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GARSIDE AND LOCALLY GARSIDE CATEGORIES

F. DIGNE AND J. MICHEL

1. Introduction

This text is our version of (locally) Garside categories. Our motivation is the
example of section 6, which we needed in September 2004 to understand some
Deligne-Lusztig varieties. Since this example works naturally in the setting of arbi-
trary Coxeter groups, at that time we only considered the general case of categories
which are locally Garside. Krammer has independently introduced the notion of
(full) Garside categories [Krammer1], [Krammer2].

The things we added since 2004 are that we noticed that it makes sense to con-
sider categories which are only left or right locally Garside, and that a sufficient
condition to make things work is a Noetherianness property (before that, we im-
posed the homogeneity which comes from an additive length). We also added a
discussion of the relation between our definitions and the notion of Garside cat-
egories, for which we use the definition introduced by Bessis [Be1]. We define
what we call left Garside categories in this context; part of this reflects inspiring
discussions we had with Bessis and with Krammer in april 2006.

The notion of Garside category has recently been used by Bessis [Be2] to obtain
deep theorems about braid groups of complex reflection groups. We have a joint
project with David Bessis and Daan Krammer to write a general survey about the
subject. This text should be taken as our initial contribution to this project.

2. Locally Garside and Garside categories

We adopt conventions for categories which are consistent with those for monoids
and with those in algebraic topology: we write xy for the composed of the mor-

phisms A
x
−→ B and B

y
−→ C. We consider only small categories. The morphisms

have a natural preorder given by left divisibility: if x = yz, we say that y is a left
divisor or a left factor of x, which we denote y 4 x. We write y ≺ x if in addition
y 6= x. And we say that x is a right multiple of y (we have also evidently the
corresponding notions when exchanging left and right). We will write x ∈ C to say
that x is a morphism in C. We will write A ∈ Obj(C) to say that A is an object of
C.

Definition 2.1. We say that a preordered set is Noetherian if there does not exist
any bounded infinite strictly increasing sequence.

Notice that such a set is then a poset. We say that a category is left Noetherian
if left divisibility induces a Noetherian poset on the morphisms. This notion also
makes sense (and we will use it) for a subset of a category.

We call right lcm (resp. left gcd) a least upper bound (resp. largest lower bound)
for left divisibility. An lcm is unique for a poset.
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2 F. DIGNE AND J. MICHEL

Definition 2.2. A (small) category C is left locally Garside if

(i) It is left Noetherian.
(ii) It has the left cancellation property, i.e. xy = xz implies y = z (in other

words, every morphism is an epimorphism).
(iii) Two morphisms which have some common right multiple have a right lcm.

A left locally Garside monoid is the monoid of morphisms of a left locally Garside
category with only one object.

In a locally Garside category, complements are well defined, that is, when x 4 y

there is a unique z, the complement to y of x, such that x = yz.
We say that a subcategory C1 is stable by complement if x, y ∈ C1 and x 4 y in

C implies that x 4 y in C1.
Given a subcategory stable by complement, we say it is stable by lcm if when

x, y ∈ C1 have an lcm z in C then z is in C1. From the stability by complement it
follows that z is an lcm in C1. The following lemma is a transposition to categories
of a result of [Godelle].

Lemma 2.3. Let C be a left locally Garside category; if C1 is a subcategory stable
by complement and by lcm, then C1 is left locally Garside.

Proof. Axioms 2.2(i) and 2.2(ii) for C1 are inherited from the same axioms for C.
Let us check axiom 2.2(iii). If two morphisms have a common right multiple in C1

they have an lcm in C which is an lcm in C1 by assumption. �

Before going further, let us look at consequences and equivalent ways of formu-
lating the third axiom in the setting of posets.

Lemma 2.4. In a Noetherian poset where any two elements which have an an
upper bound have a least upper bound, the same holds for any family of elements.

Proof. Let F be a bounded above subset of the poset. By Noetherianity there exist
maximal elements in F . As two maximal elements of F have a least upper bound
by assumption, they have to be equal, so there is a unique maximal element, which
is a least upper bound for F . �

Lemma 2.5. In a Noetherian poset which has a minimal element and where any
two elements which have an an upper bound have a least upper bound, any family
of elements has a largest lower bound.

Proof. Let F be the family in the statement. The elements of F have at least one
lower bound, the minimal element of the poset. Now we can apply the previous
lemma to the family of the lower bounds of F , which have thus a least upper bound.
This least upper bound is smaller than all the elements of F , so is a largest lower
bound for F . �

In the context of left divisibility, we get that axiom 2.2(iii) implies

Corollary 2.6. In a left locally Garside category, a family of morphisms with the
same source have a left gcd.

There are contexts where the above corollary is equivalent to the third axiom.

Definition 2.7. We say that a poset is Artinian or if there does not exist any
bounded infinite strictly decreasing sequence.
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We note that for left divisibility any family of morphisms with same source has
always a lower bound, the identity morphism. It follows from the previous lemmas,
using the reverse order, that

Corollary 2.8. A category which satisfies axioms 2.2(i) and (ii), which is left
Artinian and such that any two morphisms with same source have a left gcd, is left
locally Garside (i.e. satisfies 2.2(iii)).

The notion of right locally Garside category is obtained by exchanging left and
right in the definition of a left locally Garside category.

A locally Garside category is a category which is both locally left Garside and
locally right Garside.

Lemma 2.9. A subset of a category stable by left divisibility, left Noetherian and
which verifies a weak form of the left cancellation property, that is xy = x implies
y = 1, is also right Artinian.

Proof. If an is a strictly decreasing sequence for the order < and if an = bnan+1

then cn = b1b2 . . . bn is an increasing sequence for 4 all terms of which left divide
a1. It is strictly increasing since b1 . . . bn−1 = b1 . . . bn ⇒ bn = 1 ⇒ an = an+1, the
first implication by the weak form of left cancellation. �

It follows from 2.8 and 2.9 that for a locally Garside category we can replace
axiom 2.2(iii) by the existence of a left gcd for all pairs of morphisms with same
source and similarly on the right.

The three following definitions are adaptations to one-sided Garside categories
of the definitions of [Be1]. Definition 2.12 is almost equivalent to [Be1, 2.5].

Definition 2.10. A left Garside category C is a left locally Garside category such
that there exists an endofunctor Φ of C and a natural transformation ∆ from the
identity functor to Φ such that the set of left divisors of ∆ generate C.

We denote by A
∆A−−→ Φ(A) the natural transformation applied to the object A;

in the above the left divisors of ∆ mean the divisors of the various ∆A as A runs
over the objects of C.

For right Garside, we change also the direction of the natural transformation.

Definition 2.11. A right Garside category C is a right locally Garside category
such that there exists an endofunctor Φ of C and a natural transformation ∆ from
Φ to the identity functor such that the set of right divisors of ∆ generate C.

Finally, we define Garside:

Definition 2.12. A Garside category C is a right and left Garside category such
that the functor Φ for the right Garside structure is the inverse of Φ for the left
Garside structure, and such that the left and right ∆ coincide.

By saying that the right and left ∆ coincide, we mean that ∆A for the left
Garside structure is the same as ∆Φ(A) for the right Garside structure.

We will show (cf. 5.4) that a left Garside category which is right Noetherian and
such that Φ has an inverse is Garside.

In the case of a Garside monoid identified with the endomorphisms of a one-
object Garside category, the functor Φ is the conjugation by the element ∆ of the
monoid.
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3. Germs for locally Garside categories

We introduce a convenient technique for constructing locally Garside categories
by introducing the notion of a germ, which is some kind of generating set for
categories, and giving conditions on a germ for the generated category to be locally
Garside. This section is an adaptation in the context of categories of section 2
of [Bessis-Digne-Michel]; the main technical difference being that here we assume
neither atomicity nor the existence of a length function: they are replaced by the
Noethianness property.

Definition 3.1. A germ (P,O) is a pair consisting of a set O of objects, and a
set P of morphisms (which have a source and a target, which are objects), with a
partially defined “composition” map m : P × P → P . For a, b ∈ P we will write
“ ab ∈ P” to mean that m(a, b) is defined; and in this situation we denote ab for
m(a, b); we abbreviate ab ∈ P and c = ab to c = ab ∈ P . If we denote by P (A, B)
the set of morphisms in O of source A and target B, we require the following axioms:

(i) For all A ∈ O, there exists 1A ∈ P (A, A) such that for any a ∈ P (B, A)
(resp. any a′ ∈ P (A, B)) a = a.1A ∈ P (resp. a′ = 1A.a′ ∈ P ).

(ii) For a, b, c ∈ P , we have ab, (ab)c ∈ P if and only if bc, a(bc) ∈ P and in
this case a(bc) = (ab)c.

We will write 1 instead of 1A when the context makes clear that the source of
this morphism is A. A path in P is a sequence of morphisms (p1, . . . , pn) such that
the target of pi is the source of pi+1. If (x1, . . . , xn) is a path such that for some
bracketing of this sequence the product x1 . . . xn is defined in P , then by axiom 3.1
(ii) the product is also defined, and has the same value, for any bracketing of the
sequence. We will denote by x1 . . . xn ∈ P this situation (and x1 . . . xn the product
when this situation occurs).

Definition 3.2. The category generated by the germ (P,O) is the category with
objects O defined by generators and relations as follows: the generators are P , and
the relations are ab = c whenever c = ab ∈ P .

We write C(P,O), or C(P ) when there is no ambiguity, for the category gener-
ated by the germ (P,O). We can give an explicit model for the morphisms of C(P )
in terms of equivalences classes of paths in P . The equivalence relations between
paths is generated by the elementary equivalences:

(p1, . . . , pi1 , pi, pi+1, . . . , pn) ∼ (p1, . . . , pi1 , p
′p′′, pi+1, . . . , pn)

when pi = p′p′′ ∈ P , and (1) ∼ ().
The composition of morphisms in C(P ) is defined by the concatenation of paths.

The next lemma shows that this extends the partial product in P .

Lemma 3.3. Let (x1, . . . , xn) be a path equivalent to the the single-term path (y).
Then x1 . . . xn ∈ P and x1 . . . xn = y.

Proof. The assumption implies that there exists a sequence of elementary equiva-
lences

l0 = (x1, . . . , xn) ∼ l1 ∼ · · · ∼ lk = (y)

where each equivalence lj−1 → lj is either

• a contraction

(p1, . . . , pi−1, p
′, p′′, pi+1, . . . , pm) → (p1, . . . , pi−1, p

′p′′, pi+1, . . . , pm)
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• an expansion

(p1, . . . , pi−1, p
′p′′, pi+1, . . . , pm) → (p1, . . . , pi−1, p

′, p′′, pi+1, . . . , pm)

where p′p′′ ∈ P . We may assume that k is minimal. If there is any expansion in the
sequence, let (p1, . . . , pi−1, p

′p′′, pi+1, . . . , pm) → (p1, . . . , pi−1, p
′, p′′, pi+1, . . . , pm)

be the last one. Since all subsequent steps are contractions we have m subsequent
steps and y = p1 . . . pi−1p

′p′′pi+1 . . . pm ∈ P . Since any bracketing of the sequence
(p1, . . . , pi−1, p

′, p′′, pi+1, . . . , pm) has the same value, we see that we could start
with the bracketing . . . (p′p′′) . . ., and thus get from (p1, . . . , pi−1, p

′p′′, pi+1, . . . , pm)
to (y) in m − 1 steps instead of m + 1 whence a contradiction unless there are
only contractions in a minimal sequence of equivalences leading to (y), whence the
result. �

We have the following

Corollary 3.4. P identifies with a subset of C(P ) stable by taking left or right
factors.

Proof. Indeed, if two morphisms of P are equal in C(P ) the above lemma (using
the particular case n = 1) shows that they are equal in P . And a left or right factor
in C(P ) of y in the above lemma is a product x1 . . . xi or xi . . . xn and is thus in
P . �

Just as for a category, we say that a germ (P,O) is left Noetherian if left divisi-
bility induces a Noetherian poset on P .

Let us remark that a germ with a superadditive length, that is, a function P
l
−→

Z≥0 such that l(ab) ≥ l(a)+ l(b) and l(a) = 0 ⇔ a = 1 is left and right Noetherian.

Lemma 3.5. Let C be a category and P be a set of morphisms which generates C.
Let X be a set of morphisms of C with same source satisfying

(i) X is stable by taking left factors,
(ii) X is a bounded Noetherian poset for left divisibility,
(iii) If x ∈ X, y, z ∈ P and xy, xz ∈ X then y and z have a common right

multiple m such that xm ∈ X.

Then X is the set of left divisors of some morphism of C.

Proof. Since X is a bounded Noetherian poset for 4, there exists a maximal element
g ∈ X for 4. Let us prove by contradiction that X is the set of left divisors of g.
First we notice that otherwise E = {x ≺ g | ∃u ∈ P, xu ∈ X, xu 64 g} is not empty:
indeed let y ∈ X be such that y 64 g and let x be a maximal common factor of y

and g; then x in E, since if we write y = xu1 . . . uk with ui ∈ P and k minimal,
then k 6= 0 and xu1 6= x, thus xu1 64 g (by maximality of x). Let now x ∈ E be
maximal for 4 and let u be as in the definition of E. As x ≺ g, there is v ∈ P such
that x ≺ xv 4 g. As xu and xv are both in X , the assumption on X implies that
u and v have a common multiple m such that xm ∈ X . As xm is a right multiple
of xu we have xm 64 g. Thus if v′ is a maximal such that v 4 v′ 4 m and xv′ 4 g,
we have x ≺ xv′ ≺ xm and xv′ ∈ E (taking for the u in the definition of E any
element of P such that v′u 4 m), which contradicts the maximality of x. �

Definition 3.6. A germ (P,O) is left locally Garside if

(G1) It is left Noetherian.
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(G2) If two morphisms in P have a common right multiple in P , they have a
right lcm in P .

(G3) If two morphisms u, v ∈ P have a right lcm ∆u,v ∈ P and if x ∈ P is such
that xu, xv ∈ P then x∆u,v ∈ P .

(G4) For z ∈ C(P ) and x, y ∈ P , the equality zx = zy implies x = y.

Remark 3.7. We note that 3.6(G4) is the only axiom which does not involve only
a check on elements of P . However, in practical applications, it will be easy to
check since it is automatically verified if there is an injective map compatible with
multiplication from P into a category with the left cancellation property.

We have a weak form of right cancellation

Lemma 3.8. If P is a germ satisfying (G1) and (G4) then the equality xy = y ∈ P

implies x = 1.

Proof. From xy = y we deduce that for all n we have xny = y, so xn is an increasing
sequence for 4 which is bounded by y so has to be constant for n large enough by
(G1). But xn = xn+1 implies x = 1 by (G4). �

We will show that the category generated by a locally Garside germ is locally
Garside by directly constructing normal forms for elements of C(P ). We fix now a
locally Garside germ (P,O).

Proposition 3.9. Any family of morphisms in P with same source have a left gcd.

Proof. This is a consequence of lemma 2.5, whose assumption is true by 3.6(G2). �

Proposition 3.10. If x, y ∈ P are such that the target of x is the source of y, then
there is a unique maximal z such that z 4 y and xz ∈ P .

Proof. This time we apply lemma 3.5 to the set X of u such that u 4 y and xu ∈ P .
X inherits left Noetherianity from P thus it is enough to check that if u, v, w ∈ P

are such that uv, uw ∈ X then they have a right lcm ∆v,w and xu∆v,w ∈ P (which
will imply u∆v,w ∈ X). As uv and uw are left factors of y ∈ P , by axiom 3.6 (G4)
they have a common multiple, in P by corollary 3.4, thus by 3.6 (G2) they have a
lcm ∆v,w which by axiom 3.6 (G3) satisfies xu∆v,w ∈ P . �

Definition 3.11. Under the assumptions of proposition 3.10 we set α2(x, y) = xz

and we write ω2(x, y) for the morphism t ∈ P (unique by axiom 3.6 (G4)) such
that y = zt. Thus xy = α2(x, y)ω2(x, y).

Proposition 3.12. For x, y, z, xy ∈ P we have

(i) α2(xy, z) = α2(x, α2(y, z)).
(ii) ω2(xy, z) = ω2(x, α2(y, z))ω2(y, z).

Proof. Let us show (i). Define u, v ∈ P by α2(xy, z) = xyu and α2(y, z) = yv.
As yu ∈ P , u 4 z, we have by definition yu 4 yv. Similarly xyu 4 α2(x, yv) =
α2(x, α2(y, z)); let thus u′ ∈ P be such that α2(x, α2(y, z)) = xyuu′. Since xyuu′ 4

xyv by axiom 3.6 (G4) have uu′ 4 v; as v 4 z we have uu′ 4 z, and as xyuu′ ∈ P ,
we have u′ = 1 by maximality of u in the definition of α2(xy, z), which gives (i).

Let us show (ii). Using xyz = α2(xy, z)ω2(xy, z) and

α2(xy, z)ω2(x, α2(y, z))ω2(y, z) = α2(x, α2(y, z))ω2(x, α2(y, z))ω2(y, z) =

xα2(y, z)ω2(y, z) = xyz,
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which comes from (i) and definition 3.11, we will get (ii) if we can simplify α2(xy, z)
between these two expressions for xyz. We apply axiom 3.6 (G4) if we show that
both sides of (ii) lie in P . It is the case for ω2(xy, z) ∈ P by definition, thus we have
to show that ω2(xα2(y, z))ω2(y, z) ∈ P . Define u ∈ P by α2(y, z) = yu, so that
uω2(y, z) = z, and u1 ∈ P by α2(x, α2(y, z)) = xyu1, so that xyu1ω2(x, α2(y, z)) =
xα2(y, z) = xyu. Then u1ω2(x, α2(y, z)) ∈ P as it is a right factor of α2(y, z) ∈ P ,
thus u1ω2(x, α2(y, z)) = u (by axiom 3.6(G4)) thus u1ω2(x, α2(y, z))ω2(y, z) =
uω2(y, z) = z which implies that ω2(xα2(y, z))ω2(y, z) ∈ P as it is a right factor of
an element of P . �

Proposition 3.13. There is a unique map α : C(P ) → P which is the identity
on P , such that for x, y ∈ P we have α(xy) = α2(x, y), and such that for any
u, v ∈ C(P ) we have α(uv) = α(uα(v)). In addition α(u) is the unique maximal
left factor in P of u.

Proof. We will define α on the paths in P , and then check that our definition is
compatible with elementary equivalence. As α is the identity on P , we need that
α(()) = 1 and that α((y)) = y for y ∈ P . The conditions we want impose that

(3.14) α(p1, . . . , pk) = α2(p1, α(p2, . . . , pk)).

By induction on k, this already shows that α is unique. We will now show by
induction on k that α is compatible with the elementary equivalence (p1, . . . , pk) ∼
(p1, . . . , pipi+1, . . . , pk) when pipi+1 ∈ P . If this equivalence is applied at a position
i > 1, formula 3.14 shows that compatibility for paths of length k−1 implies compat-
ibility for paths of length k. If i = 1 we have to compare α2(p1, α(p2, . . . , pk)) and
α2(p1p2, α(p3, . . . , pk)). But α2(p1p2, α(p3, . . . , pk)) = α2(p1, α2(p2, α(p3, . . . , pk))),
by 3.12 (i) and α2(p2, α(p3, . . . , pk)) = α(p2, p3, . . . , pk) by 3.14, whence the result
that α is well defined by 3.14 on C(P ).

Similarly, if u = (u1, . . . , um) and v = (v1, . . . , vn), we show that α(uv) =
α(uα(v)) by induction on m + n. Indeed

α(u1, . . . , um, v1, . . . , vn) = α2(u1, α(u2, . . . , um, v1, . . . , vn)) =

α2(u1, α(u2, . . . , um, α(v))) = α(u1, u2, . . . , um, α(v)),

by respectively 3.14, the induction hypothesis, and 3.14 again.
Finally we show that α(u) is the maximal left factor in P of u. It is by definition

an element of P which is a left factor of u. If we have another expression u = pv

with p ∈ P then α(u) = α(pv) = α(pα(v)) = α2(p, α(v)) so α(u) is a right multiple
of p. �

Proposition 3.15. There is a unique map ω : C(P ) → C(P ) such that for x, y ∈ P

we have ω(xy) = ω2(x, y), and such that for any u, v ∈ C(P ) we have ω(uv) =
ω(uα(v))ω(v).

Proof. As in the previous proposition we define ω on paths by induction. We must
have ω(x) = 1 for x ∈ P and for a path of length k ≥ 2 we must have

(3.16) ω(p1, . . . , pk) = ω2(p1, α(p2 . . . pk))ω(p2, . . . , pk)

This proves the unicity of ω, and again we show by induction on k that this is
compatible with elementary equivalence. Again, we come to the case of an elemen-
tary equivalence occurring in the first term, i.e., to compare ω(p1, p2, . . . , pk) and
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ω(p1p2, p3, . . . , pk) when p1p2 ∈ P . We have

ω(p1, . . . , pk) = ω2(p1, α(p2 . . . pk))ω(p2, . . . , pk) =

ω2(p1, α(p2 . . . pk))ω2(p2, α(p3 . . . pk))ω(p3, . . . , pk) =

ω2(p1p2, α(p3 . . . pk))ω(p3, . . . , pk) = ω(p1p2, p3, . . . , pk)

by respectively 3.16, 3.16, 3.12 (ii) and 3.16 whence the result.
We show similarly for u = (ul, u2, . . . , um) and v = (v1, . . . , vn) that ω(uv) =

ω(uα(v))ω(v) by induction on m + n. We have

ω(uv) = ω(u1, . . . , um, v1, . . . , vm)

= ω2(u1, α(u2 . . . umv1 . . . vn))ω(u2, . . . , um, v1, . . . , vn)

= ω2(u1, α(u2 . . . umv1 . . . vn))ω(u2, . . . , um, α(v1 . . . vn))ω(v1, . . . , vn)

= ω2(u1, α(u2 . . . umα(v1 . . . vn)))ω(u2, . . . , um, α(v1 . . . vn))ω(v1, . . . , vn)

= ω(u1, u2, . . . , um, α(v1 . . . vn))ω(v1, . . . , vn),

by respectively 3.16, the induction hypothesis, 3.13 and 3.16, whence the result. �

We are now ready to define normal forms for morphisms in C(P ).

Definition 3.17. We call normal form of a morphism x ∈ C(P ), x 6= 1 a decom-
position x = x1 . . . xk such that xi ∈ P, xk 6= 1 and such that for all i we have
xi = α(xi . . . xk).

We notice that we have xi 6= 1 for all i since an element 6= 1 has a non-trivial α.
We declare that the normal form of 1 is the trivial decomposition (k = 0).

We will show the existence of normal forms in 3.20 and their unicity in 3.23. We
first show another characterization.

Proposition 3.18. A decomposition x1 . . . xk where xi ∈ P, xk 6= 1 is a normal
form if and only if for all i ≤ k − 1 the decomposition xixi+1 is a normal form.

Proof. If x1, . . . , xk is a normal form then xi = α(xi . . . xk) = α(xiα(xi+1 . . . xk)) =
α(xixi+1) thus xixi+1 is a normal form. Conversely, assuming by decreasing induc-
tion on i, that α(xi+1 . . . xk) = xi+1, we have α(xi . . . xk) = α(xiα(xi+1 . . . xk)) =
α(xixi+1) = xi. �

The above statement implies that any product of consecutive terms in a normal
forms is itself a normal form.

Proposition 3.19. If x1 . . . xk is a normal form and y ∈ P , there exist decom-
positions xi = x′

ix
′′
i such that either (yx′

1)(x
′′
1x′

2) . . . (x′′
k−1x

′
k)x′′

k , if x′′
k 6= 1, or

(yx′
1)(x

′′
1x′

2) . . . (x′′
k−1x

′
k) otherwise, is a normal form of yx1 . . . xk.

Proof. This is obtained by recursively applying α(ab) = α(aα(b)): we first write
α(yx) = yx′

1 where x1 = x′
1x

′′
1 , then α(x′′

1x2 . . . xk) = α(x′′
1α(x2 . . . xk)) = α(x′′

1x2) =
x′′

1x′
2 etc. . . �

Corollary 3.20. Normal forms exist.

Proof. We proceed by induction on k for an x ∈ C(P ) of the form x = p1 . . . pk

with pi ∈ P . By induction we may as well assume that p2 . . . pk is a normal form.
The previous proposition shows then how to construct a normal form for x. �
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We now show that C(P ) has the let cancellation property. We will deduce it
from the following property of ω.

Proposition 3.21. If x ∈ C(P ), then ω(x) is the unique y ∈ C(P ) such that
x = α(x)y.

Proof. We show that x = α(x)y implies y = ω(x) by induction on the number of
terms in a normal form of y. If y = 1 then x ∈ P and the result holds. The assump-
tions at step k are now that x = α(x)y and that some decomposition y = y1 . . . yk is
a normal form. By the induction hypothesis and the equality y = y1(y2 . . . yk) we get
ω(y) = y2 . . . yk, thus y = α(y)ω(y). Thus ω(x) = ω(α(x)y) = ω(α(x)α(y))ω(y).
On the other hand α(x) = α(α(x)y) = α(α(x)α(y)) = α2(α(x), α(y)). Thus
ω(α(x)α(y)) = ω2(α(x), α(y)) = α(y) where the last equality is by definition of
ω2. Putting things together we get ω(x) = α(y)ω(y) = y. �

Corollary 3.22. C(P ) has the left cancellation property.

Proof. We want to show that for any x, y, z ∈ C(p) the equality xy = xz implies
y = z. By induction on the number of terms in a decomposition of x into a product
of elements of P , we may assume that x ∈ P . Define b by α(xy) = xb; then b

is unique since P has the left cancellation property. Let y′ be an element such
that by′ = y, which is possible since b 4 α(y) 4 y. By proposition 3.21 we have
y′ = ω(xy). Thus if similarly we define z′ as an element such that bz′ = z we have
z′ = ω(xy) = y′ thus z = bz′ = by′ = y. �

Corollary 3.23. Normal forms are unique.

Proof. If x = x1 . . . xk is a normal form then x1 = α(x) is uniquely defined and by
proposition 3.21 we have x2 . . . xk = ω(x); we conclude by induction on k. �

For x ∈ C(P ), we denote by ν(x) the minimum number of terms in a decompo-
sition of x into a product of elements of P .

Lemma 3.24. The normal form of x has ν(x) terms.

Proof. The proof is by induction on ν(x). We assume the result for ν(x) = k − 1
and will prove it for ν(x) = k. Let then x = x1 . . . xk be a minimal decomposition
of x. By induction, the normal form of x2 . . . xk has k− 1 terms, so we may as well
assume that x2 . . . xk is normal. By lemma 3.19 the normal form of x has k − 1 or
k terms. Thus it has k terms, whence the result. �

Lemma 3.25. If x is a right factor of y then ν(x) ≤ ν(y).

Proof. Since an element can be obtained from a right factor by repeatedly multi-
plying on the left by elements of P , proposition 3.19 shows that a right factor has
less terms in its normal form. �

If x ∈ C(P ) has normal form x = x1 . . . xn we have ωk(x) = xk+1 . . . xn for k ≥ 0
(it is 1 if k ≥ n), and the k-th term of the normal form of x is α(ωk−1(x)).

Lemma 3.26. For a ∈ P and x ∈ C(P ), if ωk(x) = ωk(ax) for some k then
α(ωk−1(ax)) < α(ωk−1(x)).
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Proof. In this proof (only) we will still call normal form a product with a certain
number of trailing 1’s. Let x = x1 . . . xn be a normal form of x. Then by proposition
3.19 which is still valid with our present definition of normal forms, we can write
xi = x′

ix
′′
i for all i, so that (ax′

1)(x
′′
1x′

2) . . . (x′′
n−1x

′
n)x′′

n is a normal form of ax. By

assumption (x′′
kx′

k+1) . . . (x′′
n−1x

′
n)x′′

n = ωk(ax) = ωk(x) = xk+1 . . . xn, so identify-
ing these two normal forms we get x′′

n = 1 and x′′
i x′

i+1 = xi+1 = x′
i+1x

′′
i+1 for i ≥ k,

whence by decreasing induction on i and lemma 3.8 we get x′′
i = 1 so that xi = x′

i

for i ≥ k. Whence α(ωk−1(ax)) = x′′
k−1x

′
k = x′′

k−1xk = x′′
k−1α(ωk−1(x)). �

Proposition 3.27. C(P ) is Noetherian for left divisibility.

Proof. We have to show that no infinite sequence x1 ≺ x2 ≺ x3 · · · ≺ xn ≺ · · · 4 x

exists; we proceed by induction on ν(x). If ν(x) = 1 the sequence consists of
elements of P which contradicts the Noetherianity of P . The sequence α(xi) is non-
decreasing and bounded by α(x) so is constant at some stage by the Noetherianity
of P . Truncating the previous terms and simplifying by the common value a1 of
α(xi), we get a an infinite sequence bounded by a−1

1 x. If ν(a−1
1 x) < ν(x) then we

are done by induction. Otherwise we can repeat the same argument for another
step, introducing the common value a2 of α(a−1

1 xi), etc. . . ; after k such steps
we will still have ν((a1 . . . ak)−1x) = ν(x). But this implies by lemma 3.26 that
ων(x)−1((a1 . . . ah)−1x) is a decreasing sequence of elements of P , so it has to be
constant at some stage. Truncating at this stage we may assume that the last term
of the normal form of ν((a1 . . . ah)−1x) is equal to the last term of the normal form
of x. Lemma 3.26 gives then that α(ων(x)−2((a1 . . . ah)−1x)) is decreasing for right
divisibility so has to be constant at some stage. Truncating again we can assume
that in the whole process the last two terms of the normal form of (a1 . . . ah)−1x

are constant. Going on we come to a point where (a1 . . . ah)−1x itself is constant
which means, again by 3.26, that ah = 1 for h large enough. �

Proposition 3.28. If two elements of P have a common right multiple in C(P )
then they have a right lcm in P (which is also their lcm in C(P ).

Proof. We first observe that if u, v have a common multiple x ∈ C(P ) they have a
common multiple in P , which is α(x). We may then apply 3.6(G2) to conclude. �

Proposition 3.29. Any family of elements of C(P ) who have a common right
multiple has a right lcm. If the family is a subset of P then the lcm is in P .

Proof. Assume (xi)i∈I have a common right multiple. We apply lemma 3.5 to the
set X of elements which divide all the common multiples of the xi. It inherits
Noetherianity from C(P ), and if u, v ∈ P and x ∈ C(P ) are such that xu, xv ∈ X

then any right multiple of xu and xv is of the form xz where u and v divide z (by
the cancellation property in C(P )); thus the right lcm ∆u,v of u and v (which exists
by 3.28) divides z. Thus x∆u,v ∈ X . We may thus apply 3.5 and the elements
of X are the divisors of an element which must be the lcm of the xi. The second
statement comes from the fact that if the xi are in P and divide x then they divide
α(x) and so does their lcm. �

Proposition 3.30. Any family of morphisms in C(P ) has a left gcd.

Proof. This is a consequence of lemma 2.5, whose assumption is true by 3.29. �

At this stage we have proved the following
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Theorem 3.31. If the germ P is left locally Garside, so is C(P ).

This has a converse:

Theorem 3.32. Let C be a left locally Garside category C. Then (P,O), where O
is the set of objects of C and where P is a set of morphisms of C which generate C,
stable by taking left factors and right factors, and stable by taking right lcm when
they exist, is a left locally Garside germ; for this germ, C = C(P ).

Proof. We first check that a P such as above is a germ. Axiom (i) of a germ is
clear. Axiom (ii) (“associativity”) holds for a set of morphisms as soon as they
are stable by taking left and right factors. The axioms for a locally Garside germ
3.6 are immediate except perhaps axiom 3.6 (G3) (for 3.6(G4) see remark 3.7). If
u, v ∈ P have a right lcm ∆u,v and if x ∈ P is such that xu, xv ∈ P then x∆u,v is
the right lcm in C of xu and xv thus is in P .

All the relations of C(P ) hold in C, thus we have a functor C(P )
i
−→ C which is

clearly surjective since P generates C. We have to see that i is injective.
Let us define a function α : C → P defined for x ∈ C by taking the largest (for

left divisibility) factor of x in P ; this exists, since P is stable by right lcm. The
formula α(xy) = α(xα(y)) holds when x ∈ P since α(xy) is by definition of the
form xa ∈ P where xa 4 xy thus a 4 y by the cancellation property thus a 4 α(y).

To see that i is injective it is enough to show that i ◦ α = α ◦ i; indeed, by
induction on ν(x) for x ∈ C(P ) we have i(x) = i(y) ⇒ α(i(x)) = α(i(y)) ⇒
i(α(x)) = i(α(y)) ⇒ α(x) = α(y), the last equality since i is injective on P . By the
left cancellation property in C this implies i(ω(x)) = i(ω(y)) and we conclude by
induction.

Let us show that for any x ∈ C(P ) we have i◦α(x) = α◦i(x) by induction on ν(x).
Let x1 . . . xn be the normal form of x. Then α(i(x1 . . . xn)) = α(i(x1)i(x2 . . . xn)) =
α(i(x1)α(i(x2 . . . xn))) = α(i(x1)i(x2)) where the last equality is by the induction
hypothesis. We are thus reduced to the case n = 2, i.e. to show that if x, y ∈ P

and α2(x, y) = x, then α(xy) = x in C. But this is clear by the definitions of α in
C and α2 in P . �

Subgerms, and fixed points.

Definition 3.33. If (P,O) is a germ, we call subgerm of P a pair (P1,O1) obtained
by taking a part O1 of the objects O and a part P1 of the morphisms between objects
in O1 which is stable by the partial multiplication in P , and contains the morphisms
1A for A ∈ O1.

It is straightforward to check that a subgerm is a germ. Note, however, that
left divisibility might be quite different in P1: it is possible that a, ab ∈ P1 but
b ∈ P − P1 in which case we do not have a 4 ab in P1. If the divisibility in P1 is
the restriction of the divisibility in P , we say that P1 is stable by complement. As
in the case of categories we say that a subgerm P1 stable by complement is stable
by lcm if for any two morphisms in P1 which have a common multiple in P1, their
lcm in P is in P1 (so is an lcm in P1).

Lemma 3.34. If P is a left locally Garside germ, and P1 a subgerm stable by
complement and lcm, then P1 is left locally Garside.

Proof. Axiom 3.6(G1) is clearly inherited from P to P1. Axiom 3.6(G4) is also
inherited from P , using the natural functor C(P1) → C(P ) which is injective on P1
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(since its restriction to P1 restricts to the injection P1 → P , because P → C(P ) is
injective).

Let us check 3.6(G2). If two elements have a common multiple in P1, they have
an lcm in P since P is locally Garside. That lcm is in P1 and is an lcm in P1 by
assumption.

Let us check 3.6(G3). If two elements u, v have a lcm ∆u,v in P1, then by
assumption their lcm in P is in P1, and must thus be equal to ∆u,v. Thus if xu, xv ∈
P1 then x∆u,v ∈ P thus x∆u,v ∈ P1 since P1 is stable by partial multiplication. �

Lemma 3.35. If, under the assumptions of 3.34, in addition P1 is stable by α2

(that is when x, y ∈ P1 then α2(x, y) ∈ P1), then C(P1) injects in C(P ).

Proof. We have to show that the natural functor C(P1)
i
−→ C(P ) which sends a

path to the corresponding path is injective. Since i is injective on P1 it is enough to
show that i preserves normal forms; by the local characterization of normal forms
it is enough to show that the image of a 2-term normal form is a normal form. But
that is a consequence of the fact that P1 is stable by α2: indeed, if (x, y) is a 2-term
normal form in P1 and α2(x, y) = xz in P then by assumption we have xz ∈ P1,
whence z ∈ P1 and z divides y in P1, as P1 is stable by complement, so that z = 1
since (x, y) is normal in P1. �

Proposition 3.36. Let P be a left locally Garside germ and let σ be an auto-
morphism of C(P ) stabilizing P ; let P σ (resp. C(P )σ) be the subgerm (resp. the
subcategory) of the σ-fixed morphisms and objects of P (resp. C(P )); then P σ is a
left locally Garside germ and C(P )σ = C(P σ).

Proof. The unicity of complement, lcm and α2 shows that P σ is stable by com-
plement, lcm and α2. Thus P σ is a left locally Garside germ and the natural

functor C(P σ)
i
−→ C(P )σ is injective. As, given a σ-fixed morphism of C(P ), all

the terms of its normal form are in P σ by the unicity of normal forms, we get that
i is surjective. �

A counterexample. We give an example to show that the endomorphisms of an
object in a locally Garside category are not necessarily a locally Garside monoid.

Let (P,O) be the germ where O = {X, Y } and where there are seven morphisms:
s, t ∈ End(Y ), two elements a, b ∈ Hom(X, Y ), two elements u, v ∈ Hom(Y, X), plus
one additional morphism resulting from the only composition defined in P , given by
as = bt. The axioms of a germ as well as 3.6(G2) and 3.6(G3) are easy (associativity
and 3.6 (G3) are empty, and the only morphisms having a common right multiple
are a and b, and this multiple is unique; the same holds on the left for s and t).
Let us prove 3.6 (G4) and its right analogue. There is an additive length on C(P )
defined by l(a) = l(b) = l(s) = l(t) = 1. If zx = zy for x, y ∈ P and z ∈ C(P ), then
x and y have the same length. If this length is 2 then x = y since there is only one
element of length 2 in P . Assume then the length is 1. If x is neither s nor t, no
relation in C(P ) for the word zx can involve x, thus x = y. It remains to consider
the case x = s and y = t, i.e. an equality zs = zt. If z has no decomposition
ending by a again no relation can involve the terminal s. If z = z′a, no relation in
C(P ) can change the terminal a into another morphism, in particular into b. Thus
the word z′at cannot be changed into z′as so we are finished. A similar reasoning
applies on the right, which finishes the proof that C(P ) is locally Garside.
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On the other hand, in End(X) the morphisms a and b have two minimal-length
common right multiples asu = btu and asv = btv, thus no lcm.

4. Atoms

We call atom a morphism in a category (resp. a germ) which does not admit any
proper right or left factor.

Note that if the category is left Noetherian and has the left cancellation property,
then by 3.8 having no proper left factor is equivalent to having no proper right
factor.

We say that a germ (resp. a category) is atomic if any morphism in the germ
(resp. category) is a product of atoms.

In an atomic category C, a set P of morphisms generates C if and only if it
contains the atoms of C.

Proposition 4.1. A category C which has the left cancellation property and is
right and left Noetherian (e.g. a locally Garside category) is atomic.

Proof. Let us show that any morphism f ∈ C is a product of atoms. By the
analogue of 2.9 on the right, which is applicable thanks to 3.8, we know that C is
left Artinian, thus f has a left factor which has no proper left factor, and which is
thus an atom by the remark above.

Let thus a1 be an atom which is a left factor of f and let f1 be such that f = a1f1.
We may similarly write f1 = a2f2 where a2 is an atom which is a left factor of f1,
etc. . . and if f is not equal to a finite product a1 . . . an we would get an infinite
increasing sequence of factors of f which would contradict left Noetherianity. �

Remark 4.2. The cancellation property is necessary in the the above proposition.
An example of a left and right Noetherian monoid without atoms is given by the set
{xi}i∈Z≥0

∪ {x∞} where xi is the infinite sequence beginning by i times 1 followed
by all 0s and x∞ is the infinite sequence with all terms equal to 1; the product is
by term-wise multiplication. We have xixj = xinf(i,j).

Proposition 4.3. Under the assumptions of 3.36, if in addition C(P ) is atomic,
then C(P σ) is also atomic with atoms the right lcm of orbits of atoms of P (for
the orbits which have a common multiple) which are not right multiples of another
such lcm.

Proof. Let us first see that any element x ∈ C(P σ) is divisible on the left by such
an lcm. Let s ∈ P be an atom such that s 4 x. Then any element of the orbit of
s also divides x, thus their lcm s, which is in P σ, also does divide x. By the left
cancellation property, if we write x = sx1, then we also have x1 ∈ C(P )σ ; we can
apply the same process to x1 to get an x2, etc. . . . By 2.9 the sequence xi is finite
thus x is a finite product of such lcm. Finally, such an lcm which is not divisible
by another is clearly an atom in C(P )σ. �

We will now give conditions in terms of atoms which imply the properties for
locally Garside.

Proposition 4.4. A Noetherian atomic germ P satisfying 3.6 (G4) satisfies (G2)
and (G3) if and only if

(G2′) If two atoms have a right common multiple in P then they have a right
lcm in P .
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(G3′) If two atoms s and t have a right lcm ∆s,t ∈ P and xs, xt ∈ P then
x∆s,t ∈ P .

Proof. These conditions are necessary, as a special case of 3.6(G2) and 3.6(G3).
Let us show that (G2′) implies (G2). Assume x, y ∈ P have a common right

multiple in P . We apply lemma 3.5 to the set X of elements of P which are left
factors of all common right multiples of x and y, taking for the P of 3.5 the atoms in
P . We may do so since X inherits Noetherianity from P , and the assumption of 3.5
comes from (G4) and (G2′): if z ∈ X and s and t are atoms such that zs, zt ∈ X ,
by (G4) s and t have a common right multiple, thus by (G2′) they have a right lcm
∆s,t and z∆s,t = lcm(zs, zt) is in X . The common multiple of elements of X given
by 3.5 is the desired lcm.

We now show (G3). Let u, v, x ∈ P be such that u and v have a right lcm
∆u,v ∈ P and such that xu, xv ∈ P . This time we apply 3.5 to X = {y ∈
P | xy ∈ P and y 4 ∆u,v}, taking again for the P of 3.5 the atoms. Again X

inherits Noetherianity from P ; we have u, v ∈ X by assumption. Assume now that
y ∈ X and the atoms s and t are such that ys, yt ∈ X , i.e. xys, xyt ∈ P and
ys 4 ∆u,v, yt 4 ∆u,v. By (G4) s and t have a common right multiple P , thus by
(G2′) they have a lcm ∆s,t ∈ P and by (G3′) xy∆s,t ∈ P . Thus y∆s,t ∈ X and
the assumption of 3.5 holds. The common multiple of the elements of X given by
3.5 is necessarily ∆u,v since it is a multiple of both u and v. Thus ∆u,v ∈ X which
implies x∆u,v ∈ P . �

5. Garside categories

In a left Garside category C the smallest set containing the left divisors of ∆
and stable by taking left and right factors forms a left locally Garside germ P such
that C = C(P ) by 3.32. The elements of P are called the simples of the category.

Remark 5.1. For a left locally Garside category C, we could call simples of C the
set of morphisms of a chosen germ. Note that if C is in addition right Noetherian,
there exists always a minimal such set, which is the minimal set P of morphisms of
C stable by taking left and right factors and right lcm’s and generating C; indeed
this set exists and is unique, since C itself has these properties and an intersection
of sets with these properties is also a set with these properties by 4.1 (the only
non-trivial property to check for an intersection is that it still generates C; but 4.1
shows that a subset generates C if and only if it contains the atoms, which is a
condition stable by intersection). Then P is a locally Garside germ and C = C(P )
by 3.32.

The set of simples in a left Garside category is not necessarily minimal in the
sense above.

A simple f has a complement to ∆ denoted f̃ , and defined by f f̃ = ∆ (it is unique
by the left cancellation property). If f ∈ C, as ∆ is a natural transformation from
the identity to Φ we have f∆ = ∆Φ(f) whence, using left cancellation by f , we get

∆ = f̃Φ(f), which can also be written ˜̃
f = Φ(f).

If Φ is an automorphism this shows that the set of left factors of ∆ is the same
as the set of right factors of ∆.

Remark 5.2. In a left Garside category, a set P of morphisms stable by taking left
factors and complements to ∆ is stable by taking right factors. Indeed, if ab and a

are in P then ab(ab)̃ = aã thus b(ab)̃ = ã thus b ∈ P as a left factor of ã.
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Proposition 5.3. In a left Garside category, left divisibility makes the set of mor-
phisms with same source into a lattice.

Proof. It is enough to show that any two morphisms with the same source have
a right lcm. If they are simple, they divide ∆ so we are done. Otherwise, given
x ∈ C, we show by induction on n that x 4 ∆n where n is the number of terms
of the normal form of x with respect to P . Indeed, if x = x1 . . . xn is the normal
form, by induction x2 . . . xn 4 ∆n−1 thus x1 . . . xn 4 x1∆

n−1. But by definition of
Φ we have x1∆

n−1 = ∆n−1Φn−1(x1) 4 ∆n. �

Proposition 5.4. A left Garside category which is right Noetherian and such that
Φ is an automorphism is Garside.

Proof. We first show that such a category C has the right cancellation property.
Indeed, if xa = ya we have seen in the proof of 5.3 that a 4 ∆n for some n whence
x∆n = y∆n ⇔ ∆nΦn(x) = ∆nΦn(y) which implies by left cancellation that x = y.

We then observe that for two simples f, g we have g 4 f ⇔ g̃ < f̃ (the implication
from left to right uses the left cancellation property and from right to left the right
cancellation property). This implies that a left gcd of f and g transports by˜to a

left lcm of f̃ and g̃, and conversely a right lcm transports to a right gcd.
We can argue similarly for arbitrary morphisms by considering the complement

to a suitable ∆n instead of the complement to ∆.
We thus get that C is right locally Garside. Since as remarked above, the fact

that Φ is an autoequivalence implies that the right divisors of ∆ are the same as
the left divisors, the category is right Garside for the same ∆ and Φ−1, so we are
done. �

The following proposition points to a possible alternative definition of left Gar-
side categories.

Proposition 5.5. A left locally Garside category which has a germ P as in 3.32
such that the morphisms in P with a given source have a right lcm is left Garside.

Proof. Given an object A, we define ∆A to be the right lcm of the morphisms
of source A. The elements of P are the left divisors of the ∆A so these divisors
generate the category. On the morphisms of P we define an operation f 7→ f̃ by the
equality f f̃ = ∆, using cancellation. We then define a functor Φ which maps A to

the target of ∆A and a map f to ˜̃
f . To show that Φ is a functor, since any morphism

is a composition of elements of P , it is enough to check that it is compatible with
partial composition.

For f, g, fg ∈ P we have fg(fg)˜ = ∆ = f f̃ so that g(fg)˜ = f̃ , whence

g(fg)˜
˜̃
f = ∆ = gg̃. By left cancellation, this gives (fg)˜

˜̃
f = g̃, whence (fg)˜

˜̃
f ˜̃g =

∆ = (fg)˜(fg)˜̃ and by cancellation
˜̃
f ˜̃g = (fg)˜̃ which is what we wanted.

Finally we note that the equality f∆ = ∆Φ(f) for f ∈ P extends to the same
equality for arbitrary maps in the category, which shows that ∆ is indeed a natural
transformation from the identity functor to Φ. �

6. The conjugacy category

Conjugation in a monoid or a category is defined as: w is conjugate to w′ if there
exists x such that xw′ = wx. In a category, this condition implies that w and w′

are endomorphisms of some object.
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Definition 6.1. Given a category C, the conjugacy category of C is the category
whose objects are the endomorphisms of C and where Hom(w, w′) = {x ∈ C | wx =
xw′}.

We can extend this definition to simultaneous conjugation of a family of elements,
to get the simultaneous conjugacy category. If wx = xw′ as in the above definition
we will write w′ = wx and w = xw′.

Proposition 6.2. If C is a left (resp. right) locally Garside category, its (simulta-
neous) conjugacy category is also. Further, one can take as simples for the conju-
gacy category the morphisms which are induced by simples of C.

Proof. Let us denote by C the conjugacy category of C. Since C clearly inherits
Noetherianity and cancellability from C, we have just to show the existence of lcm
for morphisms which have a common multiple. We will actually show that lcm and
gcd in C of morphisms of the conjugacy category are lcm and gcd in the conjugacy
category.

We can rephrase the condition x ∈ HomC(w, ?) as x 4 wx. If we look at
simultaneous conjugation of a family F , it will be the simultaneous condition x 4

wx for all w ∈ F . Suppose that x, y, w ∈ C are such that x 4 wx and that
xy 4 wxy; define w′ by xw′ = wx; then by cancellation y 4 w′y, so that x and
xy in C imply y ∈ C. Suppose now that x 4 wx and y 4 wy, and that x and y

have a right lcm z in C. Then using the left cancellation property we see that wz

is the right lcm of wx and wy thus x 4 wz and y 4 wz from which it follows that
z 4 wz, i.e. z ∈ HomC(w, ?), so is the right lcm of x and y in C by the first part of
the proof.

Similarly the condition x ∈ HomC(?, w) can be written xw < x, and if x, y ∈
HomC(?, w) have a left lcm z we get that z ∈ HomC(?, w) and is the left lcm of x

and y in C.
The second assertion of the proposition, follows from the fact that if x 4 wx

then α(x) 4 α(wx) = α(wα(x)) 4 wα(w) which shows that α(x) ∈ HomC(w, ?)
(and similarly on the right). �

The following is a straightforward consequence of the proposition:

Corollary 6.3. If P is a germ for C and if we take the germ for the conjugacy
category as in the above proposition, then the normal form of a morphism in the
conjugacy category of C is identical to its normal form in C.

The locally Garside category B+(I). The locally Garside category that we will
consider in this subsection is related to the study of the normalizer of the submonoid
generated by a part of the atoms in an Artin monoid, which has been done by Paris
and Godelle.

Let (W, S) be a Coxeter system, and let (B+,S) be the corresponding Artin
monoid. Recall that B+ is a locally Garside monoid, with germ the canonical lift
W of W in B+ consisting of the elements whose length with respect to S is equal to
the length of their image in W with respect to S (see e.g., [Michel]). Let I0 ⊂ S and
let I be the set of conjugates of I0. Since conjugacy preserves the length (measured
with respect to the generating set S), we see that any element of I is also a subset
of S. Let CI be the connected component of the (simultaneous) conjugacy category
whose objects are I. As the monoid B+ is locally Garside the category C(I) is left
locally Garside.
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We denote by B+
I

the submonoid of B+ generated by a set I ⊂ S.
We recall some definitions and results from [DMR].

Proposition 6.4. (i) Any b ∈ B+ has a maximal left divisor in B+
I
, denoted

αI(b). We denote by ωI(b) the unique element such that b = αI(b)ωI(b).
(ii) Let I,J ⊂ I and b ∈ B+; then bB+

J
⊂ B+

I
if and only if ωI(b)J = I.

(iii) Let I,J ⊂ I and let b1,b2 ∈ B+ be such that b1J = I and αI(b1) = 1;
then αJ(b2) = 1 if and only if αI(b1b2) = 1.

(iv) If b1,b2 ∈ B+ satisfy Ib1 ⊂ S, Ib2 ⊂ S and αI(b1) = αI(b2) = 1, then
their right lcm c also satisfies αI(c) = 1

Proof. (i) is [DMR, 2.1.5](ii) and (ii) results from [DMR, 2.3.10]. Let us prove (iii).
For s ∈ I there exists s′ ∈ J such that sb1 = b1s

′. This element is then a common
multiple of s and b1 and has to be their lcm since s′ is an atom of B+. So s 4 b1b2

if and only if b1s
′ 4 b1b2, i.e, s′ 4 b2 whence the equivalence of αJ(b2) = 1 and

αI(b1b2) = 1.
To prove (iv) we will actually show the stronger statement that if in B+ we have

b 4 c, Ib ⊂ S and αI(b) = 1 then b 4 ωI(c). We proceed by induction on the
length of αI(c). If αI(c) = 1 the result is trivial. Otherwise there exists s ∈ I,
s 4 αI(c). By the assumption Ib ⊂ S there exists t ∈ S such that sb = bt or
equivalently s−1b = bt−1. If we write c = ba with a ∈ B+ then by assumption
s−1c = bt−1a is positive i.e, we have bt−1 = xa−1 for some x ∈ B+. As bt−1 =
s−1b 6∈ B+, we have b 6< t, whence by unicity of irreducible fractions (see [Michel,
3.2]) x = by and a = ty for some y ∈ B+; thus t−1a ∈ B+, i.e. b 4 s−1c. We
then conclude by induction on the length of αI(c) that b 4 ωI(s

−1c) = ωI(c). �

Statement (ii) in the above proposition is a motivation for restricting the next
definition to elements such that αI(b) = 1 (we “lose nothing” by doing so).

The following definition makes sense by 6.4(iii)

Definition 6.5. We define B+(I) as the category whose set of objects is I and
such that the morphisms from I to J are the elements b ∈ B+ such that Ib = J

and αI(b) = 1 (such a morphism will be denoted (I,b,J)).

By 6.4(iii) and 6.4(iv) the subcategory B+(I) of C(I) satisfies the assumptions
of lemma 2.3 and similarly on the right, so it is locally Garside.

We now get a germ for B+(I) from the germ W of the locally Garside monoid
B+. By 6.3 we have a germ P for C(I) consisting of the elements of W which are
in C(I).

Proposition 6.6. Let b be a morphism of B+(I); then all the terms of the normal
form in C(I) of b are in B+(I).

Proof. Let b = w1 . . .wk be the normal form of b ∈ HomB+(I)(I,J) in C(I)

(i.e. in B+). As wi ∈ C(I), we have Ii = wi+1...wkJ ⊂ S for all i. Now, as
w1...wi−1αIi

(wi . . .wk) ⊂ B+
J

, so divides αI(b), this element has to be 1, whence
the result. �

Corollary 6.7. The set of (I,w,J) in C(I) such that w ∈ W and αI(w) = 1 is a
germ for B+(I).

We now identify the germ of the above corollary with a germ constructed in W .
It will be convenient to work with roots instead of subsets of the generators. We
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use the standard geometric realization of W as a reflection group in an R-vector
space V endowed with a basis Π in bijection with S. The set of roots, denoted by
Φ is the set WΠ. We denote by Φ+ (resp. Φ−) the elements of Φ which are linear
combinations with positive (resp. negative) coefficients of Π; a basic property is
that Φ = Φ+

∐
Φ−. For α ∈ Π let sα be the corresponding element of S (a

reflection with root α). For I ⊂ Π we denote by WI the subgroup of W generated
by {sα | α ∈ I}; we say that I is spherical if WI is finite and we then denote by wI

its longest element. A subset I ⊂ Π corresponds to a subset I ⊂ S. We denote by
the same letter the conjugacy class I and the corresponding orbit of subsets of Π.
We say that w ∈ W is I-reduced if w−1I ∈ Φ+. Being I-reduced corresponds to
the lift w ∈ W having αI(w) = 1. So the germ P identifies with the set of (I, w, J)
such that I, J ∈ I and wJ = I. The product (I, w, J)(J, w′, K) is defined in P if
and only if l(ww′) = l(w) + l(w′) and is then equal to (I, ww′, K).

We now describe the atoms of B+(I) using the results of [Brink-Howlett]. If I is
a subset of Π and α ∈ Π is such that ΦI∪{α} −ΦI is finite, then by [Brink-Howlett]

there exists a unique v(α, I) ∈ WI∪{α} such that v(α, I)(Φ+
I∪{α} − Φ+

I ) ⊆ Φ−
I∪{α}

and J = v(α, I)I ⊆ I ∪ {α}; when I ∪ {α} is spherical then v(α, I) = wI∪{α}wI .
We have (J, v(α, I), I) ∈ P when I ∈ I

Proposition 6.8. The atoms of P are the elements (J, v(α, I), I) for I ∈ I and
α ∈ Π − I such that Φ{α}∪I − ΦI is finite.

Proof. By [Brink-Howlett, 3.2] the elements (J, v(α, I), I) as in the proposition
generate the monoid. They are atoms because by [Brink-Howlett, 4.1] the lcm of
two such elements, when it exists, has length strictly larger than either of them. �

The spherical case. We show now that B+(I) is Garside when W is finite. We
recall that in that case B+ is a Garside monoid, with wS as ∆. We denote by
s 7→ s̄ the involution on S given by s 7→ wSs. This extends naturally to involutions
on I and on B+ that we denote in the same way. We define the functor Φ by
Φ(I) = Ī and Φ((J,w, I)) = (J̄, w̄, Ī). The natural transformation ∆ is given by
the collection of morphisms (J,w−1

J
wS, J̄). The properties which must be satisfied

by ∆ and Φ are easily checked.

7. A result à la Deligne for locally Garside categories

In this section we prove a simply connectedness property for the decompositions
into simples for a map in a locally Garside category. This result is similar (but
weaker, see the remark after 7.1) to Deligne’s result in [Deligne], but the proof is
much simpler and the result is sufficient for the applications that we have in mind.
The present proof follows a suggestion by Serge Bouc to use a version of [Bouc,
lemma 6].

Let P a left locally Garside germ and fix g ∈ C(P ) with g 6= 1. We denote by
E(g) the set of decompositions of g into a product of elements of P different from
1.

Then E(g) is a poset, the order being defined by

(g1, . . . , gi−1, gi, gi+1, . . . , gn) > (g1, . . . , gi−1, a, b, gi+1, . . . , gn)

if ab = gi ∈ P .
We recall the definition of the notion of homotopy in a poset (which is nothing

but a translation of the notion of homotopy in a simplicial complex isomorphic to
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E as a poset). A path from x1 to xk in E is a sequence x1 . . . xk where each xi

is comparable to xi+1. The composition of paths is defined by concatenation. We
denote homotopy by ∼. It is the finest equivalence relation on paths compatible
with concatenation and generated by the two following elementary relations: xyz ∼
xz if x ≤ y ≤ z and xyx ∼ x (resp. yxy ∼ y) when x ≤ y. Homotopy classes form
a groupoid, as the composition of a paths with source x and of the inverse path is
the constant path at x. For x ∈ E we denote by Π1(E, x) the fundamental group
of E with base point x, which is the group of homotopy classes of loops starting
from x.

A poset E is said to be simply connected if it is connected (there is a path linking
any two elements of E) and if the fundamental group with some (or any) base point
is trivial.

Note that a poset with a smallest or largest element x is simply connected since
any path (x, y, z, t, . . . , x) is homotopic to (x, y, x, z, x, t, x, . . . , x) which is homo-
topic to the trivial loop.

Theorem 7.1. (Deligne) The set E(g) is simply connected.

In fact Deligne, in his more specific setting, proves the stronger result that E(g)
is contractible.

Proof. First we prove a version of a lemma from [Bouc] on order preserving maps
between posets. For a poset E we put E≥x = {x′ ∈ E | x′ ≥ x}, which is a
simply connected subposet of E since it has a smallest element. If f : X → Y

is an order preserving map it is compatible with homotopy (it corresponds to a
continuous map between simplicial complexes), so it induces a homomorphism f∗ :
Π1(X, x) → Π1(Y, f(x)).

Lemma 7.2. (Bouc) Let f : X → Y an order preserving map between two posets.
We assume that Y is connected and that for any y ∈ Y the poset f−1(Y≥y) is
connected and non empty. Then f∗ is surjective. If moreover f−1(Y≥y) is simply
connected for all y then f∗ is an isomorphism.

Proof. Let us first show that X is connected. Let x, x′ ∈ X ; we choose a path
y0 . . . yn in Y from y0 = f(x) to yn = f(x′). For i = 0, . . . , n, we choose xi ∈
f−1(Y≥yi

) with x0 = x and xn = x′. Then if yi ≥ yi+1 we have f−1(Y≥yi
) ⊂

f−1(Y≥yi+1) so that there exists a path in f−1(Y≥yi+1) from xi to xi+1; otherwise
yi < yi+1, which implies f−1(Y≥yi

) ⊃ f−1(Y≥yi+1) and there exists a path in

f−1(Y≥yi
) from xi to xi+1. Concatenating these paths gives a path connecting x

and x′.
We fix now x0 ∈ X . Let y0 = f(x0). We prove that f∗ : Π1(X, x0) → Π1(Y, y0)

is surjective. Let y0y1 . . . yn with yn = y0 be a loop in Y . We lift arbitrarily
this loop into a loop x0— · · ·—xn in X as above, (where xi—xi+1 stands for a
path from xi to xi+1 which is either in f−1(Y≥yi

) or in f−1(Y≥yi+1). Then the
path f(x0—x1— · · ·—xn) is homotopic to y0 . . . yn; this can be seen by induc-
tion: let us assume that f(x0—x1 · · ·—xi) is homotopic to y0 . . . yif(xi); then
the same property holds for i + 1: indeed yiyi+1 ∼ yif(xi)yi+1 as they are two
paths in a simply connected set which is either Y≥yi

or Y≥yi+1 ; similarly we have
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f(xi)yi+1f(xi+1) ∼ f(xi—xi+1). Putting things together gives

y0 . . . yiyi+1f(xi+1) ∼ y0y1 . . . yif(xi)yi+1f(xi+1)

∼ f(x0— · · ·—xi)yi+1f(xi+1)

∼ f(x0— · · ·—xi—xi+1).

We now prove injectivity of f∗ when all f−1(Y≥y) are simply connected.
We first prove that if x0— · · ·—xn and x′

0— · · ·—x′
n are two loops lifting the

same loop y0 . . . yn, then they are homotopic. Indeed, we get by induction on i

that x0— · · ·—xi—x′
i and x′

0— · · ·—x′
i are homotopic paths, using the fact that

xi−1, xi, x′
i−1 and x′

i are all in the same simply connected sub-poset, namely either

f−1(Y≥yi−1) or f−1(Y≥yi
).

It remains to prove that we can lift homotopies, which amounts to show that if
if we lift as above two loops which differ by an elementary homotopy, the liftings
are homotopic. If yy′y ∼ y is an elementary homotopy with y < y′ (resp. y > y′),
then f−1(Y≥y′) ⊂ f−1(Y≥y) (resp. f−1(Y≥y) ⊂ f−1(Y≥y′)) and the lifting of yy′y

constructed as above is in f−1(Y≥y) (resp. f−1(Y≥y′)) so is homotopic to the trivial
path. If y < y′ < y′′, a lifting of yy′y′′ constructed as above is in f−1(Y≥y) so is
homotopic to any path in f−1(Y≥y) with the same endpoints. �

We now prove 7.1. By 2.9 C(P ) is right Artinian. Thus if 7.1 is not true there
exists g ∈ C(P ) which is minimal for right divisibility such that E(g) is not simply
connected. Let T be the set of elements of P which are left divisors of g. By 3.29,
for any I ⊂ T the elements of I have an lcm ∆I . We put EI(g) = {(g1, . . . , gn) ∈
E(g) | ∀s ∈ I, s 4 g1}. The set EI(g) is the set of decompositions of g whose first
term is left divisible by ∆I .

We claim that EI(g) is simply connected for I 6= ∅. In the following, if a 4 b,
we denote by a−1b the element c such that b = ac. We apply 7.2 to the map
f : EI(g) → E(∆−1

I g) defined by

(g1, . . . , gn) 7→

{

(g2, . . . , gn) if g1 = ∆I

(∆−1
I g1, g2, . . . gn) otherwise

.

This map preserves the order and any set f−1(Y≥(g1,...,gn)) has a least element,

namely (∆I , g1, . . . , gn), so is simply connected. As by minimality of g E(∆−1
I g) is

simply connected 7.2 implies that EI(g) is simply connected as claimed.
We now apply 7.2 to the map f : E(g) → Y = P(T )−{∅} defined by (g1, . . . , gn) 7→

{s ∈ T | s 4 g1}, where P(T ) is ordered by inclusion. This map is order preserving
since (g1, . . . , gn) < (g′1, . . . , g

′
n) implies g1 4 g′1. We have f−1(Y≥I) = EI(g), so

this set is simply connected Since P(T )−{∅}, having a greatest element, is simply
connected 7.2 gives that E(g) is simply connected, whence the theorem. �

8. The categories associated to Pn

Let P be a left locally Garside germ. For any positive integer n we define a
germ Pn whose objects are the paths of length n in P and such that a morphism

a
f
−→ b where a = (a1, . . . , an) and b = (b1, . . . , bn), is given by a sequence fi for

1 ≤ i ≤ n + 1, where fi is a morphism from the source of ai to the source of bi for
i ≤ n and fn+1 is a morphism from the target of an to the target of bn, with the
additional condition that fi 4 ai for i ≤ n and that, if we define f ′

i by ai = fif
′
i ,

using left cancellability, we then have bi = f ′
ifi+1 for 1 ≤ i ≤ n.



GARSIDE CATEGORIES 21

The composition of two morphisms (a1, . . . , an)
f
−→ (b1, . . . , bn)

g
−→ (c1, . . . , cn)

is defined in Pn when figi 4 ai. We then set (fg)i = figi, which satisfies the
conditions for being in Pn; indeed, if we define (fg)′i by ai = (fg)i(fg)′i the equality
to prove ci = (fg)′i(fg)i+1 is equivalent by left cancellation to (fg)ici = ai(fg)i+1,
which is true since figici = figig

′
igi+1 = fibigi+1 = fif

′
ifi+1gi+1 = aifi+1gi+1.

Divisibility in Pn is then given by the following result:

Lemma 8.1. The morphism a
f
−→ b left divides in Pn the morphism a

g
−→ c if and

only if fi 4 gi. Then there is a unique morphism b
h
−→ c such that fh = g, where

hi is given by fihi = gi, using the left cancellation property.

Proof. By the description of the product it is clear that if h is such that fh = g

then fihi = gi. Let us see that conversely this implies that h is a morphism from
b to c. Indeed gici = aigi+1 ⇔ fihici = fif

′
ifi+1hi+1 which implies hici = bihi+1,

so if we define h′
i by bi = hih

′
i we get ci = h′

ihi+1 as wanted. �

Lemma 8.2. Pn is a germ.

Proof. Axiom 3.1 (i) is clear, the identity morphism being given by the sequence
fi = 1.

Let us check axiom 3.1 (ii). Let us consider three morphisms a
f
−→ b

g
−→ c

h
−→ d.

From the definition of the product in Pn, since when they are defined, we have
(fg)i = figi and (gh)i = gihi, the condition for (fg)h ∈ Pn and for f(gh) ∈ Pn is
the same, namely that figihi 4 ai, and both products are defined by the sequence
figihi so are equal. �

We will also consider the two subgerms of Pn defined by one of the two additional
conditions:

Definition 8.3. (i) The subgerm Pn(Id) has the same objects as Pn and its
morphisms verify the additional condition f1 = fn+1 = 1.

(ii) Let F be a functor from C(P ) to itself. The objects of the subgerm Pn(F )
are the paths (a1, . . . , an) such that the target of an is the image by F of
the source of a1, and the morphisms of Pn(F ) are the morphisms of Pn

verifying the condition fn+1 = F (f1).

Note that the condition on the objects of Pn(F ) is such that they have an identity
morphism. A connected component of the category C(Pn(Id)) is a “category of
decompositions” of a given morphism in C(P ), while a connected component of
C(Pn(F )) corresponds to a connected component of the “category of F -twisted
conjugacy” for C(P ). Note that Pn(Id) is a subgerm of Pn stable by taking left
and right factors, while Pn(F ) is not.

The germ Pn(Id) was inspired by a conversation with Daan Krammer. The germ
Pn(F ) mimics the “divided categories” of David Bessis.

Since (fg)i = figi we can extend the map f 7→ fi : Pn → P to a map f 7→
fi : C(Pn) → C(P ); this corresponds to the “product of the i-th column”, equal to
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fi = f1if2i . . . fni, in the following picture of a map in C(Pn).

s1 //

f11

��

s2 //

f12

��

sn //

��
f1(n+1)

��//

f21

��

//

f22

��

//

��
f2(n+1)

��// // //

t1 // t2 // tn //

Theorem 8.4. Pn is left locally Garside.

Proof. Let us check Noetherianity (3.6 (G1)). Let us consider an increasing se-
quence (gk) of morphisms all dividing a morphism f from (a1, . . . , an) to (b1, . . . , bn).
By lemma 8.1 this increasing sequence corresponds to an increasing sequence of left
factors of fi for each i . By the Noetherianity of P each of these sequence becomes
constant at some stage so gk itself becomes constant and we are done.

We now check left cancellability (3.6 (G4)). Assume that we have an equality
fg = fh where f ∈ C(Pn) and g, h ∈ Pn. Then figi = (fg)i = (fh)i = fihi for all
i, and by left cancellability in C(P ) we deduce gi = hi for all i q.e.d.

We now check axiom 3.6 (G2). If f and g have a common right multiple h in
Pn, then by lemma 8.1 for all i the morphism hi is a right multiple of fi and gi, so
fi and gi have a right lcm ki in P . From fi 4 ai and gi 4 ai we get ki 4 ai, so ki

defines a morphism k in Pn which is clearly an lcm for f and g.
The axiom 3.6 (G3) can be similarly deduced from the corresponding axiom in

P . �

Theorem 8.5. (i) If F preserves right lcms, the category C(Pn(F )) is left
Garside.

(ii) If C(P ) is left Garside, then C(Pn) also.
(iii) C(Pn(Id)) is left Garside.

Proof. We first check that the above categories are left locally Garside. We have
seen this for C(Pn) in 8.4. For C(Pn(Id)) and C(Pn(F )), since Pn(Id) and Pn(F ) are
subgerms of the left locally Garside germ Pn, by lemma 3.34 we have just to check
that they are stable by right complement and lcm. The stability by complement is
clear from the formula (fg)i = figi for a product, since then if (fg)i and fi satisfy
the condition for Pn(Id) (resp. Pn(F )) then gi will also satisfy it. Similarly, since
by the proof of 8.4 the lcm of f and g is obtained by taking the lcm of fi and
gi, it will obviously satisfy the condition for Pn(Id), and also for Pn(F ) using the
assumption that F preserves lcms.

Thus, by 5.5, we just have to check that in each of these categories the morphisms
in the germ with a given source have a right lcm.

For C(Pn), let ∆A be the natural transformation starting from the object A

corresponding to the left Garside structure on C(P ), and let a = (a1, . . . , an) be
an object of Pn. Then fi = ai for i ≤ n and fn+1 = ∆A, where A is the target of
an, defines a morphism f from a in Pn. This morphism is clearly multiple of any
other morphism from a.

For the category C(Pn(F )), we take the morphism given by fi = ai for i ≤ n

and fn+1 = F (a1). It is clear that it is a multiple in Pn of any morphism from
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(a1, . . . , an) which is in in Pn(F ); it is also clear that the quotient is in Pn(F ) since
gn+1hn+1 = F (g1h1) and gn+1 = F (g1) imply hn+1 = F (h1) by cancellation.

Finally for C(Pn(Id)), we define by induction for i ≥ 2 morphisms f ′
i−1 and fi

by the rules ai−1 = fi−1f
′
i−1 and f ′

i−1fi = α(f ′
i−1ai). If we have another morphism

g from a, we see by the same induction that gi 4 fi and g′i < f ′
i . �

Let us spell out the value of Φ in the first two categories.
For C(Pn), we have Φ((a1, . . . , an)) = (a2, . . . , an, ∆A) where A is the target of

an. If a
f
−→ b is given by fi, we have Φ(f)i = fi+1 for i ≤ n and Φ(f)n+1 = Ψ(fn+1)

where Ψ is the endofunctor corresponding to the assumed left Garside structure on
C(P ).

In C(Pn(F )), if a = (a1, . . . , an) then Φ(a) = (a2, . . . , an, F (a1)); and a
f
−→ b is

given by fi, we have Φ(f)i = fi+1 for i ≤ n and Φ(f)n+1 = F (f2).

The case of a right locally Garside P . In the case where P is right and left
locally Garside, we can compute the normal form of a morphism and will deduce
that a morphism f is determined by the fi.

Lemma 8.6. Let f and g be morphisms in Pn such that the target of f is the
source of g; then α(fg) is the morphism whose i-th component α(fg)i is the left
gcd of figi and si for i = 1, . . . , n and α(fg)n+1 = α(fn+1gn+1).

Proof. We have the following commutative diagram

s1 //

f1

��

s2 //

f2

��

sn //

��
fn+1

��//

g1

��

//

g2

��

//

��
gn+1

��
t1

//
x1

??
�

�
�

�
�

�
�

t2

//
tn

//
xn

??
�

�
�

�
�

�
�

For i = 1, . . . , n, let fiai be the left gcd of figi and si and let fn+1an+1 =
α(fn+1gn+1); we put gi = aibi for i = 1 . . . , n + 1 and si = fiaivi for i = 1, . . . , n.
Let wi be the morphism xiai. The diagram is the following

s1 //

f1

��

s2 //

f2

��

sn //

��
fn+1

��

a1

��
a2

�� ��
an+1

��v1f2a2 //

b1

��

v1

GG
�
�
�
�
�
�
�
�
�
�
�
�
� v2f3a3 //

b2

��

//

��

vn

GG
�
�
�
�
�
�
�
�
�
�
�
�
�

bn+1

��
t1

//
w1

??
�

�
�

�
�

�
�

t2

//
tn

//
wn

??
�

�
�

�
�

�
�

We prove that the there exists a morphism h ∈ Pn such that hi = fiai which is
equivalent to proving that vifi+1ai+1 is in P . We claim that vifi+1ai+1 is the left
lcm of fi+1ai+1 and wi for i = 1, . . . , n: indeed it is a common left multiple and if
the left lcm was smaller then bi and vi would have a non trivial common left divisor
yi which would give a common left divisor fiaiyi of si and figi greater than their
gcd fiai. We conclude as the lcm of two morphisms in P is in P .
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So we have a morphism h ∈ Pn which divides fg. There cannot be a greater
simple divisor k of fg as ki has to divide si and figi for i = 1 . . . n and kn+1 has to
be a simple divisor of fn+1gn+1. �

Note that in the above proof we have used a left lcm. It is the only place where
we use the fact that P is right locally Garside.

Proposition 8.7. Let f be a morphism in C(Pn) with source (s1, . . . , sn); then
α(f) is the simple morphism with same source such that α(f)i = gcd(fi, si) for
i = 1, . . . , n and α(f)n+1 = α(fn+1).

Proof. We write f = f1 . . . fk with f i ∈ Pn. The proof is by induction on k.
The above lemma proves the result for k = 2. We have α(f) = α(f1α(f2 . . . fk)).
By the induction hypothesis applied to f2 . . . fk, the following diagram represents
f1α(f2 . . . fk):

s1 //

f1
1

��

s2 //

f1
2

��

sn //

��
f1

n+1

��t1 //

g1

��

??
�

�
�

�
�

�
� t2 //

g2

��

tn //

��

??
�

�
�

�
�

�
�

gn+1

��//

??
�

�
�

�
�

�
� // //

??
�

�
�

�
�

�
�

where gi = gcd(ti, (f
2 . . . fk)i) for i ≤ n and gn+1 = α((f2 . . . fk)n+1). We apply

now the previous lemma to the two term product f1α(f2 . . . fk). We will be done if
gcd(f1

i gi, si) = gcd(fi, si) i.e, gcd(f1
i gcd(ti, (f

2 . . . fk)i), si) = gcd(fi, si) for i ≤ n

and α(f1
n+1α((f2 . . . fk)n+1) = α(fn+1). The latter is true by the properties of α.

The former is true as the right hand side is a multiple of f1
i so has to be the product

of f1
i by a common divisor of (f2 . . . fk)i and ti. �

Corollary 8.8. Let f and g be two morphisms in C(Pn) with same source; then
f 4 g if and only if fi 4 gi for all i

Proof. Assume that fi 4 gi for all i. If f and g are in Pn then we are done
by lemma 8.1. In general we prove the result by induction on the length of the
normal form of f . We first show that α(f) 4 α(g): let (s1, . . . , sn) be the common
source of f and g; we have α(f)i = gcd(fi, si) 4 gcd(gi, si) = α(g)i for i ≤ n and
α(f)n+1 = α(fn+1) 4 α(gn+1) = α(g)n+1, whence the result as α(f) and α(g) are
two elements of Pn. After simplifying by α(f) we can apply the induction hypothesis
which gives that ω(f) 4 α(f)−1g, whence f 4 g. The converse is clear. �

Corollary 8.9. A morphism f ∈ C(Pn) is determined uniquely by its source and
the morphisms fi ∈ C(P )

Proof. If two morphisms f and g have same source and fi = gi for all i, then by
the previous corollary they divide each other, so are equal. �

Note that corollaries 8.8 and 8.9 are true for any subcategory of C(Pn). Propo-
sition 8.7 is true in C(Pn(Id)). In C(Pn(F )) it has to be modified as follows:

Corollary 8.10. Let P be as above and F be as in 8.3(ii); if f is a morphism
in C(Pn(F )) with source (s1, . . . , sn) then α(f) is the simple morphism with same
source such that α(f)i = gcd(fi, si) for i = 1, . . . , n.

Proof. It is clear that the morphism defined by these conditions is the greatest
divisor of the α(f) computed in Pn which is in Pn(F ). �
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More on C(Pn(Id)). We now return to the case of an only left Garside P and look
at C(Pn(Id)).

Lemma 8.11. In Pn(Id), there is at most one morphism between two objects.

Proof. Indeed, if (a1, . . . , an)
f
−→ (b1, . . . , bn) in Pn(Id) then we have f1 = 1 thus f

is determined by increasing induction on i, using the cancellation property, by the
equations ai = fif

′
i and bi = f ′

ifi+1. �

Let a = (a1, . . . , an) be an object of Pn and let (b1, . . . , bn) be the normal form
of a1a2 . . . an in C(P ), completed if needed by ones; i.e., the sequence bi is defined
by bi = α(ωi−1(a1 . . . an)) for all i (we then have bi = 1 ⇒ bk = 1∀k ≥ i). In this
situation we set NF(a) = (b1, . . . , bn). Using e.g. inductively 3.19 we can always
construct at least one morphism in C(Pn(Id)) from a to NF(a). In particular two
objects are in the same connected component if and only if the product of their
terms is the same.

Lemma 8.12. In C(Pn(Id)), there is a unique morphism a → NF(a).

Proof. We first show that any morphism from a to NF(a) has ∆a as a left factor.
Let f = f1f2 . . . fm be such a morphism, where fi ∈ Pn(Id). By definition of ∆a

we have f1 4 ∆a. Using left cancellability we define g1 by ∆a = f1g1. Since f2

and g1 both divide ∆a1 , where a1 is the target of f1 they have a right lcm of the
form f2g2 = g1h2. By induction on i we can extend this process to get morphisms
gi, hi ∈ Pn(Id) such that figi = gi−1hi. As NF(a) is a final object in C(Pn(Id)) we
have gm+1 = Id whence f1f2 . . . fm = ∆ah2 . . . hm.

By induction, and using Noetherianity of C(Pn(Id)), we can express any map
from a to NF(a) as a (necessarily unique) finite product of ∆’s, whence the lemma.

�

Lemma 8.13. In C(Pn(Id)), there is at most one morphism between two objects.

Proof. Suppose there exists two distincts morphisms f, g from a to b. The fact
that one morphism exists implies that NF(a) = NF(b). By composing f and g

with the canonical morphism from b to NF(b) = NF(a), we get two morphisms
from a to NF(a), which are distinct by the left cancellation property of C(Pn(Id)).
This contradicts 8.12. �

The category C(P•(Id)). We will now consider a category whose objects can be
identified to all possible decompositions of a morphism of C(P ) into elements of
P . We first define a germ P•(Id) whose set of objects is the union of the set of
objects of all Pn for n ≥ 1; this germ is thus graded. For morphisms, we start by
taking all the morphisms of

⋃

n Pn(Id) as morphisms of degree 0. We will also add
some morphisms of positive degree. If a = (a1, . . . , am) is an object of degree m

we denote by a[k] the object (a1, . . . , am, 1, . . . , 1
︸ ︷︷ ︸

k

) of degree m + k. Then we add

a morphism ia,k from a to a[k] which we declare to be of degree k. We add to the
germ the products of a morphism ia,k with a morphism of degree 0. Finally we add
the relations (i.e. define the following products) ia,kia[k],l = ia,k+l and, for each

morphism a
f
−→ b of degree 0 between objects of degree m, the relations fib,k =

ia,kf
[k] where f [k] is defined by f

[k]
i = fi for i ≤ m and fm+1 = . . . = fm+k+1 = 1.
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It follows from these relations that any product of ia,k’s and of one morphism of
degree 0 is in P•(Id), and that a morphism in P•(Id) is unique given its source and
target (using 8.11).

The category C(P•(Id)) generated by P•(Id) inherits a grading.

Proposition 8.14. The category C(P•(Id)) is left locally Garside.

Proof. The axioms for a germ are clear. The locally Garside germ axiom 3.6(G1)
is also clear (in a bounded increasing sequence the degree becomes constant and
we are reduced to the case of Pn(Id) and 3.6(G4) is clear, using the unicity of
morphisms between two objects.

We prove now 3.6(G3). Consider two maps ia,kf and ia,lg. We may assume that

k ≤ l. Then ia,lf
[l−k] is a multiple of ia,kf and ia,l times the lcm of f [l−k] and

g is the lcm of ia,kf and ia,lg. Indeed any multiple of ia,kf of degree l is of the
form ia,lh where by cancellation we must have f 4 ia[k],l−kh; since any morphism

of degree l − k extending f must start by fib,l−k = ia[k],l−kf [l−k] (where b is the

target of f) we have f [l−k] 4 h.
The proof of 3.6 (G3) is similar. �

Remark 8.15. Note that C(Pn(Id)) is the full subcategory of C(P•(Id)) obtained by
restricting the objects to those of Pn.

We can extend 8.12 to C(P•(Id)):

Lemma 8.16. For any k there is a unique morphism a → NF(a)[k].

Proof. Using the relations in C(P•(Id)), any morphism from a to NF(a)[k] is of the
form ia,kf where f is a morphism of degree 0 from a[k] to NF(a)[k]. Since NF(a)[k]

is clearly the normal form of a[k] we get the result by 8.12, using remark 8.15. �

Corollary 8.17. Two objects of C(P•(Id)) are in the same connected component
if and only if the product of their terms is the same.

Proposition 8.18. Let O be a functor from C(P•(Id)) to a groupoid. Let us
call elementary isomorphism a map of the form O(f)O(ia′,1)

−1 or O(ia′,1)O(f)−1

where a
f
−→ a′[1] ∈ P• is of the form a = (a1, . . . , ai, ai+1, . . . , an)

f
−→ a′[1] =

(a1, . . . , ai−1, aiai+1, . . . , an, 1). Then all the compositions of elementary isomor-
phisms between two objects in the image of O are equal.

Proof. Given a = (a1, . . . , an) an object of Pn, and given k ≥ n, let ga,k be the

image by O of the unique map in C(P•(Id)) between a and NF (a)[k−deg(a)] (cf.
8.16). Then for any k ≥ n we have ga,k = O(f)ga′[1],k and O(ia′,1)ga′[1],k = ga′,k

thus the elementary morphism O(f)O(ia′,1)
−1 between O(a) and O(a′) is equal to

ga,kg
−1
a′[1],k

. It follows that, for k larger than the degree of all the objects involved,

we find by composing the above formula along a path of elementary isomorphisms,
that a composition of elementary isomorphisms between a and b is equal to ga,kg

−1
b,k.

Thus all such compositions are equal. �

An application to Deligne-Lusztig varieties. We give an application of the
last proposition to the existence of generalized Schubert cells associated to the
elements of the braid monoid. Let G be a reductive group over an algebraically
closed field. Let W be the Weyl group, identified to the set of orbits of G on B×B,



GARSIDE CATEGORIES 27

where B is the variety of Borel subgroups. Let B+(W ) the corresponding Artin-
Tits monoid, and let W be the germ of simple elements of B+(W ) (naturally in
bijection with W ), so B+(W ) = C(W). To an object (w1, . . . ,wn) of C(W•(Id))
we attach the variety

O(w1, . . . ,wn) = {(B1, . . . ,Bn+1) ∈ Bn+1 | (Bi,Bi+1}) ∈ O(wi)},

where wi is the image of wi in W and O(wi) is the orbit of G in B×B corresponding

to wi. To a morphism w
f
−→ v of C(W•(Id)), given by wi = fif

′
i , and vi = f ′

ifi+1

we associate the isomorphism O(f) : O(w) → O(v) which sends Bk to the unique
Borel subgroup B′

k such that (Bk,B′
k,Bk+1) ∈ O(fk, f ′

k) and B′
n+1 = Bm+1. To

the morphism iw,k we associate the isomorphism which maps (B1, . . . ,Bn+1) to
(B1, . . . ,Bn,Bn+1, . . . ,Bn+1

︸ ︷︷ ︸

k+1

).

Proposition 8.19. O is a functor from C(W•(Id)) to the category of quasi-
projective varieties with isomorphisms.

Proof. We need to check that if w
f
−→ v and v

g
−→ u are such that f, g, fg ∈ W•(Id),

then O(f)O(g) = O(fg). This results from the fact that if (Bk,B′
k,Bk+1) ∈

O(fk, f ′
k), (Bk+1,B

′
k+1,Bk+2) ∈ O(fk+1, f

′
k+1) and (B′

k,B′′
k ,B′

k+1) ∈ O(gk, g′k)
then (Bk,B′′

k,Bk+1) ∈ O(fkgk, (fg)′k) since g′k = (fg)′kfk+1. �

If b = w1 . . .wn, since we can pass from any decomposition of b into a product
of elements of W to another by elementary isomorphisms, it follows that varieties
associated to decompositions of the same element b of B+(W ) are canonically
isomorphic. Passing to the projective limit of these isomorphisms, we can define
a variety O(b) associated to an element of B+(W ). Note that we could also have
applied theorem 7.1 to this situation, as Deligne did in [Deligne].
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