

This paper is concerned with the problem of universal codingon a countably infinite alphabetX (say N+) as

described for example by Orlitsky and Santhanam (2004). Throughout this paper, a source on the countable alphabet

X is a probability distribution on the set of infinite sequences of symbols fromX . The symbolΛ will be used

to denote various classes of sources on the countably infinite alphabetX . The sequence of symbols emitted by

a source is denoted by theXN-valued random variableX = (Xn)n∈N
. If P denotes the distribution ofX, Pn

denotes the distribution ofX1:n = X1, ..., Xn, and we letΛn = {Pn : P ∈ Λ}. For any countable setX , let

M1(X ) be the set of all probability measures onX .

From Shannon noiseless coding Theorem (see Cover and Thomas, 1991), the binary entropy ofPn, H(X1:n) =

EP n [− log2 P (X1:n)] provides a tight lower bound on the expected number of binarysymbols needed to encode

outcomes ofPn. On the other hand, thanks to arithmetic coding (see for example Cover and Thomas, 1991), any

distributionQn ∈ M1(Xn) defines a prefix code, that encodes stringx using ⌈− log2Q
n(x)⌉ + 1 bits. If the

arithmetic code derived from distributionQn is used to encode outcomes fromPn, theexpected redundancyof Qn

(with respect toPn) is defined as the expected difference between the expected code lengthEP [− log2Q
n(X1:n)]

andH(X1:n). Up to a factorlog 2, it is equal to the Kullback-Leibler divergence (or relativeentropy)D(Pn, Qn) =
∑

x∈Xn Pn{x} log P n(x)
Qn(x) = EP n

[

log P n(X1:n)
Qn(X1:n

]

. From now on, unless it is necessary, we will not specify the base

of the logarithm.
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At large, universal coding attempts to develop sequences ofcoding probabilities(Qn)n so as to minimize expected

redundancy over a whole class of sources. Technically speaking, several distinct notions of universality have been

considered in the literature. A functionρ(n) is said to be a strong (respectively weak)universal redundancy

rate for a class of sourcesΛ if there exists a sequence of coding probabilities(Qn)n such that for alln,

R+(Qn,Λn) = supP∈ΛD(Pn, Qn) ≤ ρ(n) (respectively for allP ∈ Λ, there exists a constantC(P ) such

that for alln, D(Pn, Qn) ≤ C(P )ρ(n)). A redundancy rateρ(n) is said to be non-trivial iflimn ρ(n) = 0. Finally

a classΛ of sources will be said to befeebly universalif there exists a single sequence of coding probabilities

(Qn)n such thatsupP∈Λ limn
1
nD(Pn, Qn) = 0 (Note that this notion of feeble universality is usually called weak

universality, (see Kieffer, 1978, Györfi et al., 1994), we deviate from the tradition, in order to avoid confusion with

the notion of weak universal redundancy rate).

As far as finite alphabets are concerned, it is well-known that the class of stationary ergodic sources is feebly

universal. This is witnessed by the performance of Lempel-Ziv codes (see Cover and Thomas, 1991). It is also

known that the class of stationary ergodic sources over a finite alphabet does not admit any non-trivial weak

universal redundancy rate (Shields, 1993). On the other hand, fairly large classes of sources admitting strong

universal redundancy rates and non-trivial weak universalredundancy rates have been exhibited (see Barron et al.,

1998, Catoni, 2004, and references therein).

In this paper, we will mostly focus on strong universal redundancy rates for classes of sources over infinite

alphabets. Note that in the latter setting, even feeble universality should not be taken for granted: the class of

memoryless processes onN+ is not feebly universal.

Kieffer (1978) characterized feebly universal classes, and the argument was simplified by Györfi et al. (1994).

Recall that the entropy rateH(P ) of a stationary source is defined aslimnH(Pn)/n.

Proposition 1: A classΛ of stationary sources over a countable alphabetX is feebly universal if and only if

there exists a probability distributionQ ∈ M1(X ) such that for everyP ∈ Λ with finite entropy rate,Q satisfies

EP log 1
Q(X1) <∞ or equivalentlyD(P 1, Q) <∞.

For sources over countably infinite alphabets, the characterization of strong universality has not yet reached such a

degree of maturity.

The maximal redundancyof Qn with respect toΛ is defined by:

R+(Qn,Λn) = sup
P∈Λ

D(Pn, Qn) .

The infimum ofR+(Qn,Λn) is called theminimax redundancywith respect toΛ:

R+(Λn) = inf
Qn∈M1(Xn)

R+(Qn,Λn).

It is the smallest strong universal redundancy rate forΛ. When finite, it is often called the information radius ofΛn.

Assume that a subset ofΛ is parametrized byΘ and thatΘ can be equipped with (prior) probability distributions

W in such a way thatθ 7→ Pn
θ {A} is a random variable for everyA ⊆ Xn. A convenient way to derive lower

DRAFT December 22, 2006



3

bounds onR+(Λn) consists in using the relationEW [D(Pn
θ , Q

n)] ≤ R+(Qn,Λn).

The sharpest lower bound is obtained by optimizing the priorprobability distributions (assuming(Pn
θ )θ∈Θ = Λn

taking the so-called least favorable prior in order to avoidconfusion with the notion of weak universal redundancy

rate), it is called the maximin bound

sup
W∈M1(Θ)

inf
Qn∈M1(Xn)

EW [D(Pn
θ , Q

n)].

It has been proved in a series of papers (Gallager, 1968, Davisson, 1973, Haussler, 1997) (and could also have

been derived from a general minmax theorem by Sion, 1958) that such a lower bound is tight.

Theorem 1:Let Λ denote a class of sources over some finite or countably infinite alphabet. For eachn, the

minimax redundancy overΛ coincides with

R+(Λn) = sup
Θ,W∈M1(Θ)

inf
Qn∈M1(Xn)

EW [D(Pn
θ , Q

n)] ,

whereΘ runs over all parametrizations of countable subsets ofΛ.

If the setΛn = {Pn : P ∈ Λ} is not pre-compact with respect to the topology of weak convergence, then both

sides are infinite. Otherwise the maximin and minimax average redundancies are finite and coincide; moreover, the

minimax redundancy is achieved by the mixture coding distributionQn(.) =
∫

Θ P
n
θ (.)W (dθ) whereW is the least

favorable prior andΘ may be uncountable.

Another approach to universal coding considersindividual sequences(see Feder et al., 1992, Cesa-Bianchi and

Lugosi, 2006, and references therein). Let theregret of a coding distributionQn on stringx ∈ N
n
+ with respect

to Λ be supP n∈Λ logPn(x)/Qn(x). Taking the maximum with respect tox ∈ N
n
+, and then optimizing over the

choice ofQn, we get theminimax regret:

R∗(Λn) = inf
Qn∈M1(Xn)

max
x∈Nn

+

sup
P∈Λ

log
Pn(x)

Qn(x)
.

In order to provide proper insight, let us recall the preciseasymptotic bounds on minimax redundancy and regret

for memoryless sources over finite alphabets (see Clarke andBarron, 1990; 1994, Barron et al., 1998, Xie and

Barron, 1997; 2000, Orlitsky and Santhanam, 2004, Catoni, 2004, Szpankowski, 1998, and references therein).

Theorem 2:Let X be an alphabet ofm symbols, andΛ denote the class of memoryless processes onX then

lim
n
R+(Λn)− m− 1

2
log

n

2πe
= log

(

Γ(1/2)m

Γ(m/2)

)

lim
n
R∗(Λn)− m− 1

2
log

n

2π
= log

(

Γ(1/2)m

Γ(m/2)

)

.

For all n, if m < n :

R∗(Λn) ≤ m− 1

2
logn+ 2 .

The last inequality is checked in the Appendix .

Remark 1:The set of memoryless sources over alphabetX = {1, ...,m} is conveniently parametrized byΘ =

{θ : θ ∈ Rm−1
+ ,

∑m−1
i=1 θ[i] ≤ 1}. To alleviate notations, we agree onθ[m] = 1−∑m−1

j=1 θ[j] . For any stringx
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from X , let nj =
∑n

i=1 1xi=j thenPn
θ

is defined by the probability mass function

Pn
θ (x) =

m
∏

j=1

(θ[j])nj .

Jeffrey’s prior has a densitywJ(θ) proportional to the square root of the Fisher InformationJ(θ) where:

√

J(θ) =
m
∏

j=1

(θ[j])−1/2 .

Clarke and Barron (1994) have proved that Jeffrey’s prior isasymptotically least favorable:

letting Qn
wJ

(x) =

∫

Θ

Pn
θ (x)dwJ (θ)

then

lim
n

(EwJ

[

D(Pn
θ , Q

n
wJ

)
]

− m− 1

2
log

n

2πe

)

= log

(

Γ(1/2)m

Γ(m/2)

)

.

Moreover, a sequence of modifications of Jeffrey’s prior asymptotically achieves minimax redundancy (See Xie and

Barron, 1997).

Remark 2:The phenomenon pointed out in Theorem 2 holds not only for theclass of memoryless sources over

a finite alphabet but also for classes of sources that are smoothly parametrized by finite dimensional sets (see again

Clarke and Barron, 1990; 1994, Barron et al., 1998, Xie and Barron, 1997; 2000, Orlitsky and Santhanam, 2004,

Catoni, 2004).

Theorem 2 can be considered as an information-theoretical refinement of a classical result in parametric statistics :

the asymptotics of the maximin redundancy reflects the asymptotic normality of the rescaled posterior measure as

asserted by the (Laplace-) Bernstein-Von Mises Theorem andthe connexion between the entropy and the variance

of Gaussian measures (see Clarke and Barron, 1990; 1994, Barron et al., 1998, van der Vaart, 1998).

Our interest in the coding problem for infinite alphabets stems partly from the fact that in non-parametric settings,

the Bernstein-von Mises Theorem does not hold in full generality (See Cox, 1993, Freedman, 1999, Ghosh and

Ramamoorthi, 2003, and references therein.).

Let us pay further attention to the minimax regret. For a source classΛ, for everyx ∈ Xn, let the maximum

likelihood p̂(x) be defined assupP∈Λ P
n(x). If

∑

x∈Nn
+
p̂(x) < ∞, the Normalized Maximum Likelihoodcoding

probability is well-defined and given by

Qn
NML (x) =

p̂(x)
∑

x∈Nn
+
p̂(x)

.

Shtarkov (1987) showed that theNormalized Maximum Likelihoodcoding probability achieves the same regret over

all strings of lengthn and that this regret coincides with theminimax regret:

R∗(Λn) = log
∑

x∈Nn
+

p̂(x).

The maximum regret achieved by the mixture defined by Jeffrey’s prior is within a non-null constant from the
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minimax regret. Moreover, Xie and Barron (1997) have shown that:

D
(

Qn
wJ
, Qn

NML

)

→ 0 .

This holds for a variety of classes of sources smoothly parametrized by finite-dimensional sets (Barron et al., 1998).

Again, the relation between minimax regret and minimax redundancy for the set of memoryless sources over a

finite alphabet can be linked to another classical result from asymptotic statistics. Let̂θ ∈ Θ denote the parameter

that achieves maximum likelihood onx. Simple algebra shows that

D(Qn
wJ
, Qn

NML ) = R∗(Λn)−R−(Λn)

−
∫

Θ

wJ (θ)EP n
θ

[

log
Pn

θ̂
(X1:n)

Pn
θ

(X1:n)

]

dθ.

Then, by a theorem due to Wilks (see van der Vaart, 1998), the last summand converges toward one half the

expectation of aχ2
m−1 distributed random variable (using natural logarithms on both sides).

Memoryless sources over finite alphabets are special cases of envelope classes. The latter will be of primary

interest.

Definition 1: Let f be a mapping fromN+ to [0, 1]. The envelope classΛf defined by functionf is the collection

of stationary memoryless sources with first marginal distribution dominated byf :

Λf =
{

P : ∀x ∈ N, P 1{x} ≤ f(x) , andP is stationary and memoryless.
}

.

We will be concerned with the following topics.

1) Understanding general structural properties of minimaxredundancy and minimax regret.

2) Characterizing those source classes that have finite minimax regret.

3) Quantitative relations between minimax redundancy or regret and integrability of the envelope function.

4) Developing effective coding techniques for source classes with known non-trivial minimax redundancy rate.

5) Developing adaptive coding schemes for collections of source classes that are too large to enjoy even a weak

redundancy rate.

The paper is organized as follows. Section II describes somestructural properties of minimax redundancies and

regrets for classes of stationary memoryless sources. Those properties include monotonicity and sub-additivity.

Proposition 5 characterizes those source classes that admit finite regret. This characterization emphasizes the role

of Shtarkov Normalized Maximum Likelihood coding probability. Proposition 6 describes a simple source class for

which the minimax regret is infinite, while the minimax redundancy is finite. Finally Proposition 3 asserts that such

a contrast is not possible for the so-called envelope classes.

In Section III, Theorems 4 and 5 provide quantitative relations between the summability properties of the envelope

function and minimax regrets and redundancies. Those results build on the non-asymptotic bounds on minimax

redundancy derived by Xie and Barron (1997).

Section IV focuses on two kinds of envelope classes. This section serves as a benchmark for the two main

December 22, 2006 DRAFT
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results from the preceding section. In Subsection IV-A, lower-bounds on minimax redundancy and upper-bounds on

minimax regret for classes defined by envelope functionk 7→ 1 ∧ Ck−α are described. Up to a factorlogn those

bounds are matching. In Subsection IV-B, lower-bounds on minimax redundancy and upper-bounds on minimax

regret for classes defined by envelope functionk 7→ 1 ∧ C exp−αk are described. Up to a multiplicative constant,

those bounds coincide and grow likelog2 n.

In Sections V and VI, we turn to effective coding techniques geared toward source classes defined by power-law

envelopes. In Section V, we elaborate on the ideas embodied in Proposition 4 from Section II, and combine mixture

coding and Elias penultimate code (Elias, 1975) to match theupper-bounds on minimax redundancy described in

Section IV. One of the messages from Section IV is that the union of envelope classes defined by power laws,

does not admit a weak redundancy rate that grows at a rate slower thann1/β for any β > 1. In Section VI, we

finally develop an adaptive coding scheme for the union of envelope classes defined by power laws. This adaptive

coding scheme combines the censoring coding technique developed in the preceding subsection and an estimation

of tail-heaviness.

II. STRUCTURAL PROPERTIES OF THE MINIMAX REDUNDANCY AND MINIMAX REGRET

Propositions 3 and 4 are sanity-check statements. In order to prove them, we will use the following proposition

which emphasizes the role of theNML coder with respect to the minimax regret. At best, it is a comment on

Shtarkov’s original work (Shtarkov, 1987, Haussler and Opper, 1997).

Proposition 2: Let Λ be a class of stationary memoryless sources over a countablyinfinite alphabet, the minimax

regret with respect toΛn, R∗(Λn) is finite if and only if the normalized maximum likelihood (Shtarkov) coding

probabilityQn
NML is well-defined and given by

Qn
NML (x) =

p̂(x)
∑

y∈Xn p̂(y)

wherep̂(x) = supP∈Λ P
n(x).

Note that the definition ofQn
NML does not assume either that the maximum likelihood is achieved or that it is

uniquely defined.

Proof: The fact that ifQn
NML is well-defined, the minimax regret is finite and equal to

log





∑

y∈Xn

p̂(y)





is the fundamental observation of Shtarkov (1987).

On the other hand, ifR∗(Λn) <∞, there exists a probability distributionQn onXn and a finite numberr such

that for all x ∈ Xn,

p̂(x) ≤ r ×Qn(x) ,
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summing gives
∑

x∈Xn

p̂(x) ≤ r <∞ .

Proposition 3: Let Λ denote a class of sources, then the minimax redundancyR+(Λn) and the minimax regret

R∗(Λn) are non-decreasing functions ofn.

Proof: As far asR+ is concerned, by Theorem 1, it is enough to check that the maximin (mutual information)

lower bound is non-decreasing.

For any prior distributionW on a parameter setΘ (recall that{Pθ : θ ∈ Θ} ⊆ Λ, and that the mixture coding

probabilityQn is defined byQn(A) = EW [Pn
θ (A)])EW

[

D(Pn+1
θ , Qn+1)

]

= I(θ;Xn+1
1 ) = I (θ; (Xn

1 , Xn+1)) ≥ I(θ;Xn
1 ) = EW [D(Pn

θ , Q
n)] .

Let us now consider the minimax regret. It is enough to consider the case whereR∗(Λn) is finite. Thus we may

rely on Proposition 2. Letn andm be two positive integers. Letǫ be a small positive real. For any stringx ∈ Xn,

let Q ∈ Λ, be such thatQ{x} ≥ p̂(x)(1 − ǫ). Then

p̂(xx′) ≥ Q(x)×Q(x′ | x)

≥ p̂(x)(1 − ǫ)×Q(x′ | x) .

Summing over all possiblex′ ∈ X we get

∑

x′

p̂(xx′) ≥ p̂(x)(1 − ǫ) .

Summing now over allx ∈ Xn andx′ ∈ X ,
∑

x∈Xn,x′∈X

p̂(xx′) ≥
∑

x∈Xn

p̂(x)(1 − ǫ) .

So that by lettingǫ tend to0,
∑

x∈Xn+1

p̂(x) ≥
∑

x∈Xn

p̂(x) .

Note that the proposition holds even thoughΛ is not a collection of memoryless sources. This Propositioncan be

easily completed when dealing with memoryless sources.

Proposition 4: If Λ is a class of stationary memoryless sources, then the functionsn 7→ R+(Λn) andn 7→ R∗(Λn)

are sub-additive.

Proof: Here again, given Theorem 1, in order to establish sub-additivity for R+, it is enough to check

the property for the maximin lower bound. Letn,m be two positive integers, andW be any prior onΘ (with

{Pθ : θ ∈ Θ} ⊆ Λ). As sources fromΛ are memoryless,X1:n andXn+m
n+1 are independent conditionally onθ
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and thus

I
(

Xn+m
n+1 ; θ|Xn

1

)

= H
(

Xn+m
n+1 |Xn

1

)

−H
(

Xn+m
n+1 |Xn

1 , θ
)

= H
(

Xn+m
n+1 |Xn

1

)

−H
(

Xn+m
n+1 |θ

)

≤ H
(

Xn+m
n+1

)

−H
(

Xn+m
n+1 |θ

)

= I
(

Xn+m
n+1 ; θ

)

.

Hence, using the fact that under eachPθ, the process(Xn)n∈N+ is stationary:

I
(

Xn+m
1 ; θ

)

= I (Xn
1 ; θ) + I

(

Xn+m
n+1 ; θ|Xn

1

)

≤ I (Xn
1 ; θ) + I

(

Xn+m
n+1 ; θ

)

= I (Xn
1 ; θ) + I (Xm

1 ; θ) .

Let us now check the sub-additivity of minimax regret. For any ǫ > 0, for x ∈ Xn+m, let P ∈ Λ be such that

(1− ǫ)p̂(x) ≤ Pn+m(x). As for x ∈ Xn andx′ ∈ Xm, Pn+m(xx′) = Pn(x)× Pm(x′), we have for anyǫ > 0,

and anyx ∈ Xn,x′ ∈ Xm

(1 − ǫ)p̂(xx′) ≤ p̂(x) × p̂(x′) .

Hence, lettingǫ tend to0, and summing over allx ∈ Xn+m:

R∗
(

Λn+m
)

= log
∑

x∈Xnx′∈Xm

p̂ (xx′)

≤ log
∑

x∈Xn

p̂(x) + log
∑

x∈Xm

p̂ (x′)

= R∗ (Λn) +R∗ (Λm) .

Remark 3:Counter-examples witness the fact that subadditivity of redundancies does not hold in full generality.

The Fekete Lemma (see Dembo and Zeitouni, 1998) leads to:

Corollary 1: Let Λ denote a class of stationary memoryless sources over a countable alphabet. For both minimax

redundancyR+ and minimax regretR∗,

lim
n→∞

R+ (Λn)

n
= inf

n∈N+

R+ (Λn)

n
≤ R+

(

Λ1
)

,

and

lim
n→∞

R∗ (Λn)

n
= inf

n∈N+

R∗ (Λn)

n
≤ R∗

(

Λ1
)

.
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Hence, in order to prove thatR+ (Λn) <∞ (respectivelyR∗ (Λn) <∞), it is enough to check thatR+
(

Λ1
)

<∞
(respectivelyR∗

(

Λ1
)

<∞).

The following Proposition combines Propositions 2, 3 and 4.It can be rephrased as follows: a class of memoryless

sources admits a non-trivial strong minimax regret if and only if Shtarkov NML coding probability is well-defined

for n = 1.

Proposition 5: Let Λ be a class of stationary memoryless sources over a countablyinfinite alphabet. Let̂p be

defined byp̂(x) = supP∈Λ P{x}. The minimax regret with respect toΛn is finite if and only if the normalized

maximum likelihood (Shtarkov) coding probability is well-defined and :

R∗(Λn) <∞⇔
∑

x∈N+

p̂(x) <∞.

Proof: The direct part follows from Proposition 2.

For the converse part, if
∑

x∈N+
p̂(x) =∞, thenR∗(Λ1) =∞ and from Proposition 3,R∗(Λn) =∞ for every

positive integern.

When dealing with smoothly parametrized classes of sourcesover finite alphabets (see Barron et al., 1998, Xie

and Barron, 2000) or even with the massive classes defined by renewal sources (Csiszár and Shields, 1996), the

minimax regret and minimax redundancy are usually of the same order of magnitude. This can not be taken for

granted when dealing with classes of stationary memorylesssources over a countable alphabet.

Proposition 6: Let f be a positive, strictly decreasing function defined onN such thatf(1) < 1. For k ∈ N, let

pk be the probability mass function onN defined by:

pk(l) =



















1− f(k) if l = 0;

f(k) if l = k;

0 otherwise.

Let Λ1 = {p1, p2, . . .}, let Λ be the class of stationary memoryless sources with first marginal Λ1. The finiteness

of the minimax redundancy with respect toΛn
f depends on the limiting behavior off(k) log k: for every positive

integern:

f(k) log k →k→∞ ∞⇔ R+ (Λn) =∞ .

Remark 4:Whenf(k) = 1
log k , the minimax redundancyR+(Λn

f ) is finite for all n. Note, however that this does

not warrant the existence of a non-trivial strong universalredundancy rate. However, as
∑

k f(k) = ∞, minimax

regret is infinite by Proposition 5.

A similar result appears in the discussion of Theorem 3 in (Haussler and Opper, 1997) where classes with finite
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minimax redundancy and infinite minimax regret are called irregular.

We will be able to refine those observations after the statement of Corollary 2.

Proof: Let us first prove the direct part. Assume thatf(k) log k →k→∞ ∞. In order to check thatR+(Λ1) =

∞, we resort to the mutual information lower bound (Theorem 1) and describe an appropriate collection of Bayesian

games.

Let m be a positive integer and letθ be uniformly distributed over{1, 2, . . . ,m}. LetX be distributed according

to pk conditionally onθ = k. Let Z be the random variable equal to1 if X = θ and equal to0 otherwise. Obviously,

H(θ|X,Z = 1) = 0; moreover, asf is assumed to be non-increasing,P (Z = 0|θ = k) = 1 − f(k) ≤ 1 − f(m)

and thus:

H(θ|X) = H(Z|X) +H(θ|Z,X)

≤ 1 + P (Z = 0)H(θ|X,Z = 0)

+P (Z = 1)H(θ|X,Z = 1)

≤ 1 + (1− f(m)) logm.

Hence,

R+(Λ1) ≥ I(θ,X)

≥ logm− (1− f(m)) logm

= f(m) logm

which grows to infinity withm, so that as announcedR+(Λ1) =∞.

Let us now prove the converse part. Assume that the sequence(f(k) log k)k∈N+ is upper-bounded by some

constantC. In order to check thatR+(Λn) <∞, for all n, by Proposition 4, it is enough to check thatR+(Λ1
f ) <∞,

and thus, it is enough to exhibit a probability distributionQ overX = N such thatsupP∈Λ1 D(P,Q) <∞.

Let Q be defined byQ(k) = A/((1∨ (k(log k)2)) for k ≥ 2, Q(0), Q(1) > 0 whereA is a normalizing constant

that ensures thatQ is a probability distribution overX .

Then for anyk > 3 (which warrantsk(log k)2 > 1), letting Pk be the probability defined by the probability

mass functionpk:

D(Pk, Q)

= (1− f(k)) log
(1− f(k))

Q(0)
+ f(k) log

(

f(k)k(log k)2

A

)

≤ − logQ(0) + C + f(k)
(

2 log(2)(k)− log(A)
)

≤ C + log
C2

AQ(0)
.
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This is enough to conclude that

R+(Λ1) ≤
(

C + log
C2

AQ(0)

)

∨D(P1, Q) <∞ .

Remark 5:Note that the coding probability used in the proof of the converse part of the proposition corresponds

to one of the simplest prefix codes for integers proposed by Elias (1975).

The following theorem shows that, as far as envelope classesare concerned, minimax redundancy and minimax

regret are either both finite of both infinite.

Theorem 3:Let f be a non-negative function fromN+ to [0, 1], let Λf be the class of stationary memoryless

sources defined by envelopef. Then

R+
(

Λn
f

)

<∞⇔ R∗
(

Λn
f

)

<∞ .

Remark 6:We will refine this result after the statement of Corollary 2.

Recall from Proposition 5 thatR∗
(

Λn
f

)

<∞⇔∑

k∈N+
f(k) <∞.

Proof:

In order to check that
∑

k∈N+

f(k) =∞⇒ R+
(

Λn
f

)

=∞ ,

it is enough to check that if
∑

k∈N+
f(k) = ∞, the envelope class contains an infinite collection of mutually

singular sources.

Let the infinite sequence of integers(hi)i∈N be defined recursively byh0 = 0 and

hi+1 = min

{

h :

h
∑

k=hi+1

f(k) > 1

}

.

The memoryless sourcePi is defined by its first marginalP 1
i which is given by

P 1
i (m) =

f(m)
∑hi+1

k=hi+1 f(k)
for m ∈ {pi + 1, ..., pi+1} .

Taking any prior with infinite Shannon entropy over the{P 1
i ; i ∈ nN+} shows that

R+
(

{P 1
i ; i ∈ N+}

)

=∞ .
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III. E NVELOPE CLASSES

The next two theorems establish quantitative relations between minimax redundancy and regrets and the shape

of the envelope function. The first one holds for any class of memoryless sources.

Theorem 4:If Λ is a class of memoryless sources, let the tail functionF̄Λ1 be defined byF̄Λ1 (u) =
∑

k>u p̂(k),

then:

R∗(Λn) ≤ inf
u:u≤n

[

nF̄Λ1(u) log e+
u− 1

2
logn+

]

+ 2 .

Choosing a sequence(un)n of positive integers in such a way thatun → ∞ while un/n → 0, this theorem

allows to complete Proposition 5.

Corollary 2: Let Λ denote a class of memoryless sources, then the following holds:

R∗(Λn) <∞⇔ R∗(Λn) = o(n) andR+(Λn) = o(n) ,

Remark 7:We may now have a second look at Proposition 6 and Theorem 3. Inthe setting of Proposition 6,

this Corollary asserts that if
∑

k f(k) <∞, a non-trivial strong redundancy rate exists.

This corollary complements Theorem 3 by asserting that envelope classes have either non-trivial strong redundancy

rates or infinite minimax redundancies.

Remark 8:Again, this statement has to be connected with related propositions from Haussler and Opper (1997).

The last paper establishes bounds on minimax redundancy using geometric properties of the source class under

Hellinger metric. For example, Theorem 4 in (Haussler and Opper, 1997) relates minimax redundancy and the metric

dimension of the setΛn with respect to the Hellinger metric (which coincides withL2 metric between the square

roots of densities) under the implicit assumption that sources lying in small Hellinger balls have finite relative

entropy (so that upper bounds in Lemma 7 there are finite). Envelope classes may not satisfy this assumption.

Hence, there is no easy way to connect Theorem 4 and results from (Haussler and Opper, 1997).

Proof: (Theorem 4.) Any integeru defines a decomposition of a stringx ∈ N
n
+ into two non-contiguous

substrings: a substringz made of them symbols fromx that are larger thanu, and one substringy made of the
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n−m symbols that are smaller thanu.

∑

x∈Nn
+

p̂(x)

(a)
=

n
∑

m=0

(

n

m

)

∑

z∈{u,...}m

∑

y∈{1,2,...,u}n−m

p̂ (zy)

(b)

≤
n
∑

m=0

(

n

m

)

∑

z∈{u,...}m

m
∏

i=1

p̂ (zi)
∑

y∈{1,2,...,u}n−m

p̂ (y)

(c)

≤
(

n
∑

m=0

(

n

m

)

F̄Λ1(u)m

)





∑

y∈{1,2,...,u}n

p̂ (y)





(d)

≤
(

1 + F̄Λ1 (u)
)n

2
u−1
2 log n+2 .

Equation (a) is obtained by reordering the symbols in the strings, Inequalities (b) and (c) follow respectively from

Proposition 4 and Proposition 3. Inequality (d) is a direct consequence of the last inequality in Theorem 2.

Hence,

R∗(Λn) ≤ n log
(

1 + F̄Λ1 (u)
)

+
u− 1

2
logn+ 2

≤ nF̄Λ1(u) log e+
u− 1

2
logn+ 2

The next theorem complements the upper-bound on minimax regret for envelope classes (Theorem 4). It describes

a general lower bound on minimax redundancy for envelope classes.

Theorem 5:Let f denote a non-increasing, summable envelope function. For any integerp, let c(p) =
∑p

k=1 f(2k).

Let c(∞) =
∑

k≥1 f(2k). Assume furthermore thatf satisfies property:c(∞) > 1. Let n ∈ N+, p ∈ N+, ǫ > 0

andλ ∈]0, 1[ be such thatc(p) > 1 and (1− λ)n f(2p)
c(p) > 10

ǫ . Then

R+(Λn
f ) ≥ C(p, n, λ, ǫ)

p
∑

i=1

(

1

2
log

n (1− λ) πf(2i)

2c(p)e
− ǫ
)

, (1)

whereC(p, n, λ, ǫ) = 1

1+ c(p)

λ2nf(2p)

(

1− 4
π

√

10c(p)
(1−λ)ǫnf(2p)

)

.

Before proceeding to the proof, let us mention the followingnon-asymptotic bound from Xie and Barron (1997).

Let m∗
n denote the Krichevsky-Trofimov distribution over{0, 1}n. That is, for anyx ∈ {0, 1}n, such thatn1 =

∑n
i=1 xi andn0 = n− n1

m∗
n (x) = π

∫

[0,1]

θn1−1/2(1− θ)n0−1/2dθ.

Lemma 1: (Xie and Barron, 1997, Lemma 1) For anyε > 0, there exists ac(ε) such that forn > 2c(ε) the

following holds uniformly overθ ∈ [c(ε)/n, 1− c(ε)/n]:
∣

∣

∣

∣

D (pn
θ ,m

∗
n)− 1

2
log

n

2πe
− log π

∣

∣

∣

∣

6 ε.
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The boundc(ε) can be chosen as small as5/ε.

Proof: Let f, n, p, ǫ andλ be as in the statement of the theorem. Let us first define a priorprobabilityW on

Λ1
f . For each integeri between1 andp, let µi be defined as

µi =
f(2i)

c(p)
.

Let θ = (θi)1≤i≤p be a collection of independent random variables each distributed according to a Beta distribution

with parameters(1/2, 1/2), hence the prior probabilityW has densityw given by

w(θ) =
1

πp

p
∏

i=1

(

θ
−1/2
i (1− θi)

−1/2
)

.

The memoryless source parametrized byθ is defined by the probability mass functionpθ(2i − 1) = θi µi and

pθ(2i) = (1− θi)µi for i : 1 ≤ i ≤ p andpθ(j) = 0 for j > 2i. Thanks to the conditionc(p) > 1, this probability

mass function satisfies the envelope condition.

For i ≤ p, let the random variableNi (resp.N0
i ) be defined as the number of occurrences of{2i− 1, 2i} (resp.

2i) in the sequencex. Let N (resp.N0) denote the random vectorN1, . . . , Np (resp.N0
1 , . . . , N

0
p ). If a sequence

x from {1, . . . , 2p}n containsni = Ni(x) symbols from{2i− 1, 2i} for eachi ∈ {1, . . . , p}, and if for each such

i, the sequence containsn0
i = N0

i (x) (n1
i ) symbols equal to2i− 1 (resp.2i) then

Pn
θ

(x) =

p
∏

i=1

(

µni

i θ
n0

i

i (1 − θi)
n1

i

)

.

Note that when the sourceθ is picked according to the priorW and the sequenceX1:n picked according toPn
θ
,

the random vectorN is multinomially distributed with parametersn and(µ1, µ2, . . . , µp), so the distribution ofN

does not depend on the outcome ofθ. Moreover, conditionally onN, the conditional probabilityPn
θ
{· | N} is a

product distribution:

Pn
θ

(x | N) =

p
∏

i=1

(

θ
n0

i

i (1− θi)
n1

i

)

.

In statistical parlance, the random vectorsN andN0 form a sufficient statistic forθ.

Let Q∗ denote the mixture distribution onNn
+ induced byW :

Q∗(x) = EW [Pn
θ

(x)] ,

and, for eachn, let m∗
n denote the Krichevsky-Trofimov mixture over{0, 1}n, then

Q∗(x) =

p
∏

i=1

(

µni

i m∗
ni

(0n0
i 1n1

i )
)

.

For a given value ofN, the conditional probabilityQ∗ {· | N} is also a product distribution:

Q∗ {x | N} =

p
∏

i=1

m∗
Ni

(0n0
i 1n1

i ) ,
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so, we will be able to rely on:
Pn

θ
(x)

Q∗(x)
=
Pn

θ
(x | N)

Q∗(x | N)
.

In the sequel, we letPn
θ
{· | N} (Q∗{· | N}) denote the conditional distribution ofPn

θ
(Q∗

n) on strings with

composition given by vectorN.

Now, the average redundancy ofQ∗ with respect toPn
θ

can be rewritten in a handy way.EW [D (Pn
θ
, Q∗)] = EW

[EP n
θ

[

log
Pn

θ
(X1:n | N)

Q∗(X1:n | N)

]]

from the last equation,

= EW

[EP n
θ

[EP n
θ

[

log
Pn

θ
(X1:n | N)

Q∗(X1:n | N)

∣

∣N

]]]

= EW

[EP n
θ

[D (Pn
θ

(· | N), Q∗
n(· | N))]

]

= EW [EN [D (Pn
θ

(· | N), Q∗(· | N))]]

as the distribution ofN does not depend onθ,

= EN [EW [D (Pn
θ (· | N), Q∗(· | N))]]

by Fubini’s Theorem.

We may developD (Pn
θ

(· | N), Q∗(· | N)) for a given value ofN = (n1, n2, . . . , np). As bothPn
θ

(· | N) and

Q∗(· | N) are product distributions on
∏p

i=1 ({2i− 1, 2i}ni) , we haveEW [D (Pn
θ (· | N), Q∗(· | N))] = EW

[

p
∑

i=1

D
(

Pni

θi
,m∗

ni

)

]

=

p
∑

i=1

Eθi

[

D
(

Pni

θi
,m∗

ni

)]

.

The minimal average redundancy ofΛn
f with respect to the mixing distributionW is thus finally given by:EW [D (Pn

θ , Q
∗)] = EN

[

p
∑

i=1

Eθi

[

D
(

Pni

θi
,m∗

ni

)]

]

=

p
∑

i=1

EN

[Eθi

[

D
(

Pni

θi
,m∗

ni

)]]

=

p
∑

i=1

n
∑

ni=0

(

n

ni

)

µni

i (1 − µi)
n−niEθi

[

D
(

Pni

θi
,m∗

ni

)]

. (2)

Hence, the minimal redundancy ofΛn
f with respect to prior probabilityW is a weighted average of redundancies

of Krichevsky-Trofimov mixtures over binary strings with different lengths.

At some place, we will use the Chebychef-Cantelli inequality (see Devroye et al., 1996) which asserts that for

a square-integrable random variable:

Pr {X ≤ E[X ]− t} ≤ Var(X)

Var(X) + t2
.
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Besides, note that∀ǫ < 1
2 ,

∫ 1−ǫ

ǫ

dx

π
√

x(1− x)
> 1− 4

π

√
2ǫ. (3)

Now, the proposition is derived by processing the right-hand-side of the last equation. Now, under condition

(1− λ)n f(2p)
c(p) > 10

ǫ , we have∀i ≤ p, ni ≥ (1− λ)nµi =⇒ 5
niǫ

< 1
2 . Hence,EW [D (Pn

θ
, Q∗)]

≥
p
∑

i=1

n
∑

ni≥(1−λ)nµi

(

n

ni

)

µni

i (1− µi)
n−ni

∫ 1

0

D
(

Pni

θi
,m∗

ni

)

√

θi(1− θi)
dθi

by Proposition 1 from Xie and Barron (1997)

≥
p
∑

i=1

n
∑

ni≥(1−λ)nµi

(

n

ni

)

µni

i (1− µi)
n−ni

∫ 1− 5
ni ǫ

5
ni ǫ

1
2 log ni

2πe + log π − ǫ
π
√

θi(1− θi)
dθi

from (3)

≥
p
∑

i=1

n
∑

ni≥(1−λ)nµi

(

n

ni

)

µni

i (1− µi)
n−ni

(

1− 4

π

√

10

niǫ

)(

1

2
log

ni

2πe
+ log π − ǫ

)

invoking the Chebychef-Cantelli inequality,

≥
p
∑

i=1

1

1 + 1−µi

n µi λ2

(

1− 4

π

√

10

(1− λ)nµiǫ

)

(

1

2
log

n(1− λ)µi

2πe
+ log π − ǫ

)

using monotonicity assumption onf

≥ 1

1 + c(p)
λ2nf(2p)

(

1− 4

π

√

10c(p)

(1− λ) ǫnf(2p)

)

p
∑

i=1

(

1

2
log

n(1− λ)f(2i)

2c(p)πe
+ log π − ǫ

)

.

IV. EXAMPLES OF ENVELOPE CLASSES

Theorems 3, 4 and 5 assert that the summability of the envelope defining a class of memoryless sources

characterizes the (strong) universal compressibility of that class. However, it is not easy to figure out whether

the bounds provided by the last two theorems are close to eachother or not. In this Section, we investigate the case

of envelopes which decline either like power laws or exponentially fast. In both cases, upper-bounds on minimax

regret will follow directly from Theorem 4 and a straightforward optimization. Specific lower bounds on minimax

redundancies are derived by mimicking the proof of Theorem 5, either faithfully as in the case of exponential

envelopes or by developing an alternative prior as in the case of power-law envelopes.

A. Power-law envelope classes

Let us first agree on the classical notation:ζ(α) =
∑

k≥1
1

kα , for α > 1 .

Theorem 6:Let α denote a real number larger than1, andC be such thatCζ(α) ≥ 2α. The source classΛC ·−α

is the envelope class associated with the decreasing function fα,C : x 7→ 1 ∧ C
xα for C > 1 andα > 1.

Then:
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1)

n1/αA(α) log ⌊Cζ(α)⌋ ≤ R+(Λn
C ·−α)

where

A(α) =
1

α

∫ ∞

1

1

u1−1/α

(

1− e−1/(ζ(α)u)
)

du .

2)

R∗(Λn
C ·−α) ≤

(

2Cn

α− 1

)1/α

(logn)
1−1/α

+O(1) .

Remark 9:The gap between the lower-bound and the upper-bound is of order (logn)
1− 1

α . We are not in a

position to claim that one of the two bounds is tight, let alone which one is tight. Note however that asα → ∞
andC = Hα, classΛC ·−α converges to the class of memoryless sources on alphabet{1, . . . , H} for which the

minimax regret isH−1
2 logn. This is (up to a factor 2) what we obtain by taking the limits in our upper-bound of

R∗(Λn
C ·−α). On the other side, the limit of our lower-bound whenα goes to1 is infinite, which is also satisfying

since it agrees with Theorem 3.

Remark 10:In contrast with various lower bounds derived using a similar methodology, the proof given here

relies on a single prior probability distribution on the parameter space, it works for all values ofn. It has been

elaborated after helpful discussions with Laszló Györfi.

Note that the lower bound that can be derived from Theorem 5 isof the same order of magnitudeO(n1/α) as

the lower bound stated here (see Appendix II). The proof given here is completely elementary and does not rely

on the subtle computations described in Xie and Barron (1997).

Proof: For the upper-bound on minimax regret, note that

F̄α,C(u) =
∑

k>u

1 ∧ C

kα
≤ C

(α− 1)uα−1
.

Hence, choosingun =
(

2Cn
(α−1) log n

)
1
α

, resorting to Theorem 4, we get:

R∗(Λn
C ·−α) ≤

(

2Cn

α− 1

)1/α

(log n)
1−1/α

+O(1).

Let us now turn to the lower bound. We first define a setΘ of parameters such thatPn
θ
∈ Λn

α,C for anyθ ∈ Θ and

then we use the mutual information lower bound on redundancy. Letm be a positive integer such thatmα < Cζ(α) .

For all sufficiently large integerp, mα ≤ ∑p
k=1

C
kα . Henceforth, letc(p) =

∑p
k=1

C
(k m)α , so that the condition

mα < Cζ(α) translates intoc(p) ≥ 1 .

The set{Pθ,θ ∈ Θ} consists of memoryless sources over the infinite alphabetN+. Each parameterθ is a

sequence of integersθ = (θ1, θ2, . . . , ). We take a prior distribution onΘ such that(θk)k is a sequence of

independent identically distributed random variables with uniform distribution on{1, . . . ,m}. For any suchθ, P 1
θ
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is a probability distribution onN+ with support∪k≥1{(k − 1)m+ θk}, namely:

Pθ((k − 1)m+ θk) =
C

c(p)(km)α
for k = 1, . . . , p ,

The conditioncp ≥ 1 ensures thatP 1
θ
∈ Λ1

α,C .

Now, the mutual information between parameterθ and source outputX1:n is

I (θ, X1:n) =
∑

k≥1

I (θk, X1:n)

Let Nk (x) = 1 if there exists some indexi ∈ {1, . . . , n} such thatxi ∈ [(k − 1)m+ 1, km], and0 otherwise.

Note that the distribution ofNk does not depend on the value ofθ. Thus we can write:

I(θk, X1:n) =

m
∑

j=1

∑

x∈Nn
+

P (θk = j,X1:n = x) log
P (θk = j|X1:n = x)

P (θk = j)

=

m
∑

j=1

∑

x:Nk(x)=0

P (θk = j,X1:n = x) log
1/m

1/m
+

m
∑

j=1

∑

x:Nk(x)=1

P (θk = j,X1:n = x) log
P (θk = j|X1:n = x)

1/m

= 0 +
∑

x:Nk(x)=1,Pθ(x)>0

m
∑

j=1

P (θk = j,X1:n = x) log
1

1/m

= P (Nk(X1:n) = 1) logm.

Hence,

I (θ, X1:n) =
∑

k≥1

P (Nk = 1) logm

= EPθ
[Zn] logm,

whereZn(x) denotes the number of distinct symbols in stringx (note that its distribution does not depend on the

value ofθ.)

As Zn =
∑

k≥1 1Nk(x)=1, the expectation translates into a sumEθ [Zn] =

∞
∑

k=1

(

1−
(

1− C

c(p)(km)α

)n)

which leads to:

R+(Λn
α,C) ≥

(

∞
∑

k=1

(

1−
(

1− C

c(p)(k m)α

)n)
)

× logm.
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In order to optimize the bound we choosem = ⌊Cζ(α)⌋ . The last sum can then be lower-bounded by:

∞
∑

k=1

(

1−
(

1− Cmα

Cζ(α)(k m)α

)n)

≥
∞
∑

k=1

(

1− exp

(

− n

ζ(α) kα

))

as1− x ≤ exp(−x)

≥
∫ ∞

1

(

1− exp

(

− n

ζ(α)xα

))

dx

≥ n
1
α

α

∫ ∞

1

1

u1− 1
α

(

1− exp

(

− 1

ζ(α)u

))

du .

For an alternative derivation of a similar lower-bound using Theorem 5, see Appendix II.

B. Exponential envelope classes

Theorems 4 and 5 provide almost matching bounds on the minimax redundancy for source classes defined by

exponentially vanishing envelopes.

Theorem 7:Let C andα denote positive real numbers satisfyingC > e2α. The classΛCe−α· is the envelope

class associated with functionfα : x 7→ 1 ∧ Ce−αx. Then

1

8α
log2 n (1− o(1)) ≤ R+(Λn

Ce−α·) ≤ R∗(Λn
Ce−α·) ≤

1

2α
log2 n+O(1)

Proof: For the upper-bound, note that asu→∞,

F̄α(u) =
∑

k>u

1 ∧ Ce−αk ≤ C

1− e−α
e−α(u+1) .

Hence, by choosing the optimal valueun = 1
α logn in Theorem 4 we get:

R∗(Λn
Ce−α·) ≤

1

2α
log2 n+O(1).

We will now prove the lower bound using Theorem 5. The constraint C > e2α warrants that the sequence

c(p) =
∑p

k=1 f(2k) ≥ Ce−2α 1−e−2αp

1−e−2α is larger than1 for all p.

If we choosep =
⌊

1
2α (logn− log logn)

⌋

, thennf(2p) > Cne− log n+log log n−2α goes to infinity withn. For

ǫ = λ = 1
2 , we getC(p, n, λ, ǫ) = 1− o(1). Besides,

p
∑

i=1

(

1

2
log

n(1− λ)Cπe−2αi

2c(p)e
− ǫ
)

=
p

2

(

logn+ log
(1− λ)Cπ

2c(p)e
− 2ǫ

)

− α
p
∑

i=1

i

=

(

1

4α
log2 n− α

2

1

4α2
log2 n

)

(1 + o(1))

=
1

8α
log2 n (1 + o(1)) .
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V. A CENSORING CODE FOR ENVELOPE CLASSES

The proofs of Theorems 4 and 5 suggest to handle separately small and large (allegedly infrequent) symbols. Such

an algorithm should perform quite well as soon as the tail behavior of the envelope provides an adequate description

of the sources in the class. The coding algorithm suggested by the proof of Theorem 4, which are based on the

ShtarkovNML coder, are not computationally attractive. The design of the next algorithm (CensoringCode) is

again guided by the proof of Proposition 4: it is parametrized by a sequence of cutoffs(Ki)i∈N and handles the

ith symbol of the sequence to be compressed differently according to whether it is smaller or larger than cutoffKi,

in the latter situation, the symbol is said to be censored. The CensoringCode algorithm uses Elias penultimate

code (Elias, 1975) to encode censored symbols and Krichevsky-Trofimov mixtures (Krichevsky and Trofimov,

1981) to encode the sequence of non-censored symbols paddedwith markers (zeros) to witness acts of censorship.

The performance of this algorithm is evaluated on the power-law envelope classΛC·−α , already investigated in

Section IV. In this section, the parametersα andC are assumed to be known.

Let us first describe the algorithm more precisely. Given a non-decreasing sequence of cutoffs(Ki)i≤n, a string

x from N
n
+ defines two strings̃x andx̌ in the following way. String̃x has lengthn and belongs to

∏n
i=1 Xi, where

Xi = {0, . . .Ki}:

x̃i =







xi if xi ≤ Ki

0 otherwise (the symbol is censored),

Meanwhile, stringx̌ is the subsequence of censored symbols, that is(xi)xi>Ki,i≤n.

The algorithm encodesx as a pair of binary stringsC1 andC2. The first one (C1) is obtained by applying Elias

penultimate code to each symbol from̌x, that is to each censored symbol. The second string (C2) is built by

applying arithmetic coding tõx using side-information from̌x. DecodingC2 can be carried out using information

gotten from decodingC1.

In order to describe the coding probability used to encodex̃, we need a few more counters. Forj > 0, let nj
i be

the number of occurrences of symbolj in x1:i and letn0
i be the number of symbols larger thanKi+1 in x1:i (note

that this not larger than the number of censored symbols inx1:i, and that the countersn·
i can be recovered from

x̃1:i and x̌). The conditional coding probability over alphabetXi+1 = {0, . . . ,Ki+1} given x̃1:i and x̌ is derived

from the Krichevsky-Trofimov mixture overXi+1. It is the posterior distribution corresponding to Jeffrey’s prior

on the1 +Ki+1-dimensional probability simplex and countsnj
i for j running from0 to Ki+1:

Q(X̃i+1 = j | X̃1:i = x̃1:i, X̌ = x̌) =
nj

i + 1
2

i+ Ki+1+1
2

.

The length ofC2(x) is (up to a quantity smaller than1) given by

−
n−1
∑

i=0

logQ(x̃i+1 | x1:i, x̌) = − logQ(x̃ | x̌) .

The following description of the coding probability will prove useful. For1 ≤ j ≤ Kn, let sj be the number of

censored occurrences of symbolj. Let nj serve as a shorthand fornj
n. Let i(j) be n if Kn < j or the largest
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integeri such thatKi is smaller thanj, thensj = nj
i(j). The following holds

Q(x̃ | x̌) =





Kn
∏

j=1

Γ(nj + 1/2)

Γ(sj + 1/2)





(

∏

i:x̃i=0

(n0
i−1 + 1/2)

)(

n−1
∏

i=0

1

i+ Ki+1
2

)

Note that the sequence(n0
i )i≤n is not necessarily non-decreasing.

A technical description of algorithmCensoringCode is given below. The procedureEliasCode takes as

input an integerj and outputs a binary encoding ofj using exactlyℓ(j) bits whereℓ is defined by:ℓ(j) =

⌊log j + 2 log (1 + log j) + 1⌋ . The procedureArithCode builds on the arithmetic coding methodology (Rissanen

and Langdon, 1979). It is enough to remember that an arithmetic coder takes advantage of the fact that a coding

probabilityQ is completely defined by the sequence of conditional distributions of thei + 1th symbol given the

past up to timei.

The proof of the upper-bound in Theorem 6, prompts us to chooseKi = λi
1
α (it will appear at the end that the

best choice isλ =
(

2C
α−1

)
1
α

).

Algorithm 1 CensoringCode
K ← 0
counts← [1/2, 1/2, . . .]
for i from 1 to n do

cutoff←
⌊

(

2 Ci
α−1

)1/α
⌋

if cutoff> K then
for j ← K + 1 to cutoff do

counts[0]← counts[0]− counts[j] + 1/2
end for
K ← cutoff

end if
if x[i] ≤ cutoff then

ArithCode(x[i], counts[0 : cutoff])
else

ArithCode(0, counts[0 : cutoff])
C1←C1·EliasCode(x[i])
counts[0]← counts[0] + 1

end if
counts[x[i]]← counts[x[i]] + 1

end for
C2← ArithCode()
return C1 · C2

Theorem 8:Let C andα be positive reals. Let the sequence of cutoffs(Ki)i≤n be given by

Ki =
⌊

(

2C

α− 1
i

)1/α
⌋

.

The expected redundancy of procedureCensoringCode on the envelope classΛC·−α is not larger than

(

2Cn

α− 1

)
1
α

log n (1 + o(1)) .
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Remark 11:The redundancy upper-bound in this Theorem is within a factor logn from the lower boundO(n1/α)

from Theorem 6 .

The proof of the Theorem builds on the next two lemmas. The first lemma compares the length ofC2(x) with

a tractable quantity. The second lemma upper-bounds the average length ofC1(x) by a quantity which is of the

same order of magnitude as the upper-bound on redundancy we are looking for.

We need a few more definitions. Lety be the string of lengthn over alphabetXn defined by:

yi =







xi if xi ≤ Kn;

0 else.

For 0 ≤ j ≤ Kn, note that the previously defined shorthandnj is the number of occurrences of symbolj in y.

The stringy is obtained fromx in the same way as̃x using the constant cutoffKn.

Let m∗
n be the Krichevsky-Trofimov mixture over alphabet{0, . . . ,Kn}:

m∗
n(y) =





Kn
∏

j=0

Γ(nj + 1
2 )

Γ(1/2)





Γ(Kn+1
2 )

Γ
(

n+ Kn+1
2

) .

String x̃ seems easier to encode thany since it is possible to recover̃x from y. This observation does not however

warrant automatically that the length ofC2(x) is not significantly larger than any reasonable codeword length for

y. Such a guarantee is provided by the following lemma.

Lemma 2:For every stringx ∈ N
n
+, the length of theC2(x) is not larger than− logm∗

n(y).

Proof: [Lemma 2] Lets0 be the number of occurrences of0 in y, that is the number of symbols inx that are

larger thanKn. Let

T0 =

n
∏

i=1,x̃i=0

(n0
i−1 + 1/2) .

Then, the following holds:

T0
(a)
=





n
∏

i=1,ỹi=0

(n0
i−1 + 1/2)





Kn
∏

j=1





i(j)
∏

i=1,ỹi=j

(n0
i−1 + 1/2)





(b)

≥
(

Γ(s0 + 1/2)

Γ(1/2)

) Kn
∏

j=1

(

Γ(sj + 1/2)

Γ(1/2)

)

,

where (a) follows from the fact symbolxi is censored either becausexi > Kn (that is yi = 0) or because

xi = j ≤ Kn andi ≤ i(j); (b) follows from the fact that for eachi ≤ n such thatyi = 0, n0
i−1 ≥

∑

i′<i 1xi′>Kn

while for eachj, 0 < j ≤ Kn, for eachi ≤ i(j), n0
i−1 ≥ nj

i−1.
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From the last inequality, it follows that

Q(x̃ | x̌) ≥





Kn
∏

j=1

Γ(nj + 1/2)

Γ(sj + 1/2)





Γ(s0 + 1/2)

Γ(1/2)

Kn
∏

j=1

Γ(sj + 1/2)

Γ(1/2)

(

n−1
∏

i=0

1

i+ Ki+1
2

)

≥





Kn
∏

j=1

Γ(nj + 1/2)

Γ(sj + 1/2)





Γ(s0 + 1/2)

Γ(1/2)

Kn
∏

j=1

Γ(sj + 1/2)

Γ(1/2)

(

n−1
∏

i=0

1

i+ Kn+1
2

)

= m∗
n(y) ,

where the last inequality holds since(Ki)i is a non-decreasing sequence.

The next lemma shows that the expected length ofC1(X1:n) is not larger than the upper-bound we are looking

for.

Lemma 3:For every sourceP ∈ ΛC·−α , the expected length of the encoding of the censored symbols(C1(X1:n))

satisfies:

EP

[

|C1 (X1:n)|
]

≤ C

(α− 1)λα−1
n

1
α logn (1 + o(1)) .

Proof: [Lemma 3] Let1 ≤ a < b andβ > 0. First note that:

∫ b

a

1

xβ
dx =

[

1

(1− β)xβ−1

]b

a

,

∫ b

a

log x

xβ
dx =

[

log x− 1
1−β

(1− β)xβ−1

]b

a

,

∫ b

a

log (1 + log x)

xβ
dx =

[

log (1 + log x)− 1
1−β

(1− β)xβ−1

]b

a

.

The expected length of the first part of the code is thus:

E
[

|C1 (Xn
1 ) |
]

= E





n
∑

j=1

ℓ(Xj)1Xj>Kj





=
n
∑

j=1

∞
∑

x=Kj+1

ℓ(x)P (x)

≤
n
∑

j=1

∞
∑

x=Kj+1

ℓ(x)
C

xα

≤ C
n
∑

j=1

∞
∑

x=Kj+1

log(x) + 2 log (1 + log x) + 1

xα
.

Using the expressions for the integrals above, we get:

∞
∑

x=Kj+1

log x+ 2 log (1 + log x) + 1

xα
≤
∫ ∞

Kj

log x+ 2 log (1 + log x) + 1

xα
dx

≤
logKj + 2 log (1 + logKj) + 4

α−1

(α− 1)Kα−1
j

.
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Thus, asKj = λj1/α, we substituteβ by 1− 1
α in Equations (4), (4) and (4) to obtain:

E
[

|C1 (Xn
1 ) |
]

≤ C

α− 1

n
∑

j=1

logKj + 2 log (1 + logKj) + 4
α−1

Kα−1
j

=
C

α− 1

n
∑

j=1

1
α log j + log λ+ 2 log

(

1 + log
(

λj1/α
))

+ 4
α−1

λα−1j1−
1
α

≤ C

α(α − 1)λα−1



C +

∫ n+1

x=2

(

log x+ α logλ+ 2α log
(

1 + log
(

λx1/α
))

+ 4α
α−1

)

x1− 1
α

dx





=
C

(α− 1)λα−1
n

1
α logn (1 + o(1)) .

We may now complete the proof of Theorem 8.

Proof: Remember thatXn = {0, . . . ,Kn}. If p is a probability mass function over alphabetX , let p⊗n be

the probability mass function overXn defined byp⊗n(x) =
∏n

i=1 p(xi). Note that for every stringx ∈ N
n
+,

max
p∈M1(Xn)

p⊗n(y) ≥ max
p∈M1(N+)

p⊗n(x) ≥ max
P∈Λ

C·
−α

Pn(x) = p̂(x) .

Together with Lemma 2 and the bounds on the redundancy of the Krichevsky-Trofimov mixture (See Krichevsky

and Trofimov, 1981), this implies:

|C2 (x) | ≤ − log p̂ (x) +
Kn

2
logn+O(1).

Let L(x) be the length of the code produced by algorithmCensoringCode on the input stringx, then

sup
P∈Λ

C·
−α

EP [L(X1:n)− log 1/Pn(X1:n)]

≤ sup
P∈Λ

C·
−α

EP [L(X1:n)− log 1/p̂(X1:n)]

≤ sup
P∈Λn

C·
−α

EP [|C2 (X1:n)|+ log p̂ (X1:n) + |C1 (X1:n)|]

≤ sup
x

(|C2 (x)|+ log p̂ (x)) + sup
P∈Λn

C·
−α

EP [|C1 (X1:n)|]

≤ λn
1
α

2
log n+

C

(α− 1)λα−1
n

1
α logn (1 + o(1)) .

The optimal value isλ =
(

2C
α−1

)
1
α

, for which we get:

R+(Qn,Λn
C·−α) ≤

(

2Cn

α− 1

)
1
α

log n (1 + o(1)) .

Note that the proof of the theorem provides an upper-bound onthe expected regret of the censoring code.
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VI. A DAPTIVE ALGORITHMS

The performance ofCensoringCode depends on the fit of the cutoffs sequence to the tail behaviorof the

envelope. From the proof of Theorem 8, it should be clear thatif CensoringCode is fed with a source which

marginal is light-tailed, it will be unable to take advantage of this, and will suffer from excessive redundancy.

In this section, a sequence(Qn)n of coding probabilities is said to beapproximately asymptotically adaptivewith

respect to a collection(Λm)m∈M of source classes if for eachP ∈ ∪m∈MΛm, for eachΛm such thatP ∈ Λm:

D(Pn, Qn)/R+(Λn
m) ∈ O(log n) .

Such a definition makes sense, since we are considering massive source classes which minimax redundancies are

large with respect to the logarithm function.

A. Pattern coding

First, the use ofpattern codingOrlitsky et al. (2004), Shamir (2006) leads to an almost minimax adaptive

procedure for small values ofα, that is heavy-tailed distributions. Let us introduce the notion of pattern using the

example of stringx = “abracadabra”, which is made ofn = 11 characters. The information it conveys can be

separated in two blocks:

1) a dictionary ∆ = ∆(x): the sequence of distinct symbols occurring inx in order of appearance (in the

example,∆ = (a, b, r, c, d)).

2) a patternψ = ψ(x) whereψi is the rank ofxi in the dictionary∆ (here,ψ = 1231415123).

Now, consider the algorithm coding messagex by transmitting successively

1) the dictionary∆n = ∆(x) (by concatenating the Elias codes for successive symbols);

2) and the patternΨn = ψ (x), using a procedure for coding patterns as suggested by Orlitsky et al. (2004) or

Shamir (2006). Henceforth, the latter procedure is called pattern coding.

Theorem 9:LetQn denote the coding probability associated with the coding algorithm which consists in applying

Elias penultimate coding to the dictionary∆(x) of a stringx from N
n
+ and then pattern coding to the patternψ(x).

Then for anyα such that1 ≤ α ≤ 5/2, there exists a constantK depending onα andC such that

R+(Qn,Λn
C·−α) ≤ Kn1/α logn

Proof: For a given value ofC andα, the Elias encoding of the dictionary uses on average

E [|∆n|] = K ′n
1
α logn

bits (as proved in Appendix IV), for some constantK ′ depending onα andC.

If our pattern coder reaches (approximately) the minimax pattern redundancy

R+
Ψ (Ψ1:n) = inf

q∈M1(Nn
+)

sup
P∈M1(N+)

EP

[

log
P⊗n(Ψ1:n)

q(Ψ1:n)

]

,

December 22, 2006 DRAFT



26

the encoding of the pattern uses on average

H(Ψ1:n) +R+
Ψ (Ψ1:n) ≤ H(X1:n) +R+

Ψ (Ψ1:n) bits.

But in Orlitsky et al. (2004), the authors show thatR+
Ψ (Ψ1:n) is upper-bounded byO (

√
n) and evenO

(

n
2
5

)

according to Shamir (2004) (actually, these bounds are evensatisfied by the minimax individual pattern redundancy).

Hence, this code is adaptive, up to a factorlogn, in the range1 < α ≤ 5
2 .

This remarkably simple method is however expected to have a poor performance whenα is large. Indeed, Garivier

(2006) proves thatR+
Ψ (Ψ1:n) is lower-bounded by1.84

(

n
log n

)
1
3

, which indicates that pattern coding is probably

suboptimal as soon asα is larger than3.

B. An (approximately) adaptive censoring code

Given the limited scope of the pattern coding method, we willattempt to turn the censoring code into an adaptive

method, that is to tune the cutoff sequence so as to model the source statistics. As the cutoffs are chosen in such a

way that they model the tail-heaviness of the source, we are facing a tail-heaviness estimation problem . In order to

focus on the most important issues we do not attempt to develop a sequential algorithm. Then+ 1th cutoff K̂n+1

is chosen according to the number ofdistinct symbolsZn(x) in x.

This is a reasonable method if the probability mass functiondefining the source statisticsP 1 actually decays like

1
kα . Unfortunately, sparse distributions consistent withΛ·−α may lead this project astray. If, for example,(Yn)n is

a sequence of geometrically distributed random variables,and ifXn =
⌊

2
Yn
α

⌋

, then the distribution of theXn just

fits in ΛC·−α but obviouslyZn(X1:n) = Zn (Y1:n) = O (logn).

Thus, rather than attempting to handle∪α>0Λ·−α , we focus on subclasses∪α>0Wα, where

Wα =

{

P : P ∈ Λ·−α , 0 < lim inf
k
kαP 1(k) ≤ lim sup

k
kαP 1(k) <∞

}

.

The rationale for tuning cutoff̂Kn usingZn comes from the following two propositions.

Proposition 7: For every memoryless sourceP ∈ Wα, there exist constantsc1 and c2 such that for all positive

integern,

c1n
1/α ≤ EP n [Zn] ≤ c2n1/α.

Proposition 8: The number of distinct symbolsZn output by a memoryless source satisfies a Bernstein inequality:

Pr {Zn ≤ E[Zn]} ≤ e−
E[Zn]

8 . (4)

Proof: Note thatZn is a function ofn independent random variables. Moreover,Zn is a configuration function

as defined by Talagrand (1995) sinceZn(x) is the size of a maximum subsequence ofx satisfying an hereditary

property (all its symbols are pairwise distinct). Using themain theorem in Boucheron et al. (2000), this is enough

to conclude.
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Noting thatZn ≥ 1, we can derive the following inequality that will prove useful later on:

E

[

1

Zα−1
n

]

= E

[

1

Zα−1
n

1Zn> 1
2 E[Zn]

]

+ EP

[

1

Zα−1
n

1Zn≤ 1
2 E[Zn]

]

≤ 1
(

1
2E[Zn]

)α−1 + Pr

(

Zn ≤
1

2
E[Zn]

)

. (5)

We consider here a modified version ofCensoringCode that operates similarly, except that

1) the stringx is first scanned completely to determineZn (x);

2) the constant cutoff̂Kn = µZn is used for all symbolsxi, 1 ≤ i ≤ n, whereµ is some positive constant.

3) the value ofK̂n is encoded using Elias penultimate code and transmitted beforeC1 andC2.

Note that this version of the algorithm is not sequential because of the initial scanning.

Algorithm 2 AdaptiveCensoringCode

cutoff← µZn(x) {Determination of the constant cutoff}
counts← [1/2, 1/2, . . .]
for i from 1 to n do

if x[i] ≤ cutoff then
ArithCode(x[i], counts[0 : cutoff])

else
ArithCode(0, counts[0 : cutoff])
C1←C1·EliasCode(x[i])
counts[0]← counts[0] + 1

end if
counts[x[i]]← counts[x[i]] + 1

end for
C2← ArithCode()
return C1 · C2

We may now assert.

Theorem 10:The algorithmAdaptiveCensoringCode is approximately asymptotically adaptive with respect

to
⋃

α>0Wα.

Proof: Let us again denote byC1(x) andC2(x) the two parts of the code-string associated withx.

Let L̂ be the codelength of the output of algorithmAdaptiveCensoringCode.

For any sourceP :

EP

[

L̂ (X1:n)
]

−H(X1:n) = EP

[

ℓ(K̂n) + |C1 (X1:n)|+ |C2 (X1:n)|
]

− n
∞
∑

k=1

P 1(k) log
1

P1(k)

≤ EP

[

ℓ(K̂n)
]

+ EP [|C1 (X1:n)|] + EP



|C2 (X1:n)| − n
K̂n
∑

k=1

P 1(k) log
1

P1(k)



 .

As functionℓ is increasing and equivalent tolog at infinity, the first summand is obviouslyo
(

EP

[

K̂n

])

. Moreover,
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if P ∈ Wα there existsC such thatP 1(k) ≤ C
kα and the second summand satisfies:

EP [|C1 (X1:n)|] = EP





∑

k≥K̂n+1

P 1(k)ℓ(k)





≤ nCEP

[∫ ∞

K̂n

ℓ (x)

xα
dx

]

= nCEP





1

K̂α−1
n

∫ ∞

1

ℓ
(

K̂nu
)

uα
du





≤ nCEP

[

1

K̂α−1
n

]∫ ∞

1

log (nu)

uα
du (1 + o(1))

= O
(

n
1
α logn

)

by Proposition (7) and Inequality (5).

By Theorem 2, every stringx ∈ N
n
+ satisfies

|C2 (x)| − n
K̂n
∑

k=1

P 1(k) log
1

P1(k)
≤ K̂n

2
logn+ 2.

Hence, the third summand is upper-bounded as:

EP



|C2 (X1:n)| − n
K̂n
∑

k=1

P 1(k) log
1

P1(k)



 ≤
EP

[

K̂n

]

2
log n+ 2

= O
(

n
1
α logn

)

which finishes to prove the theorem.
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APPENDIX I

UPPER-BOUND ON MINIMAX REGRET

This sections contains the proof of the last inequality in Theorem 2.

The minimax regret is not larger than the maximum regret of the Krichevsky-Trofimov mixture overk-ary alphabet

over strings of lengthn. The latter is classically upper-bounded by

log

(

Γ(n+ k
2 )Γ(1

2 )

Γ(n+ 1
2 )Γ(k

2 )

)

,

as proved for example in (Csiszár, 1990).

Now thanks to the Stirling approximation to the Gamma function (See Whittaker and Watson, 1996, Chapter

XII) asserts that for anyx > 0, there existsβ ∈ [0, 1] such that

Γ(x) = xx− 1
2 e−x

√
2πe

β
12x .

The announced upper-bound follows in a straightforward wayby plugging this approximation into the preceding

upper-bound.
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APPENDIX II

LOWER BOUND ON REDUNDANCY FOR POWER-LAW ENVELOPES

In this appendix we derive a lower-bound for power-law envelopes using Theorem 5. Letα denote a real larger

than 1. Let C be such thatC1/α > 4. As the envelope function is defined byf(i) = 1 ∧ C/iα, the constant

c(∞) =
∑

i≥1 f(2i) satisfies

α

α− 1

C1/α

2
− 1 ≤ c(∞) ≤ C1/α

2
+

C

(α− 1)2α

(

C1/α

2

)1−α

.

The condition onC andα warrants that, for sufficiently largep, we havec(p) > 1 (this is indeed true forp > C1/α).

We choosep = an
1
α for a small enough to have

(1− λ)Cǫ
(2a)

1
α c(∞)

> 10,

so that condition(1− λ)n f(2p)
c(p) > 10

ǫ is satisfied forn large enough. Then

R+(Λn
f ) ≥ C(p, n, λ, ǫ)

p
∑

i=1

(

1

2
log

n (1− λ) πf(2i)

2c(p)e
− ǫ
)

,

whereC(p, n, λ, ǫ) = 1

1+ (2a)αc(∞)

Cλ2

(

1− 4
π

√

10c(∞)(2a)α

(1−λ)Cǫ

)

, and

p
∑

i=1

(

1

2
log

n (1− λ) πf(2i)

2c(p)e
− ǫ
)

=
p

2
logn− α

2

p
∑

i=1

log i+

(

1

2
log

(1− λ) πC
21+αc(∞)e

− ǫ
)

p

=
p

2
logn− α

2
(p log p− p+ o(p)) +

(

1

2
log

(1− λ) πC
21+αc(∞)e

− ǫ
)

p

=
an

1
α

2
logn− α

2

(

an
1
α log a+

a

α
n

1
α logn− an 1

α + o
(

n
1
α

))

+

(

1

2
log

(1− λ)πC
21+αc(∞)e

− ǫ
)

an
1
α

=

(

α

2
(1− log a) +

1

2
log

(1− λ) πC
21+αc(∞)e

− ǫ+ o(1)

)

an
1
α .

For a small enough, this gives the existence of a positive constant η such thatR+(Λn
f ) ≥ ηn 1

α .

APPENDIX III

PROOF OFLEMMA 7

Suppose that there existk0, c andC such that for allk ≥ k0,
c

kα ≤ pk ≤ C
kα .

For 0 ≤ x ≤ 1
2 , it holds that−(2 log 2)x ≤ log(1− x) ≤ −x and thus

e−(2 log 2)nx ≤ (1− x)n ≤ e−nx.
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Hence (aspk ≤ 1
2 for all k ≥ 2) :

∞
∑

k=k0

(

1−
(

1− c

kα

)n)

≤ E[Zn] ≤
∞
∑

k=1

(

1−
(

1− C

kα

)n)

∞
∑

k=k0

(

1− e− cn
kα
)

≤ E[Zn] ≤ 1 +

∞
∑

k=2

(

1− e−
(2 log 2)Cn

kα

)

∫ ∞

k0

(

1− e− cn
xα
)

dx ≤ E[Zn] ≤ 1 +

∫ ∞

1

(

1− e−
(2 log 2)Cn

xα

)

dx.

But, for anyt,K > 0, it holds that

∫ ∞

t

(

1− e−Kn
xα

)

dx =
(Kn)

1/α

α

∫ Kn
tα

0

1− e−u

u1+1/α
du.

Thus, by noting that integral

A(α) =

∫ ∞

0

1− e−u

u1+1/α
du,

is convergent, we get

c1/αA(α)

α
n1/α (1− o(1)) ≤ E[Zn] ≤ ((2 log 2)C)

1/α
A(α)

α
n1/α.

APPENDIX IV

EXPECTED SIZE OF DICTIONARY ENCODING

Assume that the probability mass function(pk) satisfiespk ≤ C
kα for C > 0 and all k ≥ 0. Then, using Elias

penultimate code for the first occurrence of each symbol inX1:n, the expected length of the binary encoding of

the dictionary can be upper-bounded in the following way. Let Uk be equal to1 if symbol k occurs inX1:n, and

equal to0 otherwise.

E [|∆n|] = E

[

∞
∑

k=1

Ukℓ(k)

]

=

∞
∑

k=1

E [Ukℓ(k)]

≤
∞
∑

k=1

(

1−
(

1− C

kα

)n)

ℓ(k)

≤ 2

(

1 +
∞
∑

k=2

(

1− e−
(2 log 2)Cn

kα

)

log k

)

≤ 2

(

1 +

∫ ∞

1

(

1− e−
(2 log 2)Cn

xα

)

log xdx

)

≤ 2

(

((2 log 2)Cn)
1/α

α2

∫ (2 log 2)Cn

0

1− e−u

u1+1/α
log

(

(2 log 2)Cn

u

)

du

)

≤ T ((2 log 2)Cn)
1/α

α2
logn

∫ ∞

0

1− e−u

u1+1/α
du bits
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for some positive constantT .
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