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Coding on countably infinite alphabets

Stéphane Boucheron, Aurélien Garivier and Elisabeth @assi

Abstract

This paper describes universal lossless coding stratégiemmpressing sources on countably infinite alphabets.
Classes of memoryless sources defined by an envelope @onditi the marginal distribution provide benchmarks
for coding techniques originating from the theory of unsadrcoding over finite alphabets. We prove general upper-
bounds on minimax regret and lower-bounds on minimax reduoeyl for such source classes. The general upper
bounds emphasize the role of the Normalized Maximum Likealth codes with respect to minimax regret in the
infinite alphabet context. Lower bounds are derived by taifp sharp bounds on the redundancy of Krichevsky-
Trofimov coders for sources over finite alphabets. Up to litigaic (resp. constant) factors the bounds are matching
for source classes defined by algebraically declining (responentially vanishing) envelopes. Effective and (adtho
adaptive coding techniques are described for the colleatib source classes defined by algebraically vanishing
envelopes. Those results extend our knowledge concermingrsal coding to contexts where the key tools from
parametric inference (Bernstein-Von Mises theorem, Wiliesorem) are known to fail.

keywords: NML; countable alphabets; redundancy; adaptive compressionimax;

I. INTRODUCTION

This paper is concerned with the problem of universal codinga countably infinite alphabet (sayN.) as
described for example by Orlitsky and Santhanam (2004 )oUdimout this paper, a source on the countable alphabet
X is a probability distribution on the set of infinite sequeshcé symbols fromX’. The symbolA will be used
to denote various classes of sources on the countably afatthabett. The sequence of symbols emitted by
a source is denoted by th&N-valued random variablX = (X,,), .. If P denotes the distribution oX, P"
denotes the distribution oX;., = X;i,..., X, and we letA™ = {P™ : P € A}. For any countable set, let
My (X) be the set of all probability measures ah

From Shannon noiseless coding Theorem (see Cover and Thafgid), the binary entropy af”, H(X1.,) =
Epn [—log, P(X1.,,)] provides a tight lower bound on the expected number of bisgrgbols needed to encode
outcomes ofP™. On the other hand, thanks to arithmetic coding (see for el@@pver and Thomas, 1991), any
distribution Q™ € M, (X") defines a prefix code, that encodes stringising [— log, @™ (x)] + 1 bits. If the
arithmetic code derived from distributiap™ is used to encode outcomes frdft, the expected redundan@f Q™
(with respect toP") is defined as the expected difference between the expeatidlengthEp [— log, Q™ (X1.,,)]
andH(X1.,). Up to a factofog 2, it is equal to the Kullback-Leibler divergence (or relatetropy)D (P™, Q™) =

> wexn P{x}log gzgg =Epn {log %} . From now on, unless it is necessary, we will not specify theeba

of the logarithm.
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At large, universal coding attempts to develop sequencesding probabilitie3@™),, So as to minimize expected
redundancy over a whole class of sources. Technically spgageveral distinct notions of universality have been
considered in the literature. A functiop(n) is said to be a strong (respectively wealkjiversal redundancy
rate for a class of sources\ if there exists a sequence of coding probabiliti€$,), such that for alln,
RT(Q™,A™) = suppcp D(P™, Q™) < p(n) (respectively for allP € A, there exists a constar(P) such
that for alln, D(P™,Q™) < C(P)p(n)). A redundancy rate(n) is said to be non-trivial ifim,, p(n) = 0. Finally
a classA of sources will be said to béebly universalf there exists a single sequence of coding probabilities
(Q™), such thatuppc, lim,, £ D(P", Q") = 0 (Note that this notion of feeble universality is usuallyledlweak
universality, (see Kieffer, 1978, Gyorfi et al., 1994), wevidée from the tradition, in order to avoid confusion with
the notion of weak universal redundancy rate).

As far as finite alphabets are concerned, it is well-knowr tha class of stationary ergodic sources is feebly
universal. This is witnessed by the performance of Lempeleddes (see Cover and Thomas, 1991). It is also
known that the class of stationary ergodic sources over tefamphabet does not admit any non-trivial weak
universal redundancy rate (Shields, 1993). On the othed,htairly large classes of sources admitting strong
universal redundancy rates and non-trivial weak univas@lindancy rates have been exhibited (see Barron et al.,
1998, Catoni, 2004, and references therein).

In this paper, we will mostly focus on strong universal redamcy rates for classes of sources over infinite
alphabets. Note that in the latter setting, even feebleeusality should not be taken for granted: the class of
memoryless processes dh. is not feebly universal.

Kieffer (1978) characterized feebly universal classesl @@ argument was simplified by Gyorfi et al. (1994).
Recall that the entropy ratd (P) of a stationary source is defined s\, H(P™)/n.

Proposition 1: A class A of stationary sources over a countable alphabieis feebly universal if and only if
there exists a probability distributio € 9t (X') such that for every? € A with finite entropy rate() satisfies
Ep log m < oo or equivalentlyD (P!, Q) < co.

For sources over countably infinite alphabets, the chatiaat®n of strong universality has not yet reached such a

degree of maturity.

The maximal redundancef Q™ with respect toA is defined by:
RY(Q",A") = sup D(P",Q").
PeA

The infimum of RT(Q™, A™) is called theminimax redundancyvith respect toA:

RY(A™) = inf RY(Q",A™).
(A") oref v (@",A")

It is the smallest strong universal redundancy rateAfowhen finite, it is often called the information radius of.

Assume that a subset df is parametrized by and thatO can be equipped with (prior) probability distributions

W in such a way that — Pj{A} is a random variable for every C X™. A convenient way to derive lower
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bounds onR™(A™) consists in using the relatidy [D(P}, Q™)] < RT(Q™, A™).

The sharpest lower bound is obtained by optimizing the gaiobability distributions (assumin@;’)sco = A™
taking the so-called least favorable prior in order to avmdfusion with the notion of weak universal redundancy
rate), it is called the maximin bound

e A
It has been proved in a series of papers (Gallager, 1968,sBavj 1973, Haussler, 1997) (and could also have
been derived from a general minmax theorem by Sion, 1958)stinzh a lower bound is tight.

Theorem 1:Let A denote a class of sources over some finite or countably efaljphabet. For each, the
minimax redundancy ovek coincides with

RT(A") = ol o o el oy BW [D(Fg', Q)]
where® runs over all parametrizations of countable subsets.of

If the setA™ = {P™ : P € A} is not pre-compact with respect to the topology of weak cayeece, then both
sides are infinite. Otherwise the maximin and minimax averaglundancies are finite and coincide; moreover, the
minimax redundancy is achieved by the mixture coding distion Q" (.) = [ P;'(.)W (df) whereW is the least
favorable prior and® may be uncountable.

Another approach to universal coding considemividual sequence¢see Feder et al.,, 1992, Cesa-Bianchi and
Lugosi, 2006, and references therein). Let tegret of a coding distribution™ on stringx € N’} with respect
to A besupp.cplog P (x)/Q™(x). Taking the maximum with respect to € N7/, and then optimizing over the

choice of @™, we get theminimax regret

Pn
R*(A™) = inf max sup log (z) .
Qrem (xm) 2Nt pep Q™ (x)

In order to provide proper insight, let us recall the preeisgmptotic bounds on minimax redundancy and regret
for memoryless sources over finite alphabets (see ClarkeBanabn, 1990; 1994, Barron et al., 1998, Xie and
Barron, 1997; 2000, Orlitsky and Santhanam, 2004, Catd@@42Szpankowski, 1998, and references therein).

Theorem 2:Let X be an alphabet ofz symbols, and\ denote the class of memoryless processes’dhen

lim RT(A™) — m—1 logi = log (M)

2 2me L'(m/2)
o ey m—1 no r(1/2)™
117anR (A™) 5 log 5 _IOg(I‘(m/2)) .
For alln, if m <n :
R*(A™) < m2_110gn—|—2.

The last inequality is checked in the Appendix .
Remark 1:The set of memoryless sources over alphabet {1,...,m} is conveniently parametrized &y =

{6 : 6eR?, Z?l_ll 0[i] < 1}. To alleviate notations, we agree éfim] =1 — Z;.”:_ll 0[] . For any stringx
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from X, letn; = >""" | 1x,—,; then P} is defined by the probability mass function
Py (x) = [T 60" -
j=1

Jeffrey’s prior has a density ;(0) proportional to the square root of the Fisher Informatit(®) where:

m

J@) =] L.

j=1
Clarke and Barron (1994) have proved that Jeffrey’s pricasgmptotically least favorable:
letting Q7 ,(x) = / Py (x)dw;(60)
©

then

lim (IEw', [D(Py, Q)] - m; L log %) — log (%) .

Moreover, a sequence of modifications of Jeffrey’s priomagiptically achieves minimax redundancy (See Xie and
Barron, 1997).

Remark 2: The phenomenon pointed out in Theorem 2 holds not only forctass of memoryless sources over
a finite alphabet but also for classes of sources that arethigqmrametrized by finite dimensional sets (see again
Clarke and Barron, 1990; 1994, Barron et al., 1998, Xie andd®a 1997; 2000, Orlitsky and Santhanam, 2004,
Catoni, 2004).

Theorem 2 can be considered as an information-theoreéiiaement of a classical result in parametric statistics :
the asymptotics of the maximin redundancy reflects the asyimmormality of the rescaled posterior measure as
asserted by the (Laplace-) Bernstein-Von Mises Theorentlamdonnexion between the entropy and the variance
of Gaussian measures (see Clarke and Barron, 1990; 199%pnBair al., 1998, van der Vaart, 1998).

Our interest in the coding problem for infinite alphabetsrgtgartly from the fact that in non-parametric settings,
the Bernstein-von Mises Theorem does not hold in full gditgréSee Cox, 1993, Freedman, 1999, Ghosh and
Ramamoorthi, 2003, and references therein.).

Let us pay further attention to the minimax regret. For a sewtassA, for everyx € X", let the maximum
likelihood p(x) be defined asuppcp P"(x). If ZXENi p(x) < oo, the Normalized Maximum Likelihoododing

probability is well-defined and given by

n B
L (%) = > Py

zeN? p(x) .
Shtarkov (1987) showed that tiNormalized Maximum Likelihoododing probability achieves the same regret over

all strings of lengthn and that this regret coincides with th&nimax regret

R'(A") =log 3 $(x).

x€eNY

The maximum regret achieved by the mixture defined by Jé&nesior is within a non-null constant from the
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minimax regret. Moreover, Xie and Barron (1997) have shomat:t

D( w KAIML)_)O-

w.g?

This holds for a variety of classes of sources smoothly patdred by finite-dimensional sets (Barron et al., 1998).
Again, the relation between minimax regret and minimax netduncy for the set of memoryless sources over a
finite alphabet can be linked to another classical resuthfesymptotic statistics. L&l € © denote the parameter

that achieves maximum likelihood on Simple algebra shows that
D(Qy,, Quw ) = R*(A") = R7(A")

P X1
—/ wJ(e)IEpg lOg M‘| deé.
(C]

Pgn(Xln)
Then, by a theorem due to Wilks (see van der Vaart, 1998), ase dummand converges toward one half the

expectation of a¢,_, distributed random variable (using natural logarithms othtsides).

Memoryless sources over finite alphabets are special cdsesvelope classes. The latter will be of primary
interest.

Definition 1: Let f be a mapping fronlN to [0, 1]. The envelope clas&; defined by functiory is the collection

of stationary memoryless sources with first marginal distibn dominated byf:

Ap={P : VzeN, P'{z} < f(z), and P is stationary and memoryless.

We will be concerned with the following topics.

1) Understanding general structural properties of minimedundancy and minimax regret.

2) Characterizing those source classes that have finitermainregret.

3) Quantitative relations between minimax redundancy gretand integrability of the envelope function.

4) Developing effective coding techniques for source @assith known non-trivial minimax redundancy rate.
5) Developing adaptive coding schemes for collections af@® classes that are too large to enjoy even a weak

redundancy rate.

The paper is organized as follows. Section Il describes sstnuetural properties of minimax redundancies and
regrets for classes of stationary memoryless sources.eThogperties include monotonicity and sub-additivity.
Proposition 5 characterizes those source classes that &dit@ regret. This characterization emphasizes the role
of Shtarkov Normalized Maximum Likelihood coding probaétyil Proposition 6 describes a simple source class for
which the minimax regret is infinite, while the minimax rediamcy is finite. Finally Proposition 3 asserts that such
a contrast is not possible for the so-called envelope cdasse

In Section Ill, Theorems 4 and 5 provide quantitative relasi between the summability properties of the envelope
function and minimax regrets and redundancies. Thosetsebulld on the non-asymptotic bounds on minimax
redundancy derived by Xie and Barron (1997).

Section IV focuses on two kinds of envelope classes. Thificseserves as a benchmark for the two main
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results from the preceding section. In Subsection IV-A,dowounds on minimax redundancy and upper-bounds on
minimax regret for classes defined by envelope function 1 A Ck~* are described. Up to a factbsgn those
bounds are matching. In Subsection 1V-B, lower-bounds onimmx redundancy and upper-bounds on minimax
regret for classes defined by envelope function: 1 A Cexp~®* are described. Up to a multiplicative constant,

those bounds coincide and grow likeg” n.

In Sections V and VI, we turn to effective coding techniqueargd toward source classes defined by power-law
envelopes. In Section V, we elaborate on the ideas embadiBcoposition 4 from Section I, and combine mixture
coding and Elias penultimate code (Elias, 1975) to matchughiger-bounds on minimax redundancy described in
Section IV. One of the messages from Section 1V is that themwf envelope classes defined by power laws,
does not admit a weak redundancy rate that grows at a rateskann'/? for any 5 > 1. In Section VI, we
finally develop an adaptive coding scheme for the union okkpe classes defined by power laws. This adaptive
coding scheme combines the censoring coding techniqudageckin the preceding subsection and an estimation

of tail-heaviness.

I[l. STRUCTURAL PROPERTIES OF THE MINIMAX REDUNDANCY AND MINIMAX REGRET

Propositions 3 and 4 are sanity-check statements. In oodgrove them, we will use the following proposition
which emphasizes the role of themL coder with respect to the minimax regret. At best, it is a camton
Shtarkov’s original work (Shtarkov, 1987, Haussler and €@pA997).

Proposition 2: Let A be a class of stationary memoryless sources over a couritdinliye alphabet, the minimax
regret with respect ta\", R*(A"™) is finite if and only if the normalized maximum likelihood (&lnkov) coding

probability QF,,. is well-defined and given by

v D)
i (%) Zyexnﬁ(Y)

wherep(x) = suppecy P7(%).
Note that the definition of)y,, does not assume either that the maximum likelihood is aedier that it is
uniquely defined.

Proof: The fact that ifQy,, is well-defined, the minimax regret is finite and equal to

log [ > #ly)

yex"
is the fundamental observation of Shtarkov (1987).

On the other hand, iR*(A™) < oo, there exists a probability distributiof™ on X™ and a finite number such
that for allx € X",

p(x) <rxQ"(x),
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summing gives

Zﬁ(x)§r<oo.

xXeEX™

Proposition 3: Let A denote a class of sources, then the minimax redund&tgA™) and the minimax regret

R*(A™) are non-decreasing functions of

Proof: As far asR* is concerned, by Theorem 1, it is enough to check that themiaximutual information)

lower bound is non-decreasing.

For any prior distributiodV on a parameter sé (recall that{ Py : § € ©} C A, and that the mixture coding
probability Q™ is defined byQ™(A) = Ew [P;'(4)])

Ew [D(Pg Q"] = 1(6; X171) = 1 (65 (XT, Xuga)) > 1(6; XT') = Ew [D(Pf', Q")].

Let us now consider the minimax regret. It is enough to canrside case wher&*(A™) is finite. Thus we may
rely on Proposition 2. Leb andm be two positive integers. Letbe a small positive real. For any stricge X",
let @ € A, be such tha@{x} > p(x)(1 — ¢). Then

pxa’) = Q(x) x Q(2' | x)
P)(L =€) x Q2" [ x).

Y

Summing over all possible’ € X we get

So that by lettinge tend to0,

|
Note that the proposition holds even thoudltis not a collection of memoryless sources. This Propositi@m be
easily completed when dealing with memoryless sources.
Proposition 4: If A is a class of stationary memoryless sources, then the amssti— R (A™) andn — R*(A™)
are sub-additive.
Proof: Here again, given Theorem 1, in order to establish sub4aidifor R™, it is enough to check
the property for the maximin lower bound. Letm be two positive integers, and’ be any prior on® (with

{Py : 6 € ©®} C A). As sources from\ are memorylessX;.,, and Xﬁj{” are independent conditionally ah
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and thus

(X" 01XT)

= H (X501XT) — H (X1 0)
= H (XXT) — H (X5016)
< H (X3") - H (X5110)

=1 (X;770) -

Hence, using the fact that under eaéfy the processX,, ),cn, IS stationary:

T(XPH™0) =1 (X750)+ 1 (X007 01XT)
< T(XT30) + 1 (X3 0)

=1(X10)+1(X70).

Let us now check the sub-additivity of minimax regret. Foy an> 0, for x € X"*™ let P € A be such that
(1 —e)p(x) < P (x). As for x € X" andx’ € X™, P"t™(xx’') = P"(x) x P™(x’), we have for any > 0,
and anyx € X" x' € X™

(1 —e)p(xx') < p(x) x p(x').
Hence, lettinge tend to0, and summing over akk € X" +™:
R* (An-i-m)

—log > pixx)

xXEXTX EX™

<log Z p(x) + log Z p(x)

xXEX™ xexm
= R*(A")+ R*(A™).
[ |
Remark 3: Counter-examples witness the fact that subadditivity diirelancies does not hold in full generality.
The Fekete Lemma (see Dembo and Zeitouni, 1998) leads to:

Corollary 1: Let A denote a class of stationary memoryless sources over aatdardphabet. For both minimax

redundancy?* and minimax regref?*,

—+ n —+ n
i BN e BT Ry
n— o0 n neN4 n
and
lim M — inf M < R* (Al) .
n— 00 n neNL n
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Hence, in order to prove thd™ (A™) < oo (respectivelyR* (A") < c0), itis enough to check that™ (A') < oo
(respectivelyR* (A') < o0).

The following Proposition combines Propositions 2, 3 antd dan be rephrased as follows: a class of memoryless
sources admits a non-trivial strong minimax regret if antly aghShtarkov NmML coding probability is well-defined
forn = 1.

Proposition 5: Let A be a class of stationary memoryless sources over a count#blite alphabet. Lep be
defined byp(z) = suppcp P{x}. The minimax regret with respect t" is finite if and only if the normalized

maximum likelihood (Shtarkov) coding probability is weléfined and :

R*(A") < 0 & Z p(z) < oo.

reNL

Proof: The direct part follows from Proposition 2.

For the converse part, ., p(z) = oo, then R*(A') = oo and from Proposition 3R*(A"™) = oo for every
positive integem. [ |

When dealing with smoothly parametrized classes of sourees finite alphabets (see Barron et al., 1998, Xie
and Barron, 2000) or even with the massive classes define@rmgwal sources (Csiszar and Shields, 1996), the
minimax regret and minimax redundancy are usually of theesander of magnitude. This can not be taken for
granted when dealing with classes of stationary memoryessces over a countable alphabet.

Proposition 6: Let f be a positive, strictly decreasing function definedMrsuch thatf (1) < 1. Fork € N, let

pi be the probability mass function dN defined by:

1—f(k)ifl=0;
pe) =19 fk) ifl=k
0 otherwise.

Let A = {p1,p2,...}, let A be the class of stationary memoryless sources with first imarg'. The finiteness
of the minimax redundancy with respect A4 depends on the limiting behavior df(k) log k: for every positive
integern:
f(k)logk —k 0o 00 & RT (A") = 00.
Remark 4:When f (k) = @, the minimax redundanci* (A’}) is finite for all n. Note, however that this does
not warrant the existence of a non-trivial strong universalundancy rate. However, &s, f(k) = oo, minimax
regret is infinite by Proposition 5.

A similar result appears in the discussion of Theorem 3 inug@dker and Opper, 1997) where classes with finite
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minimax redundancy and infinite minimax regret are calledgular.
We will be able to refine those observations after the statémieCorollary 2.

Proof: Let us first prove the direct part. Assume thfdt) log k — 4. co. In order to check thak*(A!) =
o0, We resort to the mutual information lower bound (Theoremrid describe an appropriate collection of Bayesian

games.

Let m be a positive integer and létbe uniformly distributed ovef1,2,...,m}. Let X be distributed according
to px conditionally onf = k. Let Z be the random variable equaltof X = # and equal t® otherwise. Obviously,
H(9|X,Z = 1) = 0; moreover, asf is assumed to be non-increasimgZ = 0|0 = k) =1 — f(k) <1— f(m)

and thus:
HO\X)=H(Z|X)+ H(0|Z,X)
<1+P(Z=0H(X,Z=0)
+P(Z=1)H|X,Z =1)
<1+ (11— f(m))logm.
Hence,

RY(AY) = 1(6, X)
>logm — (1 — f(m))logm
= f(m)logm
which grows to infinity withm, so that as announce@’ (A') = cc.

Let us now prove the converse part. Assume that the sequgfitéglogk)ren. is upper-bounded by some
constantC. In order to check thaR™ (A™) < oo, for all n, by Proposition 4, it is enough to check that (A}) < 00,
and thus, it is enough to exhibit a probability distributi@nover X = N such thatsup pc 41 D(P, Q) < oc.

Let Q be defined byQ (k) = A/((1V (k(logk)?)) for k > 2, Q(0),Q(1) > 0 where A is a normalizing constant

that ensures thap is a probability distribution ove#r’.

Then for anyk > 3 (which warrantsk(log k)% > 1), letting P, be the probability defined by the probability

mass functionpy:

D(Py, Q)
_ (1—f(k) f(k)k(log k)?
= (1= f(k))log T 00) + f(k)log <#)
< ~10gQ(0) + C + f(k) (2108 (k) ~ log(4))

CQ
< C+log 100)°
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This is enough to conclude that

2

AQ(0)

RT(AY) < (C+10g )\/D(Pl,Q)<oo.

Remark 5:Note that the coding probability used in the proof of the @rse part of the proposition corresponds

to one of the simplest prefix codes for integers proposed BsHEL975).

The following theorem shows that, as far as envelope clam®esoncerned, minimax redundancy and minimax

regret are either both finite of both infinite.
Theorem 3:Let f be a non-negative function frody . to [0, 1], let A; be the class of stationary memoryless

sources defined by enveloge Then

RT (A}) < oo & R* (A}) < 0.

Remark 6:We will refine this result after the statement of Corollary 2.
Recall from Proposition 5 thakR* (A?) <00 Y pen, f(k) < oo
Proof:

In order to check that

Z f(k):m:>R+(A?):m,

keNy

it is enough to check that iEkeN+ f(k) = oo, the envelope class contains an infinite collection of muyual

singular sources.

Let the infinite sequence of integefk; ), be defined recursively bf, = 0 and

h
hi+1:min{h: > f(k)>1}.

The memoryless sourck; is defined by its first marginaP! which is given by
f(m)
Pl(m)= ———————forme {p;+1,....pit1}.
S e 1 (k)

Taking any prior with infinite Shannon entropy over the! ; i € nN, } shows that

RT({P!; ieNy}) =o00.
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IIl. ENVELOPE CLASSES

The next two theorems establish quantitative relations/éeh minimax redundancy and regrets and the shape

of the envelope function. The first one holds for any class emoryless sources.

Theorem 4:If A is a class of memoryless sources, let the tail funcfign be defined byFy: (u) =, ., p(k),

then:

_ 1
R*(A™) < inf nFAl(u)loge—l-u logn+| +2.

wuln 2

Choosing a sequende,, ), of positive integers in such a way that, — oo while u,,/n — 0, this theorem

allows to complete Proposition 5.

Corollary 2: Let A denote a class of memoryless sources, then the followingshol

R*(A™) < 00 & R*(A™) = o(n) and RT (A™) = o(n),

Remark 7:We may now have a second look at Proposition 6 and Theorem Belsetting of Proposition 6,

this Corollary asserts that ¥, f(k) < oo, a non-trivial strong redundancy rate exists.

This corollary complements Theorem 3 by asserting thatlepeelasses have either non-trivial strong redundancy

rates or infinite minimax redundancies.

Remark 8:Again, this statement has to be connected with related gitpos from Haussler and Opper (1997).
The last paper establishes bounds on minimax redundanoyg gsiometric properties of the source class under
Hellinger metric. For example, Theorem 4 in (Haussler angedpl997) relates minimax redundancy and the metric
dimension of the seA™ with respect to the Hellinger metric (which coincides with metric between the square
roots of densities) under the implicit assumption that sesirlying in small Hellinger balls have finite relative
entropy (so that upper bounds in Lemma 7 there are finite)elépe classes may not satisfy this assumption.

Hence, there is no easy way to connect Theorem 4 and resoifis(flaussler and Opper, 1997).

Proof. (Theorem 4.) Any integer, defines a decomposition of a string € N} into two non-contiguous

substrings: a substring made of them symbols fromx that are larger tham, and one substring made of the
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n —m symbols that are smaller than

z€{u,..}™ ye{1,2,.ujn—m

EDS VD SEND SR 2%
() ¥ I ¥ W

ze{u,..}m i=1 ye{l,2,..uyn—m

(c) " n\ = R

< <Z <m)FA1(U)m> > by
ye{l,2,...,u}m

(d)

S (1 + FAl (u))n 2%71 logn+2 .

Equation (a) is obtained by reordering the symbols in thieagstr Inequalities (b) and (c) follow respectively from

Proposition 4 and Proposition 3. Inequality (d) is a diremhgequence of the last inequality in Theorem 2.
Hence,

u—1

2

R*(A™) < nlog (1 + Fpi(u)) + logn + 2

u —

1
5 logn + 2

< nFyi(u)loge +

|
The next theorem complements the upper-bound on minimartrég envelope classes (Theorem 4). It describes
a general lower bound on minimax redundancy for envelopesek
Theorem 5:Let f denote a non-increasing, summable envelope function.iyoingegem, letc(p) = > 1_; f(2k).
Let c(co) = >, f(2k). Assume furthermore thaf satisfies propertye(co) > 1. Letn € Ny, p € Ny, e > 0

and\ €]0, 1] be such that(p) > 1 and (1 — /\)n% > 19 Then

P .
1. n(l—=X\nf(29)
(AT > E —log ————F———~> — 1
R ( f) = C(pvna /\76) v (2 0g 20(]7)6 €l ( )
whereC(p, n, A, €) = T—imr— L (1 —4 7(1_1352?]2(%)) .

AZn f(2p)

Before proceeding to the proof, let us mention the followmag-asymptotic bound from Xie and Barron (1997).
Let m} denote the Krichevsky-Trofimov distribution ové@, 1}™. That is, for anyx € {0,1}", such thatn; =
Z?:l x; andng =n —nq

my (x)=m [ g7V (1—0)"1/2de.
[0.1]
Lemma 1:(Xie and Barron, 1997, Lemma 1) For amy> 0, there exists a(c) such that forn > 2¢(e) the

following holds uniformly overd € [c(e)/n,1 — c(g)/n]:

n
— —logm| <e.

n * 1
‘D (PG, mn) = 2 log 2me
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The bounde(e) can be chosen as small 8.

Proof: Let f,n,p,e and\ be as in the statement of the theorem. Let us first define a pradrability W on
A}. For each integei betweenl andp, let u; be defined as

f(21)
c(p)

N

Let @ = (0;)1<i<p be a collection of independent random variables each blig&tdl according to a Beta distribution
with parameterg1/2,1/2), hence the prior probability/ has densityw given by

w(0) = — H (620 -00)7172) .

P

The memoryless source parametrized ys defined by the probability mass functign(2: — 1) = 6, u; and
po(2i) = (1 —0;)u; fori: 1 <i<pandpg(j) =0 for j > 2i. Thanks to the condition(p) > 1, this probability

mass function satisfies the envelope condition.

Fori < p, let the random variabléV; (resp.N?) be defined as the number of occurrence§df— 1,2i} (resp.
2i) in the sequence. Let N (resp.N?) denote the random vectdy, ..., N, (resp.N?, .. .,NS). If a sequence
x from {1,...,2p}"™ containsn; = N;(x) symbols from{2i — 1, 2i} for eachi € {1,...,p}, and if for each such
i, the sequence containg = N?(x) (n}) symbols equal t@i — 1 (resp.2i) then

P

Pyeo) =TT (w0 -0 .

1=1
Note that when the sourag is picked according to the pridl/ and the sequenc’.,, picked according taPy,
the random vectoN is multinomially distributed with parametersand (1, o, . . ., i), SO the distribution oIN
does not depend on the outcome&fMoreover, conditionally orlN, the conditional probabilityPy {- | N} is a

product distribution:

Pr(x |N) = f[ (9?3 (1- 91-)”%) .

i=1
In statistical parlance, the random vect®¥sand N form a sufficient statistic fo#.

Let Q* denote the mixture distribution oN’ induced byW:
Q"(x) = Ew [P (x)] ,

and, for each, let m} denote the Krichevsky-Trofimov mixture ovéd, 1}, then

p
Q" (x) = [T (e my, 017 .
1=1
For a given value olN, the conditional probabilityQ* {- | N} is also a product distribution:
P 0 1
Q" {x N} =[] my, (071,

i=1

DRAFT December 22, 2006



15

so, we will be able to rely on:
Py(x) _ Py(x|N)

Q*(x)  Q*(x|N)’
In the sequel, we lePy{- | N} (Q*{- | N}) denote the conditional distribution dfy (Q;) on strings with

composition given by vectoN.
Now, the average redundancy @f with respect toPy can be rewritten in a handy way.
Pen(Xl:n | N)H

Q*(Xl:n | N)
from the last equation,

= Ew [Epg []EPQ [log%m}”

=Ew [Ery [D(P3(- I N),Q;(- | N))]]

=Ew [Ex[D (Py(- | N),Q*(- | N))|]

Ew [D (P.Q")] = Ew [Epg [mg

as the distribution olN does not depend o,
=En [Ew [D (Py(- | N),Q"(- | N))]]

by Fubini's Theorem.

We may developD (Pg (- | N),Q*(- | N)) for a given value ofN = (ni,na,...,n,). As both Pj(- | N) and
Q*(- | N) are product distributions op[?_, ({2i — 1,2i}"), we have

p
ZD (Pg:i,m;;i)]
1=1
p
— Z Eq, [D (Pg;i,mf”)] )
=1

The minimal average redundancy &f with respect to the mixing distributiod” is thus finally given by:

Ew [D(Pg (- | N),Q"(- | N))| = Ew

Ew [D (P, Q%)] = En

ZP: Eo, [D (ng,m;;i)}]

i=1

[
NE

En [Eo, [D (B3, m;,)]]

.
Il

[
Mﬁ

Z_( ) (1= )" B, [D(Pytymy,)] - )

i=1
Hence, the minimal redundancy af; with respect to prior probability¥” is a weighted average of redundancies
of Krichevsky-Trofimov mixtures over binary strings withfférent lengths.

At some place, we will use the Chebychef-Cantelli inequalee Devroye et al., 1996) which asserts that for
a square-integrable random variable:
Var(X)

Pr{X SB[X] -t} < s

December 22, 2006 DRAFT
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Besides, note thate < 1,
1—e¢

dx 4
— > 1 —=V2e 3
¢ my/x(l —x) 7T ®
Now, the proposition is derived by processing the rightdaa'rde of the last equation. Now, under condition

(1 —/\)n% > %, we haveVi <p,n; > (1 — \)nu; = = < =. Hence,

ni€

]EW [ (PB ’ )]
- n D (B my,)

p
> (1) =y [ 22,
i; n; >(lz>\)nu i 0 91(1 - 91)

by Proposition 1 from Xie and Barron (1997)

p n T
n\ . o "6—10g21—|—10gﬂ'—€
> V(] — )™ do;
> E > (n>u (1 — pa) / B0

i=1n;>(1=XN)ny; T, e
from (3)

u - n 4 [10\ /1, n

> — n=ng N — " —
2> % () nr (1 2y ) (5rom g e )
=1 n;>(1=N)nu;

invoking the Chebychef-Cantelli inequality,

Z _é _ 10 110 M+10 I —¢
- 14+ o m\l (1= X)nue ) \ 2 & ore &

n g A2

usmg monotonicity assumption oJﬁ

1 4 | 10¢(p A) f(21) )
> | 1— =) —lo 7+10g7r—6 )
14+ )\ZZ(;?()QP) < m\l (1-— enf 2p) ) ; ( 2¢(p)me

IV. EXAMPLES OF ENVELOPE CLASSES

Theorems 3, 4 and 5 assert that the summability of the eneetlgfining a class of memoryless sources
characterizes the (strong) universal compressibility haft tclass. However, it is not easy to figure out whether
the bounds provided by the last two theorems are close to@heh or not. In this Section, we investigate the case
of envelopes which decline either like power laws or expdiaéy fast. In both cases, upper-bounds on minimax
regret will follow directly from Theorem 4 and a straightfaard optimization. Specific lower bounds on minimax
redundancies are derived by mimicking the proof of Theoreneither faithfully as in the case of exponential

envelopes or by developing an alternative prior as in the cdgpower-law envelopes.

A. Power-law envelope classes

Let us first agree on the classical notatigie) = >, ., 7, for a > 1.
Theorem 6:Let « denote a real number larger thanandC' be such thaC((«) > 2. The source classs .-«
is the envelope class associated with the decreasing &mgtic : « — 1 /\ < for C > 1 anda > 1.

Then:
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1)
n'/* A(a) log |C¢()] < RY (AL —..)

where
1 _ L (L e/
Ala) = /1 1/ (1 € )du.

2)

1/«
2Cn1) (logn)lfl/a_i_o(l)

R - <

o —
Remark 9:The gap between the lower-bound and the upper-bound is cna‘rc@hﬁlgn)l’é . We are not in a
position to claim that one of the two bounds is tight, let @awhich one is tight. Note however that as— oo
andC = H?, classA¢ .- converges to the class of memoryless sources on alpHabet., H} for which the
minimax regret is% logn. This is (up to a factor 2) what we obtain by taking the limitsaur upper-bound of
R*(AZ _.). On the other side, the limit of our lower-bound whergoes tol is infinite, which is also satisfying

since it agrees with Theorem 3.

Remark 10:In contrast with various lower bounds derived using a simiteethodology, the proof given here
relies on a single prior probability distribution on the g@aweter space, it works for all values of It has been

elaborated after helpful discussions with Laszlé Gydrfi.

Note that the lower bound that can be derived from Theoremd the same order of magnitude(n'/®) as
the lower bound stated here (see Appendix Il). The proofrgivere is completely elementary and does not rely

on the subtle computations described in Xie and Barron (L997

Proof: For the upper-bound on minimax regret, note that

co__ ¢
k> — (a—1)ux—1’

Fac(u) =Y 1A

k>u

Q=

Hence, choosing,, = (%) , resorting to Theorem 4, we get:

2Cn

a—1

1/«
RY(AL ) < < ) (logn)' =/ 1 0(1).
Let us now turn to the lower bound. We first define a@edf parameters such thaj € A7, - forany6 € © and
then we use the mutual information lower bound on redunddretyn be a positive integer such that* < C{(«).
For all sufficiently large integep, m® < >%_, k% Henceforth, lete(p) = > 7_, W, so that the condition

m® < C¢(«) translates intax(p) > 1.

The set{Py,0 € O} consists of memoryless sources over the infinite alph&bet Each paramete# is a
sequence of integer8@ = (01,0-,...,). We take a prior distribution o® such that(6;), is a sequence of

independent identically distributed random variableswiniform distribution on{1,...,m}. For any suctg, P,
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is a probability distribution olN_; with supportUx>1{(k — 1)m + 6, }, namely:
Po((k—1) +9)—L fork =1
S T ey T Y

The conditionc, > 1 ensures thaPy € A},
Now, the mutual information between parameffleand source outpuk’.,, is

1(60,X1.,) = ZI O, X1:n)
k>1

Let Ny, (x) = 1 if there exists some indexe {1,...,n} such thatx; € [(k — 1)m + 1, km], and0 otherwise.

Note that the distribution ofV;, does not depend on the value &f Thus we can write:

P (9k = ]len = .I')

M-

10, X1.p P (0, =j,X1., =) lo -
(O Xon) i=1 n O = 4. %1 )log P (0 =3)
Jj=lzeNY}
- . . P(ok = j|X1:n = 517)
:Z PO, =7X1n=1) log +Z Z POy =j,X1.n =x)log /m
J=1 x:Ny(xz)=0 J=1 x:Nj(x)=1
=0+ > ZP(ok:j,XM:x)logl/—m
z:Ni(z)=1,Py(x)>0 j=1
= P(Np(X1.,) = 1) logm.
Hence,

1(6,X1.) =Y P(Ni=1)logm
k>1

= Ep, [Z,] logm,

where Z,,(x) denotes the number of distinct symbols in stringnote that its distribution does not depend on the

value of6.)

As Z,, = ) 1~ LN, (2)=1, the expectation translates into a sum

AVAE g (1 - (1 B W)n)

Brdeo) 2 (OO (1- (“Wﬁ) logm
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In order to optimize the bound we choose= |C((«)|. The last sum can then be lower-bounded by:

oo

> (- (i) )

=2 (oo (i)

asl—z <exp(—x)

[ (e () )

1 00

For an alternative derivation of a similar lower-bound gsitheorem 5, see Appendix II.

B. Exponential envelope classes

Theorems 4 and 5 provide almost matching bounds on the minme@undancy for source classes defined by
exponentially vanishing envelopes.

Theorem 7:Let C' and o denote positive real numbers satisfyiog> ¢2®. The classAs.-«- is the envelope
class associated with functiofy, : 2 — 1 A Ce **. Then

% log>n (1 —o(1)) < RT(A%,—o) < R* (A%, _..) < % log?n + O(1)
Proof: For the upper-bound, note that as— oo,

_ C
Folu) =Y 1nCe* < p— gt

_ e«
k>u

Hence, by choosing the optimal valug = élogn in Theorem 4 we get:

L. 2
* n . < . .
R* (A -a) < 5 log“n+ O(1)

We will now prove the lower bound using Theorem 5. The comstr@’ > €** warrants that the sequence
co(p) = P_, f(2k) > Ce 2012 """ is |arger thanl for all p.

1— e—2a
If we choosep = | (logn —loglogn)|, thennf(2p) > Cne~losntloglogn=2o goes to infinity withn. For

e=X\=3,we getC(p,n,\e) =1—o(1). Besides,

zp: < — \)Cme 2t > B

2 2c(p)e

g<logn+10g % (/\iO - 6) _O‘ZZ
— (%1og2n %%log n) (1+0(1))

= % log?n (1 +o(1)).
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V. A CENSORING CODE FOR ENVELOPE CLASSES

The proofs of Theorems 4 and 5 suggest to handle separatalyaml large (allegedly infrequent) symbols. Such
an algorithm should perform quite well as soon as the taibln of the envelope provides an adequate description
of the sources in the class. The coding algorithm suggesietthido proof of Theorem 4, which are based on the
ShtarkovNMmL coder, are not computationally attractive. The design efriext algorithm Censor i ngCode) is
again guided by the proof of Proposition 4: it is paramettibg a sequence of cutoffd(;);cx and handles the
i symbol of the sequence to be compressed differently acugtdi whether it is smaller or larger than cutdf,
in the latter situation, the symbol is said to be censore@ Gdnsor i ngCode algorithm uses Elias penultimate
code (Elias, 1975) to encode censored symbols and Krickesiimov mixtures (Krichevsky and Trofimov,
1981) to encode the sequence of non-censored symbols padltiecharkers (zeros) to witness acts of censorship.
The performance of this algorithm is evaluated on the pdarenvelope class\.-«, already investigated in
Section IV. In this section, the parametersand C' are assumed to be known.

Let us first describe the algorithm more precisely. Given a-decreasing sequence of cutoffs;);<,,, a string
x from N’; defines two stringg andx in the following way. Stringk has lengthn and belongs tq];" , X;, where
X, ={0,... K;}:

x; if x; < K;

0 otherwise (the symbol is censored),

Meanwhile, stringk is the subsequence of censored symbols, thagis.,~ i, i<n-

The algorithm encodes as a pair of binary strings1 andC2. The first one ¢1) is obtained by applying Elias
penultimate code to each symbol frok) that is to each censored symbol. The second strii®j (s built by
applying arithmetic coding t& using side-information fronk. DecodingC2 can be carried out using information
gotten from decodin@1.

In order to describe the coding probability used to encodee need a few more counters. For- 0, let n{ be
the number of occurrences of symboin x;.; and letn? be the number of symbols larger than,; in x;.; (note
that this not larger than the number of censored symbots; inn and that the counters; can be recovered from
x1.; andx). The conditional coding probability over alphab¥t,; = {0, ..., K;;1} givenx;.,; andx is derived
from the Krichevsky-Trofimov mixture oveit; ;. It is the posterior distribution corresponding to Jeffeeptior
on thel + K;,i-dimensional probability simplex and coum$ for 7 running from0 to K;1:

QXit1 =j | X1 = %14, X = %) = - mits

K; 1
P4 1,+21+

The length ofc2(x) is (up to a quantity smaller thal) given by
n—1
=3 108 Q(Xiy1 | X14,%) = —log Q(X | X).
=0
The following description of the coding probability will gve useful. Forl < j < K, let s/ be the number of

censored occurrences of symbpolLet n/ serve as a shorthand fa¥,. Let i(j) be n if K, < j or the largest
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integeri such thatk’; is smaller thary, thens; = nz( - The following holds

(n? 2) s
o= (s (I ) (T )

1:x;=0 1=0 2

Note that the sequende?);<,, is not necessarily non-decreasing.

A technical description of algorithr@ensor i ngCode is given below. The procedurgl i asCode takes as
input an integerj and outputs a bhinary encoding ¢f using exactly/(;) bits where/ is defined by:((j) =
[logj + 2log (1 4+ logj) + 1] . The procedurdr i t hCode builds on the arithmetic coding methodology (Rissanen
and Langdon, 1979). It is enough to remember that an aritbrmaetler takes advantage of the fact that a coding
probability @ is completely defined by the sequence of conditional distidms of the: + 1th symbol given the
past up to time.

The proof of the upper-bound in Theorem 6, prompts us to chégs= Niw (it will appear at the end that the

1

best choice is\ = (j—fl) .

Algorithm 1 CensoringCode
K0
counts— [1/2,1/2,..]
for 7 from 1 to n do
N1/«
cutoff — (25Z ) J

—1
if cutoff> K then
for j — K + 1 to cutoffdo
countg0] « countsg0] — countsj] + 1/2
end for
K « cutoff
end if
if 2[¢] < cutoffthen
ArithCodgx[i], counts0 : cutoff)
else
ArithCodg0, counts0 : cutoff)
Cl—Cl1-EliasCodéx|[i])
count$0] < count$0] + 1
end if
counts$z|i]] < countsz[i]] + 1
end for
C2— ArithCod«)
return G, -G

Theorem 8:Let C' anda be positive reals. Let the sequence of cutdfis );<,, be given by

k= (75 )

The expected redundancy of proced@ensor i ngCode on the envelope class-.-~ is not larger than

< 20n >% logn (14 0(1)).

a—1

December 22, 2006 DRAFT



22

Remark 11:The redundancy upper-bound in this Theorem is within a faotgn from the lower bound)(n'/)

from Theorem 6 .

The proof of the Theorem builds on the next two lemmas. Thé lBreama compares the length 02(x) with
a tractable quantity. The second lemma upper-bounds thegedength ofc1(x) by a quantity which is of the

same order of magnitude as the upper-bound on redundancyenecaking for.

We need a few more definitions. Lgtbe the string of lengtw over alphabetY,, defined by:

x; if x; < Kp;
yi =
0 else

For0 < j < K, note that the previously defined shortharfidis the number of occurrences of symboln y.

The stringy is obtained fromx in the same way ag using the constant cutofk,,.

Let m; be the Krichevsky-Trofimov mixture over alphabfg, ..., K,,}:

LD+ 1)) D(Eatl)

=11 U(1/2) ) T (n+ K2y

Jj=0

Stringx seems easier to encode thyarsince it is possible to recoverfrom y. This observation does not however
warrant automatically that the length 62(x) is not significantly larger than any reasonable codewordtlerfior
y. Such a guarantee is provided by the following lemma.

Lemma 2:For every stringc € N7}, the length of theC2(x) is not larger than-logm.; (y).

Proof: [Lemma 2] Lets” be the number of occurrences ®fn y, that is the number of symbols i that are

larger thank,. Let

Then, the following holds:

n Ky i(4)
(a)
o= | I ®i+1/2) [T i +1/2)
i=1,y;=0 =1 \i=1,y,=j

b 0 Kn j
(_>) I(s"+1/2) H I(s?+1/2) ’
r/2) ) H\TTR)
where (a) follows from the fact symbolk; is censored either becausg > K, (that isy, = 0) or because

x; = j < K, andi < i(j); (b) follows from the fact that for each< n such thaty; = 0, n{ , > Dirci Ixy> K,

while for eachy, 0 < j < K,,, for eachi <i(j), n0_, >nl .
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From the last inequality, it follows that

V> (K" rnﬂ+1/2)) s04+1/2)

::]x

SJ—|—1/2 ”1:[1 1
I'(1/2) i+ Bt

S T(s7+1/2) I'(1/2) et i
> ﬁ (n? +1/2)\ I'(s° +1/2)K I(s? +1/2) ”1:[1 1
FrT(s7 +1/2) r(/2) 14 I(/2) e
=my(y
where the last inequality holds sin¢&;); is a non-decreasing sequence. -

The next lemma shows that the expected lengtbfX ., ) is not larger than the upper-bound we are looking
for.

Lemma 3:For every sourcé” € Aq.-«, the expected length of the encoding of the censored syni@b(sX;.,,))
satisfies:

Ep[|CL (X1n)|] < nwlogn (1+o0(1)).

Proof: [Lemma 3] Letl < a < b and > 0. First note that:

b

ZCB 1}

/b logx logx ]
de =

R xﬁ 1

/b log (1 +log) | [log (1 +log ) —
€r =
a z? (1—pB)al~ T

The expected length of the first part of the code is thus:

Using the expressions for the integrals above, we get:

i logz +2log (1 +loga) +1 </°° 10gx+210g(1+10gx)+1dx

r® ) x
r=K,+1 K;

_ log K; 4+ 2log (1 +1log K;) + ﬁ.
- (a—l)KJ‘-’_l
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Thus, ask; = \j'/®, we substitute? by 1 — é in Equations (4), (4) and (4) to obtain:

C Xn:long—i-?log(l—l-long)-i-%

E[ICL (X7) ] o

IN

C I~ Llogj+log A+ 2log (1+log (A1) + =45

_ « a—1
a—1 )\Oﬁljl—é

IN

ala—1 —9 =%

c n+1 (logﬂc + alog A 4 2alog (1 + log (/\wl/a)) + %)
T C+/ de

= mné logn (1+o0(1)).

We may now complete the proof of Theorem 8.

Proof: Remember thaf,, = {0,..., K, }. If p is a probability mass function over alphab¥t let p®" be
the probability mass function ove¥™ defined byp®™(x) = [];_, p(x;). Note that for every stringk € N,
max p®"(y) > max p®"(x)> max P"(x)=p(x).

PEM, (Xn) T opeEML (Ny) T PeAg.-a

Together with Lemma 2 and the bounds on the redundancy of tlehé¢sky-Trofimov mixture (See Krichevsky

and Trofimov, 1981), this implies:
. K,
C2 (%) | < —logp (x) + =+ logn + O(1).

Let L(x) be the length of the code produced by algorit@ensor i ngCode on the input stringk, then

sup  Ep [L(X1:n) —log1/P"(X1.0)]

PEA, o
S sup IEP [L(Xln) - 10g 1/25(X1n)]
PEA, o
S P SAUP IEP HCZ (Xln)|+10gﬁ(X1n)+|Cl (Xln)”
eAr
<sup (|C2 (x)| + logp (x)) + . sAup Ep [|CL (X1.n)]]
x EAL _a
/\ni C 1
< - na .
== logn + -1 o1 logn (14 o(1))

The optimal value is\ = (5—_01) E, for which we get:

RT(Q" AZ.—o) < (j?ﬁ)a logn (1+ o(1)).

Note that the proof of the theorem provides an upper-bountherexpected regret of the censoring code.
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VI. ADAPTIVE ALGORITHMS

The performance o€Censori ngCode depends on the fit of the cutoffs sequence to the tail behafidhe
envelope. From the proof of Theorem 8, it should be clear ith@nsor i ngCode is fed with a source which
marginal is light-tailed, it will be unable to take advargagf this, and will suffer from excessive redundancy.

In this section, a sequen¢@™),, of coding probabilities is said to Bpproximately asymptotically adaptivéth

respect to a collectiofA,,,),mer Of source classes if for eadh € U,,,c mAr, fOr eachA,, such thatP € A,,:
D(P",Q™)/R*(A},) € O(logn).

Such a definition makes sense, since we are consideringvaassirce classes which minimax redundancies are

large with respect to the logarithm function.

A. Pattern coding

First, the use ofpattern codingOrlitsky et al. (2004), Shamir (2006) leads to an almost mant adaptive
procedure for small values af, that is heavy-tailed distributions. Let us introduce tlogion of pattern using the
example of stringx = “abracadabra”which is made ofn = 11 characters. The information it conveys can be

separated in two blocks:

1) adictionary A = A(x): the sequence of distinct symbols occurringxnin order of appearance (in the
example, A = (a,b,r, ¢, d)).

2) apatterny = ¢ (x) where); is the rank ofx; in the dictionaryA (here,» = 1231415123).

Now, consider the algorithm coding messagéy transmitting successively

1) the dictionaryA,, = A (x) (by concatenating the Elias codes for successive symbols);

2) and the patterw’,, = v (x), using a procedure for coding patterns as suggested byskyridt al. (2004) or
Shamir (2006). Henceforth, the latter procedure is callettiepn coding.

Theorem 9:Let Q™ denote the coding probability associated with the codiggrthm which consists in applying
Elias penultimate coding to the dictionafy(x) of a stringx from N’} and then pattern coding to the pattefr(x).

Then for anya such thatl < a < 5/2, there exists a constaf depending orv and C' such that

RT(Q", A% ) < Kn'/%logn

Proof: For a given value of” and«, the Elias encoding of the dictionary uses on average
E[|A,]] = K'n logn

bits (as proved in Appendix IV), for some constdiit depending onv and C.

If our pattern coder reaches (approximately) the minimatepa redundancy

PO (U,
R} (Wy.,) =  inf sup Ep {log ﬂ] ,
qem; (N7) PeM, (N4 ) q(¥1.n)
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the encoding of the pattern uses on average

But in Orlitsky et al. (2004), the authors show tha, (¥.,,) is upper-bounded by (\/n) and evenO (ng)
according to Shamir (2004) (actually, these bounds are satsfied by the minimax individual pattern redundancy).
Hence, this code is adaptive, up to a fadiegn, in the rangel < a < g ]

This remarkably simple method is however expected to ha}m)a[performance when is large. Indeed, Garivier

(2006) proves thaRy, (¥;.,) is lower-bounded byl.84 (&)i which indicates that pattern coding is probably

suboptimal as soon as is larger thars.

B. An (approximately) adaptive censoring code

Given the limited scope of the pattern coding method, we attkmpt to turn the censoring code into an adaptive
method, that is to tune the cutoff sequence so as to modebitirees statistics. As the cutoffs are chosen in such a
way that they model the tail-heaviness of the source, weaiad a tail-heaviness estimation problem . In order to
focus on the most important issues we do not attempt to dewelsequential algorithm. The+ 1th cutoff K,
is chosen according to the numberdi$tinct symbolsZ,, (x) in x.

This is a reasonable method if the probability mass funatiefning the source statistidd' actually decays like
k%- Unfortunately, sparse distributions consistent with. may lead this project astray. If, for examp(&7,),, is
a sequence of geometrically distributed random varialaled,if X, = {2%J then the distribution of theX,, just
fits in Ac.-« but obviouslyZ,,(X1.,) = Z,, (Y1.,) = O (logn).

Thus, rather than attempting to handlg-(A.-«, we focus on subclasses,~.oW,, where
Wy = {P : PeEA -, 0< hmi%fkapl(k) < limsup k*P' (k) < oo} .
k

The rationale for tuning cutoffs,, using Z,, comes from the following two propositions.

Proposition 7: For every memoryless sourde € W,,, there exist constants andc, such that for all positive
integern,
en/® < Epn [Z,] < cont/.

Proposition 8: The number of distinct symbolg,, output by a memoryless source satisfies a Bernstein ingéguali

[Zn]

Pr{Z, <E[Zy]} <e %

“4)
Proof: Note thatZ,, is a function ofn independent random variables. Moreovgy,is a configuration function

as defined by Talagrand (1995) singg(x) is the size of a maximum subsequencexo$atisfying an hereditary

property (all its symbols are pairwise distinct). Using thain theorem in Boucheron et al. (2000), this is enough

to conclude. [ |
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Noting thatZ,, > 1, we can derive the following inequality that will prove uskfater on:

1 1 1
E [—Q—J =E |:—a—1 lzn>§E[znl] +Ep |:—o¢—1 ]lzngglE[Zn]}
1

1
< +Pr (Zn < —E[Zn]) : (5)
(2E[Zn]) 2
We consider here a modified version@&nsor i ngCode that operates similarly, except that

1) the stringx is first scanned completely to determifg (x);
2) the constant cutoffs,, = 7, is used for all symbols;, 1 < i < n, wherey is some positive constant.

3) the value ofK,, is encoded using Elias penultimate code and transmitteord€fl and C2.

Note that this version of the algorithm is not sequentialduse of the initial scanning.

Algorithm 2 AdaptiveCensoringCode

cutoff— u Z,,(x) {Determination of the constant cutoff}
counts— [1/2,1/2,..]
for ¢ from 1 to n do
if 2[i] < cutoffthen
ArithCodg«[i], counts0 : cutoff)
else
ArithCodg0, counts0 : cutoff)
Cl—C1-EliasCodéx[i])
count$0] « count$0] + 1
end if
countsz[i]] < countsz[i]] + 1
end for
C2+ ArithCod€)
return C, -G

We may now assert.

Theorem 10:The algorithmAdapt i veCensor i ngCode is approximately asymptotically adaptive with respect
to Uyso Wa-
Proof: Let us again denote b@l(x) andC2(x) the two parts of the code-string associated with
Let L be the codelength of the output of algorittAdapt i veCensor i ngCode.

For any sourceP:

Ep [ﬁ(le)} —H(X1,) =Ep [ﬁ( )+ CL (X)) + |C2 (X1.m) 1—71213 )log 5

< )
~ K, 1
< Ep [£(Kn)| +Ep[ICL (X10)[] + Ep |12 (X1.0)| ngzﬂ(k) log 575

As function/ is increasing and equivalent log at infinity, the first summand is obviou&ly(IEp {Kn} ) Moreover,
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if P €W, there existsC such thatP!(k) < k% and the second summand satisfies:

PICL (X)) =Ep | S PUR)R)

E>K,+1
<nCEp / t) dx}
N x(y
=nCEp | = n / du
Ky u®
<nCEp |—= ! 1] / log (nu) (nu) du (1 + o(1))
LKR 11 u®

=0 (né logn)

by Proposition (7) and Inequality (5).

By Theorem 2, every string € N’} satisfies

Kn K
1 n
|—nZP logP1 )<71ogn—|—2.
Hence, the third summand is upper-bounded as:
S DL
E C2 (X1, —n P (k)lo < logn + 2
p 12 (X}l =n 3 P(k)1og 3755 g
=0 (né log n)
which finishes to prove the theorem. [ |
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APPENDIX |

UPPERBOUND ON MINIMAX REGRET

This sections contains the proof of the last inequality irediem 2.
The minimax regret is not larger than the maximum regret eitichevsky-Trofimov mixture ovet-ary alphabet

over strings of lengtm. The latter is classically upper-bounded by

P+ 5()
log <F(n—|— ;)P(§)> ’

as proved for example in (Csiszar, 1990).
Now thanks to the Stirling approximation to the Gamma funtt{See Whittaker and Watson, 1996, Chapter

XIl) asserts that for any: > 0, there exists3 € [0, 1] such that
I'(z) = 2" ie T \/2rets .

The announced upper-bound follows in a straightforward Wwayplugging this approximation into the preceding

upper-bound.
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APPENDIXII

LOWER BOUND ON REDUNDANCY FOR POWER.AW ENVELOPES

In this appendix we derive a lower-bound for power-law eapek using Theorem 5. Let denote a real larger
than 1. Let C' be such thalC''/® > 4. As the envelope function is defined kfi(i) = 1 A C/i®, the constant
c(00) = 325y f(2i) satisfies

a CYe C/e c [oMe\T"
- 2 +(a—1)20‘< 2 ) '
The condition orC' anda warrants that, for sufficiently large we havec(p) > 1 (this is indeed true fop > C''/®).
We choose = an= for a small enough to have
(I =X)Ce

- > 10,
(2a)* c(o0)

so that condition(1 — A)nf;((Qp’;) > % is satisfied for large enough. Then

n(1— X\ 7f(2i) _E)’

p
1
) 2 Conn 0 Y (G1os M2

i=1

whereC(p,n, A, €) = W (1 a2y %) and
A

P . P
1. n(d-=X\nf(2i) P a ) 1 1=\ nC
» (2 log 2elp)e €] =3 logn > glogz + 5 log 2TFac(oo)e €elp

llo (L-N)rmC
2 g21+0‘c(oo)e ‘)P

3

p «
=5logn -3 (plogp —p+o(p)) + (

an® o 1 a 1 1 1
= logn—§(analoga—l——nalogn—ana—i—o(na))
«@

2
n 11 (L-N)rC
5 8 21+ac(c0)e c)an

« 1 (1-XNnC
—(%a-1 Slog o T
(2( 0ga)—|—2 ©8 21tec(o0)e

Q=

e+ 0(1)> an.

For a small enough, this gives the existence of a positive cohstasuch thatR*(A;}) > nné.

APPENDIXIII

PROOF OFLEMMA 7

Suppose that there exigt, c and C' such that for allk > ko, ;5 < px < k%

For0 <z < £, it holds that—(2log2)x < log(1 — ) < —x and thus
ef(2log2)nz < (1 _ I)n < e,
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Hence (agy, < & forall k£ > 2) :

500 == (- ()

k=kgo k=1
Z (1 - ef’g_g) <E[Z,) <1+ Z (1 - 67(21050‘2)(%)
k=ko —2
& cn o0 (2log2)Cn
/ (1—6_7‘*)d:v§IE[Zn]§l+/ (1—6_ L )d:v.
ko 1

But, for anyt¢, K > 0, it holds that

o0 7K_CI,, 1/04 % 1
t (1 —e = ) / u1+1/a
Thus, by noting that integral
Cl—ev

is convergent, we get

cl/o‘A(a) 1
- pVe1-0o(1)) <E[Z,] < “.
——n'/* (1-0(1)) < E[Z,] < - n
APPENDIX IV

EXPECTED SIZE OF DICTIONARY ENCODING

Assume that the probability mass functigm.) satisfiesp, < = ¢ for C > 0 and allk > 0. Then, using Elias
penultimate code for the first occurrence of each symboXmu the expected length of the binary encoding of
the dictionary can be upper-bounded in the following wayt Ug be equal tol if symbol k& occurs inX;.,, and

equal to0 otherwise.

E[|An]] =

ZW
é ULtk
E (- e

< Z<1+ W)logk)

k:2
o0 _@log20n
<2(1+ )logxdx
1
((21og 2) C Ve p(2log2)Cn 1 _ o—u 2log2) C
§2< o8 n) / 1+?/ log(( 0g2) n)du
0 u @ u
210g2 Cn 1/a 1 -
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for some positive constarnt.
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