N

N

A Human Body Analysis System

Vincent Girondel, Laurent Bonnaud, Alice Caplier

» To cite this version:

Vincent Girondel, Laurent Bonnaud, Alice Caplier. A Human Body Analysis System. Eurasip Journal
on Applied Signal Processing, 2006, Volume 2006, 18 p. hal-00121790

HAL Id: hal-00121790
https://hal.science/hal-00121790
Submitted on 22 Dec 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00121790
https://hal.archives-ouvertes.fr

A Human Body Analysis System

Vincent Girondel, Laurent Bonnaud and Alice Caplier
Laboratoire des Images et des Sighaux (LIS), INPG, France
http://ww. lis.inpg.fr

Abstract—This paper describes a system for human body analysis (segmates on monocular grey scale or on infrared video sequetices.
tation, tracking, face/hands localisation, posture reitaan) from a single view makes no use of colour cues, instead it uses appearance mod-

that is fast and completely automatic. The system first extraet-level data . . . . .
and uses part of the data for high-level interpretation.alt detect and track els employlng a combination of shape anaIyS|S and track]ng t

several people even if they merge or are completely occludebther person locate people and their body parts (head, hands, feet,)torso
from the camera’s point of view. For the high-level interptiin step, static and track them even under occlusions. Although the system
posture recognition is performed using a belief theory-Batassifier. The be- succeeds in tracking multiple people in an outdoor complex
lief theory is considered here as a new approach for perfaypasture recog- . .
nition and classification using imprecise and/or conflictiaga. Four different €Nvironment, the cardboard model used to predict body pos-
static postures are considered: standing, sitting, sqgathd lying. ture and activity is restricted to upright people, i.e. gco
The aim of this paper is to give a global view and an evaluatibihe per- nised actions are, for example, standing, walking or rugnin

formances of the entire system and to describe in detail ebith processing . .
steps, whereas our previous publications focused on aegiragt of the system. The DARPA VSAM project lead to a system for video-based

The efficiency and the limits of the system have been highdigion a database Surveillance [17]. Using multiple cameras, it classifiesl an
of more than fifty video sequences where a dozen differenvithatals appear. tracks multiple people and vehicles. Using a star skeletoni

This system allows real-time processing and aims at moniteiaderly people tion procedure for people it succeeds in determining thie ga
in video surveillance applications or at the mixing of read airtual worlds in !

ambient intelligence systems. and posture of a moving human being, classifying its motion
Keywords—belief theory, face detection, human body analysis, human pd3etween walking and running. As this system is designed to
ture recognition, real-time processing, skin detection. track vehicles or people, human subjects are not big enaugh i
the frame, so the individual body components can not be reli-

. INTRODUCTION ably detected. Therefore the recognition of human actiwiis

rﬁstricted to gait analysis. In [18], an automated visualesilt
ance system that can classify human activities and detiset s
picious events in a scene is described. This real-time isyste
ggtects people in a corridor, tracks them and uses dynafoie in
mation to recognise their activities. Using a set of disceaid

ity systems [2, 3], advanced and perceptual human-compLRé(?Vious_ly trained Hidde_n Markov_ModeIs (HMMs), it manages
interfaces (HCI) [4], model-based coding [5], contentdzhs to clas'sn‘y people entering or exiting a room, a.”d e\./erll_.mock
video storage and retrieval [6], sports performances ahal)p reak-_ln attempts. As there are many other possible ae‘f"‘."'
and enhancement [7], clinical studies [8], smart rooms aﬁocorndo_r, for instance speaking with a_mother person,lp@k
ambient intelligence systems [9, 10] etc. The “looking atP an object on the grouno_l, or even lacing shoes squatting nea
people” research field has recently received a lot of atte"flﬁ-d oor, the system has a high false alarm rate.
tion [11, 12, 13, 14, 15, 16]. Here, the considered appbeati  For advanced HCls, the next generation will be multi modal,
are video surveillance and smart rooms with advanced HClIsintegrating the analysis and recognition of human body pos-
Video surveillance covers applications where people are Bares and actions as well as gaze direction, speech and facia
ing tracked and monitored for particular actions. The deinafXPressions analysis. The final aim of [4] is to develop human
for smart video surveillance systems comes from the existerfOmputer interfaces that react in a similar way to a communi-
of security-sensitive areas such as banks, departmemsstofation between human beings. Smart rooms and ambient intel-
parking lots etc. Surveillance cameras video streams are gence systems offer the possibility of mixing real andued
ten stored in video archives or recorded on tapes. Most of terlds in mixed reality applications [3]. People enteringaan-
time, these video streams are only used “after the fact” ipairgra’s field of view are placed into a virtual environment. fihe
as an identification tool. The fact that the camera is an actiey can interact with the environment, with its virtual @tfs
sensor and a real-time processing media is therefore smeetiand with other people (using another instance of the system)
unused. The need is the real-time video analysis of seasitfy their behaviour (gestures, postures or actions) or byhano
places in order to alert the police of a burglary in progressf Media (for instance speech).
the suspicious presence of a person wandering for a long timéfinder is a real-time system designed to track a single hu-
in a parking lot. As well as obvious security applicatiomsast man in an indoor environment and understand its physical be-
video surveillance is also used to measure and controlaffectr haviour [2]. It models the human body and its parts using kmal
flow, compile consumer demographics in shopping malls, mdolobs with numerous characteristics (position, colougpgh
itor elderly people in hospitals or at home etc. etc.). The background and the human body are modelled with
W4 “Who? When? Where? What?” is a real-time visuabaussian distributions and the human body pixels are Glkegsi
surveillance system for detecting and tracking people ama-m as belonging to particular body parts using the log-likedith
itoring their activities in an outdoor environment [1]. Ip@&r- measure. Nevertheless, the presence of other people in the

UMAN motion analysis is an important area of resear
in computer vision devoted to detecting, tracking and u
derstanding people’s physical behaviour. This strongréste
is driven by a wide spectrum of applications in various are
such as smart video surveillance [1], interactive virtuealy



scene will affect the system as it is designed for a singlsquer
Pfinder has been used to explore several different HClsappli

tions. For instance, in ALIVE and SURVIVE (respectively [9] Prossssing steps Resulting data
and [10]), a 3D virtual game environment can be controlledl ai _ _
) . segmentation masks of objects,
navigated through by the user gestures and position. Peaple 2D Segmentation —»  centres of gravity, surfaces,
In this paper, we present a system that can automatically AREBs, SPAB:
tect and track several people, their faces and hands ang-rec I
H H _ti H H tracking IDs, ohjects types,
nise in real .tlme four §tat|c human body postures (stan¢mg_ Basic Temporal Tracking v tomporal splt and merge &
ting, squatting and lying). Whereas our previous publicetio information
focused on a single part of the system, here the entire syister 11 _ g 5
. . . . segmentation masks of
described in detail and both an evaluation of the performainC | p.ce and Hands Locatisation. | — faces and hands 5
and a discussion are given. Low-level data are extracted FREBs... -§
ing dynamic video sequence analysis. Then, depending on 4
desired application, part or all of these data can be USEIIUOr | kaman Filtering based Tracking | —» 5 acking IDs, faces speeds,
. . . . . REEs predictions, estimations
man behaviour high-level recognition and interpretatidtor
instance, static posture recognition is performed by dagh ~——" oo 3
using the belief theory. The belief theory is considereak feer N g
a new approach for performing posture recognition. Static Posture Recognition | —% pese 7
OVERVIEW b J

Overview of the paper Fig. 1. Overview of the system.

Sections Il to V present the low-level data extraction pssee
ing steps: 2D segmentation of people (ll), basic tempoaaktr
ing (l), face and hands localisation (IV) and Kalman filtey-
based tracking (V). Section VI illustrates an example ohhig
level human behaviour interpretation, dealing with stais-
ture recognition. Finally section VIl concludes the pajuks; surface 18774
cusses the results of the system and gives some perspective ~

1030

Overview of the system

As processing has to be close to real-time, the system
some constraints in order to design low-complexity aldonis.
Moreover, with respect to the considered applications; tre : =
not so restrictive. The general constraints, necessawlifpro- - @) (b)
cessing steps, are:

1. The environment is filmed byne static camera

2. People are the only botlig andmobile objects

3. Each person enters the scahene

The constraint il comes from the segmentation processin
step, as it is based on a background removal algorithm. T
constraints h2 and i3 follow from the aim of the system to
analyse and interpret human behaviour. They are assumec
facilitate the tracking, the face and hands localisatiod #re
static posture recognition processing steps. 1030 1030

Fig. 1 gives an overview of the system. On the left side a| sitting
presented the processing steps and on the right side tHerrgsu
data. Fig. 2 illustrates the processing steps.

Glossary

« FRBB: Face Rectangular Bounding Box " PERBB
« FPRBB: Face Predicted Rectangular Bounding Box
« FERBB: Face Estimated Rectangular Bounding Box
» ID: IDentification num.ber . Fig. 2. Example of system processing steps. (a) original frlepeople 2D
« PPRBB: Person Pre.dlcted ReCtangmar Boundlr\g Box sedméntation, (c) basic temporal tracking, (d) face and hiaddisation, (e)
« PERBB: Person Estimated Rectangular Bounding BoX Kalman filtering-based tracking and (f) static posture rextig.

« SPAB: Segmentation Principal Axes Box

« SRBB: Segmentation Rectangular Bounding Box
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[l. PEOPLE2D SEGMENTATION e = {e(s,t),s € I} represents one particular realization (at

Like most vision-based systems whose aim is the analysistigfe f) of the label fieIQE. Add?tionally, we defingle} as the
et of possible realizations of field.

human motion, the first step is the extraction of people p)rlesé ! ; L .
in the scene. Considering people moving in an unknown en-Vith the constraint 7l of the system, motion information
vironment, this extraction is a difficult task [19]. It is ala Is closely related to temporal changes of the intensity tionc

significant issue since all the subsequent steps such &igac I(s, t) and to the changes between the current fréfagt) and

skin detection and posture or action recognition are grefstt referem_:e framérpr (S’.t) which represents the static back-
pendent on it ground without any moving people. Therefore, two observa-

tions are defined:

A. Our approach « an observatiorDrp coming from consecutive frame dif-
ferences:
When using a static camera, two main approaches have been
considered. On the one hand, only consecutive frames -differ orp(s,t) =|I(s,t) — I(s,t — 1)

ences are used [20, 21, 22], but one of the major drawbacks

is that no temporal changes occur on the overlapped region of an observatiol®)zz coming from a reference frame:
movin ject ially if th re low textured. Morepv

if tohe 3b?e%tescsstoifﬁﬁg37a¥e noerr}:oateedgtecteedl.J Kg a reosglg, se orpr(s;t) = I(s,t) = Ingr(s,1)]
mented video objects may be incomplete. On the other handy, ., — {0 (s,t),s € I} andogpgpr = {orEr(s,t),s € I}
only a difference with a reference frame is used [23, 24, 2%bpresent one particular realization (at tithef the observation
It gives the whole video object area even if the object is l0fields O, andO g respectively.

textured or stops. But the main problem is the building and To find the most probable configuration of figitgiven fields

updating of the reference frame. In this paper, moving pEoRY ., and O x5 r, we use the MAP criterion and look fer €
segmentation is done using the Markov Random Field (MRF)} such that Pr[] denotes probability):

based motion detection algorithm developed in [26] and im-

proved in [27]. The MRF modelling involves consecutive feam PrlE =¢/Orp = orp, Orgr = Oppr| Max.
differences and a reference frame in a unified way. Moreover = ) i )

the reference frame can be built even if the scene is not empyich is equivalent to find & {e} such that (using the Bayes

Fig. 3 summarises the 2D segmentation processing step. theorem):
PT‘[E = 6} PT‘[OFD = OFD;OREF = OREF/E = e] max.

K £1) X8 Tnzels, 1) C. Energy function
| ¥ - ¥ | The maximisation of this probability is equivalent to thenmi
Orpls, 1) Crgrls, 1) imisation of an energy functioll which is the weighted sum of
several terms [28]:
Initialisation of field Z U(e,0rp,0rEF) = Un(e) + ArpUd(orp,e) +
— ArREFUu(OREF,€) 1)
ICM: minimisation of &7 The model energy/,,(¢) may be seen as a regularization
¥ term that ensures spatio-temporal homogeneity of the nafsks
Mprpholggilcal_ moving people and eliminates isolated points due to noise. |
Opening and closng expression resulting from the equivalence between MRF and

| Gibbs distribution is:

segmentation masks Um((i) _ Z VC(BS, 67«)
¥ ceC
centres of gravity, surfaces,
SRBBs, SPABs c denotes any of the binary cliques defined on the spatio-
temporal neighbourhood of Fig. 4.
Fig. 3. Scheme of the people 2D segmentation processing step. A binary cliquec = (s, r) is any pair of distinct sites in the

neighbourhood, including the current pixeand anyone of the
neighbours-. C' is the set of all cliquesY. (e, e,.) is an ele-
B. Labels and observations mentary potential function associated to each cligee (s, ).

. L . . _ _ It takes the following values:
Motion detection is a binary labelling problem which aims at

attributing to each pixel or “site} = (z,y) of framer at time v ] =B ifes=e,
t one of the two possible labels: e(es er) +08, ifes#en

obj if s belongs to a person where the positive parametgy depends on the nature of the
e(z,y,t) = e(s,t) = bg if s belongs to the background clique: 5, = 20,0, = 5,8, = 50 for spatial, past temporal



N D. Relaxation

/21 The deterministic relaxation algorithm ICM (Iterated Cend
tional Modes [29]) is used to find the minimum value of the
energy function given by Equation (1). For each pixel in the
image, its local energy is computed for each lalodlj Or bg).

The label that yields a minimum value is assigned to thislpixe
As the pixel processing order has an influence on the results,
two scans of the image are performed in an ICM iteration, the

m : center pixel s

O : a neighbour first one from the top left to bottom right corner, the second
one in the opposite direction. Since the greatest decrddke o
=——0: acliquec = (s,1) energy function/ occurs during the first iterations, we decide
- J . . . .
to stop after four ICM iterations. Moreover, one ICM itecati
Fig. 4. Spatio-temporal neighbourhood and binary cliques. out of two is replaced by morphological closing and opening,

see Fig. 3. It results in an increase of the processing rdte wi
out losing quality because the ICM process works directly on

and future temporal cliques respectively. Such values haga the observations (temporal frame differences) computenh fr

experimentally determined once and for all. the frame sequence and does not work on binarized obsarvatio
The link between labels and observations (generally noted fields. The ICM algorithm is iterative_ a_md does not insure the
is defined by the following equation: convergence towards the absolute minimum of the energy func
tion, therefore an initialisation of the label fieldis required: it
o(s,t) = W(e(s, t)) + n(s) results from d ogi cal or between both binarized observa-
tion fieldsOrp andOggr. This initialisation helps converg-
0 if (s, t) = bg ing towards the absolute minimum and requires two binariza-
where ¥(e(s,t)) = { >0 if e(S: 1) = obj tion thresholds which depend on the acquisition system lamd t

environment type (indoor or outdoor).

andn(s) is a Gaussian white noise with zero mean and vari- Once this segmentation process is performed, the label field
anceo?. o? is roughly estimated as the variance of each obields a segmentation mask for each video object presehein t
servation field, which is computed online for each frame ef tiscene (single person or group of people). The segmentation
sequence so that it is not an arbitrary parameter. masks are obtained through a connex component labelling of

U(e(s,t)) models each observation so thatepresents the the segmented pixels whose labeblsj. Fig. 5 shows an ex-
adequation noise: if the pixelbelongs to the static backgroundample of obtained segmentation in our system. The resuéts ar
no temporal change occurs neither in the intensity funation good, the person is not split and the boundaries are presien,
in the difference with the reference frame so each observédi if there are some shadows around the feet.
quasi null; if the pixels belongs to a moving person, a change
occurs in both observations and each observation is sugpose
be near a positive valuer p anda g standing for the average
value taken by each observation.

Adequation energie8,, (orp/e) andU,(orgpr/e) are com-
puted according to the following relations:

1
Ua(orp,€) = 5 > lorp(s,t) = U(e(s, 1))
9FD sel
(b)
1 Fig. 5. Segmentation example. (a) original frame, (b) segmdrdetk.
Ua(oREFve) = FZ[OREF(&Q B \I/(e(s,t))]2 g e} ple. (a) orig (b) seg
REF ¢

For each video object, single person or group of people, once
since the correct functioning of the algorithm results fraival- the segmentation mask is obtained, more low-level data are

ance between all energy terms=p = 1 is set once and for all, available and computed:
this value does not depend on the processed sequepge.is e« surface: number of pixels of an object
fixed according to the following rule: » centre of gravity of the object .
o« Agpr = 0if Irpp(s,t) does not exist: when no reference ¢ SRBB: Segmentation Rectangular Bounding Box
frame is available at pixel, oppr(s,t) does notinfluence  ® SPAB: Segmentathn Ermmpal Axes Box., whose directions
the relaxation process are given by the principal axes of the object shape

e Arpr = 25if Irpr(s,t) exists. This high value illustrates  After this first step of low-level information extractiorhe
the confidence in the reference frame when it exists.  next step after segmentation is basic temporal tracking.

Two weighting coefficients\rp and Aggr are introduced
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[1l. BASIC TEMPORAL TRACKING P detected at timé: if P's most probable predecessor Hass
st probable successor, a temporal link is establishedclest
oth SRBBs (same ID). If not, we look in the sorted lists of-pre

gecessors and successors until a correspondence is foliat, w

2]. Tracking is a crucial step in human motion analysis, for D i
temporally links features chosen to analyse and interpretzn is always possible i”’s box has at least one predecessor. If this
igrnot the casel’ is a new SP (new ID).

behaviour. Tracking can be performed for a single human ; : X
s long as an object, i.e. a single person or a group of people,

for a group, seen as an object formed of several humans or asé i ) '
whole. Is successfully tracked, without any temporal split or neerts

ID remains unchanged.

In many vision-based systems, it is necessary to detect
track moving people passing in front of a camera in real-fime

A. Our approach

The tracking method presented in this section is designed
be fast and simple. It is used mainly to help the face loctidisa P
step presented in the next section. Therefore it only nemds SP,
establish a temporal link between people detected at #iamel
people detected at timte- 1. This tracking stage is based on the
computation of the overlap of the segmentation rectangu-
lar bounding boxes The segmentation rectangular boundini
boxes are noted SRBBs. This method does not handle occ
sions between people but allows the detection of tempotil sp () (b)
and merge. In the case of a group of people, as there is only one
video object composed of several people, this group is ¢ck
as a whole in the same way as if the object was composed of a
single person.

After the segmentation step, each SRBB should containreithe
a single person or several people, in the case of a merge. Only
the general constraints of the system are assumed, inydartic
constraint A2 (people are the only botiéig andmobile objecty |
and constraint 18 (each person enters the scahane). (©)

As the acquisition rate of the camera is 30 fps we can suppose _ . .
that the people in the scene have a small motion from one fraf osérlg"?rr;arf]’ecomp”tat'on' (a) frame at time- 1, (b) frame at timet and
to the next, i.e. there is always a non-null overlap betwéen t P '

SRBB of a person at timeand the SRBB of this person at time

t — 1. Therefore a basic temporal tracking is possible by con-Fig. 6 illustrates the backward-forward tracking prineipOn
sidering only the overlaps between detected boxes attanel  (2), three objects are segmented, all SP, and on (b), only two
those detected at time— 1. We do not use motion compensaobjects are segmented. On the overlap frame (c), the badkwar
tion of the SRBBs because it would require motion estimatignd forward tracking lead to a correct tracking for the obget

5P

which is time-consuming. the left side (there is only one successor and predecedsi).
In order to detect temporal split and merge and to ease thecked as a SP. For the object on the right side, the backward
explanations, two types of objects are considered: tracking yields two SP predecessors, and the forward tngcki
« SP: Single Person one successor. A merge is detected and it is a new group that
o GP: Group of People will be tracked as a GP until it splits.

This approach is similar to the one used in [30] where the This basic temporal tracking is very fast and allows:
types: regions, people and group are used. When a new objest Segmentation problems correction If one SP has several
is detected, with regard to constrairt3nof the system, this successors, in case of a poor segmentation, we can merge
object is assumed to be a SP human being. Itis given a new ID them back into an SP and correct the segmentation.
(IDentification number). GP are detected when at least twe SP« GP split detectiornt If a GP splits in several SPs, nothing

merge. is done, but a split is detected.
The basic temporal tracking between SRBBs detected on twa SP merge detection If several SPs merge, the resulting
consecutive frames (time— 1 andt) results from the combina- object has several SP predecessors so it is recognised as a

tion of a forward tracking phase and a backward trackingg@has  GP and a merge is detected.

For the forward tracking phase, we look for the successof(s) Fig. 7 shows frames of a video sequence where two people
each object detected at time- 1 by computing the overlap sur-are crossing, when they are merging into a group and when this
face between its SRBB and all the SRBBs detected at timegroup is splitting. Segmentation results, SRBBs and ttajess

In the case of multiple successors, they are sorted by decrad gravity centres are drawn on the original frames. Thetraj

ing overlap surface (the most probable successor is sugposetories are drawn as long as there is no temporal split or merge
be the one with the greatest overlap surface). For the badkwie. as long as the tracked object type does not change.nefra
tracking phase, the procedure is similar: we look for thelpre 124, tracking leads to SP; on the left side and SP» on the
cessor(s) of each object detected at tim€onsidering a personright side. In frame 125, a G&;, composed of?, and P, is



detected. For the forward tracking phase between tird¢snd IV. FACE AND HANDS LOCALISATION
125, P; and P, haveG; as only successor. For the backward
tracking phase(s; hasP; as first predecessor aiity as second
predecessor. But, in this case,/asand P, are SPs, a merge is
detected. Therefor@' is a new GP, which will be tracked until
it splits again. It is the opposite on fram&39 and 140. The
GP G, splits into two new SP#5 and P, that are successfully
tracked until the end.

Numerous papers on human behaviour analysis focus on face
tracking and facial features analysis [31, 32, 33]. Indedttn
looking at people and interacting with them, our gaze fosuse
on faces, as the face is our main expressive communication
medium, followed by the hands and our global posture. Hand
gesture analysis and recognition is also a large reseaidh fie
The localisation of the face and of the hands, with right/lef
distinction, is also an interesting issue with respect ®&dbn-
sidered applications. Several methods are available tectet
faces [33, 34, 35]: using colour information [36, 37], fddea-

tures [38, 39], and also: templates, optic flow, contourysial

and a combination of these methods. It has been shown in those
studies that skin colour is a strong cue for face detectiah an
tracking and that it clusters in some well chosen colour epac

A. Our approach

With our constraints, for computing cost reasons, the same
method has to be used to detect the face and the hands in or-
der to achieve real-time processing. As features would be to
complex to define for hands, a method based on colour is better
suited to our application. When the background has a colour
similar to the skin, this kind of method is perhaps less robus
than a method based on body modelling. However, results have
shown that the proposed method works on a wide range of back-
grounds, providing efficient skin detection. In this papee
present a robust and adaptive skin detection method woiking
the YCbCrcolour space and based on an adaptive thresholding
in the CbCr plane. Several colour spaces have been tested and
the YCbCrcolour space is one of those that yielded the best re-
sults [40, 41]. A method of selecting the face and hands among
skin patches is also described. For this processing stépthan
general constraints {i, 2 and 3) are assumed. When the static
Fig. 7. Basic temporal tracking example. Frarf8s124, 125, 139, 140 and posture recognition processing step was developed, wechad t
162 of two people crossing. define a reference posture (standing, both arms stretctiéd ho

p 9,
zontally), see section I\ Afterwards, we decided to use this

In the first tracking stage, a person may not be identified ijerence posture, if it occurs and if necessary, to réaiige
a single entity from beginning to end if there are more tham of1€ face and hands locations. o
people present in the scene. This will be done by the second - 8 summarises the face/hands localisation step.
tracking stage. The results of this processing step areXee-I
tification numbers (IDs), the object types (SP or GP), and thie
temporal split and merge information. Moreover, the trijec  This section describes the detection of skin pixels, based o
ries for the successfully tracked objects are available. colour information. For each SRBB (Segmentation Rectaargul

In this paper, the presented results have been obtainead aeunding Box) provided by the segmentation step, we look for
carrying out experiments on a great majority of sequenc#s wskin pixels. Only the segmented pixels inside the SRBBs are
one or two people, and on a few sequences with three. We cprmacessed. Thanks to this, few background pixels (evereif th
sider that it is enough for the aimed applications (HClsprd background is skin colour-like) are processed.
video surveillance and mixed reality applications). Th@&-co A skin database is built, composed of the Von Luschan skin
straint 172 of the system specifies that people are the only basamples frame (see Fig. 9(a)) and of twenty skin frames (see
big and mobile objects in the scene. For this reason, up é@thexamples Fig. 9(b)) coming from various skin colours harnds o
different people can be efficiently tracked with this basimt arms. The skin frames are acquired with the camera and frame
poral tracking method. If there are more than three peoplegrabber we use in order to take into account the white balance
is difficult to determine, for instance, whether a group afrfo and the noise of the acquisition system.
people have split into two groups of two people or into a group Fig. 10 is a 2D plot of all pixels from the skin database on the
of three people and a single person. CDbCr plane with an average value ¥f It exhibits two lobes:

After this basic temporal tracking processing step, the neke left one corresponds to the Von Luschan skin samplesfram
step is face and hands localisation. and the right one to the twenty skin samples acquired with our

Skin detection
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segmentation masks, SRBBs
v

Skin detection in CACr plane
v

Connex components labelling Cb

¥

Computation of lists:
Lb, L1, Lr, Lu, Lef, Lel, Ler

¥ v
Selection of face(s) / hands

¥
| | Adaptation of C5, Cr thresholds

v

segmentation masks
face(s), right and lefi hands

v
FRBBs, RHREBs, LHRBBs

Fig. 10. 2D plot of all skin samples pixels.

Fig. 8. Scheme of the face and hands localisation procestpg s

r— \\“-.‘,,a | Fig. 11. Example of skin detection. (a) original frame, (b)sttétection.
_ D
b 1SV
e N | |
b _ pletely included in the rectangle in order to avoid too muadbé

- — detection. In [42] considered thresholds are slightlyedéht
,,...n,.: ‘."""'[ <) (Cb e [77,127] andCr € [133;173]) which justifies the tuning
R al of parameters to the first source of variability, i.e. theldsq

(b) tion system and the lighting conditions. The second soufce o

variability is the inter-individual skin colour. Each srhedct-
angle of Fig. 10 only contains skin samples from a particular
person in a given video sequence. Therefore it is also useful
to automatically adapt the thresholds to each person dtiig
camera and frame grabber. detection process in order to improve the skin segmentation

Fig. 11 shows an example of skin detection where opti- Several papers detail the use of colour models, for instance
mal manually tuned thresholds were used. Results are goggussian pdf in théiSI or rgb colour space [36] and perform
face and hands (arms here) are correctly detected withaecupn adaptation of model parameters. An evaluation of Gaussia
boundaries. ity of Cb andCr distributions was performed on the pixels of

TheCbCrplane is partitioned into two complementary area8?e skin database. As a result, approximately half of the dis
skin area and non-skin area. A rectangular model for the skiputions can not be reliably represented by a Gaussiari-dis
area shape yields a good detection quality with a low comgutibution [41]. Therefore thresholds are directly adaptedhotit
cost. It limits the required computations to a double thoéh considering any model.
ing (low and high) for eaclCb and Cr component. As video Skin detection thresholds are initialised withly,Cr) values
sequences are acquired in ti€bCr4:2:0 format,Cb andCr defined by the big rectangle of Fig. 10. In order to adapt the
components are sub-sampled by a factor of 2. The skin/non skkin detection to inter-individual variability, transfoations of
decision for at x 4 pixels block of the segmented frame is takethe initial rectangle are considered (they are appliedrsepla
after the computation of the average values @& a 2 pixels to both dimension€bandCr). These transformations are per-
block in eachCb or Cr sub-frame. Those mean values are thédarmed with respect to the mean values of the face skin pixels
compared with the four thresholds. Computation is theeefodistribution of the considered person. Only the skin pixals
even faster. the face are used, as the face moves more slowly and is easier

A rectangle containing most of our skin samples is defindd detect than hands. This prevents the adaptation frongbein
by Cb € [86;140] and Cr € [139;175] (big rectangle of biased by detected noise or false hands detection. Thres tra
Fig. 10). This rectangle is centred on the mean values of diggmations are considered for the threshold adaptation:
lobe corresponding to our skin samples frames to adjustdhe d « Translation: The rectangle is gradually translated towards
tection to our acquisition system. The right lobe is not com- the mean values of skin pixels belonging to the selected

Fig. 9. Skin database. (a) Von Luschan frame, (b) 6 skin samples



face skin patch. The translation is of only one colour ungkin patch position exists, the respective list of closestjgo-
per frame in order to avoid transitions being too sharp. Timents is given a triple weight. As the hand does not change sid
translated rectangle is also constrained to remain inkiele from one frame to another, if the skin patch previous positio
initial rectangle. is on the same side as the respective side list (Lr for the righ

« Reduction: The rectangle is gradually reduced (also of ongand), this list is given a double weight. The top elements of
colour unit per frame). Either the low threshold is increeach list are considered as likely candidates. When the sme e
mented or the high threshold is decremented so that #mment is not at the top of all lists, the next elements in ti¢d)
reduced rectangle is closer to the observed mean valuesua considered. The skin patch with timaximum weighted
skin pixels belonging to the face skin patch. Reduction lists rank sumis finally selected.
not performed if the adapted rectangle reaches a minimuntor the face, in many cases there is a connex component that
size (15 x 15 colour units). is at the top of those three lists. In the other cases, LafKing

« Re-initialisation: The adapted rectangle is reinitialised tinformation) is given the biggest weight because face maso
the initial values if the adapted thresholds lead to no skéfow and steady. The maximum rank considered in other lists
patch detection. is limited to three in order to avoid unlikely situations goabr

Those transformations are applied once to each detectiongalection.

terval for each frame of the sequence. As a result skin detect After selection, the face, right and left hands rectangular
should improve over time. In most cases, the adaptationsne@dunding boxes are also computed (noted respectively FRBB,
~ 30 frames ¢ 1 s of acquisition time) to reach a stable stateRHRBB and LHRBB). For the face skin patch, considering its
slow motion, we add the constraint of a non-null rectangular
C. Face and hands selection bounding box overlap with its successor. This helps to landl
This section proposes a method in order to select relevamt skituations where a hand passes in front of the face. Moreibver
patches (face and hands). Pixels detected as skin aftekithe §1€ person is in the reference posture (see section VI)pthgs
detection step are first labelled into connex components tfgre is used to correctly re-initialise the locations offiéiee and
can be either real skin patches or noise patches. All detec@ the hands in the case of a poor selection or a trackingréilu
connex Components inside a given SRBB are associated to |tF|g 12 illustrates some results of face/hands localisatio
Then, among these components, for each SRBB, skin patcﬁgg] detection is performed inside the SRBB. Face and hands
(if present) have to be extracted from noise and selecteakas fare correctly selected and tracked as shown by the smadirect
or hands. To reach this goal several criteria are used. @etecdular bounding boxes. Moreover, even if the person crosises h
connex components inside a given SRBB are sorted in decre§ns (frame$65 and410), the selection is still correct.
ing order in lists according to each criterion. The left ghti
side of the lists are from the user’s point of view.

Size and position criteria are:

« List of biggest components (Lb): face is generally th
biggest skin patch followed by hands and other small
patches are generally detection noise

o List of leftmost components (LI): useful for left hand

« List of rightmost components (Lr): useful for right hand

o List of uppermost components (Lu): useful for face

Temporal tracking criteria are:

« List of closest components to last face position (Lcf)

« List of closest components to last left hand position (Lcl)

« List of closest components to last right hand position (Lc

Selection is guided by heuristics related to human morphq

ogy. For example, the heuristics used for the face seleatien
the face is supposed to be the biggest, the uppermost skin pa
and the closest to the previous face position. The face isrite
skin patch to be searched for because it has a slower andestead o
. Fjg. 12. Face and hands localisation. Frames nurhb@r365, 390 and410.

motion than both hands and therefore can be found more relf

ably than hands. Then the skin patch selected as the facé is no

considered any longer. After the face selection, if one heasl For each object in the scene, the low-level data available at
not found in the previous frame, we look for the other first. Ithe end of this processing step are the three selected gkingza
other cases hands are searched withoutsaprjori order. segmentation masks (face, right hand and left hand) and thei

Selection of the face involves (Lb, Lu, Lcf), selection oéthrectangular bounding boxes (noted respectively FRBB, RBRB

left hand involves (Lb, LI, Lcl) and selection of the rightith and LHRBB). In the next section, an advanced tracking dgalin
involves (Lb, Lr, Lcr). The lists are weighted depending be t with occlusions problem is presented thanks to the use ef fac
skin patch to find and if a previous skin patch position existelated data. The data about hands are not used in the rig of t
The list of biggest components is given a unit weight. Alleth paper but have been used in other applications, likathive
lists are weighted relatively to this unit weight. If a prews project [3].
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V. KALMAN FILTERING -BASED TRACKING

. . . . segmentation masks,
The basic temporal tracking presented in section Il doé¢s no SRBBs, FRBBs

handle temporal split and merge of people or groups of people ¥
When two tracked people merge into a group, the basic tem-
poral tracking detects the merge but tracks the resultiogmr

Estimation of faces motion

as a whole until it splits. Then people in the group are trdcke ¥

again but without any temporal link with the previous tramki Selection of KF mode:

of individuals. In Fig. 7 two peoplé’; and P, merge into a SPCompE, SERaricE, GEFarkh, GRerels
groupG;. When this group splits again in two people, they are ¥

tracked asP; and P,, not asP, and P,. Temporal merge and Attribution of measurements
occlusion make the task of tracking and distinguishing peop ¥

within a group more difficult [30, 43, 44]. This section prees
an overall tracking method which uses the combination of par
tial Kalman filtering and face pursuit to track multiple péom ¥

real-time even in case of complete occlusions [45]. final tracking IDs, faces speeds
PPREBs, PERBBs, FPEBBs, FERBBs

Kalman filtering

A. Our approach Fig. 13. Scheme of the Kalman filtering-based tracking prangssep.

We present a method that allows the tracking of multiple peo-
ple in real-time even when occluded or wearing similar asth ) o
Apart from the general constraints of the systerfil(n2 and B. Face motion estimation
3), no other particular hypothesis is assumed here. We do nofor each face that is detected, selected and located at time
segment the people during occlusion but we obtain bounding 1 by the method presented in section IV, we estimate a face
boxes estimating their positions. This method is based on pgotion fromt — 1 to ¢ by block-matching in order to obtain the
tial Kalman filtering and face pursuit. The Kalman filter is 2p apparent face speed componentsaindv,. For each face,
well-known optimal and recursive signal processing athami the pixels inside the FRBB (Face Rectangular Bounding Box)
for parameters estimation [46]. With respect to a given rhodgre used as the estimation support.
of parameters evolution, it computes the predictions ar$ ad
the information coming from the measurements in an optim@l Notations

way to produceg posterioriestimation of the parameters. We Tpe segmentation step may provide SRBBs (Segmentation
use a Kalman filter for each new detected person. The glokglctangular Bounding Boxes) that can contain one or several
motion of a person is supposed to be the same as the motiop&hple in it (in the case of a merge) whereas the Kalman state
this person’s face. Associated with a constant speed éwnlutyector (and therefore the Kalman person rectangular bogndi
model, this leads to a state vectoof ten components for eachygy) s defined for a single person. Therefore three differen

of his/her face (four coordinates each) and two components gach person:

the 2D apparent face speed: « one Segmentation Rectangular Bounding Box (SRBB) pro-
2 = (Tpts Tprs Ypts Ypbs T T frs YFts Yfbs Vs Uy).- vided by the segmentation step,
In QT expressionp andf respective|y stand for the person ° one Person Predicted Rectangular Bounding Box (PPRBB)
and face rectangular bounding bdx,r, ¢t and b respectively predicted by Kalman filtering and

stand for left, right, top and bottom coordinate of a boxand ~ « One Persora posterioriEstimated Rectangular Bounding
v, are the two components for the 2D apparent face speed. The Box (PERBB) estimated by Kalman filtering.

evolution model leads to the following Kalman filter evotuti  In @ similar way, three different face rectangular bounding
matrix: boxes exist and are associated to each person:

« one Face Rectangular Bounding Box (FRBB) provided by
the face localisation step,

rT1 0 0 0 00 0 0 1 07 ) .
01000000 10 « one Face Predicted Rectangular Bounding Box (FPRBB)
001 00 0 O0O0O0 1 predicted by Kalman filtering and
8 8 8 é (1) 8 8 8 (1) (1) « one Facea posteriori Estimated Rectangular Bounding
Ar=A=| 10 0000100 1 0 Box (FERBB) estimated by Kalman filtering.
000 00 0 1 0 0 1 .
00 00000 10 1 D. Kalman filtering modes
0 00 00 000 10 Measurements that are injected into the Kalman filter come
Lo o000 O0OO0OGO0TO 0 1] |

from the SRBBSs, the FRBBs and the face motion estimations.
All the measurements are not necessarily available. For in-

Fig. 13 summarises the Kalman filtering-based tracking prstance, if two people have just merged into a group, some mea-
cessing step. surements are not available, on the group SRBB, for each per-
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son’s PPRBB estimation (for example, one side measuremBn8 Group of People Partial Kalman Filtering mode

will not be available). . . .
. . . This mode is selected when there are temporal merge(s) (i.e.
Depending on the objects types and available measurements . .
o ) some measurements are not available for the PPRBB estima-
there are four Kalman filtering modes:

1. SPCompKESingle Person Complete Kalman Filtering tion) and when the PE_RBB overlaps a unique faF:e.

2. SPParKE Single Person Partial Kalman Filtering As the SRBB contains agroup of people, avallable_me_asure-

3. GPParKF. Group of People Partial Kalman Filtering ments can be used for different PPRBI.BS' The at_tr|but|on of

4. GPPreKE Group of People Predictive Kalman Filtering f’:\vallable measurements_ to one person in a group is performed

First, we must determine if we are in a single person mode’ btwo steps by comparing the group SRBB an_d e_ach person
a group of people mode, i.e. if the person SRBB contains ot RBB centres and sides coordinates. The principle of mea-

one person or not. This is given by the basic temporal tr@kiﬁZrement.s attribution is illustrated on fra@@ of Fig. 14.

step, as we can detect a merge between two SP objects, we know the first step, we compare the coordinates of _the PPRBBs

if there is one person or more in each SRBB. centres to the coordinates of the SRBB centrc_a. With respect t
If the SRBB contains only one person, all measurements ué%ﬁ SRBI.B quarter where each PPRBB cenire is located, the two

for the PPRBB estimation are available. Then either the fat@SeSt s_,|des coordlnate_s are used as measurements for-the ¢

was correctly located at times— 1 and at timet or not. If so, responding PPRBB estimation. For example, on fragg:of

we are inSPCompKFmode as all state vector measurements dréd- 14 if two people have just merged (hands touching), we
available. Otherwise we are BPParKFmode as some face-'2V€ only four measurements available (instead of eiglaf) th
related measurements are not available can be used as observations for the two PPRBBs. With the first

If the SRBB contains several people, some measuremetig’” the persoi, wil havehthe left anq" t;]ottomh&d_eshcoorgl—
are not available for the PPRBBs estimation. Depending BAIES @S measurements, the perSprwill have the right an

whether there is only one face overlapped by the PERBB or n Ettom sides coordinates. Thanks to this step, we are sqte t.h
we are respectively iPParkF mode or inGPPreKFmode at least two measurements are used for each PPRBB estimation

In the second step, we compare each PPRBB side coordinate
D.1 Single Person Complete Kalman Filtering mode to the corresponding SRBB side. If the distance between both
. : . is&maller than a threshold, depending on each PPRBB surface
This mode is selected when there is no temporal merge and, ... :
. ) and if it has not already been taken into account, the cooresp
all face-related measurements are available: ) : ’ )
: ng SRBB side coordinate is added to the measurements used
« The SRBB contains only one person (all measurements to L . X .
T ) or the PPRBB estimation. With this step, in our example, the
the PPRBB estimation are available) . . .
\ . . personP; receives the top side coordinate of the SRBB as an
« The person’s face is located at tim@ll measurements for ) )
N . added measurement. This step generally allows adding one or
the FPRBB estimation are available) . S
\ . two measurements in order to perform a better estimation.
« The person’s face has been located at timé (face speed In th le of Fia. 14. the left. t d bott i
estimation measurements are available) nthe (:xarfn?he %Régé 'I'I be € ,dop and bottom S|tefme?r;
In this mode, the Kalman filtering is carried out for all stat urements ot the St Wil be used as measurements for the
vector components. PRBB on the left side (persdn ). The right and bottom side
measurements will be used as measurements for the PPRBB on
D.2 Single Person Partial Kalman Filtering mode the right side (persof?,). As for the bottom side measurement
the example, some measurements can be used for different
Bple. For each person, in tH&PParKF mode, we gener-
ally have two or three available measurements (up and/ondow

. . in
This mode is selected when there are no temporal merge bg
some or all face-related measurements are not availabsa, If
face localisation step has failed at time- 1 and/or at timet, side(s) and one side measurements).

leading to unavailable measurements. .
9 If some face-related measurements are unavailable, Kalman

When there are unavailable measurements, two choices are.. o )
I;?}redlcted values replace the missing measurements. Tée filt

possible. The first is to perform a Kalman filtering only Oig&is performed as long as the PERBB contains a unique face.
t

the available measurements and the other is to replace theI e PERBB overlaps more than one face, even partially, the

:zg::gg:g mizzﬂim?f; ispzrgoi;gggﬁ’ iasslijae!T:rncfgzgli?g ?221/ Kalman filter works inGPPreKF mode since the face localisa-
P ion step could provide wrong positions.

tation, as all matrix sizes have to be predicted in order ke ta
into account al! ppssib_le cases. Replaping ynavailablesmea D.4 Group of People Predictive mode
ments by predictions is a simple and intuitive way of perform
ing a Kalman filtering when observations (available measure This mode is selected when temporal merge(s) occur (i.e.
ments) are missing. Hence, in order to perform a Kalman fieme measurements are not available for the PPRBB estima-
tering for all state vector components in one computatidrenv tion) and when the PERBB overlaps more than one face.
there are unavailable measurements, they are replacedeby prNo measurements are taken into account. All the state vec-
dictions. Doing so does not seem to greatly influence thdtsesuor components are predicted according to the last facedspee
because the variances of estimation errors are only of aifew pestimation, i.e. only the Kalman filter predictions equasi@are
els, with respect to available measurements. used. The Kalman filter works @PPreKFmode until a unique

In this mode, the filtering is carried out for all componentgace is again overlapped by one of the PERBBS, leading back to
including those that have been replaced by predicted values the GPParKF mode.
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E. Results VI. HIGH-LEVEL HUMAN BEHAVIOUR INTERPRETATION:

Fig. 14 illustrates a successful multiple people trackieg p STATIC POSTURE RECOGNITION

formed on a video sequence in which two people are crossAfter having successfully tracked people, the problem ef un
ing and turning one around the other. In this sequence, ferstanding human behaviour follows naturally. It invalve
2D apparent directions and speeds are not constant andaation/pose recognition and description. The three main ap
some moments, a person is completely occluded, see for peaches used for human behaviour analysis used are Dynamic
stance frame12. Segmented and tracked people are visibleime Warping (DTW) [47], Hidden Markov Models (HMMs)
on the original frames of the sequence. SP or GP SRBBs 8] and Neural Networks (NNs) [49]. Most of the research
drawn in white lines, PERBBs and FERBBs in dashed linegsork done on the human body as a whole is mainly gait anal-
Frame=200 and228 show aSPCompKFmode tracking with all ysis and recognition, or recognition of simple interacidre-
measurements available for the Kalman filters before thgenetween people, or between people and objects. In this section
(frame203) and after the split (fram228). Frame12 and219 we present a method to recognise a set of four static human
illustrate the tracking in &PPreKFmode when one face is oc-body postures (standing, sitting, squatting and lyinghkisato
cluded. Frame803 and221 (just before the split) illustrate the data fusion using the belief theory [50, 51].

tracking inGPParKF mode. The belief theory has been used for facial expression clas-
sification ([52, 53]) but not for posture recognition in huma
motion analysis. The TBM (Transferable Belief Model) was
introduced by Smets in [54, 55]. It follows the works of Demp-
ster [56] and Shafer [57]. The main advantage of the belf th
ory is the possibility to model data imprecision and conflact
conflict occurs when measurements used for recognition yiel
contradictory results). It is also not computationally emxpive,
compared to HMMs and, as doubt (the possibility of recognis-
ing a union of postures instead of a unique one) is taken into
account, leads to a low false alarm rate.

A. Our approach

Static recognition is based on information obtained by dy-
namic sequence analysis. For this processing step, we assum
the general constraints of the systerfl(y2 and 3) and also two
more hypotheses:

« Each person has to be at least onceiiefarence posture
standing with both arms stretched horizontally, also known
as the “Da Vinci Vitruvian Man posture”, see Fig. 15b.

« Each person is to be filmezhtirely (not occluded.

Fig. 14. Example of multiple people tracking with complete asan.

In single person Kalman filtering modeSPCompKFmode
andSPParKFmode, the person final tracking ID is the same 4
the basic temporal tracking ID, because there are no ternpora (@) (b)
split or merge. In group of people mod&sPParKF and GP- Fio. 15. E les of dist . it \ b) ref "
PreKF, the final tracking IDs are not updated with the basic tenhJ- 15 Examples of distancds;. (a) siting posture, (b) reference posture.
poral tracking IDs, as temporal split and merge yield new. IDs
Therefore itis possible to track multiple people even urdan- Three distances are computed, see Fig. D5:the vertical
plete occlusions. The extracted information for this pesteg distance from the FRBB centre to the SRBB bottaby, the
step consists of the final tracking IDs, the face speed estingistance from the FRBB centre to the SPAB centre (gravity cen
tion, the PPRBBSs, the PERBBS, the FPRBBs and the FERBB®) andD3; the SPAB semi great axe length. Each distabge
i.e. the predicted and posterioriestimated rectangular boxess normalised with respect to the corresponding distdaffé(
of the person and of his/her face. obtained when the person is observed in the reference postur

This section presented the last processing step for loal-lein order to take into account the inter-individual variatoof
data extraction. Part of the data will now be used for highdneight and the distance of the person with respect to the cam-
level processing. era. The measurements are nated= D, /D! (i =1...3).
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B. Belief theory my
h

The belief theory approach needs the definition of a werld ‘ Hs\H,y HyJH; HyH;
composed ofV disjunctive hypothese#;. Here the hypothe-
ses are the following four static postures: standilg)( sitting

(H), squatting {3), and lying (). If the hypotheses are ex- Hs Hs . i
haustive Q2 is a closed world, i.e. the truth is necessarilyin 0 i ’ : _—
In this paper, we consider an open world, as all possible hur... ° a b ¢ d € r1
body postures can not be classified in the considered pgsture (@)
We add a hypothesis for the unknown posture cld&g),(but mﬂimlﬁ
this hypothesis is not included in. Hy is a reject class: if we 1 Q
cannot recognise a posture between our considered pgstures
will recognise an unknown posture. Therefore we Hawg H7,
H,, Hs, H,} and Hy. In this theory, we consider ti&" sub- H, HyoH H,
setsA of Q. In order to express the confidence degree in eac
subsetd without favouring one of its composing elements, an ¢ ¢ h P 1 rirnd
elementary belief massa(A) is associated to it.

Them function, or belief mass distribution, is defined by: (b)

a Fig. 16. Belief models (a) first model used far-, , (b) second model used for
m: 2 — [0;1] mr, andm.,. H; defines recognised posture(s).
A m(4) with ) m(4) =1
Ag2@

B.1 Modelling is defined, for eachl subset o2, as follows:

A model has to be defined for each measuremgintorder to M. = M. ® m )
associate an elementary belief mass to each suhsé¢pend- " " "
ing on the value of;. In a similar way to what was proposed mr,; (A) = > my,(B).m., (C)  (3)
in [52], two different model types are used (see Fig. 16). The B€29,0€22,BNC=A

first model type is used for; and the second for, andrs.
The first model type is based on the idea that the lower theThe orthogonal sum is associative and commutative, so the
face of a person is located, the closer the person is to thg lybrder of the belief mass distributions fusion does not matte

posture. Conversely, the higher the face is located, th&eclo |n case whenn,.,,(0) # 0, § being the empty set, there is
the person is to the standing posture. Depending on the B&lug conflict, which means that the chosen models give contradic-
r1, either a single posture is recognised or the combinati@n ofory results. This usually happens when some ofithare in
single posture and a union of two postures. In this last d#se {he transition zones of the models. With these models, the su
respective zones illustrate the imprecision and the uaiteyt set with the maximum number of elements that can be obtained

of the models. For example (see Fig. 16a): at the end of the data fusion process is a union of two postures
1 value H,; recognised non-null belief masses Therefore, subsets with three element§)atself can not be ob-
f<ri Hy my, (H1) = 1 tained after fusion. Hence, we are sure that, in the wors,cas

Sl <ri<f Hy,HUHz mp(Hi)+mp (H UHz) =1 there will be a possible confusion between two postures ahd n
e<ri <<l HIUHz2 Hy my (HiUHs)+my (H2) =1 more. This is compliant with respect to the considered pestu
etc. etc. etc. it is difficult to imagine, for example, that a person can Inegi
The second model type is based on the idea that squattinggizeously either standing, sitting or lying.
a compact human shape, whereas sitting is a more elongated
shape. Standing and lying are even more elongated shapes.gR Decision
thresholdsy — j are different forry andr;. Depending on the
value of each measurement or r3, the system can set non- The decision is the final step of the process. Once all the be-
null belief masses to the single postuig, to the union of all lief mass distributions have been combined into a single one
postures Q corresponds tdf; U H, U Hs U H, here), to the herem,.,,, there is a choice to make between the different hy-
subset standing, sitting or lyingf U H, U H,) or to two of the pothesesi; and their possible combinations. A criterion de-

previous subsets. fined on the final belief mass distribution is generally ojied

to choose the classification result For example, if the cri-

B.2 Data fusion terion is the belief massl = arg MAX 7, (A). Note that
€2

The aim is to obtain a belief mass distribution, ,, that takes A may not be a singleton but a union of several hypotheses or
into account all available information (the belief massriis- even the empty set. In this paper, the hypothékjss chosen
tion of eachr;). Itis computed by using the conjunctive combiif the classification result is the empty diti.e. m,.,,(0) is
nation rule calledrthogonal sumproposed by Dempster [56]. maximum. There are other criteria used to make a decisien: th
The orthogonal sunm,.,; of two distributionsm,., andm,.,  belief, the plausibility etc. [54].
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C. Posture recognition results TABLE Il

In order to evaluate the static posture recognition perfor- TEST STEP CONFUSION MATRIX

mances, two sets of video sequences are used, a training set

and a test set. The training set consists fdifferent video |SystemH || Hi | H, | Hs | Hy |
sequences representirgb000 frames.6 different people are Hy 0% 10.3% | 5.0% 0%
filmed twice in the sam&0 successive postures. People are of H, 99.5% | 0.4% 0% 0%
various heights, between55 m and1.95 m, in order to take H, UH, 0.5% 0% 0% 0%
into account the variability of heights and improve the rstbu H, 0% 56.3% | 20.3% | 0%
ness. The constraints are to be in “natural” postures intfron Hy U Hj 0% 271% | 18.0% | 0%
of the camera. The statistics (meanand standard deviations H; 0% 59% | 56.7% | 0%
o) of the three measurementsare computed over the training Hs U H, 0% 0% 0% 0%
set to find the thresholds (see Fig. 16) that yield a minimum of H, 0% 0% 0% | 100%

conflict. These most suitable thresholds are defined by time co
parison of the.+20 computed for the respective postures or set

of postures. This expertise step was performed by a human og- h iailv wh & h
erator. In fact, one of the hardest steps in the belief thisory POStUres, there are more errors, especially when peopke hav

find models (or thresholds) that lead to a minimum of conflictd1€I &rm(s) raised over their head or sit sideways. Theoreas

The test set consists @2 other video sequences representin e that these post_ures are quite alike and that not eveyybod
its and/or squats in the same way, hands on knees or touch-

~11000 frames.6 other people, also of various heights, ar: K ioh h ¢ ol
filmed twice in different successive postures. In order g1 td"9 ground, back bent or straight etc. These facts yieldsemor

the limits of the system, people are allowed to move the amﬁ:gnflicts, near5%. There are also more po_s_tures that lead to
sit sideways and even be in postures that do not often occuﬁ{ﬁ doubtif; U H;. Nevertheless, the recognition rates are very
everyday life, for instance squatting with arms raised atthe ¢'0S€ betw_eean vS Hy and; vs . i ,

head. Results are computed on frames of the video sequencédd- 17 illustrates some results of various static postures
where the global body posture is static, i.e. the persomsoto '€c0gnition. The SRBB, the SPAB, the FRBB and g dis-

and legs are approximately still. We present the classiicat @€ are drawn in white on the segmented frame.

results obtained when using theaximum belief massas cri-

terion. Comparison between criteria and subsequent fitassi RS

is available in [51]. Training step and test step recognitates
are available in Tables | and Il. Columns show the real pestur,
and lines the postures recognised by the system.

TABLE | sitting sitting
TRAINING STEP CONFUSION MATRIX

| SyStemH || H1 | H2 | H3 ‘ H4 |
H, 0% | 0.1% | 0% 0% . _
H, 100% | 0% 0% 0% sduattine sauatting
H, U H, 0% 0% 0% 0%
H, 0% | 95.9% | 1.0% | 0%
Hy U H; 0% | 2.1% | 40% | 0%
Hs 0% | 1.9% | 95.0% | 0%
Hs; UH, 0% 0% 0% 0%
H, 0% 0% 0% | 100%

Training step: As the thresholds of the belief models are [
generated from the; statistical characteristics computed over [ -—
the same set of video sequences, the results are very goed.
average recognition rate%5.7%. There is only0.1% of occur-
ring conflicts on more than 5000 frames. There are no proble
recognising the standing or the lying postures. The sitéind
the squatting postures are also well recognised even i ibex
little doubt between both.

Test step: There are more recognition errors but the resultd
show a good global recognition rate. The average re_c_oglnitilglg_ 17. Examples of static posture recognition.
rate is78.1%. There are never any problems recognising the
standing or the lying postures. For the sitting and the dingat
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VII. CONCLUSION, DISCUSSION AND PERSPECTIVES localisation is generally accurate. It is fast and distisjas
the right vs left hand. Skin models are generally sensitive t
the acquisition system and lighting conditions (outputocol

We have presented in this paper a real-time system for mgpace, white balance and noise of the camera etc.). The pre-
tiple people body analysis and behaviour interpretatiohe Tsented thresholds have been tested in different indooramvi
processing rate of the whole system, obtained on a PC runningnts and performed reliably. Nevertheless, tuning theth wi
at 3.2 GHz, is~26 fps for640 x 480 resolution ¢-65 fps for respect to another given system (other camera, outdoor envi
320 x 240). Compared with other similar systems like’\[1] ronment etc.) can yield better results. Results accuragypea
and Pfinder [2], that surely meet the requirements to perormiegraded when worn clothes are close to skin colours.
similar task, our system proposes relatively differentrapphes  The higher-level interpretation step, static posture geco
for dealing with the various processing steps and theirrefite tion, has also shown good recognition results. The appraach
problems. It is generic enough to be used for several typesy@k is similar to a method based on shapes, because we con-
applications in either indoor or outdoor environment. Fot-0 sider the elongation and the compactness of the persompesha
door environments, some of the algorithms would need to Revertheless, no explicit comparison has been performbd. T
improved, with regard to the problems that can arise when &gain limitation is that, if the distance to the camera charsig-
quisition conditions greatly vary. As long as the peoplerase nificantly, the person may have to perform again the referenc
too numerous and remain the main objects, the results shopdture. Using a stereo camera could solve this problem and
be fairly reliable. avoid assuming the hypothesis of not being occluded.

This system can be used for mixed reality applications with Among the perspectives of this WOI’k, there is dynamic pos-
perceptual human-computer interfaces. In front of a sisc tyre recognition. We plan to enhance the method by adding
camera, in an indoor environment, a single person or sevegaiynamic analysis of the measurements temporal evolution.
people can interact with a virtual environment and contrbyi Concerning the analysis of human body parts, the feet positi
their movements. The proposed system for mixing real and Vilould be computed after segmentation using geodesic distan
tual worlds by image processing without invasive systems ggps [59]. Currently under development, there is an avatar ¢
markers etc. yields results with a suitable precision. fa& {ro| application with the real-time animation of a skeleteing
enough for a responsive system that includes human-compy# face and hands positions and the recognised posturd Wor
interaction and is relatively user-friendly. The other gible on gaze direction and facial expressions analysis is alserun
application is the monitoring of elderly people at home or igevelopment [53, 60]. A long-term perspective is the fusibn
hospital rooms. One could detect for instance that somease fyltiple media with several cameras and microphones. This
fallen down or has been sitting for too long. Consideringgid could lead to advanced perceptual human-computer intesfac
people, their postures should be similar to the trainingdses  and a lot of subsequent applications.
of the static posture recognition step. In these condifitimes
system should be reliable enough to succeed in this momgtori REFERENCES
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