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This paper deals with the state estimation of a strongly nonlinear system. In a noisy state space representation setting, Central Difference Kalman Filter, Ensemble Kalman Filter and Particle Filter are tested on a second order system. The choice of estimators parameters is then discussed, and their behaviour in relation to noise is studied, in order to compare estimation quality according to noise's variance criteria.

INTRODUCTION

Filtering has always taken an important place in automatic control. It can be found in application areas as advanced control, navigation, signal processing and diagnosis.

In a state space representation setting, the most popular tool is the Kalman filter [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF], also known as linear Gaussian optimal filter. But, in reality, most of systems do not respect these hypotheses. Many researchers have attempted to consider non Gaussian cases, with the Gaussian Sum Filter [START_REF] Aspach | Nonlinear bayesian estimation using Gaussian sum approximation[END_REF], and the nonlinear case, leading to the Extended Kalman Filter (EKF). But this state estimator has some well known drawbacks, such as needing to calculate the Jacobians of nonlinear functions, which is not easy, but above all, may cause divergence in some cases [START_REF] Anderson | Optimal filtering[END_REF]. Re-cent work partially solved these problems, see for example the Unscented Kalman Filter (UKF) [START_REF] Julier | A new extension of Kalman filter to nonlinear systems[END_REF], the Central Difference Kalman Filter (CDKF) [START_REF] Nφrgaard | New developments in state estimation for nonlinear systems[END_REF] and the Ensemble Kalman Filter (EnKF) [START_REF] Burgers | Analysis scheme in the Ensemble Kalman Filter[END_REF]. These versions lead to significant results, but are based on empirical developments.

A more general setting is provided by Monte Carlo filters, also called Particle Filters (PF) [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF] [START_REF] Doucet | On sequential simulationbased methods for Bayesian filtering[END_REF]. This kind of tool is more powerful, but also more timeconsuming and difficult to synthesize.

In this paper, a problem statement is first presented in section 2, and then, different methods of nonlinear filtering are exposed in section 3. The choice of the estimators parameters is discussed in section 4, and the behaviour of these tools in relation to noises is then studied in the next section. A comparison on a nonlinear second order system is provided in section 6.

PROBLEM STATEMENT

In a discrete state space setting, the problem of filtering is presented as shown in figure 1. It consists of attemting to make the estimated state xk the closest possible to the real value x k . To reach this purpose, the only knowledges we have are :

• the values of input vector u k and output vector y k , • the process model, represented by (1), where f and g are nonlinear vector fields, • some statistics of the process noise w k and the measurements noise v k .

x k = f (x k-1 , u k-1 , w k-1 , k -1) y k = g(x k , u k , k) + v k (1)

Fig. 1. Filtering problematic

In a stochastic setting, x k ∈ R nx , y k ∈ R ny , v k ∈ R nv and w k ∈ R nw are considered as random vectors, and u k ∈ R nu as a deterministic input [START_REF] Anderson | Optimal filtering[END_REF].

NONLINEAR FILTERING METHODS

The optimal filter is described by the probability density p(x k |y 0→k ), which can be recursively calculated by the optimal Bayesian filtering equation (2).

p(x k |y 0→k-1 ) = R nx p(x k |x k-1 ).p(x k-1 |y 0→k-1 ).dx k-1 p(x k |y 0→k ) = p(y k |x k ).p(x k |y 0→k-1 ) R nx p(y k |x k ).p(x k |y 0→k-1 ).dx k (2)
Then, the state can be calculated via the two optimality criterion :

• least square : xk = E(x k |y 0→k ) = R nx x k .p(x k |y 0→k ).dx k • maximum likelihood : xk = arg x k max x k ∈R nx [p(x k |y 0→k )]
Unfortunately, the equations (2) cannot analytically be solved, excepted in the Gaussian linear1 case : it leads to the Kalman filter. In the other case, these equations can be computed by Monte Carlo simulation, i.e. the realisation of a particle filter.

The principal nonlinear Kalman filters are the EKF, UKF, CDKF and EnKF. The estimators tested in this article are the last two. Their algorithms are given below:

1) Initialization with P xx 0|0 and x0|0 and :

• n a = nx + nw • σx = 2.nx + 1 • σ a = 2.n a + 1 • W (i) ma = (h 2 -na)/(h 2 ) if i = 1 1/(2.h 2 ) if 2 ≤ i ≤ na + 1 • W (i) mx = (h 2 -nx)/(h 2 ) if i = 1 1/(2.h 2 ) = if 2 ≤ i ≤ na + 1 • W c1 = 1/(4.h 2 ) • W c2 = (h 2 -1)/(4.h 2 ) 2) Prediction step : • Xk-1 = Xk-1|k-1 = xT k-1|k-1 0 T • P aa k-1 = P xx k-1|k-1 0 0 P ww • S aa k-1 = P aa k-1 • X (i) k-1 = Xk-1 if i = 1 Xk-1 + h.S aa k-1 (i -1) if 2 ≤ i ≤ na + 1 Xk-1 -h.S aa k-1 (i -na -1) if na + 2 ≤ i ≤ σa • x (i) k-1 T w (i) k-1 T T = X (i) k-1 i = 1, . . . , σa • x (i) k|k-1 = f x (i) k-1 , u k-1 , w (i) k-1 , k -1 i = 1, . . . , σa • xk|k-1 = σ a i=1 W (i) ma .x (i) k|k-1 • P xx k|k-1 = na+1 i=2 W c1 x (i) k|k-1 -x (i+na) k|k-1 2 + W c2 x (i) k|k-1 + x (i+na) k|k-1 -2x (1) k|k-1 2 
3) Correction step :

• S xx k|k-1 = P x k|k-1 • x(i) k|k-1 = xk|k-1 if i = 1 xk|k-1 + h.S xx k|k-1 (i -1) if 2 ≤ i ≤ nx + 1 xk|k-1 -h.S xx k|k-1 (i -nx -1) if nx + 2 ≤ i ≤ σx • y (i) k|k-1 = g x(i) k|k-1 , u k , k i = 1, . . . , σx • ŷk|k-1 = σ x i=1 W (i) mx .y (i) k|k-1 • P yy k|k-1 = nx+1 i=2 W c1 y (i) k|k-1 -y (i+nx) k|k-1 2 + W c2 y (i) k|k-1 + y (i+nx) k|k-1 -2y (1) k|k-1 2 • P xy k|k-1 = √ W c1 S xx k|k-1 y (1) k|k-1 . . . y (nx) k|k-1 T • K k = P xy k|k-1 P yy k|k-1 -1 • xk|k = xk|k-1 + K k y k -ŷk|k-1 • P xx k|k = P xx k|k-1 -K k .P yy k|k-1 .K T k
CDKF algorithm, in the case of additive measurement noise [START_REF] Vandermerwe | Sigma-Point Kalman Filters for probabilistic inference in dynamic state-space models[END_REF] The nomenclatures is such that :

• in a general way :

P ab = E (a -E(a))(b -E(b))
T , where T denotes the transposition operator, • the augmented state X includes the process noise : X = x T w T T , • as covariance matrices are positive and symmetric, the matrices S can be computed via the Cholesky decomposition,

• M(i) denotes the i th column of M, • M 2 = MM T and M 2 P = MPM T , • in a general way : x ∼ ℵ(m, P) means that
x is normally distributed, with mean m and covariance P.

1) Initialisation with P xx 0|0 and x0|0 . 2) Prediction step :

•

x (i) k-1 ∼ ℵ(x k-1|k-1 , P xx k-1|k-1 ) i = 1, . . . , N • w (i) k-1 ∼ ℵ(0, P ww ) i = 1, . . . , N • x (i) k|k-1 = f x (i) k-1 , u k-1 , w (i) k-1 , k -1 i = 1, . . . , N • xk|k-1 = 1 N N i=1 x (i) k|k-1 • x (i) k|k-1 = x (i) k|k-1 -xk|k-1 i = 1, . . . , N • P xx k|k-1 = 1 N N i=1 x (i) k|k-1 x (i) k|k-1 T 3) Correction step : • y (i) k|k-1 = g x (i) k|k-1 , u k , k • ŷk|k-1 = 1 N N i=1 y (i) k|k-1 • y (i) k|k-1 = y (i) k|k-1 -ŷk|k-1 • P yy k|k-1 = 1 N N i=1 y (i) k|k-1 y (i) k|k-1 T • P xy k|k-1 = 1 N N i=1 x (i) k|k-1 y (i) k|k-1 T • K k = P xy k|k-1 P yy k|k-1 -1 • xk|k = xk|k-1 + K k y k -ŷk|k-1 • P xx k|k = P xx k|k-1 -K k .P yy k|k-1 .K T k
EnKF algorithm [START_REF] Burgers | Analysis scheme in the Ensemble Kalman Filter[END_REF] Concerning the particle filters, we restrict our choice to the simplest, which is also the most popular, i.e. using the transition kernel for importance density. The resulting algorithm is presented below :

1) Initialisation with P xx 0|0 and x 0 :

• x (i) 0 ∼ ℵ x 0 , P xx 0|0 i = 1, . . . , N • W (i) k = 1 N i = 1, . . . , N 2) Prediction step : • w (i) k-1 ∼ ℵ (0, P ww ) i = 1, . . . , N • x (i) k = f x (i) k-1 , u k-1 , w (i) k-1 , k -1 3) Correction step : • y (i) k = y k -g x (i) k , u k , k • K (i) k = 1 √ (2π) ny . det(P vv ) exp -1 2 y (i) k 2 (P vv ) -1 • W (i) k = W (i) k-1 .K (i) k i = 1, . . . , N • W (i) k = W (i) k N j=1 W (j) k i = 1, . . . , N 4) Resampling step (optional) 5) State estimation :
• In the case of maximum likelihood :

xk = x (i) k such that W (i) k ≥ W (j) k ∀j ∈ {1, . . . , N }, j = i • In the case of least squares : xk = N i=1 W (i) k .x (i) k
PF's algorithm, in case of Gaussian noises and importance density equal to transition kernel [START_REF] Doucet | On sequential simulationbased methods for Bayesian filtering[END_REF] 

TUNING OF THE FILTERS PARAMETERS

Description of the system tested

The system we choose to study is commonly used in the particle filtering community [START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF], [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF]. In order to complicate this further, we added a second non linear state equation, giving the system (3), in a general way as : a = [a (1) . . . a (n) ] T .

x

(1) k = 1 2 .x (1) 
k-1 +

25.x

(1) k-1

1 + x (1) k-1 2 + 8 cos(1.2k) + w (1) k-1 x (2) k = 8 sin x (1) 
k-1 + 8 sin 1.2x

(2)

k-1 + w (2) k-1 y (1) k = x (1) k 2 20 + v (1) k y (2) k = x (2) k + v (2) k (3) 
where v k and w k are zero mean noises, normally distributed with covariances R vv and R ww .

The Euclidian norm of the difference between the true measurements and that predicted by the filter ((4), where L denotes the simulation length) will be termed the filter variance.

variance(k) = y k -g(x k , u k , k) 2 variance = 1 L Σ L k=1 variance(k) (4)

Central Difference Kalman Filters parameter

The CDKF present one parameter (excepted the covariance matrices P vv and P ww ), which is h.

This parameter is said to be optimally set to h = √ 3 in the Gaussian case [START_REF] Nφrgaard | New developments in state estimation for nonlinear systems[END_REF]. This value has been checked successfully.

Particle Filters parameters

The parameters of particle filters are the following:

• the number of particles,

• the choice of the state estimator,

• the resampling scheme2 ,

• the resampling indicator.

The state estimator is simple to choose : after a number of running, it is clear that in this case, the estimator using least square gives better results than that based on maximum likelihood.

Concerning the resampling, the different schemes are :

• the multinomial resampling,

• the residual resampling [START_REF] Liu | Blind deconvolution via sequential imputation[END_REF]), • the systematic resampling [START_REF] Kitagawa | Monte Carlo filter and smoother for non-Gaussian nonlinear state space model[END_REF],

• the branching algorithm [START_REF] Crisan | Large deviation comparison of branching algorithms versus resampling algorithms : Application to discrete time stochastic filtering[END_REF].

Experimentally, they all provide similar results [START_REF] Douc | Comparison of resampling schemes for Particle Filtering[END_REF]. The most natural choice is then to choose the simplest algorithm, which is the systematic resampling. In addition, it is the one whose variance is minimal.

Resampling contribution is real, but it is not advised to use it at each step, because it impoverishes the particles cloud. There are two indicators for deciding when redistribution is necessary : the first calculates the effective number of particles [START_REF] Kong | Sequential imputation method and Bayesian missing data problems[END_REF] and the second the entropy of the particles system [START_REF] Pham | Stochastic methods for sequential data assimilation in strongly nonliear systems[END_REF]. The tests done on a filter with N = 1000 particles and different values of threshold give the results presented in tables 1 and 2. The results provided by these methods are close : we arbitrarily choose the entropy based estimator. The threshold value is a compromise between the filter's variance and the resampling ; ln(N/50) has been retained.

The last thing to choose is the number of particles. The method adopted is to run the simulation with different numbers of particles, and to choose the best compromise between computation time and number of particles. By seeing table 3, the number of particles adopted is 1000. 

Number of particles of the EnKF

A similar method, as used with the PF, is adopted, providing the table 4. Contrary to PF, the EnKF's variance is quite independent on the number of particles. It can be explained by the fact that PF has a central theorem validating it, contrary to the EnKF. A too poor number of particles (in practice, 350), leads to non positive covariance matrix. The best choice is then to choose a number of 500 particles, in order to keep a security margin. 

FILTERS BEHAVIOUR IN RELATION TO NOISE

Consider the following covariance levels :

R ww = I R vv = aI (5) 
where a ∈ R * and I denotes the identity matrix of appropriate size. The noises covariances are assumed to be known. Consequently, the filters covariance can be set to these values, i.e. : P ww = R ww , P vv = R vv .

The mean variance of each filter in relation to a is given in table 5, and traces of the real and estimated states are exposed on figure 2 and3, for a = 10. With low covariance noise, the Monte Carlo sampling based filters (i.e. the EnKF and the PF) outperform clearly the CDKF. However, they cannot be used with a noise covariance smaller than the unity, because particles are not dispatched enough in the state space, leading to filter divergence [START_REF] Legland | An analysis of regularized interacting particle methods for nonlinear filtering[END_REF]. In addition, in the case of high noise, their performance is severely decreased, providing the same results as the CDKF. As it was exposed in the preceding section, the EnKF and the PF produce better results than the CDKF in the case of small covariance noise, but do not perform better when a becomes higher than a certain value (in practice, a ≈ 1000)(figures 4 and 5). But, contrary to the CDKF, these two filters have parameters allowing a better tuning. They are :

• the number of particles,

• the threshold of resampling indicator (for PFs).

The purpose of this section is to study the influence of these values on the estimation quality.

Number of particles of the EnKF

As we can explain, the effect of the number of particles of the EnKF does not affect the variance of the filter (it already was seen in section 4), as illustrated in table 6. 

Parameters of the PF

With a high covariance measurement noise, the most remarkable fact is that PF does not proceed to resampling. Consequently, it is natural to reduce the threshold of the resampling indicator. reducing it produces an analogue result with less computation time.

CONCLUSION

On the system tested, the best results are provided by the PF and the EnKF for a measurement covariance noise included between 1I and 1000I.

Below this interval, the CDKF is the only one which can be used. Above this interval, the performance of the three estimators are equivalent, whatever their tuning : if the computation time consumption is taken into account, the CDKF would be the more efficient.

So, for such a system, when the measurement noise has a low or high covariance, it is advised to use the CDKF. In the other case, the EnKF is proving to be the best choice, because it provides the same results as the PF with half of particles, and furthermore, it is simpler to parameterize.

As an outlook of this work, on the one hand, is to compare with nonlinear robust H ∞ filtering. On the other hand, it is to study the behaviour of these estimators with respect to several sensor subsets, in order to develop a tool for the diagnosis of a strongly nonlinear system.
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 2 Fig. 2. Real and estimated state : 1 st component
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 4 Fig. 4. Filters variance for P vv = 10I

Table 1 .

 1 Entropy based indicator :

	Threshold	ln N 10	ln N 30	ln N 50	ln N 100	ln N 150
	Filter's variance	1.46	1.63	1.69	2.01	2.33
	MNR*	0.69	0.56	0.50	0.50	0.46
	Table 2. Effective particles number
		based indicator :		
	Threshold	N 10	N 30	N 50	N 75	N 100
	Filter's variance 1.51 1.69 1.75 1.60 1.66
	MNR*	0.7	0.6	0.56	0.5	0.49

*MNR = Mean Number of Resampling, i.e. the number of resampling during the simulation divided by the running length.

Table 3 .

 3 PF's variance (PFV) in function of the number of particles (N ):

	N	50	100	500	1000	2000 5000 10000
	PFV 9.77 4.21 2.15	1.82	1.63	1.11	1.04

Table 4 .

 4 EnKF's variance (EnKFV) in function of the number of particles (N ):

	N	350	500	750	1000 2000
	EnKFV 1.55 1.52	1.52	1.59	1.56

Table 5 .

 5 Filters variance as a function of measurement noise covariance :

	a	1	10	50	100	500	1000
	CDKF 9.72 10.55	13.40 16.12	29.24 39.86
	EnKF	1.59	3.21	7.74	11.39	26.90 37.96
	PF	1.48	3.18	7.65	11.48	26.78 37.86

Table 6 .

 6 

	N	350	500	750	1000	2000
	EnKFV 38.83 38.22 38.22 38.11 38.63

EnKF's variance (EnKFV) in function of the number of particles (N ):

Table 7 .

 7 PF's variance (PFV) and Mean Number of Resampling (MNR) in function of the threshold of the resampling indicator :Concerning the number of particles, different values have been tested, as exposed in table 8.Growing the number of particles does not improve the effectiveness of the PF. On the contrary, Table 8. PF's variance (PFV) in function of the number of particles (N ) :

	threshold	ln N 50	ln N 10	ln N 3	ln N 1.5	ln N 1.1
	MNR	0	0.02	0.03	0.08	0.27
	PFV	37.86 36.72 39.12	37.98	39.4
	In table 7, it can be seen that reducing the value
	of the threshold makes the resampling step more
	active, but it does not affect the PF's variance.
	It can be explained by the fact that the purpose
	of this step is to avoid the divergence problem,
	especially in the case of model uncertainty, which
	is not what we considered. The reason that the
	chosen value for this threshold is important with
	a low covariance noise (section 4, with a unity
	covariance) is that in this case, the Gaussian
	distribution is quite fit, making too few particles
	being likely at the correction step.	

It can also been solved in nonlinear case, when p(x k |y 0→k ) is Gaussian or close to be Gaussian, and f and g keep this Gaussian character : it is the basis of the nonlinear extensions of Kalman filtering. See[START_REF] Julier | A general method for approximating nonlinear transformations of probability distributions[END_REF] for further details.

Resampling has been introduced by Gordon[START_REF] Gordon | Novel approach to nonlinear/non-Gaussian Bayesian state estimation[END_REF] for avoiding the divergence problems.