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We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injective Nakayama algebras admitting indecomposable CY modules. In particular, this result recovers the algebras whose stable categories are Calabi-Yau, which have been obtained in [BS].

Introduction

Calabi-Yau (CY) categories have been introduced by Kontsevich [Ko]. They provide a new insight and a wide framework for topics as in mathematical physics ( [Co]), non-commutative geometry ( [B], [START_REF] Ginzburg | Lectures on noncommutative gemotry[END_REF], [START_REF] Ginzburg | Calabi-Yau algebras[END_REF]), and representation theory of Artin algebras ( [BS], [ES], [IR], [Ke], [START_REF] Keller | Cluster-tilted algebras are Gorenstein and stably Calabi-Yau[END_REF], [START_REF] Keller | Acyclic Calabi-Yau categories are cluster categories[END_REF]).

Triangulated categories with Serre dualities ( [BK], [RV]) and CY categories have important global naturality. On the other hand, even in non CY categories, inspired by [Ko], one can introduce CY objects. It turns out that they arise naturally in non CY categories and enjoy "local naturality" and interesting properties (Prop. 4.4,Theorems 3.2,4.2,5.5 and 6.1).

The first aim of this paper is to study the properties of such objects in a Hom-finite Krull-Schmidt triangulated k-category with Serre functor F . We give the relation between indecomposable CY objects and the Auslander-Reiten triangles ( §3), and describe all the d-th CY objects via the minimal ones, which are exactly the direct sum of all the objects in finite [-d]•F -orbits of Ind(A) ( §4). We classify all the d-th CY modules of self-injective Nakayama algebras for any integer d ( §5). Finally, we determine all the self-injective Nakayama algebras which admit indecomposable CY modules. In particular, this recovers the algebras whose stable categories are Calabi-Yau ( §6), included in the work of Bialkowski and Skowroński [BS]. Note that the CY modules are invariant under stable equivalences between self-injective algebras, with a very few exceptions (Prop.3.1). Consequently our results on self-injective Nakayama algebras extend to the one on the wreath-like algebras ( [GR]), which contains the Brauer tree algebras ( [J]). This also raises an immediate question. Let A be a Hom-finite Krull-Schmidt triangulated kcategory with a Serre functor. If all objects are d-th CY with the same d, whether A is a Calabi-Yau category?

2. Backgrounds and Preliminaries 2.1. Let k be a field and A a Hom-finite k-category. Recall from Bondal and Kapranov [BK] that a k-linear functor F : A → A is a right Serre functor if there exist k-isomorphisms ηA,B : HomA(A, B) -→ D HomA(B, F A), ∀ A, B ∈ A, which are natural both in A and B, where D = Hom k (-, k). Such an F is unique up to a natural isomorphism, and fully-faithful; if it is an equivalence, then a quasi-inverse F -1 is a left Serre functor; in this case we call F a Serre functor. Note that A has a Serre functor if and only if it has both right and left Serre functor. See Reiten and Van den Bergh [RV].

For triangulated categories we refer to [Har], [V], and [N]. Let A be a Hom-finite triangulated k-category. Following Happel [START_REF] Happel | Trianglated categories in representation theory of finite dimensional algebras[END_REF], an Auslander-Reiten triangle

X f -→ Y g -→ Z h -→ X[1] of A is a distinguished triangle satisfying:
(AR1) X and Z are indecomposable; (AR2) h = 0; (AR3) If t : Z ′ -→ Z is not a retraction, then there exists t ′ : Z ′ -→ Y such that t = gt ′ .

Note that (AR3) is equivalent to (AR4) If Z ′ is indecomposable and t : Z ′ -→ Z is a non-isomorphism, then ht = 0. Under (AR1) and (AR2), (AR3) is equivalent to (AR3') If s : X -→ X ′ is not a section, then there exists s ′ : Y -→ X ′ such that s = s ′ f . Also, (AR3') is equivalent to (AR4') If X ′ is indecomposable and s : X -→ X ′ is a non-isomorphism, then s • h[-1] = 0.

In an Auslander-Reiten triangle X-→Y -→Z-→X[1], the object X is uniquely determined by Z. Write X = τAZ. In general τA is not a functor. By definition A has right Auslander-Reiten triangles if there exists an Auslander-Reiten triangle X-→Y -→Z-→X[1] for any indecomposable Z; and A has Auslander-Reiten triangles if A has right and left Auslander-Reiten triangles. We refer to [START_REF] Happel | Trianglated categories in representation theory of finite dimensional algebras[END_REF], [XZ] and [A] for the Auslander-Reiten quiver of a triangulated category.

A Hom-finite k-category is Krull-Schmidt if the endomorphism algebra of any indecomposable is local. In this case any object is uniquely decomposed into a direct sum of indecomposables, up to isomorphisms and up to the order of indecomposable direct summands (Ringel [R], p.52).

Let A be a Hom-finite Krull-Schmidt triangulated k-category. Theorem I.2.4 in [RV] says that A has a right Serre functor F if and if A has right Auslander-Reiten triangles. In this case, F coincides with [1] • τA on objects, up to isomorphisms. For example, if A is a symmetric algebra and P is the category of projective modules, then the homotopy category [B]).

Let

K b (P) is of CY dimension 0. Moreover, if A is of CY dimension d, then Ext i A (X, Y ) ∼ = D • Ext d-i A (Y, X), X, Y ∈ A, i ∈ Z, where Ext i A (X, Y ) := HomA(X, Y [i]). Thus, if A is a CY algebra ([B], [Gin2]), i.e. the bounded derived category D b (A-mod) is Calabi-Yau of CY dimension d, then gl. dim(A-mod) = d (see

2.3.

Let A and B be triangulated categories. A triangle functor from A to B is a pair (F, η F ), where F : A → B is an additive functor and η F :

F • [1] -→ [1] • F is a natural isomorphism, such that if X f -→ Y g -→ Z h -→ X[1] is a distinguished triangle of A then F X F f -→ F Y F g -→ F Z η F X •F h -→ (F X)[1] is a distinguished triangle of B. Triangle functors (F, η F ) and (G, η G ) are natural isomorphic if there is a natural isomorphism ξ : F -→ G such that the following diagram commutes for any A ∈ A F (A[1]) η F A ξ A[1] F (A)[1] ξ A [1] G(A[1]) η G A G(A)[1].
As Keller pointed out, the pair

([n], (-1) n Id [n+1] ) : A -→ A is a triangle functor for n ∈ Z. However, ([n], Id [n+1]
) may be not.

We need the following important result. A nice proof given by Van den Bergh is in the Appendix of [B].

Lemma 2.1. (Bondal-Kapranov [BK]; Van den Bergh [B]) Let F be a Serre functor of a Homfinite triangulated k-category A. Then there exists a natural isomorphism η F : F

• [1] -→ [1] • F such that (F, η F ) : A -→ A is a triangle functor.
¿From [START_REF] Keller | On triangulated orbit categories[END_REF]8.1] and [B, A.5.1] one has the following Proposition 2.2. (Keller; Van den Bergh) Let A be a Hom-finite triangulated k-category with Serre functor F . Then A is a Calabi-Yau category if and only if there exists a natural isomorphism η

F : F • [1] -→ [1] • F, such that (F, η F ) is a triangle functor and (F, η F ) -→ ([d], (-1) d Id [d+1]
) is a natural isomorphism of triangle functors, for some integer d.

Proof. For convenience we justify the "only if" part. By assumption we have a natural isomorphism ξ :

F ∼ = [d]. Define η F A : F (A[1]) -→ (F A)[1] for A ∈ A by η F A := (-1) d (ξA) -1 [1] • ξ A[1] . Then ξA[1] • η F A = (-1) d ξ A[1] . The naturality of η F : F • [1] -→ [1] • F follows from the one of ξ. It remains to show that (F, η F ) : A → A is a triangle functor. Let X f -→ Y g -→ Z h -→ X[1] be a distinguished triangle. Since X[d] f [d] -→ Y [d] g[d] -→ Z[d] (-1) d h[d] -→ X[d + 1] is a distinguished triangle,
it suffices to prove that the following diagram is commutative

F (X) F (f ) ξ X ≀ F (Y ) F (g) ξ Y ≀ F (Z) η F X •F (h) ξ Z ≀ (F (X))[1] ξ X [1] ≀ X[d] f [d] Y [d] g[d] Z[d] (-1) d h[d] X[d + 1].
By the naturality of ξ the first and the second square are commutative. We also have 

ξX [1] • η F X • F (h) = (-1) d ξ X[1] • F (h) = (-1) d h[d] • ξZ. 2.4. Let A be a self-injective k-algebra, A-
Hom(X, Y ) ∼ = D • Ext 1 A (Y, τ X) ∼ = D • Hom(Y, [1] • τ X),
where Hom(X, Y ) := Hom A-mod (X, Y ), one gets the Serre functor d+1) for some d ( [START_REF] Keller | On triangulated orbit categories[END_REF]8.3]). In this case denote by CYdim(A) the CY dimension of A-mod. Note that Ω, F, N , τ are pairwise commutative as functors of A-mod. This follows from Lemma 2.1. Let Zn be the cyclic quiver with vertices indexed by the cyclic group Z/nZ of order n, and with arrows ai : i -→ i + 1, ∀ i ∈ Z/nZ. Let kZn be the path algebra of the quiver Zn, J the ideal generated by all arrows, and Λ = Λ(n, t) := kZn/J t with t ≥ 2. Denote by γ l i the path starting at vertex i and of length l, and ei := γ 0 i . We write the conjunction of paths from right to left. Then

F := [1] • τ ∼ = Ω • N of A-mod. It follows that A-mod is Calabi-Yau if and only if N ∼ = Ω -(

Let

{γ l i | 0 ≤ i ≤ n -1, 0 ≤ l ≤ t -1} is a basis of Λ; while {P (i) := Λei | 0 ≤ i ≤ n -1}
is the set of pairwise non-isomorphic indecomposable projective modules, and {I(i

) := D(eiΛ) | 0 ≤ i ≤ n -1}
is the set of pairwise non-isomorphic indecomposable injective modules, with P (i) ∼ = I(i + t -1). Note that Λ is a Frobenius algebra, and Λ is symmetric if and only if n | (t -1). Write S(i) := P (i)/ rad P (i), and S l i := Λγ t-l i+l-t . Then S l i is the indecomposable with top S(i) and the Loewy length l, and

{S l i | 0 ≤ i ≤ n -1, 1 ≤ l ≤ t}
is the set of pairwise non-isomorphic indecomposable modules, with S t i = P (i) and soc(S l i ) = S(i + l -1). For the Auslander-Reiten quiver of Λ see [GR], Section 2, and [ARS], p.197. In particular, the stable Auslander-Reiten quiver of Λ is ZAt-1/ τ n .

Indecomposable Calabi-Yau objects

The purpose of this section is to introduce the Calabi-Yau objects and to give the relation between indecomposable Calabi-Yau objects and Auslander-Reiten triangles.

3.1.

Let A be a Hom-finite triangulated k-category. A non-zero object X is called a Calabi-Yau object if there exists a natural isomorphism

HomA(X, -) ∼ = D • HomA(-, X[d]) (3.1)
for some integer d.

By Yoneda Lemma, such a d is unique up to a multiple of the relative order o(

[1]X ) of [1] respect to X. Recall that o([1]X ) is the minimal positive integer such that X[o([1]X )] ∼ = X, otherwise o([1]X ) = ∞. If o([1]X ) = ∞ then d in (3.1) is unique and is called the CY dimension of X. If o([1]X ) is finite then the minimal non-negative integer d in (3.1) is called the CY dimension of X. We denote CYdim(X) the CY dimension. Thus, if o([1]) < ∞ then o([1]X ) | o([1]) and 0 ≤ CYdim(X) < o([1]X ). Let A be a finite-dimensional self-injective algebra. An A-module M without projective direct summands is called a Calabi-Yau module of CY dimension d, if it is a Calabi-Yau object of A-mod with CYdim(M ) = d.
Note that CYdim(X) is usually not easy to determine. In case (3.1) holds for some d, we say that

X is a d-th CY object. Of course, if o([1]X ) < ∞ then o([1]X ) | (d -CYdim(X)) ≥ 0. If A has right Serre functor F , then by Yoneda Lemma a non-zero object X is a d-th CY object if and only if F (X) ∼ = X[d], or equivalently, F (X)[-d] ∼ = X. Thus, a non-zero A-module M without projective direct summands is a d-th CY module if and only if N (M ) ∼ = Ω -(d+1) (M ) in A-mod (in fact, this isomorphism can be taken in A-mod).
3.2. We have the following basic property.

Proposition 3.1. (i) The Calabi-Yau property for a category or an object, is invariant under triangle-equivalences.

(ii) The Calabi-Yau property for a module is "usually" invariant under stable equivalences between self-injective algebras. Precisely, let A and B be self-injective algebras, G : A-mod -→ B-mod a stable equivalence, and

X a CY A-module of dimension d. If A ≇ Λ(n, 2), or if A and B are symmetric algebras, then G(X) is a CY B-module of dimension d. Proof. (i) Let A be a Calabi-Yau category with FA ∼ = [d],
where FA is the Serre functor.

Clearly FB := G • FA • G -1 is a Serre functor of B (if B has already one, then it is natural isomorphic to FB). By the natural isomorphism (ξ G ) d : G • [d] -→ [d] • G, which is the composition G • [d] -→ [1] • G • [d -1] -→ • • • -→ [d] • G (A.2 in [B]), we see that B is a Calabi-Yau category with FB ∼ = [d]. If X is a calabi-Yau object with a natural isomorphism η as in (3.1), then we have natural isomorphism HomB(-, (ξ G ) d X ) • G • η • G -1 : HomB(G(X), -) ∼ = D • HomB(-, (GX)[d]), which implies that G(X) is a Calabi-Yau object of B.
(ii) Recall that an equivalence G : A-mod -→ B-mod of categories is called a stable equivalence. Note that in general G is not induced by an exact functor (cf. [ARS], p.339), hence G may be not a triangle-equivalence (cf. [START_REF] Happel | Trianglated categories in representation theory of finite dimensional algebras[END_REF], Lemma 2.7, p.22. Note that the converse of Lemma 2.7 is also true). One may assume that A is connected. If A ≇ Λ(n, 2), or if A and B are symmetric algebras, then by Corollary 1.7 and Prop. 1.12 in [ARS], p.344, we know that G commutes with τ and Ω on modules, hence we have isomorphism

Ω -1 B • τB(G(X)) ∼ = G(Ω -1 A • τA)(X)) ∼ = G(Ω -d A (X)) ∼ = Ω -d B (G(X)), which implies that G(X) is a Calabi-Yau B-module of CY dimension d.
It seems that the Calabi-Yau property for the stable category is also invariant under stable equivalence G between self-injective algebras. However, this need natural isomorphiams between G and τ , and G and Ω, which are not clear to us.

3.3.

The main result of this section is as follows.

Theorem 3.2. Let A be a Hom-finite Krull-Schmidt triangulated k-category, and X an indecomposable object of A. Then X is a d-th CY object if and only if there exists an Auslander-Reiten triangle of the form

X[d -1] f -→ Y g -→ X h -→ X[d]. (3.2)
Moreover, Y is also a d-th CY object.

3.4.

The proof of the first part of Theorem 3.2 follows an argument of Reiten and Van den Bergh in [RV]. For the convenience we include a complete proof.

Lemma 3.3. Let A be a Hom-finite Krull-Schmidt triangulated k-category, and X a non-zero object of A. Then X is a d-th CY object if and only if for any indecomposable Z there exists a non-degenerate bilinear form

(-, -)Z : HomA(X, Z) × HomA(Z, X[d]) -→ k (3.3)
such that for any u ∈ HomA(X, Z), v ∈ HomA(Z, W ), and w ∈ HomA(W, X[d]), there holds

(u, wv)Z = (vu, w)W . (3.4) Proof. If X is a d-th CY object, then we have ηZ : HomA(X, Z) ∼ = D•HomA(Z, X[d]), ∀ Z ∈ A,
which are natural in Z. Each isomorphism ηZ induces a non-degenerate bilinear form (-, -)Z in (3.3) by (u, z)Z := ηZ (u)(z), and (3.4) follows from the naturality of ηZ in Z. Conversely, if we have (3.3) and (3.4) for any indecomposable Z, then we have isomorphism ηZ : HomA(X, Z)

∼ = D • HomA(Z, X[d]) given by ηZ (u)(z) := (u, z)Z, ∀ z ∈ HomA(Z, X[d]). By (3.4) ηZ are natural in Z. Since A is Krull-Schmidt,
it follows that we have isomorphisms ηZ for any Z which are natural in Z. This means that X is a d-th CY object.

The following Lemma in [RV] will be used.

Lemma 3.4. ([RV], Sublemma I.2.3) Let A be a Hom-finite Krull-Schmidt triangulated k- category, τA(X) -→ Y -→ X h -→ τA(X)[1]
an Auslander-Reiten triangle of A, and Z an indecomposable in A. Then (i) For any non-zero z ∈ HomA(Z, τA(X)[1]) there exists u ∈ HomA(X, Z) such that zu = h.

(ii) For any non-zero u ∈ HomA(X, Z) there exists z ∈ HomA(Z, τA(X) [1]) such that zu = h.

In a Hom-finite Krull-Schmidt triangulated k-category without Serre functor (e.g., by [START_REF] Happel | Auslander-Reiten triangles in derived categories of finite-dimensional algebras[END_REF] and [RV] if gl. dim(A) = ∞ then D b (A-mod) has no Serre functor), one may use the generalized Serre functor introduced by Chen [Ch].

Lemma 3.5. (Chen [Ch]) Let A be a Hom-finite Krull-Schmidt triangulated k-category. Consider the full subcategories of A given by

Ar := {X ∈ A | D • HomA(X, -) is representable} and A l := {X ∈ A | D • HomA(-, X) is representable}.
Then both Ar and A l are thick triangulated subcategories of A. Moreover, one has (i) There is a unique k-functor S : Ar -→ A l which is an equivalence, such that there are natural isomorphisms

HomA(X, -) ≃ D • HomA(-, S(X)), ∀ X ∈ Ar, (3.5)
which are natural in X. S is called the generalized Serre functor, with range Ar and domain A l .

(ii) There exists a natural isomorphism η S : S

• [1] -→ [1] • S such that the pair (S, η S ) : Ar -→ A l is an triangle-equivalence.
In this terminology, a non-zero object X is a d-th CY object if and only if X ∈ Ar and S(X) ∼ = X[d], by (3.5) and Yoneda Lemma.

3.5. Proof of Theorem 3.2. Let X be an indecomposable d-th CY object. By Lemma 3.3 we have a non-degenerate bilinear from (-, -)X : HomA(X, X) × HomA(X, X[d]) -→ k. It follows that there exists 0 = h ∈ HomA(X, X [d]) such that (radHomA(X, X), h)X = 0. Embedding h into a distinguished triangle as in (3.2). We claim that it is an Auslander-Reiten triangle. For this it remains to prove (AR4) in 2.1. Let X ′ be indecomposable and t : X ′ -→ X a non-isomorphism. Then by (3.4) for any u ∈ HomA(X, X ′ ) we have (u, ht) X ′ = (tu, h)X = 0. Since (-, -) X ′ is non-degenerate, it follows that ht = 0.

Conversely, let (3.2) be an Auslander-Reiten triangle. In order to prove that X is a d-th CY object, by Lemma 3.3 it suffices to prove that for any indecomposable Z there exists a nondegenerate bilinear form (-, -)Z as in (3.3) satisfying (3.4). For this, choose an arbitrary linear function tr ∈ D • HomA(X, X [d]) such that tr(h) = 0, and define (u, z)Z = tr(zu). Then (3.4) is automatically satisfied. It remains to prove that (-, -)Z is non-degenerate. In fact, for any 0 = z ∈ HomA(Z, X[d]), by Lemma 3.4 there exists u ∈ HomA(X, Z) such that zu = h. So (u, z)Z = tr(zu) = tr(h) = 0. Similarly, for any 0 = u ∈ HomA(X, Z) we have z ∈ HomA(Z, X[d]) such that (u, z)Z = 0. This proves the non-degenerateness of (-, -)Z.

Now we prove that Y in (3.2) is also a d-th CY object. We make use of the generalized Serre functor in [Ch] (For the reader prefer Serre functor, one can assume the existence, and use Lemma 2.1). Since X, X[d -1] ∈ Ar, it follows from Lemma 3.5 that Y ∈ Ar. Applying the generalized Serre functor (S, η S ) to (3.2) we get the distinguished triangle (by Lemma 3.5(ii))

S(X[d -1]) S(f ) -→ S(Y ) S(g) -→ S(X) η S X[d-1] •S(h) -→ S(X[d -1])[1]. ( * )
Also, we have the Auslander-Reiten triangle

X[2d -1] f [d] -→ Y [d] g[d] -→ X[d] (-1) d h[d] -→ X[2d].
Since X is a d-th CY object it follows that we have an isomorphism w : S(X) -→ X [d]. Note that S(h) = 0 means that S(g) is not a retraction ([Hap1], p.7). Thus, by (AR3) there exists

v : S(Y ) -→ Y [d] such that w • S(g) = g[d] • v.
By the definition of a triangulated category we get u :

S(X[d -1]) -→ X[2d -1] such that the following diagram is commutative S(X[d -1]) S(f ) u S(Y ) S(g) v S(X) η S X[d-1] •S(h) w S(X[d -1])[1] u[1] X[2d -1] f [d] Y [d] g[d] X[d] (-1) d h[d] X[2d].
( * * )

We claim that u : S(X[d -1]) -→ X[d]
is an isomorphism, hence by the property of a triangulated category we know that v :

S(Y ) -→ Y [d] is also an isomorphism, i.e. Y is a d-th CY object. Otherwise u : S(X[d -1]) -→ X[2d -1]
is not an isomorphism. Note that S is only defined on Ar, it follows that we do not know if ( * ) is an Auslander-Reiten triangle.

Since

X[d -1] is a d-th CY object, it follows that we have an isomorphism α : X[2d -1] -→ S(X[d -1]), hence α • u ∈ HomA(S(X[d -1]), S(X[d -1])). So we have u ′ ∈ HomA(X[d - 1], X[d -1]) such that α • u = S(u ′ ), and u ′ is also a non-isomorphism. Since X[d -1] f -→ Y g -→ X h -→ X[d] is an Auslander-Reiten triangle it follows from (AR4') that u ′ • h[-1] = 0, or equivalently, S(u ′ ) • S(h[-1]) = 0 (note that h[-1] ∈ Ar). Thus we have u[1] • S(h[-1])[1] • η S X[-1] = 0
where η S X[-1] : S(X) -→ S(X[-1])[1] is an isomorphism. By the naturality of η S we have the commutative diagram

S(X) η S X[-1] S(h) S(X[-1])[1] S(h[-1])[1] S(X[d]) η S X[d-1] S(X[d -1])[1]. It follows that we have u[1] • η S X[d-1]
• S(h) = 0, and hence by the commutative diagram ( * * ) we get a contradiction (-1)

d h[d] • w = u[1] • η S X[d-1] • S(h) = 0.
This completes the proof.

3.6. Remark 3.6. Let A be a Hom-finite Krull-Schmidt triangulated k-category. If every indecomposable

X in A is a dX-th CY object, then A has a Serre functor F with F (X) ∼ = X[dX ].
In fact, by Theorem 3.2 A has right and left Auslander-Reiten triangles, and then by Theorem I.2.4 in [RV] A has Serre functor F . By Prop.I.2.3 in [RV] and

(3.2) we have F (X) ∼ = τA(X)[1] = X[dX -1][1] = X[dX ] for any indecomposable X.
However, even if all indecomposables are d-th CY objects with the same d, we do not know whether A is a Calabi-Yau category, although F and [d] coincide on objects. The examples we know have a positive answer to this question.

Minimal Calabi-Yau objects

The purpose of this section is to describe all the Calabi-Yau objects of a Hom-finite Krull-Schmidt triangulated k-category with a Serre functor.

4.1.

Let A be a Hom-finite Krull-Schmidt triangulated k-category. A d-th CY object X is said to be minimal if any proper direct summand of X is not a d-th CY object.

Lemma 4.1. Let A be a Hom-finite Krull-Schmidt triangulated k-category with right Serre functor F . Then a non-zero object X is a minimal d-th CY object if and only if the following are satisfied:

1. The indecomposable direct summands of X can be ordered as

X = X1 ⊕ • • • ⊕ Xr such that F (X1) ∼ = X2[d], F (X2) ∼ = X3[d], • • • , F (Xr-1) ∼ = Xr[d], F (Xr) ∼ = X1[d]. (4.1)
We call the cyclic order arising from this property a canonical order of X (with respect to F and [d]).

2. X is multiplicity-free, i.e. its indecomposable direct summands are pairwise non-isomorphic.

Proof. In the following we often use that a non-zero object X is a d-th CY object if and only if [d] for each i. Write σ as a product of disjoint cyclic permutations. Since X is minimal, it follows that σ has to be a cyclic permutation of length r. By reordering the indecomposable direct summands of X, one may assume that σ = (12 • • • r). Thus, X satisfies the condition 1. Now, we consider a canonical order

F (X) ∼ = X[d]. Let X = X1 ⊕ • • • ⊕ Xr be a minimal d-th CY object, with each Xi indecomposable and r ≥ 2. Then F (X1) ⊕ • • • ⊕ F (Xr) ∼ = X1[d] ⊕ • • • ⊕ Xr[d]. Since A is Krull-Schmidt, it follows that there exists a permutation σ of 1, • • • , r, such that F (Xi) ∼ = X σ(i)
X = X1 ⊕ • • • ⊕ Xr. If Xi ∼ = Xj for some 1 ≤ i < j ≤ r, then F (Xj-1) ∼ = Xj [d] ∼ = Xi[d], it follows that Xi ⊕ • • • ⊕ Xj-1
is already a d-th CY object, which contradicts the minimality of X. This proves that X is multiplicity-free.

Conversely, assume that a multiplicity-free object X = X1 ⊕ • • • ⊕ Xr is in a canonical order. By (4.1) we have F (X) ∼ = X[d]. So X is a d-th CY object. It remains to show the minimality. If not, then there exists a proper direct summand Xi 1 ⊕ • • • ⊕ Xi t of X which is a minimal d-th CY object, so 1 ≤ t < r. By what we have proved above we may assume that this is a canonical order. Then

F (Xi 1 ) ∼ = Xi 2 [d], • • • , F (Xi t-1 ) ∼ = Xi t [d], F (Xi t ) ∼ = Xi 1 [d].
While X = X1 ⊕ • • • ⊕ Xr is also in a canonical order, it follows that (note that we work on indices modulo r, e.g. if i1 = r then i1 + 1 is understood to be 1)

F (Xi 1 ) ∼ = Xi 1 +1[d], • • • , F (Xi t-1 ) ∼ = Xi t-1 +1[d], F (Xi t ) ∼ = Xi t +1[d].
Since X is multiplicity-free, it follows that (considering indices modulo r) (ii) With the notations above, for each d ∈ Z the map

i2 = i1 + 1, • • • , it = it-1 + 1, i1 = it + 1, hence i1 = i1 + t, which means r | t. This is impossible since 1 ≤ t < r.
OM → X∈O M X = M ⊕ G(M ) ⊕ • • • ⊕ G o(G M )-1 (M ) (4.2)
gives a one-to-one correspondence between the sets Fin O(A, d) and MinCY (A, d), where G :=

[-d] • F .
Thus, a minimal d-th CY object is exactly the direct sum of all the objects in a finite G-orbit of Ind (A).

(iii) Non-isomorphic minimal d-th CY objects are disjoint, i.e. they have no isomorphic indecomposable direct summands.

Proof. Let X be a d-th CY object. If X is not minimal, then X = Y ⊕ Z with Y = 0 = Z such that F (Y ) ⊕ F (Z) ∼ = Y [d] ⊕ Z[d] and F (Y ) ∼ = Y [d]. Since A is Krull-Schmidt, it follows that F (Z) ∼ = Z[d], i.e.
Z is also a d-th CY object. Then (i) follows by induction.

Thanks to Lemma 2.1, (4.1) becomes Xi = G i-1 (X1), 1 ≤ i ≤ r. Then (ii) is a reformulation of Lemma 4.1. Moreover (iii) follows from (ii).

Corollary 4.3. Let A be a finite-dimensional self-injective algebra. Then X is a minimal d-th CY module if and only if X is of the form X ∼ = 0≤i≤r-1 G i (M ), where M is an indecomposable non-projective A-module with r := o(GM ) < ∞, and G := Ω d+1 • N . Proof. Note that in this case [-d] • F = Ω d+1 • N .

4.3.

As an example, we describe all the Calabi-Yau objects in D b (kQ-mod), the bounded derived category of kQ-mod, where Q is a finite quiver without oriented cycles.

Note that indecomposable objects of D b (kQ-mod) are exactly stalk complexes of indecomposable kQ-modules. The category D b (kQ-mod) has Serre functor F = [1] • τD , where τD is the Auslander-Reiten translation of D b (kQ-mod). Recall that τD is given by

τD(M ) =    τ (M ), if M is an indecomposable non-projective; I[-1], if P is an indecomposable projective,
where I is the indecomposable injective with soc(I) = P/ rad P , and τ is the Auslander-Reiten translation of kQ-mod ([Hap1], p.51). Note that D b (kQ-mod) is not a Calabi-Yau category except that Q is the trivial quiver with one vertex and no arrows. However, the cluster category C kQ introduced in [BMRRT], which is the orbit category of D b (kQ-mod) respect to the functor

τ -1 D • [1], is a Calabi-Yau category of CY dimension 2 ([BMRRT]). Let M be a minimal Calabi-Yau object of D b (kQ-mod) of CY dimension d (in this case o([1]M ) = ∞, hence d is unique). By shifts we may assume that M is a kQ-module. By F (M ) = τD(M [1]) = τD(M )[1] = M [d]
we see d = 1 or 0. Note that kQ admits an indecomposable projective-injective module if and only if Q is of type An with the linear orientation. However, in this case the unique indecomposable projective-injective module P = I does not satisfy the relation soc(I) = P/ rad P . It follows that d = 0. Thus d = 1 and τ (M ) = M . Consequently, Q is an affine quiver and M is a τ -periodic (regular) module of period 1. All such modules are well-known, by the classification of representations of affine quivers (see Dlab-Ringel [DR]). Thus we have Proposition 4.4. D b (kQ-mod) admits a Calabi-Yau object M if and only if Q is an affine quiver. In this case, M is minimal if and only if M is an indecomposable in a homogeneous tube of the Auslander-Reiten quiver of kQ-mod, or M is the direct sum of all the indecomposables of same quasi-length in a non-homogeneous tube of the Auslander-Reiten quiver of kQ-mod, up to shifts. Moreover, all such M 's have CY dimension 1.

Calabi-Yau modules of self-injective Nakayama algebras

This purpose of this section is to classify all the d-th CY modules of self-injective Nakayama algebras Λ(n, t), n ≥ 1, t ≥ 2, where d is any given integer. By Theorem 4.2(i) it suffices to consider the minimal d-th CY Λ-modules. By Corollary 4.3 this reduces to computing the relative order o(GM ) of G := Ω d+1 •N respect to any indecomposable Λ(n, t)-module M = S l i , 1 ≤ l ≤ t-1, for any integer d.

5.1.

Recall that Λ(n, t) is the quotient of the path algebra of the cyclic quiver with n vertices by the truncated ideal J t , where J is the two-sided ideal generated by the arrows. From now on we write Λ instead of Λ(n, t).

We keep the notations introduced in 2.5. Note that the indecomposable module S l i (i ∈ Z/nZ, 1 ≤ l ≤ t -1) has a natural k-basis, consisting of all the paths of quiver Zn starting at the vertex i + lt and of lengths at least tl:

γ t-l i+l-t , γ t-l+1 i+l-t , • • • , γ t-1 i+l-t .
For 1 ≤ l ≤ t -1 denote by σ l i : S l i -→ S l+1 i-1 the inclusion by embedding the basis above; and for 2 ≤ l ≤ t denote by p l i : S l i -→ S l-1 i the Λ-epimorphism given by the right multiplication by arrow a i+l-t-1 . These σ l i 's and p l i 's are all the irreducible maps of Λ-mod, up to scalars.

We need the explicit actions of functors N and Ω -(d+1) of Λ-mod. By the exact sequences 0 -→ S l i -→ I(i + l -1) -→ S t-l i+l-t -→ 0 (with the canonical maps), via the basis above one has the actions of functor Ω -1 for i ∈ Z/nZ, 1 ≤ l ≤ t -1:

Ω -1 (S l i ) = S t-l i+l-t , Ω -1 (σ l i ) = p t-l i+l-t , Ω -1 (p l i ) = σ t-l i+l-t .
By induction one has in Λ-mod for any integer m (even negative):

Ω -(2m-1) (S l i ) = S t-l i+l-mt ; Ω -2m (S l i ) = S l i-mt ; (5.1)
and

Ω -(2m-1) (σ l i ) = p t-l i+l-mt , Ω -(2m-1) (p l i ) = σ t-l i+l-mt ; ( * )
and

Ω -2m (σ l i ) = σ l i-mt , Ω -2m (p l i ) = p l i-mt . ( * * )
In particular, we have

o([1]) =    n, t = 2; 2m, t ≥ 3, ( * * * )
where m is the minimal positive integer such that n | mt.

5.2. Again using the natural basis of S l i one has the following commutative diagrams in Λ-mod:

N (S l i ) N (σ l i ) θ l i ≀ N (S l+1 i-1 ) θ l+1 i-1 ≀ S l i+1-t σ l i+1-t S l+1 i-t ; N (S l i ) N (p l i ) θ l i ≀ N (S l-1 i ) θ l-1 i ≀ S l i+1-t p l i+1-t S l-1 i+1-t .
We justify the commutative diagrams above. Note that for any finite quiver Q the bimodule structure of D(kQ) is given by (using the dual basis)

p * a =    b * , if ab = p, 0, otherwise; and ap * =    b * , if ba = p, 0, otherwise.
for any paths p and a. Note that

N (S l i ) = D(Λ) ⊗Λ S l i is spanned by (γ l ′ j ) * ⊗Λ γ t-u i+l-t , where j ∈ Z/nZ, 1 ≤ l ′ ≤ t -1, 1 ≤ u ≤ l. By (γ l ′ j ) * ⊗Λ γ t-u i+l-t = (γ l ′ j ) * γ t-u i+l-t ⊗Λ e i+l-t we see that if (γ l ′ j ) * ⊗Λ γ t-u i+l-t = 0 then j = i + l -l ′ -u;
and in this case we have

(γ l ′ i+l-l ′ -u ) * ⊗Λ γ t-u i+l-t = (γ l ′ i+l-l ′ -u ) * γ t-u i+l-t ⊗Λ e i+l-t = (γ l ′ +u-t i+l-(l ′ +u) ) * ⊗Λ e i+l-t . This makes sense only if l ′ + u ≥ t. So we have a basis of N (S l i ): (γ v i+l-t-v ) * ⊗Λ e i+l-t , 0 ≤ v ≤ l -1.
Using the natural basis of S l i+1-t given in 5.1 we have a Λ-isomorphism θ l i : N (S l i ) -→ S l i+1-t for any i ∈ Z/nZ and 1 ≤ l ≤ t -1:

θ l i : (γ v i+l-t-v ) * ⊗Λ e i+l-t → γ t-(v+1) i+1+l-2t , 0 ≤ v ≤ l -1. (One checks that this is indeed a left Λ-map.) Note that N (σ l i ) : N (S l i ) -→ N (S l+1 i-1
) is a natural embedding given by

(γ v i+l-t-v ) * ⊗Λ e i+l-t → (γ v i+l-t-v ) * ⊗Λ e i+l-t , 0 ≤ v ≤ l -1; and that N (p l i ) : N (S l i ) -→ N (S l-1 i ) is a Λ-epimorphism given by (γ v i+l-t-v ) * ⊗Λ e i+l-t → (γ v-1 i+l-t-v ) * ⊗Λ e i+l-1-t , 0 ≤ v ≤ l -1
where γ -1 i+l-1-t is understood to be 0. Then one easily checks the following

σ l i+1-t • θ l i = θ l+1 i-1 • N (σ l i ); p l i+1-t • θ l i = θ l-1 i • N (p l i ).
This justifies the commutative diagrams. Since all these θ l i depend only on i and l, which means that they do not depend on whatever the maps σ l i or p l i are (this is important for the bi-naturality of a Calabi-Yau category), it follows, without loss of the generality, that we can specialize these maps to identities. Thus we have 

N (S l i ) = S l i+1-t , N (σ l i ) = σ l i+1-t , N (p l i ) = p l i+1-
   n | N d(t), if (d -1)t is even; n | N (2d(t)), if (d -1)t is odd. (5.3) (When 2d(t)
is odd, we will write it together in the following.) By (5.1) we have Ω (2m-1) (S l i ) = S t-l i+l+(m-1)t and Ω 2m (S l i ) = S l i+mt , hence by (5.2) we have (remember

G := Ω d+1 • N and d ≥ 0) G(S l i ) = S l i+1+(m-1)t , if d = 2m -1 and G(S l i ) = S t-l i+l+1+(m-1)t , if d = 2m
. Thus, by induction we have (5.6) for m ′ ≥ 0. 

G m ′ (S l i ) = S l i+m ′ (1+(m-1)t) = S l i+m ′ d(t) , if d = 2m -1; (5.4) and G 2m ′ (S l i ) = S l i+m ′ (2+(2m-1)t) = S l i+m ′ (2d(t)) , if d = 2m, (5.5) and G 2m ′ +1 (S l i ) = S t-l i+(m ′ +1)(2d(t))+l-1-mt , if d = 2m,
S l i ⊕ S l i+d(t) ⊕ S l i+2d(t) ⊕ • • • ⊕ S l i+(N-1)d(t) , 1 ≤ l ≤ t -1, i ∈ Z/nZ. (5.7)
In particular, all the minimal d-th CY modules have the same number N = N (d, n, t) of indecomposable direct summands. 5.5. If d = 2m ≥ 0 and t is odd, then by (5.6) we see G 2m ′ +1 (S l i ) = S l i for any i, l (since tl = l). Note that in this case (d -1)t is odd. It follows from (5.5) that o(G S l i ) = 2N , where N is as given in (5.3), i.e. N is the minimal positive integer such that n | N (2d(t)). It follows from Corollary 4.3, (5.5) and (5.6) that we have Lemma 5.2. Let t ≥ 3 be an odd integer and d = 2m ≥ 0. Then M is a minimal d-th CY Λ-module if and only if M is isomorphic to one of the following (5.8) where l ′ := l -1mt, 1 ≤ l ≤ t -1 and i ∈ Z/nZ.

S l i ⊕ S t-l i+l ′ +2d(t) ⊕ S l i+2d(t) ⊕ S t-l i+l ′ +4d(t) ⊕ • • • ⊕ S l i+2d(t)(N-1) ⊕ S t-l i+l ′ +2d(t)N ,
In particular, any minimal d-th CY modules has 2N = 2N (d, n, t) indecomposable direct summands.

5.6. Let d = 2m ≥ 0 and t = 2s. Then d(t) = 1 + (2m -1)s ∈ Z.

First, we consider o(G S s i ). In this case (5.5) and (5.6) can be written in a unified way:

G m ′ (S s i ) = S s i+m ′ d(t) , m ′ ≥ 0, if d = 2m, t = 2s. (5.9) So we have o(G S s i ) = N ,
where N is as given in (5.3), i.e. N is the minimal positive integer such that n | N (1 + (2m -1)s).

Now, we consider o(G S l i

) with l = s, 1 ≤ l ≤ t -1. In this case (5.5) and (5.6) are written respectively as:

G 2m ′ (S l i ) = S l i+2m ′ d(t) , if d = 2m, t = 2s, l = s, (5.10) and G 2m ′ +1 (S l i ) = S t-l i+(2m ′ +1)d(t)+l-s , if d = 2m, t = 2s, l = s (5.11) for m ′ ≥ 0. Since l = t -l for l = s, it follows that G 2m ′ +1 (S l i ) = S l i . So by (5.10) we see o(G S l i ) = 2N ′ ,
where N ′ is the minimal positive integer such that n | 2N ′ d(t). In order to determine N ′ , we divided into two cases.

Case

1. If N = N (d, n, t) = N (2m, n, 2s) is even, then o(G S l i ) = N for any 1 ≤ l ≤ t -1.
It follows from Corollary 4.3, (5.9), (5.10), and (5.11) that we have the following (note that in this case (5.9) is exactly (5.10) together with (5.11), by taking l = s)

Lemma 5.3. Let t = 2s and d = 2m ≥ 0. Assume that N = N (d, n, t) is even. Then M is a minimal d-th CY Λ-module if and only if M is isomorphic to one of the following S l i ⊕ S t-l i+d(t)+l-s ⊕ S l i+2d(t) ⊕ S t-l i+3d(t)+l-s ⊕ • • • ⊕ S l i+(N-2)d(t) ⊕ S t-l i+(N-1)d(t)+l-s
(5.12)

where 1 ≤ l ≤ t -1, i ∈ Z/nZ.
In particular, all the minimal d-th CY modules have the same number N of indecomposable direct summands. 

It remains to deal with

S s i ⊕ S s i+d(t) ⊕ S s i+2d(t) ⊕ • • • ⊕ S s i+(N-1)d(t)
(5.13)

where i ∈ Zn, and

S l i ⊕ S t-l i+d(t)+l-s ⊕ S l i+2d(t) ⊕ S t-l i+3d(t)+l-s ⊕ • • • ⊕ S l i+(N-1)d(t) ⊕S t-l i+l-s ⊕ S l i+d(t) ⊕ S t-l i+2d(t)+l-s ⊕ S l i+3d(t) ⊕ • • • ⊕ S t-l i+(N-1)d(t)+l-s
(5.14) where l = s, 1 ≤ l ≤ t -1 and i ∈ Zn.

In particular, all the minimal d-th CY modules have either N , or 2N indecomposable direct summands. 5.7. By Lemmas 5.1-5.4 all the minimal d-th CY modules of self-injective Nakayama algebras have been classified, where d is any given integer. The main result of this section is as follows.

Theorem 5.5. For any n ≥ 1, t ≥ 2, d ≥ 0, let N = N (d, n, t) be as in (5.3). Then M is a minimal d-th CY Λ-module if and only if M is isomorphic to one of the following Remark 5.6. The modules in (5.7) -(5.8) and (5.12) -(5.14) have overlaps. This is because d is not uniquely determined by a minimal d-th CY module. A general formula of the CY dimensions of the minimal Calabi-Yau modules seems to be difficult to obtain.

Note that the inequality on the left hand side in (5.15) can not be an equality in general. For example, take n = 2, t = 4, m = 2, d = 2m -1 = 3. Then d(t) = 5, N = N (3, 2, 4) = 2, and that N (σ l i ) = Ω -2m (σ l i ), N (p l i ) = Ω -2m (p l i ). (6.3) Since Λ is representation-finite, it follows that f is a k-combination of compositions of irreducible maps σ l i 's and p l i 's, hence N (f ) = Ω -2m (f ) by (6.3). We stress here that, this argument relies on the fact that all the isomorphisms θ l i in 5.2 depend only on i and l, which means that they do not depend on whatever the maps σ l i or p l i are. Otherwise we can not take them as identities, and then we can not get the naturality for the Calabi-Yau category of this case.

This proves the claim, hence Λ-mod is a Calabi-Yau category of CY dimension D, with 0 ≤ D ≤ d = 2m -1. We claim D = d. In fact, since every indecomposable is a D-th CY module, and since we have l such that t = tl, it follows from (6.1) and (6.2) that D = 2m ′ -1 with n | (m ′ -1)t + 1, hence D = d, by the minimality of m.

The argument above also proves that if Λ-mod is a Calabi-Yau category then g.c.d. (n, t) = 1.

Assume that g.c.d. (n, t) = 1, t = 2s, and g.c.d. (n, s) = 1. Then there exists an integer m ′ such that n | (m ′ -1)s + 1. We choose a positive m ′ . Since g.c.d. (n, t) = 1, it follows that m ′ is even, say m ′ = 2m with m ≥ 1. Let m be the the minimal positive integer such that n | (2m -1)s + 1, and set d := 2m. Then the same computation shows that S s i , i ∈ Z/nZ, are all the indecomposable Calabi-Yau modules. This proves (a).

By applying Lemma 5.4 to d given above (note that the corresponding N = N (n, d, t) = 1 in this case), we know that S l i ⊕ S t-l i+l-s , 1 ≤ l ≤ t -1, l = s, i ∈ Z/nZ, are all the decomposable minimal 2m-th CY modules. By symmetry one can consider 1 ≤ l ≤ s -1 : if l > s then one can replace l by tl, since i = (i + ls) + (tl)s. This proves (b).

It remains to prove (c). Let CYdim(S s i ) = d ′ . Since g.c.d. (n, t) = 1, it follows that d ′ has to be an even integer 2m ′ ≥ 0 with n | (2m ′ -1)s + 1. it follows that d ′ = d, by the minimality of m. Let CYdim(S l i ⊕ S t-l i+l-s ) = d ′ . Then we have N (S l i ) = Ω -(d ′ +1) (S t-l i+l-s ). Since l = s it follows from (5.2) and (5.1) that d ′ has to be 2m ′ ≥ 0 with n | (2m ′ -1)s + 1. Again by the minimality of m we have d ′ = d. This completes the proof. Remark 6.2. (i) CYdim(X) usually differs from CYdim(A) in a Calabi-Yau category A.

For example, if n = 3, t = 4, then o([1]) = 6, CYdim(Λ) = 5, while CYdim(S 2 i ) = 2 and o([1] S 2 i ) = 3, ∀ i ∈ Z/3Z. However, for t ≥ 3 and g.c.d. (n, t) = 1, if X is indecomposable and CYdim(X) is odd then CYdim(X) = CYdim(Λ). In fact, since o([1]) < ∞ it follows that CYdim(X) = 2m ′ -1 ≥ 1, and n | 1 + (m ′ -1)t. By Theorem 6.1(i) CYdim(Λ) = 2m -1, where m is the minimal positive integer such that n | 1 + (m -1)t. It follows that m ′ ≥ m, hence CYdim(X) ≥ CYdim(Λ). On the other hand we have CYdim(X) ≤ CYdim(Λ) by definition.

(ii) Consider the algebra A(t) := kA ∞ ∞ /J t where A ∞ ∞ is the infinite quiver

• • • -→ • -→ • -→ • -→ • -→ • -→ • • • .
Then A(t)-mod has a Serre functor, and there is a natural covering functor A(t)-mod -→ Λ(n, t)-mod ( [Gab], 2.8). But one can prove that in any case A(t)-mod is not a Calabi-Yau category.

  A be a Hom-finite triangulated k-category with Serre functor F . Denote by [1] the shift functor of A. Following Kontsevich [Ko], A is a Calabi-Yau category if there is a natural isomorphism F ∼ = [d] of functors for some d ∈ Z. Denote by o([1]) the order of [1]. If o([1]) = ∞ then the integer d above is unique, and is called the CY dimension of A; if o([1]) is finite then we call the minimal non-negative integer d such that F ∼ = [d] the CY dimension of A. Denote by CYdim(A) the CY dimension of A.

4. 2 .

 2 Let A be a Hom-finite Krull-Schmidt triangulated k-category with Serre functor F . For each d ∈ Z, consider the triangle-equivalence G := [-d] • F ∼ = F • [-d] : A -→ A. For each indecomposable M ∈ A, denote by o(GM ) the relative order of G respect to M , that is, r := o(GM ) is the minimal positive integer such that G r (M ) ∼ = M , otherwise o(GM ) = ∞. Denote by Aut(A) the group of the triangle-equivalences of A, and by G the cyclic subgroup of Aut(A) generated by G. Then G acts naturally on Ind(A), the set of the isoclasses of indecomposables of A. Denote by OM the G-orbit of an indecomposable M . Then |OM | = o(GM ). If |OM | < ∞ then the set OM is a finite G-orbit. Denote by Fin O(A, d) the set of all the finite G-orbits of Ind(A), and by MinCY(A, d) the set of isoclasses of minimal d-th CY objects. We have the following Theorem 4.2. Let A be a Hom-finite Krull-Schmidt triangulated k-category with Serre functor F . Then (i) Every d-th CY object is a direct sum of finitely many minimal d-th CY objects.

5. 4 .

 4 If d = 2m -1 ≥ 1, then by (5.4) we see that o(G S l i ) = N , where N is as given in (5.3), i.e. N is the minimal positive integer such that n | N (1 + (m -1)t). It follows from Corollary 4.3 and (5.4) that we have Lemma 5.1. Let d = 2m -1 ≥ 1. Then M is a minimal d-th CY Λ-module if and only if M is isomorphic to one of the following

Case 2 .

 2 Let N = N (d, n, t) = N (2m, n, 2s) be odd. Since by definition N is the minimal positive integer such that n| N d(t), it follows that N < o(G S l i ) = 2N ′ ≤ 2N. It is easy to see N ′ = N : otherwise 1 ≤ 2N ′ -N ≤ N -1 and n | (2N ′ -N )d(t),which contradicts the minimality of N . It follows from Corollary 4.3, (5.9), (5.10), and (5.11) that we have Lemma 5.4. Let t = 2s and d = 2m ≥ 0. Assume that N = N (d, n, t) is odd. Then M is a minimal d-th CY Λ-module if and only if M is isomorphic to one of the following

( i )

 i The modules in (5.7), when d = 2m -1; (ii) The modules in (5.8), when d = 2m and t is odd; (iii) The modules in (5.12), when d = 2m, t = 2s, and N (d, n, t) is even; (iv) The modules in (5.13) -(5.14), when d = 2m, t = 2s, and N (d, n, t) is odd. In particular, any minimal d-th CY Λ-module has either N or 2N indecomposable direct summands; and min{d ≥ 0 | N = c(M ), or 2N = c(M )} ≤ CYdim(M ) < o([1]M ) ≤ 2n (5.15) for any minimal Calabi-Yau Λ-modules M , where c(M ) is the number of indecomposable direct summands of M . Proof. By Lemmas 5.1-5.4 the CY dimension d of any minimal Calabi-Yau module M satisfies N (d, n, t) = c(M ) or 2N (d, n, t) = c(M ).

  mod the category of finite-dimensional left A-modules, and A-mod the stable category of A-mod modulo projective modules. Then the Nakayama functor N := D(A)⊗A-, Heller's syzygy functor Ω, and the Auslander-Reiten translate τ ∼ = Ω 2 •N ∼ = N •Ω 2

	([ARS], p.126), and are endo-equivalences of A-mod ([ARS], Chap. IV). Note that A-mod is a Hom-
	finite Krull-Schmidt triangulated k-category with [1] = Ω -1 ([Hap1], p.16). By the bi-naturality of
	the Auslander-Reiten isomorphisms ([AR])

  By ( * * * ) we have o([1]) < ∞, it follows, without loss of generality, that we can assume d ≥ 0.

	(5.2)	t .
	5.3. For convenience, set d(t) := 1 + (d-1)t 2	∈ 1 2 Z, whatever d is even or odd; denote by N = N (d, n, t)
	the minimal positive integer such that	
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S l

i ⊕ S l i+1 , 1 ≤ l ≤ 3, are all the minimal 3-th CY modules of CY dimension 0 if l = 2, and 1 if l = 1, 3. However, the left hand side in (5.15) is 0 since N (0, 2, 4) = 2. 6. Self-injective Nakayama algebras with indecomposable Calabi-Yau modules

In this section we determine all the self-injective Nakayama algebras Λ = Λ(n, t), n ≥ 1, t ≥ 2, which admit indecomposable Calabi-Yau modules.

Note that Erdmann and Skowroński have proved in §2 of [ES] that self-injective algebras A such that A-mod is Calabi-Yau of CY dimension 0 (resp. 1) are the algebras Morita equivalent to Λ(n, 2) for some n ≥ 1 (resp. Λ(1, t) for some t ≥ 3). So we assume that t ≥ 3. Theorem 6.1. Let t ≥ 3. Then Λ has an indecomposable Calabi-Yau module if and only if n and t satisfy one of the following conditions (i) g.c.d. (n, t) = 1. This is exactly the case where Λ-mod is a Calabi-Yau category. In this case we have CYdim(Λ) = 2m -1, where m is the minimal positive integer such that n | (m -1)t + 1.

(ii) g.c.d. (n, t) = 1, t = 2s, and g.c.d. (n, s) = 1. This is exactly the case where Λ-mod is not a Calabi-Yau category but admits indecomposable Calabi-Yau modules.

In this case, we have g.c.d. (n, t) = 2 and (a) S s i , i ∈ Z/nZ, are all the indecomposable Calabi-Yau modules;

, are all the decomposable minimal 2m-th CY modules, where m is the minimal non-negative integer such that n | (2m -1)s + 1;

(c) All of these modules in (a) and (b) have the same CY dimension 2m.

Remark. Bialkowski and Skowroński [BS] have classified representation-finite self-injective algebras whose stable categories are Calabi-Yau. This includes the assertion (i) of Theorem 6.1.

Proof. If Λ has an indecomposable d-th CY module S l i , then N (S l i ) ∼ = Ω -(d+1) (S l i ). By (5.2) and (5.1) we have

In the first case we get g.c.d. (n, t) = 1. In the second case we get t = 2s, l = s and g. Assume that g.c.d. (n, t) = 1. Then there exists an integer m such that n | (m -1)t + 1. We chose a positive (otherwise, add n(-m + 2)t), and minimal m. Set d := 2m -1. Then the same computation shows that every indecomposable is a d-th CY module. We claim that Λ-mod is a Calabi-Yau category. For this, it remains to show N (f ) = Ω -(d+1) (f ) = Ω -2m (f ) for any morphism f between indecomposables of Λ-mod. Since n | (m -1)t + 1, it follows from ( * * ) in §5