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Homogeneous nearly Khler manifolds

We classify six-dimensional homogeneous nearly Khler manifolds and give a positive answer to Gray and Wolf's conjecture: every homogeneous nearly Khler manifold is a Riemannian 3-symmetric space equipped with its canonical almost Hermitian structure. The only four examples in dimension 6 are S 3 × S 3 , the complex projective space CP 3 , the flag manifold F 3 and the sphere S 6 . We develop, about each of these spaces, a distinct aspect of nearly Khler geometry and make in the same time a sharp description of its specific homogeneous structure.

Introduction

Probably the first example known of a nearly Khler manifold is the round sphere in dimension 6, equipped with its well-known non integrable almost complex structure, introduced in [START_REF] Fukami | Almost Hermitian structure on S 6[END_REF]. The resulting almost Hermitian structure is invariant for the action of G 2 on S 6 coming from the octonions (we look at S 6 as the unit sphere in the imaginary set ℑ ⊂ O). Thus S 6 ≃ G 2 /SU (3) is an example of a 6-dimensional homogeneous nearly Khler manifold as we consider in the present article. Notice also that the representation of SU (3) on the tangent spaces -the isotropy representation -is irreducible. Then, Joseph A. Wolf in his book Spaces of constant curvature [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF], discovered a class of isotropy irreducible homogeneous spaces G/H that generalizes S 6 . Indeed, G is a compact Lie group and H, a maximal connected subgroup, centralizing an element of order 3. Further in this way, Wolf and Gray [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF] investigated the homogeneous spaces defined by Lie group automorphisms i.e. such that H is the fixed point set of some s : G → G. They asked the following question : which of these spaces admit an invariant almost Hermitian structure with good properties ? In particular, nearly Khler manifolds are associated, through their work, to a type of homogeneous spaces -the 3-symmetric spaces -corresponding to s of order 3. Since their study was quite general, they felt legitimate to make a conjecture, which I reformulated using the terminology of the later article [START_REF] Gray | Riemannian manifolds with geodesic symmetries of order 3[END_REF] by Gray alone: Conjecture 1 (Gray and Wolf ). Every nearly Khler homogeneous manifold is a 3-symmetric space equipped with its canonical almost complex structure.

Another way to construct examples is by twistor theory. The twistor space Z of a self-dual 4-manifold has a natural complex structure by [START_REF] Atiyah | Self-duality in four-dimensional Riemannian geometry[END_REF] but also, a non 1 integrable almost complex structure (see [START_REF] Eels | Constructions twistorielles des applications harmoniques[END_REF]). The latter may be completed into a nearly Khler structure when the base is furthermore Einstein, with positive scalar curvature. The same construction holds for the twistor spaces of the positive quaternion-Khler manifolds (see [START_REF] Alexandrov | Curvature properties of twistor spaces of quaternionic Khler manifolds[END_REF][START_REF] Nagy | On nearly Kähler geometry[END_REF]) or of certain symmetric spaces (as explained for instance in [START_REF] Salamon | Harmonic and holomorphic maps[END_REF]). In this case Z is a 3-symmetric space again.

Next, in the 70's [START_REF] Gray | Nearly Kähler geometry[END_REF][START_REF] Gray | The structure of nearly Kähler manifolds[END_REF] and more recently (we mention, as a very incomplete list of references on the topic: [START_REF] Reyes Carrión | Some special geometries defined by Lie groups[END_REF][START_REF] Belgun | Nearly-Kähler 6-manifolds with reduced holonomy[END_REF][START_REF] Nagy | On nearly Kähler geometry[END_REF] and [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF]), nearly Khler manifolds have been studied for themselves. Some very interesting properties were discovered, especially in dimension 6, that give them a central role in the study of special geometries with torsion. These properties can all be interpreted in the setting of weak holonomy. Nearly Khler 6-dimensional manifolds are otherwise called weak holonomy SU [START_REF] Alexandrov | On weak holonomy[END_REF]. Many definitions of this notion have been proposed. One is by spinors [START_REF] Bär | Real Killing spinors and holonomy[END_REF] ; others by differential forms [START_REF] Semmelmann | Conformal Killing forms on Riemannian manifolds[END_REF][START_REF] Butruille | Varits de Gray et gomtries spciales en dimension 6[END_REF] ; the original one by Gray [START_REF] Gray | Weak holonomy groups[END_REF] was found incorrect (see [START_REF] Alexandrov | On weak holonomy[END_REF]). Finally, Cleyton and Swann [START_REF] Cleyton | G-structures and Einstein metrics[END_REF][START_REF] Cleyton | Einstein metrics via intrinsic or parallel torsion[END_REF] have explored theirs based on the torsion of the canonical connection of a G-structure. They lead to a theorem which can be applied to our problem to show that nearly Khler manifolds whose canonical connection has irreducible holonomy are either 3-symmetric or 6-dimensional. This constitutes an advance towards and gives a new reason to believe to Gray and Wolf's conjecture. However, dimension 6 still resists. Moreover, when the holonomy is reducible, we do not have of a de Rham-like theorem, like in the torsion-free situation. It was Nagy's main contribution to this issue, to show that we can always lead back, in this case, to the twistor situation. Using this, he was able to reduce conjecture 1 to dimension 6.

This is where we resume his work. We classify 6-dimensional nearly Khler homogeneous spaces and show that they are all 3-symmetric.

Theorem 1. Nearly Khler, 6-dimensional, Riemannian homogeneous manifolds are isomorphic to a finite quotient of G/H where the groups G, H are given in the list:

-G = SU (2) × SU (2) and H = {1} -G = G 2 and H = SU [START_REF] Alexandrov | On weak holonomy[END_REF]. In this case G/H is the round 6-sphere.

-G = Sp(2) and H = SU (2)U [START_REF] Alexandrov | Curvature properties of twistor spaces of quaternionic Khler manifolds[END_REF]. Then, G/H ≃ CP 3 , the 3-dimensional complex projective space.

-G = SU (3), H = U (1) × U (1) and G/H is the space of flags of C 3 .

Each of these spaces, S 3 × S 3 , S 6 , CP 3 and F 3 , carry a unique invariant nearly Khler structure, up to homothety.

As a corollary, Theorem 2. Conjecture 1 is true in dimension 6 and thus, by the work of Nagy, in all (even) dimensions.

The proof is systematic. We start (proposition 5.1) by making a list of the pairs (G, H) such that G/H is likely, for topological reasons, to admit an invariant nearly Khler structure. The homogeneous spaces that appear in this list are the four compact 6-dimensional examples of 3-symmetric spaces found in [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF]. Then, we show, for each space, that there exists no other homogeneous nearly Khler structure than the canonical almost complex structure on it.

As a consequence, this article is mainly focused on examples. However, the four spaces in question are quite representative of a number of features in nearly Khler geometry. Thus, it might be read as a sort of survey on the topic (though very different from the one written by Nagy in the same handbook). Section 2 contains the most difficult point in the proof of theorem 1. We look for leftinvariant nearly Khler structures on S 3 × S 3 . For this we had to use the algebra of differential forms on the manifold, nearly Khler manifolds in dimension 6 being characterized, by the work of Reyes-Carrión [START_REF] Reyes Carrión | Some special geometries defined by Lie groups[END_REF] or Hitchin [START_REF] Hitchin | Stable forms and special metrics, in Global differential geometry: the mathematical legacy of A. Gray[END_REF], by a differential system on the canonical SU (3)-structure. Section 3 is devoted to two homogeneous spaces CP 3 and F 3 that are the twistor spaces of two 4dimensional manifolds: respectively S 4 and CP 2 . We take the opportunity to specify the relation between nearly Khler geometry and twistor theory. Weak holonomy stands in the background of section 4 on the 6-sphere. Indeed, we may derive this notion from that of special holonomy trough the construction of the Riemannian cone. Six-dimensional nearly Khler -or weak holonomy SU (3) -structures on S 6 are in one-to-one correspondance with constant 3forms, inducing a reduction of the holonomy to G 2 on R 7 . Finally, in section 1, we introduce the notions and speak of 3-symmetric spaces in general and in section 5, we provide the missing elements for the proof of theorems 1 and 2.

We should mention here the remaining conjecture on nearly Khler manifolds:

Conjecture 2. Every compact nearly Khler manifold is a 3-symmetric space.

That this conjecture is still open means in particular that the homogeneous spaces presented along this article are the only known compact (or equivalently, complete) examples in dimension 6. Again by the work of Nagy [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF], it may be separated in two restricted conjectures. The first one relates to a similar conjecture on quaternion-Khler manifolds and symmetric spaces, for which there are many reasons to believe that it is true (to begin with, it was solved by Poon and Salamon [START_REF] Poon | Eight-dimensional quaternionic Khler manifolds with positive scalar curvature[END_REF] in dimension 8 and recently by Hayde and Rafael Herrera [START_REF] Herrera | Â-genus on non-spin manifolds with S 1 actions and the classification of positive quaternionic Khler 12-manifolds[END_REF] in dimension 12). The second may be formulated: the only compact, simply connected, irreducible (with respect to the holonomy of the intrinsic connection), 6-dimensional, nearly Khler manifold is the sphere S 6 -and concerns the core of the nearly Khler geometry: the fundamental explanation of the rareness of such manifolds or the difficulty to produce non-homogeneous examples.

1 Preliminaries: nearly Khler manifolds and 3symmetric spaces

Nearly Khler manifolds are a type of almost Hermitian manifolds i.e. 2ndimensional real manifolds with a U (n)-structure (a U (n)-reduction of the frame bundle) or equivalently, with a pair of tensors (g, J) or (g, ω), where g is a Riemannian metric, J an almost complex structure compatible with g in the sense that ∀X, Y ∈ T M, g(JX, JY ) = g(X, Y ) (J is orthogonal with respect to g pointwise) and ω is a differential 2-form, called the Khler form, related to g, J by

∀X, Y ∈ T M, ω(X, Y ) = g(JX, Y )
Associated with g there is the well-known Levi-Civita connection, ∇, metric preserving and torsion-free. But nearly Khler manifolds, as every almost Hermitian manifolds, have another natural connection ∇, called the intrinsic connection or the canonical Hermitian connection, which shall be of considerable importance in the sequel. Let so(M ) be the bundle of skew-symmetric endomorphisms of the tangent spaces (the adjoint bundle of the metric structure). The set of metric connections of (M, g) is an affine space SO modelled on the space of sections of T * M ⊗ so(M ). Then, the set U of Hermitian connections (i.e. connections which preserve both the metric and the almost complex structure or the Khler form) is an affine subspace of SO with vector space Γ(T * M ⊗ u(M )), where u(M ) is the subbundle of so(M ) formed by the endomorphisms which commute with J (or in other words, the adjoint bundle of the U (n)-structure). Finally, we denote by u(M ) ⊥ the orthogonal complement of u(M ) in so(M ), identified with the bundle of skew-symmetric endomorphisms of T M , anti-commuting with J.

Definition 1.1. The canonical Hermitian connection ∇ is the projection of ∇ ∈ SO on U. Equivalently, it is the unique Hermitian connection such that ∇ -∇ is a 1-form with values in u(M ) ⊥ .

The difference η = ∇ -∇ is known explicitely:

∀X ∈ T M, η X = 1 2 J • (∇ X J)
It measures the failure of the U (n)-structure to admit a torsion-free connection, in other words its torsion or its 1-jet (see [START_REF] Bryant | Metrics with special holonomy[END_REF]). Thus, it can be used (or ∇ω, or ∇J) to classify almost Hermitian manifolds as in [START_REF] Gray | The sixteen classes of almost Hermitian manifolds and their linear invariants[END_REF]. For example, Khler manifolds are defined by ∇ itself being a Hermitian connection: ∇ = ∇. Equivalently, because η determines dω and the Nijenhuis tensor N , ω is closed and J is integrable.

Definition 1.2. Let M be an almost Hermitian manifold. The following conditions are equivalent and define a nearly Khler manifold:

(i) the torsion of ∇ is totally skew-symmetric.

(ii) ∀X ∈ T M , (∇ X J)X = 0 (iii) ∀X ∈ T M , ∇ X ω = 1 3 ι X dω (iv) dω is of type (3,0)+(0,3) and N is totally skew-symmetric.

The following result, due to Kirichenko [START_REF] Kirichenko | K-spaces of maximal rank[END_REF], is the base of the partial classification by Nagy in [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF] of nearly Khler manifolds.

Proposition 1.3 (Kirichenko). For a nearly Khler manifold, the torsion of the intrinsic connection is totally skew-symmetric (by definition) and parallel:

∇η = 0
Moreover, this is equivalent to ∇∇ω = 0 or ∇dω = 0 because ∇ is Hermitian. Now, suppose that the curvature of ∇ is also parallel: ∇ R = 0. Then, M is locally homogeneous or an Ambrose-Singer manifold. Besides, the associated infinitesimal model is always regular (for a definition of these notions, see [START_REF] Cleyton | Einstein metrics via intrinsic or parallel torsion[END_REF], citing [START_REF] Tricerri | Locally homogeneous Riemannian manifolds[END_REF]) and thus, if it is simply connected, M is an homogeneous space. Examples obtained in this way belong to a particular class of homogeneous manifolds: the 3-symmetric spaces, defined by Gray [START_REF] Gray | Riemannian manifolds with geodesic symmetries of order 3[END_REF], which shall interest us in the rest of this section. As expected, the 3-symmetric spaces are a generalization of the well-known symmetric spaces: Definition 1.4. A 3-symmetric space is a homogeneous space M = G/H, where G has an automorphism s of order 3 (instead of an involution, for a symmetric space) such that

G s 0 ⊂ H ⊂ G s (1) 
where G s = {g ∈ G | s(g) = g} is the fixed points set of s and G s 0 is the identity component of G s .

Let g, h be the Lie algebras of G, H, respectively. For a symmetric space, the eigenspace m for the eigenvalue -1 of ds : g → g (the derivative of s) is an Ad(H)-invariant complement of h in g, so that symmetric spaces are always reductive. Conversely, for a reductive homogeneous space, we define an endormorphism f of g by f

| h = Id| h and f | m = -Id| m , which integrates into a Lie group automorphism of G if and only if [m, m] ⊂ h (2) 
For a 3-symmetric space, things are slightly more complicated because ds has now three eigenvalues, 1, j = -

1 2 + i √ 3 2 and j 2 = j = -1 2 -i √ 3 
2 , two of which are complex. The corresponding eigenspaces decomposition is

g C = h C ⊕ m j ⊕ m j 2 .
Setting m = (m j ⊕ m j 2 ) ∩ g, we get

g = h ⊕ m, Ad(H)m ⊂ m (3) 
so 3-symmetric spaces are also reductive. As a consequence, invariant tensors, for the left action of G on M , are represented by constant, Ad(H)-invariant tensors on m. For example, an invariant almost complex structure is identified, first with the subbundle T + M ⊂ T C M of (1,0)-vectors, then with a decomposition

m C = m + ⊕ m -where Ad(H)m + ⊂ m + and m -= m + . ( 4 
)
Definition 1.5. The canonical almost complex structure of a 3-symmetric space is the invariant almost complex structure associated to m j ⊕ m j 2 .

In other words, the restriction ds : m → m represents an invariant tensor S of M satisfying: (i) S 3 = Id. (ii) For all x ∈ M , 1 is not an eigenvalue of S x . One can then write S as for a (non trivial) third root of unity:

S = - 1 2 Id + √ 3 2 J ( 5 
)
where J is the canonical almost complex structure of M . Similarly, an Ad(H)-invariant scalar product g on m defines an invariant metric on M , also denoted by g, and the pair (M, g) is called a Riemannian 3-symmetric space if and only g, J are compatible.

Conversely a decomposition like (4) comes from an automorphism of order 3 if and only if h, m + , m -satisfy

[m + , m + ] ⊂ m -, [m -, m -] ⊂ m + and [m + , m -] ⊂ h C . ( 6 
)
instead of (2). Now, conditions involving the Lie bracket might be interpreted, on a reductive homogeneous space, as conditions on the torsion and the curvature of the normal connection ∇. The latter is defined as the H-connection on

G whose horizontal distribution is G × m ⊂ T G ≃ G × g.
Lemma 1.6. The torsion T and the curvature R of the normal connection ∇, viewed as constant tensors, are respectively the m-valued 2-form and the h-valued 2-form on m given by

∀X, Y ∈ m, T (X, Y ) = -[X, Y ] m , R X,Y = [X, Y ] h
Proposition 1.7. A reductive almost Hermitian homogeneous space M = G/H is a 3-symmetric space if and only if it is quasi-Khler and the intrinsic connection ∇ concides with ∇.

An almost Hermitian manifold is said quasi-Khler or (2,1)-symplectic iff dω has type (3,0)+(0,3) or equivalently η (or ∇J) is a section of

Λ 1 ⊗ u(M ) ⊥ ∩ [[λ 2,0 ]]⊗T M where [[λ 2,0 ]] ⊂ Λ 2 is the bundle of real 2-forms of type (2,0)+(0,2).
Proof. By lemma 1.6, ( 6) is equivalent to

T (m + , m + ) ⊂ m -, T (m -, m -) ⊂ m + , T (m + , m -) = {0} R(m + , m + ) = R(m -, m -) = {0}
The first line implies that η = ∇ -∇ ∈ Λ 1 ⊗ u(M ) ⊥ (for a metric connection, the torsion and the difference with the Levi-Civita connection are in one-toone correspondance), i.e. ∇ is the canonical Hermitian connection. It also 2,0 ]] are isomorphic through the operation of raising, or lowering, indices). The second line is automatically satisfied for a quasi-Khler manifold, see [START_REF] Falcitelli | Almost-Hermitian geometry[END_REF].

implies that η = η ∈ [[λ 2,0 ]] ⊗ T M (note that the bundles u(M ) ⊥ ≃ [[λ
There is also a local version of proposition 1.7, announced in the middle of this section.

Theorem 1.8. An almost Hermitian manifold M is locally 3-symmetric if and only if it is quasi-Khler and the torsion and the curvature of the intrinsic connection ∇ satisfy ∇T = 0 and ∇ R = 0

The definition of a locally 3-symmetric space given in [START_REF] Gray | Riemannian manifolds with geodesic symmetries of order 3[END_REF] relates to the existence of a family of local cubic isometries (s x ) x∈M such that, for all x ∈ M , x is an isolated fixed point of s x (for a 3-symmetric space, the automorphism s provides such a family, moreover the isometries are globally defined).

Then, the requirement that M , the Riemannian 3-symmetric space, is a nearly Khler manifold (which is more restrictive than quasi-Khler) translates to a structural condition on the homogeneous space. Definition 1.9. A reductive Riemannian homogeneous space is called naturally reductive iff the scalar product g on m representing the metric satisfies

∀X, Y, Z ∈ m, g([X, Y ], Z) = -g([X, Z], Y )
Equivalently, the torsion T of the normal connection is totally skew-symmetric. Now, for a 3-symmetric space, the intrinsic connection coincides with the normal connection, by proposition 1.7.

Proposition 1.10. A Riemannian 3-symmetric space equipped with its canonical almost complex structure is nearly Khler if and only if it is naturally reductive.

Remark. Let M = G/H be a compact, inner 3-symmetric space such that G is compact, simple. The Killing form B of G is negative definite so it induces a scalar product q = -B on g. Then, the summand m, associated to the eigendecomposition of ds = Ad(h), is orthogonal to h and the restriction of q to m defines a naturally reductive metric that makes M a nearly Khler manifold.

2 The case of S 3 × S 3 : the natural reduction to SU

In [START_REF] Ledger | Affine and Riemannian s-manifolds[END_REF], Ledger and Obata gave a procedure to construct a nearly Khler 3symmetric space for each compact Lie group G. The Riemannian product G × G×G has an obvious automorphism of order 3, given by the cyclic permutation, whose fixed point set is the diagonal subgroup ∆G

= {(x, x, x) | x ∈ G} ≃ G.
The resulting homogeneous space is naturally isomorphic to G×G: to fix things, we shall identify (x, y) with [x, y, 1]. In other words, we get a 3-symmetric structure on G × G, invariant for the action:

((h 1 , h 2 , h 3 ), (x, y)) → (h 1 xh -1 3 , h 2 yh -1 3 )
Now, let q be an Ad(G)-invariant scalar product on g, representing a biinvariant metric on G. We choose, for the Ad(∆G)-invariant complement of δg (the Lie algebra of ∆G) in g ⊕ g ⊕ g, m = {0} ⊕ g ⊕ g, the sum of the last two factors, so that the restriction of q ⊕ q ⊕ q to m defines a naturally reductive metric g which is not the biinvariant metric of G × G. Indeed, the vector

(X, Y ) ∈ g ⊕ g ≃ T e (G × G) is identified with (0, Y -X, X) ∈ m so we have the explicit formula g e ((X, Y ), (X ′ , Y ′ )) = q(Y -X, Y ′ -X ′ ) + q(X, X ′ ).
Following this procedure and setting G = SU (2) ≃ S 3 , we obtain a 6dimensional example: S 3 × S 3 . In this section we will look for nearly Khler structures on S 3 × S 3 invariant for the smaller group

SU (2) × SU (2) ֒→ SU (2) × SU (2) × SU (2) (h 1 , h 2 ) → (h 1 , h 2 , 1)
or for the left action of SU (2) × SU (2) on itself. Such a structure is then simply given by constant tensors on the Lie algebra su(2) ⊕ su(2). The latter is a 6dimensional vector space so, for example, the candidates for the metric belong to a 21-dimensional space S 2 (2su(2)). Thus, the calculations involving the Levi-Civita connection as in definition 1.2 are too hard and we shall look for another strategy.

Nearly Khler manifolds in dimension 6 are special. In particular they're always Einstein [START_REF] Gray | The structure of nearly Kähler manifolds[END_REF] and possess a Killing spinor [START_REF] Grunewald | Six-dimensional Riemannian manifold with real Killing spinors[END_REF]. But the most important feature, for us, is a natural reduction to SU (3). Indeed, an SU (3)-structure in dimension 6, unlike an almost Hermitian structure, may be defined, without the metric, only by means of differential forms. This should be compared to the fact that a G 2 -structure is determined by a differential 3-form on a 7-manifold.

In first approach, an SU (3)-manifold is an almost Hermitian manifold with a complex volume form (a complex 3-form of type (3,0) and constant norm) Ψ. This complex 3-form can be decomposed into real and imaginary parts:

Ψ = ψ + iφ where ∀X ∈ T M, ι X ψ = ι JX φ (7) 
As a consequence, one of the real 3-forms ψ or φ, together with J, determines the reduction of the manifold to SU (3). Now, for a nearly Khler manifold, such a form is naturally given by the differential of the Khler form. Indeed, because of our preliminaries, dω has type (3,0)+(0,3) (see definition 1.2) and constant norm, since it is parallel for the metric connection ∇.

Definition 2.1. The natural SU (3)-structure of a 6-dimensional nearly Khler manifold is defined by

ψ := 1 3 dω
where ω is the Khler form.

There is more. Hitchin has observed in [START_REF] Hitchin | Stable forms and special metrics, in Global differential geometry: the mathematical legacy of A. Gray[END_REF] that a differential 2-form ω and a differential 3-form ψ, satisfying algebraic properties, are enough to define a reduction of the manifold to SU (3). In particular they determine the metric g and the almost complex structure J. Indeed, SU (3) may be seen as the intersection of two groups, Sp(3, R) and SL(3, C), which are themselves the stabilizers of two exteriors forms on R 6 . For the symplectic group Sp(3, R), it is a non-degenerate 2-form of course. As for the second group, GL(6, R) has two open orbits O 1 and O 2 on Λ 3 R 6 . The stabilizer of the forms in the first orbit is SL(3, C). To define the action of the latter, we must see R 6 as the complex vector space C 3 . Consequently, if a differential 3-form ψ belongs to O 1 at each point, it determines an almost complex structure J on M . Then, ω, J determine g under certain conditions.

We need to write this explicitly (after [START_REF] Hitchin | The geometry of three-forms in six dimensions[END_REF][START_REF] Hitchin | Stable forms and special metrics, in Global differential geometry: the mathematical legacy of A. Gray[END_REF]). For ψ ∈ Λ 3 , we define

K ∈ End(T M ) ⊗ Λ 6 by K(X) = A(ι X ψ ∧ ψ)
where A : Λ 5 → T M ⊗ Λ 6 is the isomorphism induced by the exterior product. Then, τ (ψ) = 1 6 tr K 2 is a section of (Λ 6 ) 2 and it can be shown that

K 2 = Id ⊗ τ (ψ)
The 3-form ψ belongs to O 1 at each point if and only if

τ (ψ) < 0 (8) 
Then, for κ = -τ (ψ),

J = 1 κ K
is an almost complex structure on M . Moreover, the 2-form ω is of type (1, 1) with respect to J if and only if

ω ∧ ψ = 0 (9)
Finally, ω has to be non degenerate ω ∧ ω ∧ ω = 0 [START_REF] Butruille | Twistors and 3-symmetric spaces[END_REF] and g has to be positive:

(X, Y ) → g(X, Y ) = ω(X, JY ) > 0 (11)
This is at the algebraic level. At the geometric level, Salamon and Chiossi [START_REF] Chiossi | The intrinsic torsion of SU (3) and G 2 structures, in Differential Geometry[END_REF] have shown that the 1-jet of the SU (3)-structure (or the intrinsic torsion) is completely determined by the differentials of ω, ψ, φ. In particular, nearly Khler manifolds are viewed, in this section, as SU (3)-manifolds satisfying a first order condition. Thus, they're characterized by a differential system involving these three forms:

ψ = 3dω dφ = -2µ ω ∧ ω ( 12 
)
where µ ∈ R. This differential system was first written by Reyes Carrión in [START_REF] Reyes Carrión | Some special geometries defined by Lie groups[END_REF]. As a consequence, looking for a nearly Khler structure on a manifold is the same as looking for a pair of forms (ω, ψ) satisfying ( 8)- [START_REF] Burstall | Twistor theory for Riemannian symmetric spaces with applications to harmonic maps of Riemann surfaces[END_REF] together with [START_REF] Bryant | Metrics with special holonomy[END_REF] or, considering the particular form of ( 12), for a 2-form ω only, satisfying a highly non linear second order differential equation. We shall resolve this system on the space of invariant 2-forms of S 3 × S 3 .

We work with a class of co-frames (e 1 , e 2 , e 3 , f 1 , f 2 , f 3 ), called cyclic coframes, satisfying: (i) (e 1 , e 2 , e 3 , f 1 , f 2 , f 3 ) is invariant for the action of SU (2) × SU (2) on itself. (ii) the 1-forms e i (resp. f i ), i = 1, 2, 3 vanish on the tangent space of the first (resp. the second) factor. (iii) de i = e i+1 ∧ e i+2 where the subscripts are viewed as elements of Z 3 . Similarly,

df i = f i+1 ∧ f i+2 .
The group of isometries of the sphere S 3 ≃ SU (2), equipped with its round biinvariant metric is SO(4), with isotropy subgroup SO(3). Moreover the isotropy representation lifts to the adjoint representation of SU (2) ≃ Spin(3). We denote (u, l) → u.l the action of SO(3) on the dual su(2) * of the Lie algebra. Then, SO(3) × SO(3) acts transitively on the set of cyclic co-frames by

(u, v).(e 1 , e 2 , e 3 , f 1 , f 2 , f 3 ) → (u.e 1 , u.e 2 , u.e 3 , v.f 1 , v.f 2 , v.f 3 ) (13) 
In other words, two such co-frames are exchanged by a diffeomorphism of S 3 ×S 3 and more precisely by an isometry of the canonical metric. Now, a generic invariant 2-form may be written in the form

ω = 3 i=1 a i e i+1 ∧ e i+2 + 3 i=1 b i f i+1 ∧ f i+2 + 3 i,j=1 c i,j e i ∧ f j (14) 
Let A be the column vector of the a i , B the column vector of the b i and C the square matrix (c i,j ) i,j=1,2,3 . The latter is subject to the following transformation rule in a change of cyclic co-frame [START_REF] Chiossi | The intrinsic torsion of SU (3) and G 2 structures, in Differential Geometry[END_REF]:

C → M C t N, (15) 
where the 3 × 3 matrices M (resp. N ) represent u (resp. v) in the old base.

We have the first essential simplification of ( 14):

Lemma 2.2. Let ω be a non degenerate invariant 2-form on S 3 × S 3 . Then, ω, ψ = 1 3 dω satisfy (9) if and only if there exists a cyclic co-frame (e 1 , e 2 , e 3 , f

1 , f 2 , f 3 ) such that ω = λ 1 e 1 ∧ f 1 + λ 2 e 2 ∧ f 2 + λ 3 e 3 ∧ f 3 ( 16 
)
where ∀i = 1, 2, 3,

λ i ∈ R * .
Proof. Starting from ( 14), we calculate ω∧ω∧ω. The 2-form ω is non degenerate if and only if

t ACB + det C = 0 (17) 
Then, we calculate ψ = 1 3 dω using the relations (iii), in the definition of a cyclic co-frame. We find that ω ∧ ψ = 0 is equivalent to t AC = CB = 0. Reintroducing these equations in [START_REF] Falcitelli | Almost-Hermitian geometry[END_REF], we get det C = 0, i.e. C is nonsingular, and so A = B = 0.

Secondly, we can always suppose that C is diagonal. Indeed, we write C as the product of a symmetric matrix S and an orthogonal matrix O ∈ SO(3). We diagonalize S: there exists an orthogonal matrix P such that S = t P DP where D is diagonal. Thus C = t P D(P O) and by [START_REF] Cleyton | Einstein metrics via intrinsic or parallel torsion[END_REF], ω can always be written in the form [START_REF] Eels | Constructions twistorielles des applications harmoniques[END_REF] where

D = diag(λ 1 , λ 2 , λ 3 ).
This is a key lemma that will constitute the base of our next calculations.

Lemma 2.3. Let ω be the invariant 2-form given by ( 16) in a cyclic co-frame. Then, ω, ψ = 1 3 dω define an SU (3) structure on S 3 × S 3 if and only if:

(i) (λ 1 -λ 2 -λ 3 )(-λ 1 + λ 2 -λ 3 )(-λ 1 -λ 2 + λ 3 )(λ 1 + λ 2 + λ 3 ) < 0 (ii) λ 1 λ 2 λ 3 > 0
Proof. The first condition is simply [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF]. Indeed,

3ψ = λ 1 (e 23 ∧ f 1 -e 1 ∧ f 23 ) + λ 2 (e 31 ∧ f 2 -e 2 ∧ f 31 ) + λ 3 (e 12 ∧ f 3 -e 3 ∧ f 12 )
and we calculate

81τ (ψ) = (λ 4 1 + λ 4 2 + λ 4 3 -2λ 2 1 λ 2 2 -2λ 2 2 λ 2 3 -2λ 2 1 λ 2 3 ) ⊗ vol 2 (18) 
where vol = e 123 ∧ f 123 . Now, the polynomial of degree 4 on the λ i in [START_REF] Fernandez | Riemannian manifolds with structure group G 2[END_REF] factors into (i) of lemma 2.3.

The second condition comes from the positivity of the metric. Note that the product λ 1 λ 2 λ 3 = det C is independent on the choice of the co-frame (e 1 , e 2 , e 3 , f 1 , f 2 , f 3 ), the determinant of the matrices M , N , in [START_REF] Cleyton | Einstein metrics via intrinsic or parallel torsion[END_REF], being equal to 1. First, we compute the almost complex structure in the dual frame

(X 1 , X 2 , X 3 , Y 1 , Y 2 , Y 3 ): JX i = α i X i + β i Y i , JY i = -β i X i -α i Y i ( 19 
)
where

α i = 1 k (λ 2 i -λ 2 i+1 -λ 2 i+2
) and

β i = - 2 k λ i+1 λ i+2 9κ = k vol
Now, X → ω(X, JX) is the sum of three quadratic forms of degree 2:

q i : (x i , y i ) → 2λ i k λ i+1 λ i+2 x 2 i -(λ 2 i -λ 2 i+1 -λ 2 i+2 )x i y i + λ i+1 λ i+2 y 2 i
The discriminant of these forms is k 2 > 0 so they are definite and their sign is given by λ 1 λ 2 λ 3 .

Using [START_REF] Th | Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature[END_REF] it is easy to compute φ, by [START_REF] Berger | Sur Les Groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes[END_REF], and translate the second line of (12) into a system of equations on the λ i . We refer to [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF] for a detailed proof.

Lemma 2.4. Let ω be the invariant 2-form given by ( 16) in a cyclic co-frame. Then ω, ψ = 1 3 dω induce a nearly Khler structure on S 3 × S 3 if and only if there exists µ ∈ R such that, for all i = 1, 2, 3,

c = λ 2 i (λ 2 i -λ 2 i+1 -λ 2 i+2 ) (20) 
where c = -2µk det C.

Finally we can conclude:

Proposition 2.5. There exists a unique (up to homothety, up to a sign) leftinvariant nearly Khler structure on S 3 ×S 3 , corresponding to Ledger and Obata's construction of a 3-symmetric space.

Proof. Thanks to the preparatory work, we only need to solve the system (20) of equations of degree 4 on the λ i . Let Λ = λ 2 1 + λ 2 2 + λ 2 3 . For all i = 1, 2, 3, λ 2 i is a solution of the unique equation of degree 2:

2x 2 -Λx -c = 0 (21) 
Suppose that λ 2 1 , λ 2 2 are two distinct solutions of (21) and λ 2 3 = λ 2 2 , for example. The sum of the roots λ 2 1 + λ 2 2 equals Λ 2 . But then, we also have Λ = λ 2 1 + 2λ 2 2 , by definition of Λ. We immediatly get λ 1 = 0, i.e. ω is degenerate, a contradiction. Thus, the λ i must be equal, up to a sign. The positivity of the metric, (11) or 2.3 (ii), implies that the three signs are positive, or only one of them. These two solutions are in fact the same: one is obtained from the other by a rotation of angle π in the first factor. Finally, one can always write ω, for a left-invariant nearly Khler structure,

ω = λ(e 1 ∧ f 1 + e 2 ∧ f 2 + e 3 ∧ f 3 ) where λ = λ 1 = λ 2 = λ 3 ∈ R + * .
We also have k = λ 2 √ 3,

JX i = 1 λ 2 √ 3 (-X i + 2Y i ), JY i = 1 λ 2 √ 3 (-2X i + Y i ). (22) 
Now, ( 22) coincides with the canonical almost complex structure of SU (2) × SU (2)×SU (2)/∆SU (2). Indeed, the automorphism of order 3, s : (h 1 , h 2 , h 3 ) → (h 2 , h 3 , h 1 ), induces the endomorphism S : (X, Y ) → (Y -X, -X) on m ≃ su(2) ⊕ su(2). Then, by (5), J is identified with

J : (X, Y ) → 1 √ 3 (2Y -X, -2X + Y )
This is no more than ( 22) with λ = 1 for an appropriate choice of base.

NB : c = 2µλ 5 √ 3 so by [START_REF] Th | Nearly Khler and nearly parallel G 2 -structures on spheres[END_REF], µ = 1 2λ √ 3 is inversely proportional to the norm of ω.

3 Twistors spaces: the complex projective space CP 3 and the flag manifold F 3

The twistor space Z of a 4-dimensional, Riemannian, oriented manifold (N, h) is equipped with two natural almost complex structures. The first, J + , studied by Atiyah, Hitchin and Singer [START_REF] Atiyah | Self-duality in four-dimensional Riemannian geometry[END_REF], is integrable as soon as N is self-dual, i.e one half of the Weyl tensor of h vanishes, while the second J -, which was first considered by Salamon and Eels in [START_REF] Eels | Constructions twistorielles des applications harmoniques[END_REF], is never integrable. Now, on Z, varying the scalar curvature of the fibre, there are also a 1-parameter family of metrics (g t ) t∈]0,+∞[ such that the twistor fibration over (N, h) is a Riemannian submersion and for all t, (g t , J ± ) is an almost Hermitian structure on Z. A natural problem is then to look at the type of this almost Hermitian structure. We are particularly interested in the case where N is compact, self-dual and Einstein.

Theorem 3.1 (Hitchin, Eels & Salamon). Let (N, h) be a compact, Riemannian, oriented, self-dual, Einstein 4-manifold, Z its twistor space and (g t ) t∈[0,+∞[ , the twistor metrics. There exists a choice of parameter such that the scalar curvature of the fibre of π : Z → N is proportionnal to t and (i) (Z, g 2 , J + ) is Khler (ii) (Z, g 1 , J -) is nearly Khler.

This provides us for two compact, homogeneous, nearly Khler structures in dimension 6 on the complex projective space CP 3 and the flag manifold F 3 , the twistor spaces of S 4 and CP 2 , respectively. Moreover, we shall see that they correspond to a 3-symmetric structure. The goal of this section is to prove that these are the only invariant nearly Khler structures on the above mentioned spaces. This is quite easy for CP 3 . The complex projective space is seen, in this context, as Sp(2)/U (1)Sp(1). More generally, CP 2q+1 is isomorphic to Sp(q + 1)/U (1)Sp(q). Indeed, Sp(q + 1) acts transitively on C 2q+2 ≃ H q+1 , preserving the complex lines, and the isotropy subgroup at x ∈ CP 2q+1 fixes also jx and acts on the orthogonal of {x, jx}, identified with H q , as Sp(q). Representing sp(q) as usual in the set of q × q matrices, the embedding of h = u(1)⊕ sp(1), the Lie algebra of H = U (1)Sp(1), in g = sp(2) is given by the composition of the natural maps u(1) ֒→ sp(1) and the identity of sp(1), followed by the diagonal map sp(1) ⊕ sp(1) ֒→ sp(2). Thus, a natural choice of complement of h in g is m = p ⊕ v where

p = { 0 a a * 0 | a ∈ H} and v = { b 0 0 0 | b = jx + ky, x, y ∈ R}
These two subsets are Ad(H)-invariant so their sum is too and m may be identified with the isotropy representation of Sp(2)/U (1)Sp [START_REF] Alexandrov | Curvature properties of twistor spaces of quaternionic Khler manifolds[END_REF]. The restriction of Ad(H) to p is irreducible because the induced representation of Sp( 1) is isomorphic to the standard one on H. Similarly, the restriction of Ad(H) to v induces the standard representation of U (1) on C. As a consequence, m has exactly two irreducible summands and the set of invariant metrics on CP 3 has dimension 2. Moreover, we can gain one degree of freedom by working "up to homothety". Finally, we get a 1-parameter family of metrics which may be identified with (g t ) t∈[0,+∞[ . On the other hand, CP 3 has 2 2 = 4 invariant almost complex structures according to [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF], theorem 4.3: ±J + and ±J -. Thus, we are in the hypothesis of Muskarov's work [START_REF] Muskarov | Structures presque hermitiennes sur les espaces twistoriels et leurs types[END_REF]. The conclusion is, as in proposition 3.1, Proposition 3.2. The homogeneous space CP 3 ≃ Sp(2)/U (1)Sp( 1) has a unique -up to homotethy, up to a sign -invariant nearly Khler structure (g 1 , J -), associated to the twistor fibration of S 4 .

Things are more complicated for F 3 because the isotropy representation has three irreducible summands. We could adapt Muskarov's proof [START_REF] Muskarov | Structures presque hermitiennes sur les espaces twistoriels et leurs types[END_REF] for this case, as was done in [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF], calculating ∇J for all g with Levi-Civita connection ∇ in the 3-dimensional space of invariants metrics, and all invariant almost complex structure J, or we can look more carefully at the structure of F 3 , as we will do now.

The flag manifold is the space of pairs (l, p) where p ⊂ C 3 is a complex plane and l ⊂ p is a complex line. It is isomorphic to G/H where G = U (3) and H = S 1 × S 1 × S 1 . Indeed, we see U (3) as the space of unitary bases of C 3 . Then, the map (u 1 , u 2 , u 3 ) → (l, p) where l = Cu 1 and p = Cu 1 ⊕ Cu 2 , is an H-principal bundle over F 3 with total space G. Now, the maps π a : (l, p) → Cu a , a = 1, 2, 3 are well-defined (because Cu 1 = l ; Cu 2 = l ⊥ is the orthogonal line of l in p and finally Cu 3 = p ⊥ is the orthogonal of p) and give three different CP 1 -fibrations from F 3 to CP 2 (or, if we identify the base spaces, three different realizations of F 3 as an almost complex submanifold of Z, the twistor space of CP 2 ). This has the following geometrical interpretation: on the fibre of π 3 , l varies inside p ; on the fibre of π 1 , it is the plane p that varies around the line l ; finally, on the fibre of π 2 , both l and p vary while l ⊥ is fixed. These fibrations are all twistor fibrations over an Einstein self-dual 4-manifold. Let I + , J + , K + and I -, J -, K -be the associated almost complex structures, as in proposition 3.1. What is remarkable is that the Khlerian structures are all distinct but the non-integrable nearly Khler structures concide: I -= J -= K -. This observation was already made by Salamon in [START_REF] Salamon | Harmonic and holomorphic maps[END_REF], section 6. We shall prove this at the infinitesimal level. As a consequence, the four above almost complex structures, and their opposites, exhaust all the 8 = 2 3 invariant almost complex structures on F 3 ≃ U (3)/(S 1 ) 3 .

Let g = u(3) be the set of the trace-free, anti-Hermitian, 3 × 3 matrices. Then, h = 3u(1) is identified with the subgroup of the diagonal matrices and the set m of the matrices with zeros on the diagonal is an obvious Ad(H)-invariant complement of h in g. Denote

a, b, c =   0 -a b a 0 -c -b c 0   for all a, b, c ∈ C. ∀h =   e ir 0 0 0 e is 0 0 0 e it   ∈ H, Ad h a, b, c = e i(s-t) a, e i(t-r) b, e i(r-s) c (23)
It is easily seen on ( 23) that the isotropy representation decomposes into

m = p ⊕ q ⊕ r (24) 
where

p = { a, 0, 0 | a ∈ C} q = { 0, b, 0 | b ∈ C} r = { 0, 0, c | c ∈ C}
Each of these 2-dimensional subspaces, a, has a natural scalar product g a and a natural complex structure J a . For example, on p, g p ( a, 0, 0 , a ′ , 0, 0 ) = Re(aa ′ ) and J p a, 0, 0 = ia, 0, 0 Moreover, we denote by p + ⊕ p -the decomposition of p C associated to J p (and similarly for q, r). The relations between the three subspaces p, q and r are given by the Lie brackets:

[ a, 0, 0 , 0, b, 0 ] = 0, 0, ab , etc. [START_REF] Gray | The structure of nearly Kähler manifolds[END_REF] and [ a, 0, 0 , a ′ , 0, 0 ] = diag (iy, -iy, 0) ∈ h, where y = 2Im (aa ′ ), etc. ( 26)

From ( 25) and ( 26), it is easy to calculate [p + , q + ] ⊂ r -, [p + , r -] ⊂ q + and [p + , p + ] = {0}, etc.

Thus, p + ⊕ q + ⊕ r -is a subalgebra of m C , corresponding to an invariant complex structure on F 3 : K + . In the same way, I + , J + are represented by p -⊕ q + ⊕ r + , p + ⊕ q -⊕ r + , respectively. On the contrary, m + = p + ⊕ q + ⊕ r + is not a subalgebra. However, it satisfies ( 6) with m -= m + = p -⊕ q -⊕ r -. Thus, F 3 is a 3-symmetric space with m + as canonical almost complex structure. By proposition 1.7, each pair (g, ±J -), where g is a generic invariant metric, g = rg p + sg q + tg r , is a (2,1)-symplectic homogeneous structure on F 3 . Moreover, since I + , J + , K + are integrable, every invariant (strictly) nearly Khler structure on F 3 has that form, where g is naturally reductive (see proposition 1.10). It is not hard to see that this corresponds to r = s = t.

Proposition 3.3. The nearly Khler structures associated to the three natural twistor fibrations over CP 2 on F 3 ≃ U (3)/(S 1 ) 3 coincide. Moreover, every invariant nearly Khler structure on F 3 is proportional to this one (or to its opposite).

Remark. The decomposition ( 24) is still the irreducible decomposition for SU (3) ⊂ U (3), so the results remain valid for this smaller group of isometries. This observation will be useful in section 5.

4 Weak holonomy and special holonomy: the case of the sphere S 6

While S 3 × S 3 is considered the hardest case because the isotropy is reduced to {0}, the case of S 6 is apparently the easiest because the isotropy is maximal, H = SU (3). The isotropy representation is the standard representation of SU (3) in dimension 6, in particular it is irreducible so there exists only one metric up to homothety and also one almost complex structure up to a sign preserved by H. However, a difficulty occurs since on S 6 unlike on the other spaces considered in sections 2 or 3, the metric doesn't determine the almost complex structure: Proposition 4.1. Let (M, g) be a complete Riemannian manifold of dimension 6, not isomorphic to the round sphere. If there exists an almost complex structure J on M such that (M, g, J) is nearly Khler (non Khlerian) then it is unique. Moreover, in this case, J is invariant by the isometry group of g.

This can be proved using the spinors (by [START_REF] Grunewald | Six-dimensional Riemannian manifold with real Killing spinors[END_REF], a 6-dimensional Riemannian manifold admits a nearly Khler structure if and only if it carries a real Killing spinor): see [START_REF] Butruille | Classification des variétés approximativement kähleriennes homogènes[END_REF] proposition 2.4 and the reference therein [START_REF] Baum | Twistors and Killing Spinors on Riemannian Manifolds[END_REF], proposition 1, p126, or by a "cone argument" (see below) as in [START_REF] Verbitsky | An intrinsic volume functional on almost complex 6manifolds and nearly Khler geometry[END_REF], proposition 4.7.

On the contrary, on the sphere S 6 equipped with its round metric g 0 , there exist infinitely many compatible nearly Khler structures: Proposition 4.2. The set J of almost complex structures J such that (S 6 , g 0 , J) is nearly Khler, is isomorphic to SO(7)/G 2 ≃ RP 7 .

Corollary 4.3. Nearly Khler structures compatible with the canonical metric on S 6 -or almost complex structures J ∈ J , are all conjugated by the isometry group SO(7) of g 0 .

To show this, we shall use a theorem of Br [START_REF] Bär | Real Killing spinors and holonomy[END_REF]: the Riemannian cone of a nearly Khler manifold has holonomy contained in G 2 . However, in order to remain faithful to the point of view of differential forms adopted in this article we prefer the presentation by Hitchin [START_REF] Hitchin | Stable forms and special metrics, in Global differential geometry: the mathematical legacy of A. Gray[END_REF] of this fact. According to section 2, a nearly Khler structure is determined by a pair of differential forms (ω, ψ) satisfying ( 12) as well as algebraic conditions ( 8)- [START_REF] Burstall | Twistor theory for Riemannian symmetric spaces with applications to harmonic maps of Riemann surfaces[END_REF]. Moreover there exists, around each point, an orthonormal co-frame (e 1 , . . . , e 6 ) such that ω = e 12 + e 34 + e 56 and ψ = e 135 -e 146 -e 236 -e 245 , where e 12 = e 1 ∧ e 2 , e 135 = e 1 ∧ e 3 ∧ e 5 , etc. Now, the cone of (M, g) is the Riemannian manifold (M , g) where M = M × R + and g = r 2 g + dr 2 in the coordinates (x, r). We define a section ρ of Λ 3 M by

ρ = r 2 dr ∧ ω + r 3 ψ (27) 
Let u 0 = dr and for all i = 1, . . . , 6,

u i = 1 r e i . ρ = u 012 + u 034 + u 056 + u 135 -u 146 -u 236 -u 245
Thus, ρ is a generic 3-form, inducing a G 2 -structure on the 7-manifold M such that (u 0 , . . . , u 6 ) is an orthonormal co-frame for the underlying Riemannian structure i.e. g is the metric determined by ρ, given the inclusion of G 2 in SO [START_REF] Berger | Sur Les Groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes[END_REF]. Moreover, if we denote by * the Hodge dual of g, * ρ = -r

3 dr ∧ φ + µ 2 r 4 ω ∧ ω Then, ( 12 
) implies dρ = 0 d * ρ = 0
By Gray, Fernandez [START_REF] Fernandez | Riemannian manifolds with structure group G 2[END_REF], the last couple of equations is equivalent to ∇ g ρ = 0, where ∇ g is the Levi-Civita connection of g. In other words, the holonomy of (M , g) is contained in G 2 . Reciprocally, a parallel, generic 3-form on M can always be written ( 27) where (ω, ψ) define a nearly Khler SU (3)-structure on M .

We are now ready to prove proposition 4.2.

Proof. The Riemannian cone of the 6-sphere is the Euclidean space R 7 . According to what precedes, nearly Khler structure on S 6 , compatible with g 0 , define a parallel or equivalently, a constant 3-form on R 7 . This form must have the appropriate algebraic type, i.e. be an element of the open orbit O ≃ GL(7, R)/G 2 ⊂ Λ 3 R 7 . But it must also induce the good metric (the cone metric) on R 7 . Finally the 3-forms that parametrize J belong to a subset of O, isomorphic to SO(7)/G 2 .

The homogeneous nearly Khler structure on S 6 is defined using the octonions. The octonian product (x, y) → x.y may be described in the following way. First, the 8-dimensional real vector space O decomposes into R ⊕ ℑ. The subspace ℑ ≃ R 7 is called the space of imaginary octonions and equipped, for our purposes, with an inner product (x, y) → x, y . Secondly, rules (i) to (iv) below are satisfied with respect to this decomposition: (i) 1.1 = 1, (ii) for all x ∈ ℑ, 1.x = x, (iii) for all imaginary quaternion x of norm 1, x.x = -1, (iv) finally, for all orthogonal x, y ∈ ℑ, x.y = P (x, y) where P : R 7 × R 7 → R 7 is the 2-fold vector cross product. The latter satisfies himself (x, y, z) → P (x, y), z is a 3-form. In particular P (x, y) is orthogonal to x, y. Now, let S 6 be the unit sphere in ℑ ≃ R 7 . The tangent space at x ∈ S 6 is identified with the subspace of R 7 orthogonal to x. Then, J is defined by

J x : T x M → T x M y → x.y
This is a well defined almost complex structure because x.y is orthogonal to x by rule number (iv) and J 2 = -Id by rules (ii), (iii). Moreover J is compatible with the metric induced by ., . on S 6 (the round metric g 0 ).

Reciprocally, starting from J ∈ J , we may rebuild an octonian product on R 7 by bilinearity. Then J is invariant for the associated group of automorphisms, isomorphic to G 2 . Consequently, all nearly Khler structures on the round sphere are of the same kind (homogeneous). They correspond to different choices of embeddings of G 2 into the group of isometries of (S 6 , g 0 ). These embeddings are parametrized by SO(7)/G 2 ≃ RP (7) thus the above discussion gives an alternative proof of proposition 4.2.

The same question was raised by Friedrich in [START_REF] Th | Nearly Khler and nearly parallel G 2 -structures on spheres[END_REF]. His proof is very similar to our first one though it uses the Hodge Laplacian instead of the differential system [START_REF] Bryant | Metrics with special holonomy[END_REF]. Moreover, another proof is mentioned, that uses the Killing spinors.

Finally, a third or fifth way of looking at this is the following: each SU (3)structure (ω x , ψ x ) on a tangent space T x S 6 , x ∈ S 6 , may be extended in a unique way to a nearly Khler structure on the whole manifold. Let ρ be the constant 3-form on R 7 whose value at (x, 1) is

ρ (x,1) = dr ∧ ω x + ψ x
Then, ρ is parallel for the Levi-Civita connection of the flat metric and in return, ω = ι ∂r ρ, ψ = 1 3 dω determine a nearly Khler structure on S 6 whose values at x coincide with ω x , ψ x , consistent with our notations. Now, SU (3)-structures on a 6-dimensional vector space are parametrized by SO(6)/SU (3) so this constitutes a (differential) geometric proof of the isomorphism

SO(6) SU (3) ≃ SO(7) G 2 ≃ RP (7) ≃ J
5 Classification of 3-symmetric spaces and proof of the theorems

In this section, we draw all the useful conclusions of the facts gathered in the previous sections about nearly Khler manifolds and synthesize all the results to achieve the proof of theorems 1 and 2.

As such, the conjecture of Gray and Wolf is not easy to settle because the notion of a nearly Khler manifold, or even of a 3-symmetric space, are too rich. Indeed, the classification of 3-symmetric spaces [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF] discriminates between three types, that correspond to quite different geometries:

A. The first type consists in twistor spaces of symmetric spaces. Indeed, the situation described in the beginning of section 3 has a wider application than the 6-dimensional twistor spaces of Einstein self-dual 4-manifolds.

First, the study of quaternion-Khler manifolds, i.e. Riemannian manifolds whose holonomy is contained in Sp(q)Sp( 1), provides an analog of that situation in dimension 4q, q ≥ 2. Such manifolds still admit a twistor space Z → M with fibre CP 1 and two almost complex structures J + and J -related by

J + | V = -J -| V , J + | H = J -| H ,
where V is the vertical distribution, tangent to the fibres, and H is the horizontal distribution of the Levi-Civita connection of the base, such that the first one is always integrable (see for example [START_REF] Salamon | Quaternionic Khler manifolds[END_REF]) while the second, J -, is non-integrable. Moreover, for a positive quaternion-Khler manifold, there exist two natural metrics g 1 , g 2 such that (g 2 , J + ) is a Khlerian structure and (g 1 , J -) is a nearly Khler structure on Z (compare with proposition 3.1). This includes the twistor spaces of the Wolf spaces: the compact, symmetric, quaternion-Khler manifolds. Now, this construction can be extended to a larger class of inner symmetric spaces G/K (see [START_REF] Salamon | Harmonic and holomorphic maps[END_REF]). The total space G/H is a generalized flag manifold (i.e. H is the centralizer of a torus in G) and a 3-symmetric space. In particular H contains a maximal torus of G (or has maximal rank) but it is not a maximal subgroup since the inclusion H ⊂ K is strict.

B. The 3-symmetric spaces of the second type are those studied by Wolf [START_REF] Wolf | Spaces of constant scalar curvature[END_REF], theorem 8.10.9, p280. They're characterized by H being the connected centralizer of an element of order 3. Thus, H is not the centralizer of a torus anymore. However it still has maximal rank, i.e. the 3-symmetric space is inner, and is furthermore maximal (for an explicit description, using the extended Dynkin diagram of h, see [START_REF] Wolf | Spaces of constant scalar curvature[END_REF], [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF] or [START_REF] Butruille | Twistors and 3-symmetric spaces[END_REF]).

C. Finally, the 3-symmetric spaces of the third type have rank H < rank G.

Equivalently M is an outer 3-symmetric space. This includes two exceptional spaces -Spin(8)/G 2 and Spin(8)/SU (3) -and the infinite family

G × G × G/G of section 2.
This division, which was obtained in [START_REF] Wolf | Homogeneous spaces defined by Lie group automorphisms I, II[END_REF] by algebraic means (or group theory) has a profound geometrical interpretation. Indeed, the three classes can be characterized by the type of the isotropy representation :

A. In the first case, the vertical distribution V and the horizontal distribution H of G/H → G/K are invariant by the left action of G. Moreover, by definition of the natural almost complex structures, they are stable by J ± . Thus, the isotropy representation is complex reducible (we identify J -with the multiplication by i on the tangent spaces).

B. The exceptionnal spaces that constitute the second class of 3-symmetric spaces are known to be isotropy irreducible. Moreover, by [START_REF] Wolf | Spaces of constant scalar curvature[END_REF] corollary 8.13.5, these are the only non-symmetric isotropy irreducible homogeneous spaces G/H such that H has maximal rank.

C. Finally, for the spaces of type C, the isotropy representation is reducible but not complex reducible. Let J be the canonical almost complex structure of G/H, viewed as a constant tensor on m. There exists an invariant subset n such that m decomposes into n ⊕ Jn. This situation is called real reducible by Nagy [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF].

Remark. The dimension 6 is already representative of Gray and Wolf 's classification. Indeed, we have already seen that CP 3 and F 3 are the twistor spaces of S 4 and CP 2 , respectively. Secondly, the sphere S 6 ≃ G 2 /SU (3) is isotropy irreducible (see section 4). And thirdly, S 3 × S 3 belongs to the infinite family of class C. Now, for a general nearly Khler manifold, we can't look at the isotropy representation anymore. However we must remember proposition 1.7 that the normal connection coincides with the intrinsic connection, for a 3-symmetric space and so the isotropy representation is equivalent to the holonomy representation of ∇. The question becomes, then, what can we say about the geometry of a nearly Khler manifold whose holonomy is respectively: complex reducible, irreducible or real reducible ? a. Belgun and Moroianu, carrying out a program of Reyes Carrión [START_REF] Reyes Carrión | Some special geometries defined by Lie groups[END_REF], p57 (especially proposition 4.24), have shown, in [START_REF] Belgun | Nearly-Kähler 6-manifolds with reduced holonomy[END_REF], that the holonomy of a 6-dimensional nearly Khler manifold M is complex reducible (or equivalently the holonomy group of ∇ is contained in U (2) ⊂ SU (3)) if and only if M is the twistor space of a positive self-dual Einstein 4-manifold.

Thus, by the result of Hitchin [START_REF] Hitchin | The geometry of three-forms in six dimensions[END_REF], the only compact, simply connected, complex reducible, nearly Khler manifolds, in dimension 6 are CP 3 and F 3 . P.A. Nagy generalized this result in higher dimensions. Let M be a complete, irreducible (in the Riemannian sense) nearly Khler manifold of dimension 2n, n ≥ 4, such that the holonomy representation of ∇ is complex reducible. Then, M is the twistor space of a quaternion Khler manifold or of a locally symmetric space.

b. The irreducible case relates to weak holonomy. Cleyton and Swann [START_REF] Cleyton | G-structures and Einstein metrics[END_REF][START_REF] Cleyton | Einstein metrics via intrinsic or parallel torsion[END_REF] have shown an analog of Berger's theorem on special holonomies [START_REF] Berger | Sur Les Groupes d'holonomie des variétés à connexion affine et des variétés riemanniennes[END_REF] for the special geometries with torsion. By this we mean G-manifolds, or real manifolds of dimension m, equipped with a G-structure, G ⊂ SO(m), such that the Levi-Civita connection of the underlying metric structure is not a G-connection, or equivalently the torsion η of the intrinsic connection is not identically zero. More precisely they made the hypothesis that M , or the holonomy representation of ∇, are irreducible and that η is totally skew-symmetric and parallel (the last condition is automatically satisfied for a nearly Khler manifold by proposition 1.3). Then, M is (i) a homogeneous space or (ii) a manifold with weak holonomy SU (3) or G 2 . The first case in (ii) corresponds exactly to the 6-dimensional irreducible nearly Khler manifolds while the second is otherwise called nearly parallel G 2 . Moreover, the geometry of the homogeneous spaces in (i) may be specified. Indeed, the proof consists in showing that the curvature of the intrinsic connection is also parallel. Then, ∇ is an Ambrose-Singer connection. This reminds us of theorem 1.8. Finally, irreducible nearly Khler manifolds are (i) 3-symmetric of type B or (ii) 6-dimensional.

c. Eventually, Nagy has proved in [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF], corollary 3.1, that the complete, simply connected, real reducible, nearly Khler manifolds are 3-symmetric of type C.

He summarized his results in a partial classification theorem ( [START_REF] Nagy | Nearly Kähler geometry and Riemannian foliations[END_REF], theorem 1.1): let M be a complete, simply connected, (strictly) nearly Khler manifold. Then, M is an almost Hermitian product of the following spaces:

• 3-symmetric spaces of type A, B or C

• twistor spaces of non locally symmetric, quaternion-Khler manifolds • 6-dimensional irreducible nearly Khler manifolds If we suppose furthermore that the manifold is homogeneous, then there remains only 3-symmetric spaces and 6-dimensional, nearly Khler, homogeneous manifolds. As a consequence, conjecture 1 is reduced to dimension 6. Now, the proof of the conjecture in dimension 6 has two parts. Firstly, we must show that the only homogeneous spaces G/H admitting an invariant nearly Khler structure are those considered in sections 2, 3, 4.

Lemma 5.1. Let (G/H, g, J) be a 6-dimensional almost Hermitian homogeneous space, such that the almost Hermitian structure (g, J) is nearly Khler. Then, the Lie algebras of G, H are given at one entry of the following table. Moreover, if G/H is simply connected it is isomorphic to the space at the end of the line. (28)

dim
Proof. By a result of Nagy [START_REF] Nagy | On nearly Kähler geometry[END_REF], the Ricci tensor of a nearly Khler manifold M is positive (in dimension 6, this a consequence of Gray's theorem in [START_REF] Gray | The structure of nearly Kähler manifolds[END_REF] that M is Einstein, with positive scalar curvature). Then, by Myer's theorem, M is compact with finite fundamental group and the universal cover M of M is a nearly Khler manifold of the same dimension. Moreover, if M ≃ G/H is homogeneous, M is isomorphic to G/ H where the groups G, G and H, H have the same Lie algebras. Consequently, we shall work with M instead of M . For an homogeneous space, we have the following homotopy sequence:

• • • → π 2 (G/H) → π 1 (H) → π 1 (G) → π 1 (G/H) → H/H 0 → 0 ( 29 
)
If the manifold is simply connected, this provides us for a surjective automorphism ϕ, from the fundamental group of H to the fundamental group of G. We shall look only at the consequences at the Lie algebra level (i.e. at the S 1 or iR factors and not at the finite quotients).

The second feature we use is the natural reduction to SU (3) defined in section 2. If g and J or ω are invariant for the left action of G, then, so is ψ = dω. As a consequence, the isotropy group H is a subgroup of SU (3). This leaves the following possibilities for h: {0}, u(1), 2u(1), su(2), u(2) = su(2) ⊕ u(1) and su [START_REF] Alexandrov | On weak holonomy[END_REF]. Next, to find g, we use the fact that the difference between the dimensions of the two algebras is 6, the dimension of the manifold, and the existence of ϕ above. The latter allows us to eliminate the following : g = su(2) ⊕ 3u(1) or 6u(1) for h = {0} and g = su(3) ⊕ u(1) for h = su(2). Table [START_REF] Herrera | Â-genus on non-spin manifolds with S 1 actions and the classification of positive quaternionic Khler 12-manifolds[END_REF] is a list of the remaining cases. Now, h acts as a subgroup of su(3) on the 6-dimensional space m. Using this, we determine the isotropy representation and the embedding of H into G. In particular we show, when g = h ⊕ su(2) ⊕ su [START_REF] Atiyah | Self-duality in four-dimensional Riemannian geometry[END_REF], that G/H is isomorphic to S 3 × S 3 and G contains SU (2) × SU (2) acting on the left. So the nearly Khler structures arising from these cases will always induce a left-invariant nearly

  ⊕ su(2) ⊕ su(2) S 3 × S 3 4 iR ⊕ su(2) iR ⊕ su(2) ⊕ su(2) ⊕ su(2) S 3 × S 3 iR ⊕ su(2) sp(2)

		h h	g	
	0 1 2 3	{0} iR iR ⊕ iR iR ⊕ iR su(2)	su(2) ⊕ su(2) iR ⊕ su(2) ⊕ su(2) iR ⊕ iR ⊕ su(2) ⊕ su(2) su(3) su(2) CP 3 S 3 × S 3 S 3 × S 3 S 3 × S 3 F 3
	8	su(3)	g 2	S 6
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Khler structure on S 3 × S 3 ≃ SU (2) × SU (2). Thus, we need only to consider this more general situation. This was done in section 2. Now, theorem 1 is a consequence of lemma 5.1 and propositions 2.5, 3.2, 3.3 and corollary 4.3.