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Abstract: This paper deals with the state estimation of a strongly nonlinear system.
In a noisy state space representation setting, Central Difference Kalman Filter,
Ensemble Kalman Filter and Particle Filter are tested on a second order system.
The choice of estimators parameters is then discussed, and their behaviour in
relation to noise is studied, in order to compare estimation quality according to
noise’s variance criteria.
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1. INTRODUCTION

Filtering has always taken an important place in
automatic control. It can be found in applica-
tion areas as advanced control, navigation, signal
processing and diagnosis.

In a state space representation setting, the most
popular tool is the Kalman filter (Kalman, 1960),
also known as linear Gaussian optimal filter. But,
in reality, most of systems do not respect these
hypotheses. Many researchers have attempted to
consider non Gaussian cases, with the Gaussian
Sum Filter (Aspach and Sorenson, 1972), and the
nonlinear case, leading to the Extended Kalman
Filter (EKF). But this state estimator has some
well known drawbacks, such as needing to calcu-
late the Jacobians of nonlinear functions, which
is not easy, but above all, may cause divergence
in some cases (Anderson and Moore, 1979). Re-

cent work partially solved these problems, see
for example the Unscented Kalman Filter (UKF)
(Julier and Uhlmann, 1997), the Central Differ-
ence Kalman Filter (CDKF) (Nφrgaard et al.,
2000) and the Ensemble Kalman Filter (EnKF)
(Burgers et al., 1998). These versions lead to sig-
nificant results, but are based on empirical devel-
opments.

A more general setting is provided by Monte
Carlo filters, also called Particle Filters (PF)
(Arulampalam et al., 2002) (Doucet, 1998). This
kind of tool is more powerful, but also more time-
consuming and difficult to synthesize.

In this paper, a problem statement is first pre-
sented in section 2, and then, different methods of
nonlinear filtering are exposed in section 3. The
choice of the estimators parameters is discussed
in section 4, and the behaviour of these tools
in relation to noises is then studied in the next



section. A comparison on a nonlinear second order
system is provided in section 6.

2. PROBLEM STATEMENT

In a discrete state space setting, the problem
of filtering is presented as shown in figure 1. It
consists of attemting to make the estimated state
x̂k the closest possible to the real value xk. To
reach this purpose, the only knowledges we have
are :

• the values of input vector uk and output
vector yk,

• the process model, represented by (1), where
f and g are nonlinear vector fields,

• some statistics of the process noise wk and
the measurements noise vk.

{
xk = f(xk−1,uk−1,wk−1, k − 1)
yk = g(xk,uk, k) + vk

(1)

Fig. 1. Filtering problematic

In a stochastic setting, xk ∈ R
nx , yk ∈ R

ny , vk ∈
R

nv and wk ∈ R
nw are considered as random

vectors, and uk ∈ R
nu as a deterministic input

(Anderson and Moore, 1979).

3. NONLINEAR FILTERING METHODS

The optimal filter is described by the probability
density p(xk|y0→k), which can be recursively cal-
culated by the optimal Bayesian filtering equation
(2).

p(xk|y0→k−1) =∫

Rnx

p(xk|xk−1).p(xk−1|y0→k−1).dxk−1

p(xk|y0→k) =
p(yk|xk).p(xk|y0→k−1)∫

Rnx
p(yk|xk).p(xk|y0→k−1).dxk

(2)

Then, the state can be calculated via the two
optimality criterion :

• least square :
x̂k = E(xk|y0→k) =

∫
Rnx

xk.p(xk|y0→k).dxk

• maximum likelihood :

x̂k = arg
xk

{
max

xk∈Rnx
[p(xk|y0→k)]

}

Unfortunately, the equations (2) cannot analyti-
cally be solved, excepted in the Gaussian linear 1

case : it leads to the Kalman filter. In the other
case, these equations can be computed by Monte
Carlo simulation, i.e. the realisation of a particle
filter.

The principal nonlinear Kalman filters are the
EKF, UKF, CDKF and EnKF. The estimators
tested in this article are the last two. Their algo-
rithms are given below:

1) Initialization with Pxx
0|0

and x̂0|0 and :
• na = nx + nw

• σx = 2.nx + 1
• σa = 2.na + 1

• W(i)
ma =

{
(h2 − na)/(h2) if i = 1

1/(2.h2) if 2 ≤ i ≤ na + 1

• W(i)
mx =

{
(h2 − nx)/(h2) if i = 1

1/(2.h2) = if 2 ≤ i ≤ na + 1

• Wc1 = 1/(4.h2)
• Wc2 = (h2 − 1)/(4.h2)

2) Prediction step :

• X̂k−1 = X̂k−1|k−1 =
[
x̂T

k−1|k−1 0
]T

• Paa
k−1 =

[
Pxx

k−1|k−1 0

0 Pww

]

• Saa
k−1 =

√
Paa

k−1

• X
(i)
k−1

=

{
X̂k−1 if i = 1

X̂k−1 + h.Saa
k−1(i − 1) if 2 ≤ i ≤ na + 1

X̂k−1 − h.Saa
k−1(i − na − 1) if na + 2 ≤ i ≤ σa

•
[(

x
(i)
k−1

)T (
w

(i)
k−1

)T
]T

= X
(i)
k−1

i = 1, . . . , σa

• x
(i)

k|k−1
= f

(
x

(i)
k−1

,uk−1,w
(i)
k−1

, k − 1

)
i =

1, . . . , σa

• x̂k|k−1 =
∑σa

i=1
W(i)

ma.x
(i)

k|k−1

•
Pxx

k|k−1 =

na+1∑

i=2

Wc1

∥∥∥x
(i)

k|k−1
− x

(i+na)

k|k−1

∥∥∥
2

+ Wc2

∥∥∥x
(i)

k|k−1
+ x

(i+na)

k|k−1
− 2x

(1)

k|k−1

∥∥∥
2

3) Correction step :
• Sxx

k|k−1
=

√
Px

k|k−1

• x̄
(i)

k|k−1
=

{
x̂k|k−1 if i = 1

x̂k|k−1 + h.Sxx
k|k−1(i − 1) if 2 ≤ i ≤ nx + 1

x̂k|k−1 − h.Sxx
k|k−1(i − nx − 1) if nx + 2 ≤ i ≤ σx

• y
(i)

k|k−1
= g

(
x̄

(i)

k|k−1
,uk, k

)
i = 1, . . . , σx

• ŷk|k−1 =
∑σx

i=1
W(i)

mx.y
(i)

k|k−1

•
Pyy

k|k−1
=

nx+1∑

i=2

Wc1

∥∥∥y
(i)

k|k−1
− y

(i+nx)

k|k−1

∥∥∥
2

+ Wc2

∥∥∥y
(i)

k|k−1
+ y

(i+nx)

k|k−1
− 2y

(1)

k|k−1

∥∥∥
2

1 It can also been solved in nonlinear case, when
p(xk|y0→k) is Gaussian or close to be Gaussian, and f
and g keep this Gaussian character : it is the basis of the
nonlinear extensions of Kalman filtering. See (Julier and
Uhlmann, 1994) for further details.



• Pxy

k|k−1
=

√
Wc1S

xx
k|k−1

[
y

(1)

k|k−1
. . .y

(nx)

k|k−1

]T

• Kk = Pxy

k|k−1

(
Pyy

k|k−1

)−1

• x̂k|k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)

• Pxx
k|k

= Pxx
k|k−1

− Kk.Pyy

k|k−1
.KT

k

CDKF algorithm, in the case of additive measure-
ment noise (VanDerMerwe, 2004)

The nomenclatures is such that :

• in a general way :
Pab = E

[
(a − E(a))(b − E(b))T

]
, where T

denotes the transposition operator,
• the augmented state X includes the process

noise : X =
[
xT wT

]T
,

• as covariance matrices are positive and sym-
metric, the matrices S can be computed via
the Cholesky decomposition,

• M(i) denotes the ith column of M,
• ‖M‖2 = MM

T and ‖M‖2
P

= MPM
T ,

• in a general way : x ∼ ℵ(m,P) means that
x is normally distributed, with mean m and
covariance P.

1) Initialisation with Pxx
0|0

and x̂0|0.

2) Prediction step :

• x
(i)
k−1 ∼ ℵ(x̂k−1|k−1,Pxx

k−1|k−1
) i = 1, . . . , N

• w
(i)
k−1

∼ ℵ(0,Pww) i = 1, . . . , N

• x
(i)

k|k−1
= f

(
x

(i)
k−1

,uk−1,w
(i)
k−1

, k − 1

)
i =

1, . . . , N

• x̂k|k−1 = 1
N

∑N

i=1
x

(i)

k|k−1

• x̃
(i)

k|k−1 = x
(i)

k|k−1
− x̂k|k−1 i = 1, . . . , N

• Pxx
k|k−1

= 1
N

∑N

i=1

(
x̃

(i)

k|k−1

)(
x̃

(i)

k|k−1

)T

3) Correction step :

• y
(i)

k|k−1
= g

(
x

(i)

k|k−1
,uk, k

)

• ŷk|k−1 = 1
N

∑N

i=1
y

(i)

k|k−1

• ỹ
(i)

k|k−1
= y

(i)

k|k−1
− ŷk|k−1

• Pyy

k|k−1
= 1

N

∑N

i=1

(
ỹ

(i)

k|k−1

)(
ỹ

(i)

k|k−1

)T

• Pxy

k|k−1
= 1

N

∑N

i=1

(
x̃

(i)

k|k−1

)(
ỹ

(i)

k|k−1

)T

• Kk = Pxy

k|k−1

(
Pyy

k|k−1

)−1

• x̂k|k = x̂k|k−1 + Kk

(
yk − ŷk|k−1

)

• Pxx
k|k

= Pxx
k|k−1

− Kk.Pyy

k|k−1
.KT

k

EnKF algorithm (Burgers et al., 1998)

Concerning the particle filters, we restrict our
choice to the simplest, which is also the most
popular, i.e. using the transition kernel for impor-
tance density. The resulting algorithm is presented
below :

1) Initialisation with Pxx
0|0

and x0 :

• x
(i)
0 ∼ ℵ

(
x0,Pxx

0|0

)
i = 1, . . . , N

• W(i)
k

= 1
N

i = 1, . . . , N
2) Prediction step :

• w
(i)
k−1

∼ ℵ (0,Pww) i = 1, . . . , N

• x
(i)
k

= f

(
x

(i)
k−1

,uk−1,w
(i)
k−1

, k − 1

)

3) Correction step :

• ỹ
(i)
k = yk − g

(
x

(i)
k

,uk, k

)

• K
(i)
k

= 1√
(2π)ny . det(Pvv)

exp

(
− 1

2

∥∥∥ỹ
(i)
k

∥∥∥
2

(Pvv)−1

)

• W̃(i)
k

= W(i)
k−1

.K
(i)
k

i = 1, . . . , N

• W(i)
k

=
W̃

(i)

k∑
N

j=1
W̃

(j)

k

i = 1, . . . , N

4) Resampling step (optional)
5) State estimation :

• In the case of maximum likelihood : x̂k = x
(i)
k

such

that W(i)
k

≥ W(j)
k

∀j ∈ {1, . . . , N}, j 6= i

• In the case of least squares : x̂k =
∑N

i=1
W(i)

k
.x

(i)
k

PF’s algorithm, in case of Gaussian noises and im-
portance density equal to transition kernel (Doucet,
1998)

4. TUNING OF THE FILTERS PARAMETERS

4.1 Description of the system tested

The system we choose to study is commonly used
in the particle filtering community (Gordon et
al., 1993), (Arulampalam et al., 2002). In order
to complicate this further, we added a second non
linear state equation, giving the system (3), in a
general way as : a = [a(1) . . . a(n)]T .

x
(1)
k =

1

2
.x

(1)
k−1 +

25.x
(1)
k−1

1 +
(
x

(1)
k−1

)2 + 8 cos(1.2k) + w
(1)
k−1

x
(2)
k = 8 sin

(
x

(1)
k−1

)
+ 8 sin

(
1.2x

(2)
k−1

)
+ w

(2)
k−1

y
(1)
k =

(
x

(1)
k

)2

20
+ v

(1)
k

y
(2)
k = x

(2)
k + v

(2)
k

(3)

where vk and wk are zero mean noises, normally
distributed with covariances Rvv and Rww.

The Euclidian norm of the difference between the
true measurements and that predicted by the filter
((4), where L denotes the simulation length) will
be termed the filter variance.

variance(k) = ‖yk − g(x̂k,uk, k)‖2

variance =
1

L
ΣL

k=1variance(k)
(4)

4.2 Central Difference Kalman Filters parameter

The CDKF present one parameter (excepted the
covariance matrices Pvv and Pww), which is h.



This parameter is said to be optimally set to h =√
3 in the Gaussian case (Nφrgaard et al., 2000).

This value has been checked successfully.

4.3 Particle Filters parameters

The parameters of particle filters are the follow-
ing:

• the number of particles,
• the choice of the state estimator,
• the resampling scheme 2 ,
• the resampling indicator.

The state estimator is simple to choose : after a
number of running, it is clear that in this case, the
estimator using least square gives better results
than that based on maximum likelihood.

Concerning the resampling, the different schemes
are :

• the multinomial resampling,
• the residual resampling (Liu and Chen,

1995),
• the systematic resampling (Kitagawa, 1996),
• the branching algorithm (Crisan and Grun-

wald, 1999).

Experimentally, they all provide similar results
(Douc and Cappé, 2005). The most natural choice
is then to choose the simplest algorithm, which is
the systematic resampling. In addition, it is the
one whose variance is minimal.

Resampling contribution is real, but it is not ad-
vised to use it at each step, because it impover-
ishes the particles cloud. There are two indicators
for deciding when redistribution is necessary : the
first calculates the effective number of particles
(Kong et al., 1994) and the second the entropy of
the particles system (Pham, 2001). The tests done
on a filter with N = 1000 particles and different
values of threshold give the results presented in
tables 1 and 2.

Table 1. Entropy based indicator :

Threshold ln N
10

ln N
30

ln N
50

ln N
100

ln N
150

Filter’s variance 1.46 1.63 1.69 2.01 2.33

MNR* 0.69 0.56 0.50 0.50 0.46

Table 2. Effective particles number
based indicator :

Threshold N
10

N
30

N
50

N
75

N
100

Filter’s variance 1.51 1.69 1.75 1.60 1.66

MNR* 0.7 0.6 0.56 0.5 0.49

*MNR = Mean Number of Resampling, i.e. the
number of resampling during the simulation di-
vided by the running length.

2 Resampling has been introduced by Gordon (Gordon et

al., 1993) for avoiding the divergence problems.

The results provided by these methods are close :
we arbitrarily choose the entropy based estimator.
The threshold value is a compromise between the
filter’s variance and the resampling ; ln(N/50) has
been retained.

The last thing to choose is the number of particles.
The method adopted is to run the simulation with
different numbers of particles, and to choose the
best compromise between computation time and
number of particles. By seeing table 3, the number
of particles adopted is 1000.

Table 3. PF’s variance (PFV) in func-
tion of the number of particles (N):

N 50 100 500 1000 2000 5000 10000

PFV 9.77 4.21 2.15 1.82 1.63 1.11 1.04

4.4 Number of particles of the EnKF

A similar method, as used with the PF, is adopted,
providing the table 4. Contrary to PF, the EnKF’s
variance is quite independent on the number of
particles. It can be explained by the fact that PF
has a central theorem validating it, contrary to
the EnKF. A too poor number of particles (in
practice, 350), leads to non positive covariance
matrix. The best choice is then to choose a number
of 500 particles, in order to keep a security margin.

Table 4. EnKF’s variance (EnKFV) in
function of the number of particles (N):

N 350 500 750 1000 2000

EnKFV 1.55 1.52 1.52 1.59 1.56

5. FILTERS BEHAVIOUR IN RELATION TO
NOISE

Consider the following covariance levels :

Rww = I

Rvv = aI
(5)

where a ∈ R
∗ and I denotes the identity matrix

of appropriate size. The noises covariances are
assumed to be known. Consequently, the filters
covariance can be set to these values, i.e. : Pww =
Rww, Pvv = Rvv.

The mean variance of each filter in relation to
a is given in table 5, and traces of the real and
estimated states are exposed on figure 2 and 3,
for a = 10.

Table 5. Filters variance as a function of
measurement noise covariance :

a 1 10 50 100 500 1000

CDKF 9.72 10.55 13.40 16.12 29.24 39.86

EnKF 1.59 3.21 7.74 11.39 26.90 37.96

PF 1.48 3.18 7.65 11.48 26.78 37.86



With low covariance noise, the Monte Carlo sam-
pling based filters (i.e. the EnKF and the PF) out-
perform clearly the CDKF. However, they cannot
be used with a noise covariance smaller than the
unity, because particles are not dispatched enough
in the state space, leading to filter divergence
(LeGland et al., 1998). In addition, in the case
of high noise, their performance is severely de-
creased, providing the same results as the CDKF.

Fig. 2. Real and estimated state : 1st component

Fig. 3. Real and estimated state : 2nd component

6. COMPARISON BETWEEN FILTERS
PERFORMANCES

As it was exposed in the preceding section, the
EnKF and the PF produce better results than the
CDKF in the case of small covariance noise, but do
not perform better when a becomes higher than a
certain value (in practice, a ≈ 1000)(figures 4 and
5). But, contrary to the CDKF, these two filters
have parameters allowing a better tuning. They
are :

• the number of particles,
• the threshold of resampling indicator (for

PFs).

The purpose of this section is to study the influ-
ence of these values on the estimation quality.

6.1 Number of particles of the EnKF

As we can explain, the effect of the number of
particles of the EnKF does not affect the variance
of the filter (it already was seen in section 4), as
illustrated in table 6.

Fig. 4. Filters variance for Pvv = 10I

Fig. 5. Filters variance for Pvv = 700I

Table 6. EnKF’s variance (EnKFV) in
function of the number of particles (N):

N 350 500 750 1000 2000

EnKFV 38.83 38.22 38.22 38.11 38.63

6.2 Parameters of the PF

With a high covariance measurement noise, the
most remarkable fact is that PF does not proceed
to resampling. Consequently, it is natural to re-
duce the threshold of the resampling indicator.

Table 7. PF’s variance (PFV) and Mean
Number of Resampling (MNR) in func-
tion of the threshold of the resampling

indicator :

threshold ln N
50

ln N
10

ln N
3

ln N
1.5

ln N
1.1

MNR 0 0.02 0.03 0.08 0.27

PFV 37.86 36.72 39.12 37.98 39.4

In table 7, it can be seen that reducing the value
of the threshold makes the resampling step more
active, but it does not affect the PF’s variance.
It can be explained by the fact that the purpose
of this step is to avoid the divergence problem,
especially in the case of model uncertainty, which
is not what we considered. The reason that the
chosen value for this threshold is important with
a low covariance noise (section 4, with a unity
covariance) is that in this case, the Gaussian
distribution is quite fit, making too few particles
being likely at the correction step.

Concerning the number of particles, different val-
ues have been tested, as exposed in table 8.

Growing the number of particles does not improve
the effectiveness of the PF. On the contrary,



Table 8. PF’s variance (PFV) in func-
tion of the number of particles (N) :

N 500 1000 2000 5000 10000

PFV 39.95 39.33 39.35 39.34 39.33

reducing it produces an analogue result with less
computation time.

7. CONCLUSION

On the system tested, the best results are pro-
vided by the PF and the EnKF for a measurement
covariance noise included between 1I and 1000I.
Below this interval, the CDKF is the only one
which can be used. Above this interval, the per-
formance of the three estimators are equivalent,
whatever their tuning : if the computation time
consumption is taken into account, the CDKF
would be the more efficient.

So, for such a system, when the measurement
noise has a low or high covariance, it is advised
to use the CDKF. In the other case, the EnKF is
proving to be the best choice, because it provides
the same results as the PF with half of particles,
and furthermore, it is simpler to parameterize.

As an outlook of this work, on the one hand, is
to compare with nonlinear robust H∞ filtering.
On the other hand, it is to study the behaviour
of these estimators with respect to several sensor
subsets, in order to develop a tool for the diagnosis
of a strongly nonlinear system.
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