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In this work, we propose a new numerical scheme for the anisotropic mean curvature equation. The solution of the scheme is not unique, but for all numerical solutions, we provide an error estimate between the continuous solution and the numerical approximation. This error estimate is not optimal, but as far as we know, this is the first one for mean curvature type equation. Our scheme is also applicable to compute the solution to dislocations dynamics equation.

Introduction

Mean curvature motion has been largely studied in terms of both theory and computation, in particular due to the large number of applications like front propagation, image processing, fluid dynamics...(see for instance Sethian [START_REF] Sethian | Level set methods and fast marching methods[END_REF] and Osher, Paragios [START_REF]Geometric level set methods in imaging, vision, and graphics[END_REF]).

The level set framework has been used in both theoretical and numerical problems. Theoretically, the mean curvature equation has been well understood using the framework of viscosity solutions by Chen, Giga, Goto [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] and Evans, Spruck [START_REF] Evans | Motion of level sets by mean curvature. I[END_REF]. However, this equation has serious problems for the question of numerical approximations. Nevertheless, there are several works on this question. First, let us mention the numerical method of Osher, Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF]. This method is very used in practice but, as far as we know, there is no convergence result. Another algorithm is the Merriman, Bence, Osher scheme [START_REF] Merriman | Diffusion generated motion by mean curvature[END_REF] in which motion by mean curvature is viewed as singular limit of a diffusion equation with threshold. The convergence of this scheme has been proved by Barles,Georgelin [4] and Evans [START_REF] Evans | Convergence of an algorithm for mean curvature motion[END_REF] (see also Ishii [16], Ishii, Pires, Souganidis [START_REF] Ishii | Threshold dynamics type approximation schemes for propagating fronts[END_REF], and Chambolle, Novaga [START_REF] Chambolle | Approximation of the anosotropic mean curvature flow[END_REF]). A class of convergent schemes for nonlinear parabolic equations including mean curvature motion have been proposed by Crandall, Lions [START_REF] Crandall | Convergent difference schemes for nonlinear parabolic equations and mean curvature motion[END_REF]. Let us mention also the recent work of Oberman [START_REF] Oberman | A convergent monotone difference scheme for motion of level sets by mean curvature[END_REF]. In this last two works, two different scales are used. The first one is the space step ∆x and the second one is the size of the stencil ε. As it was point out in [START_REF] Crandall | Convergent difference schemes for nonlinear parabolic equations and mean curvature motion[END_REF], these two scales are very important to approximate degenerate equations like mean curvature equation.

The goal of our work is to propose a new scheme for mean curvature motion and to prove an error estimate between the continuous solution and its numerical approximation. This error estimate is not optimal, but as far as we know, this is the first one for complete discretized scheme for mean curvature type motion.

The idea is to use a recent work of Da Lio, Monneau and the author [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics[END_REF] concerning the convergence of dislocations dynamics to mean curvature motion. Dislocations are linear defects which move in crystals. Their dynamics can be represented by a non-local first order Hamilton-Jacobi equation (see Alvarez, Hoch, Le Bouar and Monneau [START_REF] Alvarez | Dislocation dynamics: short time existence and uniqueness of the solution[END_REF]). The first goal of this work is to prove an error estimate between the solution of dislocations dynamics and the solution of mean curvature motion. To do this, we will use in a more quantitative way the definition of viscosity solutions for mean curvature motion proposed by Barles, Georgelin [START_REF] Barles | A simple proof of convergence for an approximation scheme for computing motions by mean curvature[END_REF] by considering a regularization with quartics.

The second goal of this work is to propose a numerical scheme for dislocations dynamics. The main properties of this scheme is that it is implicit (so there is no CFL condition) and uses two different scales. Moreover, this scheme is not monotone and does not admit a unique solution. It is only "almost monotone" (see Lemma 5.2). Nevertheless, the fact that it is implicit and the monotonicity of the velocity, allows us to "freeze" the velocity and to prove a Crandall Lions type [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF] error estimate for any solutions (we refer to Alvarez, Carlini, Monneau and Rouy [START_REF] Alvarez | Convergence of a first order scheme for a non local eikonal equation[END_REF][START_REF]A convergent scheme for a nonlocal hamilton-jacobi equation, modeling dislocation dynamics[END_REF] for error estimate for dislocations dynamics in the non monotone case). It is also possible to explicit the scheme. In this case, we are able to prove the convergence of the scheme under a CFL condition, but error estimates in this case are still open. This comes from the fact that there is no consistency error for the scheme (see Proposition 5.6).

Finally, let us mention some works on error estimate for numerical scheme for Hamilton-Jacobi equations. For the first order case, we refer to Souganidis [START_REF] Souganidis | Approximation schemes for viscosity solutions of Hamilton-Jacobi equations[END_REF]. For the second order case, when the Hamiltonian is convex, we refer to Krylov [START_REF] Krylov | On the rate of convergence of finite-difference approximations for Bellman's equations[END_REF][START_REF]On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients[END_REF] and Barles, Jakobsen [START_REF] Barles | On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Barles | Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations[END_REF]. When the Hamiltonian is uniformly elliptic, we refer to Caffarelli, Souganidis [START_REF] Caffarelli | A rate of convergence for monotone finite difference approximations to fully nonlinear uniformly elliptic pde[END_REF].

Let us now explain how this paper is organized. In Section 2, we state the main results of this work. In Section 3, we prove the main result concerning mean curvature type motion. Section 4 is devoted to prove the error estimate between the solution of dislocations dynamics and the one of mean curvature motion. In Section 5, we study the numerical scheme for dislocations dynamics and we prove an error estimate between the continuous solution and its numerical approximation. Some numerical simulations are provided in Section 6.

Main Results

Error estimate for Mean Curvature Motion

In order to propose a numerical scheme for anisotropic mean curvature motion, we will use the work of Da Lio et al. [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics[END_REF] that we briefly recall here. Given a function g defined on the unit sphere

S N -1 of R N by (2.1) g ∈ Lip(S N -1 ), g(-θ) = g(θ) ≥ 0, ∀θ ∈ S N -1 we consider kernels c 0 ∈ L ∞ (R N ) ∩ W 1,1 (R N ) satisfying (2.2)        c 0 (x) = 1 |x| N +1 g x |x| if |x| ≥ 1, c 0 (-x) = c 0 (x) ≥ 0, ∀x ∈ R N
and we use the following scaling for 0 < ε < e -1

(2.3)

c ε 0 (x) = 1 ε N +1 | ln ε| c 0 x ε .
The term | ln ε| comes from the bad decay at infinity of the kernel c 0 (see [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics[END_REF]Section 4.1]).

We then consider the following auxiliary problem (2.4)

       u ε t (x, t) = (c ε 0 ⋆ 1 {u ε (•,t)≥u ε (x,t)} )(x) - 1 2 R N c ε 0 |Du ε (x, t)| in R N × (0, T ), u ε (•, 0) = u ε 0 in R N
where u ε t denotes the derivative with respect to the time variable, Du ε indicates the gradient of u ε with respect to the space variables, the convolution is done in space only and 1 {u ε (•,t)≥u ε (x,t)} is the characteristic function of the set {u ε (•, t) ≥ u ε (x, t)} (which is equal to 1 on the set and 0 outside). This equation arises in the theory of dislocations dynamics (see Alvarez, Hoch, Le Bouar and Monneau [START_REF] Alvarez | Dislocation dynamics: short time existence and uniqueness of the solution[END_REF]) and uses the Slepčev formulation [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions[END_REF] to consider the simultaneous evolutions of all the level sets of the function u ε . We refer to Da Lio et al. [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics[END_REF] for the study of this model and in particular to [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics[END_REF]Definition 2.1] for the definition of viscosity solutions for Problem (2.4). In particular, we recall that we take the indicatrice of {u ε (•, t) ≥ u ε (x, t)} for sub-solution and the indicatrice of {u ε (•, t) > u ε (x, t)} for super-solution.

The main result of [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics[END_REF] is that, if u ε 0 = u 0 , then the unique solution u ε of (2.4) converges locally uniformly on compact sets to the solution u 0 of the following limit equation

(2.5)        u 0 t -trace D 2 u 0 • A Du 0 |Du 0 | = 0 in R N × (0, T ) u 0 (•, 0) = u 0 in R N with (2.6) A p |p| = θ∈ S N -2 = S N -1 ∩{ x, p |p| =0} 1 2 g(θ) θ ⊗ θ dθ
and where M • A and •, • denote respectively the product between the two matrices and the usual scalar product. Our first main result is an error estimate between u ε and u 0 :

Theorem 2.1 (Error estimate for Mean Curvature Motion) Let N ≥ 1 and T ≤ 1. Assume that u 0 , u ε 0 ∈ Lip(R N ), g ∈ Lip(S N -1 ) and that c 0 given in (2.2) satisfies c 0 ∈ W 1,1 (R N ). Then, there exists a constant K 1 depending on N, sup R N c 0 , |Dg| L ∞ (S N -1 ) and |Du 0 | L ∞ (R N )
such that the difference between the solution u ε of (2.4) and the solution u 0 of (2.5) is given by

(2.7) sup R N ×(0,T ) |u ε -u 0 | ≤ K 1 T | ln ε| 1 6 + sup R N |u ε 0 -u 0 |.

Discrete-continuous error estimate for dislocations dynamics

To approximate the solution u 0 of (2.5), we then have to approximate the solution u ε of (2.4). Up to a change of variable (see Corollary 3.1), it suffices to approximate the solution u of (2.8)

       u t (x, t) = (c 0 ⋆ 1 {u(•,t)≥u(x,t)} )(x) - 1 2 c 0 |Du(x, t)| in R N × (0, T ), u(•, 0) = ū0 in R N .
Given a mesh size ∆x 1 , ..., ∆x N , ∆t and a lattice

Q ∆ T = Q ∆ × {0, ..., (∆t)N T } where Q ∆ = {(i 1 ∆x 1 , ..., i N ∆x N ), I = (i 1 , ..., i N ) ∈ Z N }
and N T is the integer part of T /∆t, we will denote by (x 1 , ..., x N , t n ) = (x I , t n ) the node (i 1 ∆x 1 , ..., i N ∆x N , n∆t) and by v n I the value of a numerical approximation of the exact solution u(x I , t n ). We set ∆x = ∆x 2 1 + ... + ∆x 2 N the space mesh size. We shall assume throughout that ∆x + ∆t ≤ 1.

The discrete solution v is computed iteratively by solving the implicit scheme (2.9)

v 0 I = ũ0 (x I ), v n+1 I -v n I ∆t = c ∆ [v] n+1 I G(v n+1 ) I
where ũ0 is an approximation of ū0 and G(v n+1 ) I is a suitable approximation of the gradient of v n+1 taken at point x I . The non-local velocity is the discrete convolution

(2.10) c ∆ [v] n+1 I = c ∆ [v](x I , t n+1 ) = J∈Z N c0 I-J 1 {v n+1 J ≥v n+1 I } ∆x 1 ...∆x N - 1 2 J∈Z N c0 J ∆x 1 ...∆x N with (2.11) c0 I = 1 |Q I | QI c 0 (x) dx
where Q I is the square cell centred in x I

(2.12)

Q I = [x i1 -∆x 1 /2, x i1 + ∆x 1 /2] × ... × [x iN -∆x N /2, x iN + ∆x N /2].
Finally, let us define

(2.13) v # (y, t n ) = I v(x I , t n )χ QI (y)
where χ QI is the indicator function of Q I . The approximation of the gradient is obtained using the Osher, Sethian scheme [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF] (we can also use the one proposed by Rouy, Tourin [START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF]). It is monotone, consistent and depends on the sign of the non-local velocity. Its precised definition is recalled in Section 5.

Since the velocity c ∆ is non-local and not continuous, we have to give a sense to the equality in the scheme (2.9). In fact, we will use the analogue of the Slepčev formulation [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions[END_REF] for discrete sub and super-solution (see Definition 5.1) and we will use a discrete version of the Perron's method to construct a discrete solution. The solution of the scheme is not unique but, for any solutions, we have the following Crandall-Lions type [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF] error estimate: Theorem 2.2 (Discrete-continuous error estimate for (2.8)) Let N ≥ 1 and T ≤ 1. Assume that ū0 , ũ0 ∈ W 1,∞ (R N ) and that c 0 given in (2.2) satisfies c 0 ∈ W 1,1 (R N ). Assume that ∆x + ∆t ≤ 1. Then there exists a constant K 2 > 0 depending only on N ,

|c 0 | W 1,1 (R N ) , |Dū 0 | L ∞ (R N ) and |Dũ 0 | L ∞ (R N )
such that the error estimate between the continuous solution u of (2.8) and any discrete solution v of the finite difference scheme (2.9) is given by sup

R N ×{0,...,tN T } |u -v # | ≤ K 2 √ T (∆x + ∆t) 1/2 + sup R N |ū 0 -(ũ 0 ) # | provided ∆x + ∆t ≤ 1 K 2 2 .
Remark 2.3 It is possible to explicit the computation of the gradient, i.e., to replace the term G(v n+1 ) I by G(v n ) I in the scheme (2.9) and to consider the solution v of (2.14)

v 0 I = ũ0 (x I ), v n+1 I -v n I ∆t = c ∆ [v] n+1 I G(v n ) I .
In this case, as usual, we have to satisfy a CFL condition like for instance

∆t ≤ ∆x 2|c 0 | L 1 (R N )
for the Osher Sethian discretisation of the gradient. Under this additional assumption, Theorem 2.2 remains true with v solution of the scheme (2.14).

Discrete continuous error estimate for Mean Curvature Motion

Using the above results, we will prove in Section 3 the following theorem: Theorem 2.4 (Discrete-continuous error estimate for the mean curvature motion) Let N ≥ 1 and T ≤ 1. Let us denote by v ε a solution of (2.9)-(2.10)-(2.11) with initial condition ũε 0 (which is an approximation of u 0 ) and with c ε 0 in the place of c 0 . Assume that u 0 , ũε 0 ∈ W 1,∞ (R N ), g ∈ Lip(S N -1 ) and that c 0 given in (2.2) satisfies c 0 ∈ W 1,1 (R N ). Assume also that ∆x + ∆t ≤ 1. Then there exists a constant

K 3 > 0 depending only on N, sup R N c 0 , |Dg| L ∞ (S N -1 ) , |c 0 | W 1,1 (R N ) , |Du 0 | L ∞ (R N ) and |Dũ ε 0 | L ∞ (R N )
such that the error estimate between the continuous solution u 0 of (2.5) and its numerical approximation v ε is given by sup Proposition 5.4 for the exact setting), we can iterate the process and get a linear estimate in

R N ×{0,..,tN T } |u 0 -v ε # | ≤ K 3 T | ln ε| 1/6 + sup R N |u 0 -(ũ ε 0 ) # | where ε ≥ K 3 (∆x + √ ∆t). Remark 2.5 If T ≥ 1, since |Du 0 | L ∞ (R N ×(0,T )) ≤ |Du 0 | L ∞ (R N ) and "|Dv ε | L ∞ (R N ) "≤ |Dũ ε 0 | L ∞ (R N ) (see
T , i.e sup R N ×{0,..,tN T } |u 0 -v ε # | ≤ K 3 | ln ε| 1/6 T + sup R N |u 0 -(ũ ε 0 ) # |.
Remark 2.6 We can truncate the kernel c 0 at infinity and consider

cR 0 (x) = c 0 (x) if |x| ≤ R, 0 else
In this case, we make an error of order

R N \BR(0) c 0 ≤ K R
and we can make the computation on a finite stencil, even if ∆x goes to zero. This is possible, if we choose ε of the same order of ∆x. The condition ε ≥ K(∆x + √ ∆t) in Theorem 2.4 then implies that we need to impose a CFL condition ∆t ≤ K∆x 2 (which is classical for second order equation).

At the opposite, if we do not impose any CFL condition, we can choose ∆t larger than ∆x 2 , but we have to choose ε of the same order of √ ∆t and so to make the convolution on larger and larger stencils as ∆x goes to zero.

As we mention in the introduction, it is also possible to explicit the computation of the velocity in the scheme (2.9) and to consider (2.15)

v 0 I = ũ0 (x I ), v n+1 I -v n I ∆t = c ∆ [v] n I G(v n ) I ,
with c ε 0 in the place of c 0 in the definition of c ∆ . We can prove the convergence of the scheme (see Theorem 2.7) under the CFL condition

(2.16) ∆t ≤ ε| ln ε| 2|c 0 | L 1 (R N ) ∆x.
But, in this case, we are not able to prove an error estimate. The reason is that when we implicit the velocity, it "freezes" it, and then we can use the consistency error on the scheme with given velocity. At the opposite, for the explicit scheme, we have to control the consistency error of the velocity which is not possible as we point out in Proposition 5.6. We define

v ε,δ (x, t) = v ε (x I , t n ) if x ∈ Q I , t ∈ [t n , t n+1 )
where δ = (∆x, ∆t) and v ε is the solution of the scheme (2.15)-(2.10)-(2.11) with the kernel c ε 0 in the place of c 0 . Then we have the following convergence result: Theorem 2.7 (Convergence of the explicit scheme) Assume (2.16). Under the assumptions of Theorem 2.4, the function v ε,δ converges locally uniformly on compact sets as δ → 0 to u ε solution of (2.4).

Remark 2.8 In Theorem 2.7, if we take the limit δ → 0 and ε → 0 with δ ≪ ε, we will approach the solution of (2.5). The condition δ ≪ ε implies that, in practice, we have to make the convolution in larger and larger stencil as δ → 0. Remark 2.9 In the scheme (2.15), it is possible to implicit the computation of the gradient and thus to withdraw the CFL condition (2.16) to get the same result as Theorem 2.7.

Notation In what follows, we will denote by K a generic constant, which will then satisfy K + K = K, K • K = K, and so on.

3 Numerical scheme for mean curvature motion

Proof of Theorem 2.4

Using a rescaling argument, we will prove the following corollary of Theorem 2.2: Corollary 3.1 (Discrete-continuous error estimate for (2.4)) Let us denote by v ε a solution of (2.9)-(2.10)-(2.11) with initial condition ũε 0 (which is an approximation of u ε 0 ) and with c ε 0 in the place of c 0 . Under the assumptions of Theorem 2.2, there exists a constant K > 0

depending only on |c 0 | W 1,1 (R N ) , |Du ε 0 | L ∞ (R N ) and |Dũ ε 0 | L ∞ (R N )
such that the error estimate between the continuous solution u ε of (2.4) and its numerical approximation v ε is given by sup

R N ×{0,...,tN T } |u ε -v ε # | ≤ K 1 ε T | ln ε| ε∆x + ∆t | ln ε| + sup R N |u ε 0 -(ũ ε 0 ) # | provided ε∆x + ∆t | ln ε| ≤ ε 2 K 2 .
Proof of Corollary 3.1 First we remark that a simple change of variable gives (for u and v solutions respectively of (2.8) and (2.9))

u ε (y, τ ) = εu y ε , τ ε 2 | ln ε| , u ε 0 (y) = εū 0 y ε v ε (y, τ ) = εv y ε , τ ε 2 | ln ε| , ũε 0 (y) = εũ 0 y ε . Let us denote by x = y ε , t = τ ε 2 | ln ε| , ∆x = ∆y ε , ∆t = ∆τ ε 2 | ln ε| , T = Γ ε 2 | ln ε|
, s n = n∆τ and by N Γ the integer part of Γ/∆τ . Then, the following inequality holds: sup

R N ×{0,...,sN Γ } |u ε -v ε # | =ε sup R N ×{0,...,tN T } |u -v # | ≤K √ Γ | ln ε| ∆y ε + ∆τ ε 2 | ln ε| + ε sup R N |ū 0 -(ũ 0 ) # | ≤K √ Γ ε | ln ε| ε∆y + ∆τ | ln ε| + sup R N |u ε 0 -(ũ ε 0 ) # | provided that ∆y ε + ∆τ ε 2 | ln ε| ≤ 1 K 2 , i.e. ε∆y + ∆τ | ln ε| ≤ ε 2 K 2 .
This ends the proof of the corollary.

Proof of Theorem 2.4

The proof of Theorem 2.4 is now very easy. Indeed, using Theorem 2.1 and Corollary 3.1, we deduce that

|u 0 -v ε | ≤|u 0 -u ε | + |u ε -v ε | ≤K T | ln ε| 1 6 + K ε |lnε| √ T √ ε∆x + ∆t + sup R N |u ε 0 -(ũ ε 0 ) # | + sup R N |u ε 0 -u 0 |. Taking ε ≥ K(∆x + √ ∆t)
implies the prevalence of the first term with respect to the second one and so this implies the desired estimate for the choice of initial condition u ε 0 = u 0 .

Proof of Theorem 2.7

The idea of the proof is borrowed from Barles, Souganidis [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF]. Let us set

v ε = lim sup δ→0 * v ε,δ , v ε = lim inf δ→0 * v ε,δ .
We now prove that v ε and v ε are respectively sub and super-solution of (2.4

). Let ϕ ∈ C ∞ (R N × [0, T ))
such that v ε -ϕ reaches a strict maximum at the point (x 0 , t 0 ) with t 0 ∈ (0, T ). Then, there exists δ → 0, (x δ , t δ ) → (x 0 , t 0 ) such that v ε,δ -ϕ reaches a maximum at (x δ , t δ ). We denote by (

x δ I , t δ n ) ∈ Q ∆ T the node such that v ε,δ (x δ , t δ ) = v ε,δ (x δ I , t δ n ). This implies that, for all (x, t): v ε,δ (x, t) ≤ v ε,δ (x δ I , t δ n ) -ϕ(x δ , t δ ) + ϕ(x, t).
Using the monotony of the scheme for given velocity and the fact that v is solution of the scheme, we get

ϕ(x δ , t δ ) -ϕ(x δ , t δ -∆t) ∆t ≤c ε [v ε,δ ](x δ I , t δ -∆t) G + (D + ϕ(x δ , t δ -∆t), D -ϕ(x δ , t δ -∆t)) if c[v ε,δ ](x δ I , t δ -∆t) ≥ 0 G -(D + ϕ(x δ , t δ -∆t), D -ϕ(x δ , t δ -∆t)) if c[v ε,δ ](x δ I , t δ -∆t) ≤ 0 with c ε [u](x, t) = c ε 0 ⋆ 1 {u(•,t)≥u(x,t)} (x) - 1 2 R N c ε 0
and where we have used Lemma 5.5 to obtain the velocity. Sending δ → 0, using Slepčev Lemma [26, equation ( 5)] and the consistency of the scheme for given velocity, we get

ϕ t (x 0 , t 0 ) ≤ c ε 0 ⋆ 1 {v ε (•,t0)≥v ε (x0,t0)} (x 0 ) - 1 2 R N c ε 0 |Dϕ(x 0 , t 0 )|.
This proves that v ε is a sub-solution of (2.4). The proof for v ε is the same and we skip it. Moreover, using a barrier argument (using the equivalent of Proposition 5.4) we get that (2.4). This ends the proof of the theorem. Remark 3.2 In the scheme (2.15), we have made the choice to take the velocity c ∆ [v] n I . An another possibility is to take

v ε (•, 0) = v ε (•, 0) = u ε 0 . Then we have that v ε = v ε = v ε is solution of
c∆ [v] n+1 I = J∈Z N c0 I-J 1 {v n+1 J >v n+1 I } ∆x 1 ...∆x N - 1 2 J∈Z N c0 J ∆x 1 ...∆x N .
This construct two discrete solution v and ṽ. So, we can take any discrete function comprised between ṽ and v. In fact, this is equivalent to define a discrete solution as a sub and a super-solution as in Definition 5.1. With this definition, v will be the greater sub-solution and ṽ will be the lower super-solution and Theorem 2.7 will be true for every solutions.

What happens if we change the kernel?

A natural question is what happens if we change the kernel and if we take a kernel which decrease more quickly at infinity. For this kind of kernel K 0 , the natural scaling is the following one (see [13, Section 4.1])

K ε 0 (x) = 1 ε n+1 K 0 x ε .
In fact, using the same arguments as the one we use for the proof of Theorem 2.1, we can prove the same kind of error estimate. For example for K 0 (x) = 1 |x| n+p for |x| ≥ 1, with p ≥ 3, we get

|u ε -u 0 | ≤ K √ εT 1/4 .
This is the best estimate for ε small that we can obtain for general kernel, as we can see in Step 3, Case 1 of the proof of Theorem 2.1.

The main difference is that the estimate of Corollary 3.1 is replaced by sup

R N ×{0,...,tN T } |u ε -v ε # | ≤ K √ T ε √ ε∆x + ∆t + sup R N |u ε 0 -(ũ ε 0 ) # | for ε∆x + ∆t ≤ ε 2 K 2 .
Finally, we obtain for the choice

u ε 0 = u 0 sup R N ×{0,...,tN T } |u 0 -(v ε ) # | ≤ K √ εT 1 4 + sup R N |u 0 -ũε 0 | if ε ≥ K √ ∆x + (∆t) 1 3 
. This implies that ∆x ε → 0 as ∆x → 0. So, when ∆x goes to zero, we have to make the convolution on all the space which can be very expensive in practice. This approach can also be used for Gaussian kernel and should give the same estimates. In particular, this could give an error estimate for the equivalent version of the classical Bence, Merriman, Osher [START_REF] Merriman | Diffusion generated motion by mean curvature[END_REF] algorithm.

Proof of Theorem 2.1

Before to prove Theorem 2.1, we need some notation. Let us define

F (M, p) = trace M • A p |p| and G(M, p) = -1 |p| F (M, p)
where we recall that A(p) • p = 0 ∀p ∈ S N -1 . Then we have the following fundamental estimate for balls:

Lemma 4.1 (Error estimate for a ball) Let ϕ ∈ C 2 (R N ) with Dϕ(x 0 ) = 0, be such that the set {ϕ(x) ≥ ϕ(x 0 )} is a ball of radius R. For

c ε 0 (•) = 1 ε n+1 | ln ε| c 0 • ε , let us define c ε = (c ε 0 ⋆ 1 {ϕ(•)>ϕ(x0)} )(x 0 ) - 1 2 R n c ε 0 .
Then, there exists a constant

K = K(N, sup R n c 0 , |Dg| L ∞ (S N -1 ) ) > 0 such that for 0 < ε < δ with 0 < δ ≤ R/2, we have |c ε + G(D 2 ϕ(x 0 ), Dϕ(x 0 ))| ≤ K • e (ε, δ, R) with e (ε, δ, R) = 1 | ln ε| 1 δ + 1 R | ln δ| + δ R 2 .
This is a straightforward consequence of Da Lio et al. [START_REF] Da Lio | Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics[END_REF]Proposition 4.1] where their Lemma 4.3 is replaced by a direct estimate for an explicit function h

(x ′ ) = R -R 2 -|x ′ | 2 with x ′ ∈ R N -1 and |x ′ | ≤ R.
Proof of Theorem 2.1 Let u 0 be the solution of the mean curvature motion (2.5). The idea of the proof is to regularise the function u 0 by a kind of sup-convolution but using quartic penalization and then to plug the regularised function u 0,α into (2.4). This regularisation allows us to control quantitatively the first and the second derivatives in space of u 0,α . This is a quantitative version of the definition of Barles and Georgelin [START_REF] Barles | A simple proof of convergence for an approximation scheme for computing motions by mean curvature[END_REF] for viscosity solutions of mean curvature motion where they used this kind of regularisation to prove that one can take test functions such that Dϕ = 0 or Dϕ = 0 and D 2 ϕ = 0 in the definition of viscosity solutions. This kind of arguments is also used to obtained the comparison principle for mean curvature type equations.

The proof is decomposed into five steps:

Step 1. Regularisation of u 0 By classical estimates for mean curvature type equations, we have (4.17)

Du 0 L ∞ (R N ×(0,T )) ≤ Du 0 L ∞ (R N ) .
We regularise u 0 by considering a spatial sup-convolution by quartics

u 0,α (x, t) = sup y∈R N u 0 (x -y, t) - 1 4α |y| 4 (4.18) = sup z∈R N u 0 (z, t) - 1 4α |z -x| 4 . (4.19)
Since u 0 is Lipschitz continuous, the supremum is reached.

Step 2. Estimate between u 0 and u 0,α For x ∈ R N and t ∈ (0, T ), we denote by x = x(x, t) a point where the maximum is reached in (4.19). Then (4.20) 

u 0,α (x, t) = u 0 (x, t) - 1 4α |x -x| 4 ≥ u 0 (x,
|u 0,α (x, t) -u 0 (x, t)| ≤ Kα 1/3
Before to continue the proof, we need some notation. We now want to compare u ε and u 0,α . To do that, we will prove that u 0,α ± (f (ε, α)t + Kα

1 3 + sup R N |u ε 0 -u 0 |)
are respectively super and sub-solutions of Problem (2.4) for

f (ε, α) = K 1 | ln ε| + ln | ln ε| α 1/3 | ln ε| + 1 α 2/3 1 | ln ε| + ε . Let ψ ∈ C ∞ (R N × (0, T )
) such that u 0,α -ψ reaches a global strict maximum at (x 0 , t 0 ) ∈ R N × (0, T ). Since u 0,α is semi-convex in the space variable, the functions u 0,α is derivable with respect to x at the point (x 0 , t 0 ).

Let us denote by

ϕ z (x) = u 0 (z, t 0 ) - 1 4α |z -x| 4 . Then u 0,α (x, t 0 ) = sup z∈R N ϕ z (x).
We denote by x0 a point where the maximum is reached for x = x 0 and by ϕ = ϕ x0 . We then deduce that (4.25) ψ(x, t 0 ) ≥ u 0,α (x, t 0 ) ≥ ϕ(x)

with equality for x = x 0 . This implies that 

e(ϕ) = |c ε [ϕ](x 0 )|Dϕ(x 0 )| -F (D 2 ϕ(x 0 ), Dϕ(x 0 ))| where c ε [ϕ](x 0 ) = c ε 0 ⋆ 1 {ϕ(•)≥ϕ(x0)} (x 0 ) - 1 2 R N c ε 0 .
Step 3. e(ϕ) ≤ f (ε, α)

We distinguish three cases:

Case 1. h ≤ 2ε. In this case, we directly have the estimate (using (4.29))

|c ε [ϕ](x 0 )|Dϕ(x 0 )|| ≤ |c ε 0 | L 1 (R N ) h 3 α ≤ h 2 |c 0 | L 1 (R N ) ε| ln ε| h α ≤ K α 2/3 ε | ln ε|
where we have also used (4.28). Using moreover the fact that

|F (D 2 ϕ(x 0 ), Dϕ(x 0 ))| ≤ K h |Dϕ(x 0 )| ≤ K h 2 α ,
we then deduce that e(ϕ) ≤ K α 2/3 ε ≤ f (ε, α).

Case 2. 2ε < h ≤ 2

| ln ε| . Using (4.29) and Lemma 4.1, with δ = h/2, we then deduce that

e(ϕ) ≤ Kh 3 α 1 | ln ε| 1 h + 1 h | ln δ| + 1 h ≤ Kh α 2/3 ≤ K α 2/3 1 | ln ε| ≤ f (ε, α). Case 3. h > 2 | ln ε| . We set δ = 1 | ln ε|
. We then have ε < δ < h/2. So by Lemma 4.1, we deduce that

e(ϕ) ≤ Kh 3 α 1 | ln ε| + 1 h ln | ln ε| | ln ε| + 1 h 2 1 | ln ε| ≤K 1 | ln ε| + 1 α 1/3 ln | ln ε| | ln ε| + 1 α 2/3 1 | ln ε| ≤f (ε, α).
Step 4. Estimate between u 0,α and u ε

By construction, we have, since u 0,α is a sub-solution of (2.5) (but does not satisfy the initial condition) ψ t (x 0 , t 0 ) ≤F (D 2 ψ(x 0 , t 0 ), Dψ(x 0 , t 0 ))

≤c ε [ϕ](x 0 )|Dψ(x 0 , t 0 )| + F (D 2 ϕ(x 0 ), Dϕ(x 0 )) -c ε [ϕ](x 0 )|Dϕ(x 0 )| ≤c ε [u 0,α (•, t 0 )](x 0 )|Dψ(x 0 , t 0 )| + f (ε, α)
where we have used (4.25) for the last line. On the other hand, we have

u 0,α (•, 0) -Kα 1/3 -sup R N |u ε 0 -u 0 | ≤ u ε 0
where we have used (4.24) at the limit t = 0. We then deduce that ũ0,α (x, t) = u 0,α (x, t) -f (ε, α)t - (2.4). This implies that ũ0,α ≤ u ε and so

Kα 1/3 -sup R N |u ε 0 -u 0 | is sub-solution of
(4.30) u 0,α -u ε ≤ f (ε, α)t + Kα 1/3 + sup R N |u ε 0 -u 0 |.
Step 5. Estimate between u 0 and u ε Using (4.24) and (4.30), we then get

u 0 -u ε =u 0 -u 0,α + u 0,α -u ε ≤ f (ε, α)t + Kα 1/3 + sup R N |u ε 0 -u 0 |. But f (ε, α)t + Kα 1/3 =K 1 | ln ε| + ln | ln ε| α 1/3 | ln ε| + 1 α 2/3 1 | ln ε| + ε t + Kα 1/3 ≤K T | ln ε| 1 3
for α = Kt | ln ε| and t ≤ T ≤ 1. We then get

u 0 -u ε ≤ K T | ln ε| 1 3 + sup R N |u ε 0 -u 0 |.
A lower bound is proved similarly (using the same result as Lemma 4.1 where the set {ϕ(x) ≥ ϕ(x 0 )} is replaced by {ϕ(x) > ϕ(x 0 )}). This implies (2.7) for T ≤ 1. This ends the proof of the theorem.

5 Numerical scheme for dislocations dynamics

Definitions and preliminary results

We recall here the notation used in the scheme. The discrete solution v is computed iteratively by solving the implicit scheme (5.31)

v 0 I = ũ0 (x I ), v n+1 I -v n I ∆t = c ∆ [v] n+1 I G(v n+1 ) I
where the non-local velocity is defined in (2.10). The approximation of the gradient of v n+1 at the point x I is given by

G(v n+1 ) I = G + (D + v n+1 I , D -v n+1 I ) if c ∆ [v] n+1 I ≥ 0, G -(D + v n+1 I , D -v n+1 I ) if c ∆ [v] n+1 I < 0
where G ± is a suitable approximation of the Euclidean norm and

D ± v n (x I ) = (D ± x1 v n (x I ), ..., D ± xN v n (x I
)) are the discrete gradients. The terms D ± xi v n (x I ) are the standard forward and backward first order differences, i.e. for a general function f (x I ):

D + xi f (x I ) = f (x I i,+ ) -f (x I ) ∆x i , D - xi f (x I ) = f (x I ) -f (x I i,-) ∆x i ,
where (5.32)

I k,± = (i 1 , ..., i k-1 , i k ± 1, i k+1 , ..., i N ).
The approximations of the Euclidean norm G ± are those proposed by Osher and Sethian [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF] (we can also use the ones proposed by Rouy, Tourin [START_REF] Rouy | A viscosity solutions approach to shape-from-shading[END_REF]):

(5.33)

G + (P, Q) =   i=1,..,N max(P i , 0) 2 + i=1,..,N min(Q i , 0) 2   1 2 , G -(P, Q) =   i=1,..,N min(P i , 0) 2 + i=1,..,N max(Q i , 0) 2   1 2
.

We recall that the functions G ± are Lipschitz continuous with respect to the discrete gradients, i.e.

(5.34)

|G ± (P 1 , P 2 ) -G ± (P ′ 1 , P ′ 2 )| ≤ (|P 1 -P ′ 1 | + |P 2 -P ′ 2 |).
They are consistent with the Euclidean norm

(5.35) G ± (P, P ) = |P |,
and G ± = G ± (P + 1 , ..., P + N , P - 1 , ..., P - N ) enjoy suitable monotonicity with respect to each variable (5.36)

∂G + ∂p + i ≥ 0, ∂G + ∂p - i ≥ 0, ∂G - ∂p + i ≥ 0, ∂G - ∂p - i ≥ 0.
To define discrete solution, we need the following notation

(5.37) c∆ [v] n+1 I = J∈Z N c0 I-J 1 {v n+1 J >v n+1 I } ∆x 1 ...∆x N - 1 2 J∈Z N c0 J ∆x 1 ...∆x N , G(v n+1 ) I = G + (D + v n+1 I , D -v n+1 I ) if c∆ [v] n+1 I ≥ 0, G -(D + v n+1 I , D -v n+1 I ) if c∆ [v] n+1 I < 0
where c0 is defined in (2.11). Finally, for simplicity of presentation, let us denote by

s[v] n+1 I = Sign(c ∆ [v] n+1 I ), s[v] n+1 I = Sign(c ∆ [v] n+1 I ).
Definition 5.1 (Numerical sub, super and solution of the scheme) We say that v is a discrete sub-solution (resp super-solution) of the scheme (2.9) if for all I ∈ Z N , n ∈ N, we have

v n+1 I ≤ v n I + ∆t c ∆ [v] n+1 I G(v n+1 ) I resp. v n+1 I ≥ v n I + ∆t c∆ [v] n+1 I G(v n+1 ) I .
We say that v is a discrete solution if and only if it is a sub and a super-solution.

Lemma 5.2 (Almost monotonicity of the scheme)

The scheme (2.9) is almost monotone in the following sense. Let v, w be two discrete functions and assume that there is I such that w I = v I and w J ≥ v J for J = I. Then

c ∆ [v] I G(v) I ≤ c ∆ [w] I G(w) I and c∆ [v] I G(v) I ≤ c∆ [w] I G(w) I .
Proof of Lemma 5.2 First, we remark that c ∆ [v] I ≤ c ∆ [w] I . Then, there is three cases:

1. c ∆ [v] I ≤ 0 ≤ c ∆ [w] I .
In this case, the result is trivial.

2. 0 ≤ c ∆ [v] I ≤ c ∆ [w] I .
Using the monotonicity of G, we get that G(v) I ≤ G(w) I . This implies the result.

3. c ∆ [v] I ≤ c ∆ [w] I ≤ 0.
Using the monotonicity of G, we get that G(v) I ≥ G(w) I . This implies the result.

The proof for c∆ is the same and we skip it. This ends the proof of the lemma.

The existence of a solution for the scheme is not trivial (since it is implicit and non-local). This is the subject of the following proposition: Proposition 5.3 (Existence of solution for the scheme (2.9)) There exists, at least, one discrete solution v of the scheme (2.9) in the sense of Definition 5.1.

Proof of Proposition 5.3

We assume that there exists a solution v n at step n and we will construct a solution v n+1 at step n + 1. First, we remark that if (v n+1,i ) i is a family indexed by i of discrete sub-solution at step n + 1, then v n+1 = max v n+1,i is still a sub-solution (it suffices to use Lemma 5.2). Moreover,

w + = sup Q ∆ |v n | and w -= -sup Q ∆ |v n |
are respectively discrete super and sub-solution of the scheme (2.9). Then, let us define

v n+1 = max{w subsolution at step n + 1 s.t w ≤ w + }.
Then v n+1 is a discrete sub-solution at step n + 1. Now let us prove that v n+1 is a super-solution. By contradiction, assume that there is I such that

v n+1 I -v n I ∆t < c[v] n+1 I G s[v] n I (D + v n+1 I , D -v n+1 I ).
This implies in particular that v n+1 I < w + . Now, let us consider, the solution w I (in a sense similar to Definition 5.1) of

w I -v n I ∆t = c ∆ v n+1 [w] I G + (D + v n+1 w I , D - v n+1 w I ) if c ∆ v n+1 [w] I ≥ 0 G -(D + v n+1 w I , D - v n+1 w I ) if c ∆ v n+1 [w] I < 0 , where c ∆ v n+1 [w] I = J∈Z N c0 I-J 1 {v n+1 J ≥wI } ∆x 1 ...∆x N - 1 2 J∈Z N c0 J ∆x 1 ...∆x N and D ± v n+1 w I = (D ± x1,v n+1 w I , ..., D ± xN ,v n+1 w I ) with D + xi,v n+1 w I = v n+1 I i,+ -w I ∆x i , D - xi,v n+1 w I = w I -v n+1 I i,- ∆x i ,
where I k,± is defined in (5.32). The existence of such a solution comes from the fact that the left hand side is non-decreasing in w I and the right hand side is non-increasing. Then, it is easy to prove (using Lemma 5.2) that w I > v n+1 I and that w defined by

w J = w I if J = I v n+1
J otherwise is a discrete sub-solution of (2.9) at step n + 1. This contradicts the definition of v n+1 and ends the proof of the proposition.

Proposition 5.4 (Properties of the discrete solutions)

Assume that ũ0 ∈ W 1,∞ (R N ). Let us denote by L = |Dũ 0 | L ∞ (R N ) and (5.38) v = sup{v subsolution of (2.9) with initial condition v 0 = ũ0 , v ≤ |ũ 0 | L ∞ (R N ) }.
For k ∈ Z N such that k • ∆X > 0 (with ∆X = (∆x 1 , ..., ∆x N )), the following estimates hold

(5.39) v(x I , t n ) -v(x I + k • ∆X, t n ) k • ∆X ≤ L, (5.40) v(x I , t n ) -v(x I + k • ∆X, t n ) k • ∆X ≥ -L, (5.41) v n+1 I -v n I ∆t ≤ √ N 2 |c 0 | L 1 (R N ) L.
The same estimates hold for

(5.42) v = inf{v supersolution of (2.9) with initial condition v 0 = ũ0 , v ≥ -|u 0 | L ∞ (R N ) }. Proof of Proposition 5.4 For k ∈ Z N , let us denote by ũ0,k (x I ) = ũ0 (x I + k • ∆X) + Lk • ∆X ≥ ũ0 (x I )
and by v k the greater sub-solution, with initial condition ũ0,k , i.e.

v k = sup{v k subsolution of (2.9) with initial condition v 0 k = ũ0,k , v k ≤ |u 0 | L ∞ (R N ) }.
First, since the equation does not see the constants, we remark that v -Lk • ∆X is a sub-solution of (2.9) with initial condition v 0 -Lk • ∆X ≤ ũ0,k . So, by definition of v k , we have

v -Lk • ∆X ≤ v k .
Moreover, using the fact that the scheme is invariant by translation in space, we deduce that v(x I +k•∆X, t n ) is the greater sub-solution with initial condition v(x I + k • ∆X, 0) = ũ0,k (x I ). We then deduce that

v k (x I , t n ) = v(x I + k • ∆X, t n ). This implies that for k • ∆X > 0 v(x I , t n ) -v(x I + k • ∆X, t n ) k • ∆X ≤ L.
The proof of (5.40) is similar and we skip it.

To prove (5.41), we use the fact that v is a solution and the two previous estimates. This implies

- √ N 2 |c 0 | L 1 (R N ) L ≤ v n+1 I -v n I ∆t ≤ √ N 2 |c 0 | L 1 (R N ) L
which is the desired result.

Before to prove Theorem 2.2, we need the following lemma:

Lemma 5.5 (Equivalent formulation for the discrete velocity)

The discrete velocity c ∆ [v] can be rewritten as

c ∆ [v] n I = c 0 ⋆ 1 {v # (.,tn)≥v # (xI ,tn)} (x I ) - 1 2 |c 0 | L 1 (R N )
where v # is defined in (2.13).

Proof of Lemma 5.5

The idea of the proof is borrowed from Alvarez et al. [START_REF]A convergent scheme for a nonlocal hamilton-jacobi equation, modeling dislocation dynamics[END_REF]. Using the definition of the discrete velocity and c0 , we get

c ∆ [v] n I = J∈Z N c0 I-J 1 {v n J ≥v n I } ∆x 1 ...∆x N - 1 2 J∈Z N c0 J ∆x 1 ...∆x N = J∈Z N QJ-I c 0 (y) dy 1 {v n J ≥v n I } - 1 2 J∈Z N QJ c 0 (y) dy = J∈Z N QJ c 0 (x I -y) 1 {v n J ≥v n I } dy - 1 2 |c 0 | L 1 (R N ) = J∈Z N QJ c 0 (x I -y) 1 {v # (y,tn)≥v # (xI ,tn)} dy - 1 2 |c 0 | L 1 (R N ) = c 0 ⋆ 1 {v # (•,tn)≥v # (xI ,tn)} (x I ) - 1 2 |c 0 | L 1 (R N ) .
This ends the proof of the lemma.

We now prove Theorem 2.2: Proof of Theorem 2.2

The proof is an adaptation of the one of Crandall Lions [START_REF] Crandall | Two approximations of solutions of Hamilton-Jacobi equations[END_REF], revisited by Alvarez et al. [START_REF] Alvarez | Convergence of a first order scheme for a non local eikonal equation[END_REF]. Nevertheless, for the reader's convenience, we give the main steps in order to show the new difficulties due to the non-local term. The main idea of the proof is the same as the one of comparison principles, i.e. to consider the maximum of u -v # , to duplicate the variable and to use the viscosity inequalities to get the result.

The proof splits into four steps. We first assume that (5.43) ū0 (x I ) ≥ (ũ 0 (x I )) # , for all I ∈ Z N . and we set (5.44)

µ 0 = sup R N (ū 0 -(ũ 0 ) # ) ≥ 0.
We denote throughout by K various constant depending only on N ,

|c 0 | W 1,1 (R N ) , |Dū 0 | L ∞ (R N ) , |Dũ 0 | L ∞ (R N )
and µ 0 .

Step 1: Estimate on v We have the following estimate for the discrete solution

(5.45) -Kt n ≤ ū0 (x) -v # (x, t n ) ≤ Kt n + µ 0 .
To show this, it suffices to use the estimate (5.41) of Proposition 5.4. This implies that, for x ∈ Q I (with the notation v and v defined in Proposition 5.4)

(ũ 0 ) # (x) -Kt n = v 0 I -Kt n ≤ v n I ≤ v n I = v # (x, t n ) ≤ v n I ≤ Kt n + v 0 I = Kt n + (ũ 0 ) # (x).
This implies the desired estimate.

Before continuing the proof, we need a few notation. We put

µ = sup R N (u -v # ).
We want to bound from above µ by µ 0 plus a constant. For every 0 < α ≤ 1, 0 < γ ≤ 1 and 0 < η ≤ 1, we set M α,γ η = sup

R N ×R N ×(0,T )×{0,...,tN T } Ψ α,γ η (x, y, t, t n ) with Ψ α,γ η (x, y, t, t n ) = u(x, t) -v # (y, t n ) - |x -y| 2 2γ - |t -t n | 2 2γ -ηt -α(|x| 2 + |y| 2 ).
We shall drop the super and subscripts on Ψ when no ambiguity arises as concerning the value of the parameter.

The main difference with the classical Crandall Lions proof, is to consider the function v # in the place of v in the separation of variables. This allows us to treat the non-local velocity.

Since u is Lipschitz continuous and T ≤ 1, we have (5.46) |u(x, t)| ≤ K(1 + |x|).

Moreover by

Step 1, we have

|v(x i , t n )| ≤|v(x i , t n ) -ū0 (x i )| + |ū 0 (x i )| ≤Kt n + K(1 + |x i |) ≤K(1 + |x i |).
We then deduce that Ψ achieves its maximum at some point that we denote by (x * , y * , t * , t * n ).

Step 2: Estimates for the maximum point of Ψ

The maximum point of Ψ enjoys the following estimates (5.47)

α|x * | + α|y * | ≤ K and (5.48) |x * -y * | ≤ Kγ, |t * -t * n | ≤ (K + 2η)γ.
Indeed, by inequality Ψ(x * , y * , t * , t * n ) ≥ Ψ(0, 0, 0, 0) ≥ 0, we obtain

α|x * | 2 + α|y * | 2 ≤u(x * , t * ) -v # (y * , t * n ) ≤ K(1 + |x * | + |y * |) ≤K + K 2 α + α 2 |x * | 2 + α 2 |y * | 2 .
This implies (5.47), since α ≤ 1.

The first bound of (5.48) follows from the Lipschitz regularity in space of u, from the inequality Ψ(x * , y * , t * , t * n ) ≥ Ψ(y * , y * , t * , t * n ) and from (5.47). The second bound of (5.48) is obtained in the same way, using the inequality Ψ(x * , y * , t * , t * n ) ≥ Ψ(x * , y * , t * n , t * n ).

Step 3: A better estimate for the maximum point of Ψ Inequality (5.47) can be strengthened to (5.49)

α|x * | 2 + α|y * | 2 ≤ K.
Indeed, using the Lipschitz regularity of u, the inequality Ψ(x * , y * , t * , t * n ) ≥ Ψ(0, 0, 0, 0), Step 1 and equation (5.48), yields

α|x * | 2 + α|x * i | 2 ≤u(x * , t * ) -v # (y * , t * n ) + u 0 (y * ) -u 0 (y * ) ≤K(|x * -y * | + t * ) + Kt * n + µ 0 ≤ K.
Step 4 : Upper bound of µ We have the bound µ ≤ K √ T (∆x + ∆t)

1 2 + µ 0 if ∆x + ∆t ≤ 1 K 2 .
First, we claim that for η large enough, we have either t * = 0 or t * n = 0. We argue by contradiction. Then the function (x, t) → Ψ(x, y * , t, t * n ) achieves its maximum at a point of R N × (0, T ). Then, using the fact that u is a sub-solution of (2.8), we deduce that (5.50)

η + p * t ≤ c[u](x * , t * )|p * x + 2αx * | where c[u](x, t) = c 0 ⋆ 1 {u(•,t)≥u(x,t)} (x) - 1 2 R N c 0 and p * t = t * -t * n γ , p * x = x * -y * γ .
Since t * n > 0, we also have Ψ(x * , y * , t * , t * n ) ≥ Ψ(x * , y, t * , t n ) for t n ≥ t * n -∆t. This implies

(5.51) v # (y * , t * n ) -v # (y, t n ) ≤ ϕ(y * , t * n ) -ϕ(y, t n ) for t n ≥ t * n -∆t for ϕ(y, t n ) = -|x * -y| 2 2γ + |t * -tn| 2 2γ
+ α|y| 2 . We denote by x * I the node such that y * ∈ Q I * (the unit cube centred in x * I ). We then deduce ϕ(y

* , t * n ) -ϕ(y * , t * n -∆t) ∆t ≥ v # (y * , t * n ) -v # (y * , t * n -∆t) ∆t = v(x * I , t * n ) -v(x * I , t * n -∆t) ∆t ≥c ∆ [v](x * I , t * n )G s[v](x * I ,t * n ) (D + v(x * I , t * n ), D -v(x * I , t * n )) ≥c ∆ [v](x * I , t * n )G s[v](x * I ,t * n ) (D + ϕ(y * , t * n ), D -ϕ(y * , t * n ))
where we have use the monotonicity of G ± and (5.51) with t n = t * n for the last line. We denote by s

* = s[v](x * I , t * n ). Straightforward computations of the discrete derivative of ϕ yield (5.52) p * t + ∆t 2γ ≥ c∆ [v](x * I , t * n )G s * p * x - ∆x 2γ -α(2y * + ∆x), p * x + ∆x 2γ -α(2y * -∆x) .
Subtracting the above inequality to (5.50) yields

η ≤ ∆t 2γ + c[u](x * , t * )|p * x + 2αx * | -c∆ [v](x * I , t * n )G s * p * x - ∆x 2γ -α(2y * + ∆x), p * x + ∆x 2γ -α(2y * -∆x) ≤ ∆t 2γ + (c[u](x * , t * ) -c∆ [v](x * I , t * n ))|p * x | + αK|x * | + c∆ [v](x * I , t * n ) G s * p * x - ∆x 2γ -α(2y * + ∆x), p * x + ∆x 2γ -α(2y * -∆x) -G s * (p * x , p * x ) ≤ ∆t 2γ + (c[u](x * , t * ) -c∆ [v](x * I , t * n ))|p * x | + αK|x * | + K ∆x γ + 2α|y * | + 2α∆x
We now have to bound the term

I =(c[u](x * , t * ) -c∆ [v](x * I , t * n ))|p * x | =(c 0 ⋆ 1 {u(•,t * )≥u(x * ,t * )} (x * ) -c 0 ⋆ 1 {v # (•,t * n )>v # (y * ,t * n )} (x * I ))|p * x |.
We have to distinguish two cases: Case 1. Assume that for γ > 0 fixed |x * -y * | 2 γ ≥ C 2 γ for some constant C γ > 0 and for all α small. By inequality Ψ(x * , y * , t * , t * n ) ≥ Ψ(x, x, t * , t * n ), we deduce that

u(x, t * ) -u(x * , t * ) ≤ v # (x, t * n ) -v # (y * , t * n ) - |x * -y * | 2 2γ -α(|x * | 2 + |y * | 2 ) + 2α|x| 2 .
We then get the inclusion

{u(•, t * ) ≥ u(x * , t * )} ∩ {v # (•, t * n ) ≤ v # (y * , t * n )} ⊂ {|x| 2 ≥ R 2 α,γ } where R 2 α,γ = 1 2α |x * -y * | 2 2γ + α(|x * | 2 + |y * | 2 ) . We also have {|x -x * | ≥ R α,γ } ⊂ {|x| ≥ Rα,γ } where Rα,γ = R α,γ -|x * | → ∞ as α → 0 (see Da Lio et al. [13, Lemma 2.5]
). We then obtain

I ≤(c 0 ⋆ 1 {v # (•,t * n )>v # (y * ,t * n )} (x * ) -c 0 ⋆ 1 {v # (•,t * n )>v # (y * ,t * n )} (x * I ) + c 0 ⋆ 1 B c (0,Rα,γ ) (x * ))|p * x | ≤K |Dc 0 | L 1 (R N ) |x * -x * I | + B c (0, Rα,γ ) c 0 (x)dx <K(γ + ∆x) + o α (1) 
where we have used (5.48) to bound |p * x | in the second line. Case 2. Assume that there exists a subsequence α n > 0 which we still denote by α such that |x * -y * | 2 γ → 0 as α → 0.

We then get that p * x → 0 as α → 0. Since the velocities are bounded, we get that I = o α (1). To sum up, we have shown that I < K(γ + ∆x) + o α (1).

We then get that

η < K ∆x + ∆t γ + γ + o α (1). Putting η * = K ∆x + ∆t γ + γ + o α (1)
, we then conclude that either t * = 0 or t * n = 0 for η ≥ η * .

Whenever t * = 0, we get for η

* ≤ η ≤ 1 M =Ψ(x * , y * , 0, t * n ) ≤ u 0 (x * ) -v # (y * , t * n ) ≤K|x * -y * | + Kt * n + µ 0 ≤Kγ + µ 0
The same result holds whenever t * n = 0. We then deduce that for η = η * and (x,

t n ) ∈ R N × {0, ..., t NT } u(x, t n ) -v # (x, t n ) -η * T -2α|x I | 2 ≤ M ≤ Kγ + µ 0 .
Sending α → 0, taking the supremum over (x, t n ) and choosing γ = T 1/2 (∆x + ∆t) 1/2 , we get

µ ≤ K(∆x + ∆t) 1/2 √ T + µ 0 provided ∆x + ∆t ≤ 1 K 2 .
Using the same arguments of Alvarez et al.[1, Theorem 2], we easily deduce the result in the general case. This ends the proof of Theorem 2.2.

We now point out that there is no consistency error for the scheme (2.15). If there is a consistency error, then there will be a consistency error for the velocities, i.e. for all ϕ ∈

C 1 (R N × (0, T )) with ϕ C 1 (R N ×(0,T )) ≤ C then (5.53) c ∆ [ϕ |Q ∆ T ] n I -c[ϕ](x I , t n ) ≤ f (∆x, ∆t)
with f (∆x, ∆t) → 0 as (∆x, ∆t) → 0.

Proposition 5.6 (No consistency error)

There is no consistency error for the scheme (2.15), i.e. equation (5.53) does not hold.

Proof of Proposition 5.6

We have to prove that there exists a constant C 0 > 0 such that for all ∆x, ∆t > 0 there exists a function ϕ such that c ∆ [ϕ |Q ∆ T ] n I -c[ϕ](x I , t n ) ≥ C 0 and |ϕ| C 1 (R N ×(0,T )) ≤ C. To see this, it suffices to take a function ϕ which oscillates as shown in Figure 1. We now point out that the two scheme (2.9) and (2.15) are not monotone:

Proposition 5.8 (Non monotonicity of the scheme)

The two scheme (2.9) and (2.15) are not monotone for general c0 .

Proof of Proposition 5.8

1. The implicit scheme (2.9)

We give a simple counter-example in the one dimensional case. We take ũn i = v n i = i∆x. The goal is to construct a sub-solution u n+1 and a super-solution v n+1 such that

u n+1 i = i∆x + c 1 v n+1 i = i∆x + c 2 .
A simple computation gives We then deduce that c 1 -c 2 = ∆tc 0 0 > 0 (if c0 0 > 0). This implies that we can construct two different solutions (the supremum of sub-solutions and the infimum of super-solutions). This implies that the scheme (2.9) is not monotone.

The explicit scheme (2.15)

We also give a counter-example in the one dimensional case. We take

u n i =    -δ if i = 0 1 -δ if i = -1 0 otherwise and v n i =    δ if i = 0 1 -δ if i = -1 0 otherwise
We then have u n i ≤ v n i for all i ∈ Z. We then prove that u n+1 0 > v n+1 0 for δ small enough. First we remark that c ∆ [v n ] 0 ≤ 0 (if i =0,-1 c0 j ≥ c0 0 + c0 -1 ), so v n+1 0 ≤ δ. Moreover,

u n+1 0 = -δ + ∆t ∆x   j c0 j - 1 2 j c0 j   1 + δ 2 ≥ -δ + ∆t ∆x 1 2 |c 0 | L 1 (R) >δ if δ < ∆t 2∆x 1 2 |c 0 | L 1 (R) .
This contradicts the monotonicity of the scheme.

This ends the proof of the Proposition.

Numerical Simulations

In this section, we provide some numerical simulations. In a first subsection, we explain a method to solve numerically the implicit scheme (2.9)-(2.10)-(2.11). Then we provide a simple simulation concerning a collapsing circle, with the implicit scheme and an another one, to highlight the fattening phenomena, with the explicit scheme.

How to solve the implicit scheme?

To solve (2.9)-(2.10)-(2.11), we will use an iterative process. Assume that we have a solution v n at step n.

We now want to compute a solution v n+1 at step n + 1. To do this, for w ∈ R Q ∆ , we denote by w = Φ( w) the solution of the following auxiliary scheme: where I k,± is defined in (5.32). Since the left hand side of (6.54) is non-decreasing in w I and the right hand side is non-increasing, there exists a unique solution (in a sense similar of Definition 5.1) which can be computed using a dichotomy process. The important point is that if w is a sub-solution (resp. super-solution) then w = (w I ) I is still a sub-solution (resp. super-solution) and satisfies w I ≥ wI (resp. w I ≤ wI ) (see the proof of Proposition 5.3).

The idea is then to define w 0 = v n -C where the constant C is such that w 0 is a sub-solution of (2.9) and then to construct iteratively w k+1 = Φ(w k ). Setting v n+1 = lim k→∞ w k , we have that v n+1 is a solution of (2.9). 

(4. 26 )h 3 α

 263 Dϕ(x 0 ) = Du 0,α (x 0 , t 0 ) = Dψ(x 0 , t 0 ) and (4.27)D 2 ϕ(x 0 ) ≤ D 2 ψ(x 0 , t 0 ).Moreover, with h = |x 0 -x 0 |, we have (by(4.22))and the set {ϕ(x) ≥ ϕ(x 0 )} is a ball of radius R = h. Let us define the error
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 157 Figure 1: Graph of the function ϕ defined in R.
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 62 54)w I -v n I ∆t = c ∆ w [w] I G + (D + w w I , D - w w I ) if c ∆ w [w] I ≥ 0 G -(D + w w I , D - w w I ) if c ∆ w [w] I < 0 where c ∆ w [w] I = J∈Z N c0 I-J 1 { wJ ≥wI } ∆x 1 ...∆x N -1 J∈Z N c0 J ∆x 1 ...∆x N and D ± w w I = (D ± x1, ww I , ..., D ± xN , w w I ) with D + xi, ww I = wI i,+ -w I ∆x i , D - xi, w w I = w I -wI i,- ∆x i ,

Figure 3 :

 3 Figure 3: Evolution of the 8 at time 0, 0.05, 0.1 and 0.15.

  

  t). x| 4 ≤ u 0 (x, t) -u 0 (x, t) ≤ K|x -x|

	Therefore	
	(4.21) |x -and so 1 4α
	(4.22)	|x -x| ≤ Kα 1/3 .
	Moreover, by (4.20), we get
	(4.23)	0 ≤ u 0,α (x, t) -u 0 (x, t) ≤ u 0 (x, t) -u 0 (x, t) ≤ K|x -x|
	Using (4.22) and (4.23), we then deduce for x ∈ R N and t ∈ (0, T )
	(4.24)	
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A collapsing circle

In this subsection, we provide a simple test with the implicit scheme concerning the evolution of a circle. The goal of this simple simulation is just to check that the circle will disappear with the good time. We take a circle of radius 1. The parameters are ∆x = 0, 05, ∆t = 0, 01 and ε = 0, 3. Moreover, we take the kernel

The initial condition is the distance to the circle. The result is shown in Figure 2. 

Fattening phenomena

The second test is concerning with the evolution of the 8 to point out the fattening phenomena. This test have been made with the explicit scheme. We take two circles of radius 0, 58 such that they are tangent in one point and we look at the evolution of the level set 0 and -0, 06. The parameters are ∆x 1 = ∆x 2 = 0, 01, ∆t = 0, 0001 and ε = 0, 1. Moreover, we take the kernel

The results are provided in Figure 3.