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Abstract

We prove global well-posedness for the Gross-Pitaevskii equation on the plane for classes of
initial data having non zero topological degree at infinity and therefore infinite Ginzburg-
Landau energy. These classes allow to consider arbitrary configurations of vortices as initial
data. Our work follows recent results of Patrick Gérard [9] and Clément Gallo [4] where the
finite energy regime is treated.

Résumé

Nous démontrons l’existence globale en temps et le caractère bien posé de l’équation
de Gross-Pitaevskii dans le plan, pour des familles de données initiales possédant un degré
topologique à l’infini non nul, et par conséquent une énergie infinie. Ces familles permettent
en particulier de considérer des configurations arbitraires de vortex. Ce travail fait suite à
des résults récents de Patrick Gérard [9] et Clément Gallo [4] qui traitent le régime d’énergie
finie.

1 Introduction

In a recent paper, Patrick Gérard [9] has established global well-posedness of the Gross-
Pitaevskii equation in R

N , N = 2 or 3,

(GP ) i∂tu+ ∆u = (|u|2 − 1)u,

for initial data in the energy space. The energy in this case is given by the Ginzburg-landau
functional

E(u) ≡
∫

R2

e(u) :=

∫

R2

|∇u|2
2

+
(1 − |u|2)2

4
.

Equation (GP ) is Hamiltonian, with Hamiltonian given by E . The solutions constructed in [9]
have finite, constant in time Ginzburg-Landau energy. Clément Gallo [4] proved additional
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properties of the flow as well as extensions to more general nonlinearities. One peculiarity
of E and (GP ) is that finite energy fields do not tend to zero at infinity, but have instead to
stay close to the unit circle S1.

In dimension two, the Gross-Pitaevskii equation possesses remarkable stationary solutions.
These solutions, called vortices and labeled by an integer d ∈ Z

∗, have the special form

ud(x) ≡ ud(r, θ) = fd(r) exp(idθ),

where fd : R
+ → [0, 1] satisfies

f ′′d +
1

r
f ′d −

d2

r2
fd + fd(1 − f2

d ) = 0, fd(0) = 0, fd(+∞) = 1.

It is known (see e.g. [10]) that |∇ud(x)| ∼ d/|x| as x→ +∞, so that

∫

|∇ud|2 = +∞. (1)

On the other hand, the potential term remains bounded (actually
∫

(1 − |ud|2)2/4 = πd2),
as well as the modulus part of the gradient:

∫ |∇|ud||2 < +∞. Notice that ud has winding
number d at infinity, in the sense that for each radius r > 0 large enough (actually for any
radius here) the map ψr : ∂Br ≃ S1 → S1 given by

x 7→ ud(x)

|ud(x)|

has topological degree d. It can easily be proved that any continuous field which does not
vanish outside a compact set and has a nonzero degree at infinity has infinite energy.

The purpose of this note is to address the Cauchy problem for (GP ) for classes of initial
data having a nonzero degree at infinity, and which thus do not belong to the energy space.
In particular this will include perturbations of the afore mentioned vortices. More precisely,
we will consider the space

Y =
{

U ∈ L∞(R2,C), ∇kU ∈ L2(R2),∀k ≥ 2
}

,

its subset
V =

{

U ∈ Y, ∇|U | ∈ L2(R2), (1 − |U |2) ∈ L2(R2)
}

,

and the set
Z = V +H1(R2).

Using regularization by convolution (see e.g [4]), one realizes that {E(u) < +∞} ⊂ Z, and
actually one has

Z ∩ Ḣ1(R2) ≡ {E(u) < +∞}.
On the other hand, ud ∈ V (this easily follows from the already mentioned properties of ud

and from elliptic regularity), in particular in view of (1) V is different from the energy space.
Moreover, if U ∈ V, standard Sobolev embeddings yields ∇U ∈ L∞(R2).

Our main theorem is
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Theorem 1. Let u0 ∈ Z. There exists a unique solution t 7→ u(t) of (GP ) such that u(0) = u0

and u(t) − u0 ∈ C0(R,H1(R2)).

Since t 7→ u(t) belongs to the affine space u0 +H1(R2), equation (GP ) has a meaning for
u, at least in the sense of distributions. Actually, choosing a decomposition

u0 = U0 + w0,

where U0 ∈ V and w0 ∈ H1(R2), we will prove that there exists a unique solution w ∈
C0(R,H1(R2)) of

{

i∂tw + ∆w = fU0
(w)

w(·, 0) = w0,
(2)

where
fU0

(w) = −∆U0 + (|U0 + w|2 − 1)(U0 + w).

The function u(t) = U0 +w(t) is then the solution given in Theorem 1.

In the case ∇u0 ∈ L2(R2), the result is a consequence of [9] and [4]. Here, we only
require ∇|u0| ∈ L2(R2), together with some less restrictive assumptions at infinity. From the
technical point of view, our new assumption does not provide any major additional difficulty
for proving local existence of solutions. For the global existence however, we cannot rely as in
[9, 4] on the conservation of E(u0) which may be infinite. Instead, we consider the quantity1

ẼU0
(w) =

∫

R2

|∇w|2
2

−
∫

R2

(∆U0) · w +

∫

R2

(|U0 + w|2 − 1)2

4

for the perturbation w, and set EU0
(u) = ẼU0

(w) for u = U0 + w. This last quantity may be
regarded as a renormalized energy for u. It does not seem to have an intrinsic meaning, since
its definition relies heavily on the decomposition u = U0 + w which is not unique.

Theorem 2. Let u0 = U0 + w0 ∈ Z, and let t 7→ u(t) be the solution given in Theorem 1,

then
d

dt
EU0

(u(t)) = 0 on R.

Moreover, if ũ0 = U0 + w̃0 ∈ Z and t 7→ ũ(t) is the corresponding solution given in Theorem

1, then

‖u(t) − ũ(t)‖H1(R2) ≤ C(t, U0, EU0
(u0))‖u0 − ũ0‖H1(R2).

The definition of the renormalized energy EU0
(u) was motivated as follows. For R > 0, it

is natural to introduce the difference of energies

Λ(R,u) ≡
∫

B(R)
[e(u) − |∇U0|2

2
].

Expanding and integrating by parts, we are led to

Λ(R,u) =

∫

B(R)

|∇w|2
2

− (∆U0) · w +
|U0 + w|2 − 1)2

2
+

∫

∂B(R)

∂U0

∂r
· w. (3)

1For complex numbers z and z
′, we denote by z · z

′ the scalar product Re(z̄z
′).

3



Since w belongs to H1(R2), and hence to L2(R2), and since |U0| is bounded , it can be shown
that, for a subsequence Rn → +∞, the boundary term on the r.h.s of (3) tends to zero, so
that

Λ(Rn, u) → EU0
(u).

As a matter of fact, if it is assumed moreover that, as for vortices, |∇U0(x)| ≤ C
|x| , then the

full sequence converges and
lim

R→+∞
Λ(R,u) = EU0

(u), (4)

providing therefore an alternative definition of the renormalized energy. This last definition
is actually very similar to the one introduced in [12].

It is also worthwhile to notice that, although it plays the role of an energy, the renormal-
ized energy may not be bounded from below. This fact is related subtle behavior of U0 at
infinity. In the case U0 = ud, it can be proved (see [1]) that EU0

is not bounded from below,
unless |d| ≤ 1. For instance, the sequence

un(z) =
d

∏

j=1

u1(z − n exp(2iπ
θ

d
)),

when d ≥ 2, has renormalized energy tending to minus infinity.

As mentioned, the space Z∩ Ḣ1(R2) ≡ {E(u) < +∞} corresponds to the energy space for
(GP ) (see [9, 4]). It would be of interest to have a better understanding of Z, in particular
introducing a topological point of view which should for instance recognize the degree at
infinity.

To conclude, we would like to stress that the complete dynamics of (GP) exhibits a
remarkable variety of special solutions and regimes. Besides the already mentioned stationary
vortices, there are also soliton like solutions, as well as traveling pairs of vortices [7, 2]. In the
WKB limit the (GP) equation turns out to behave like a wave equation [3] whereas in other
regimes it has scattering properties similar to those of the linear Schrödinger equation [6].
An important issue is to understand how these different modes interact and possibly excite
each other (an example of radiating vortices is formally treated in [11]). Solving the Cauchy
problem as done here when vortices are present is a necessary preliminary step to address
some of these issues.

2 Local existence

In this section, we prove local existence for (2) using a fixed point argument for the map
w 7→ Φ(w), where

Φ(w)(t) = eit∆w0 − i

∫ t

0
ei(t−s)∆fU0

(w(s)) ds

and w0 is given and fixed in H1(R2).

Proposition 1. Let T > 0 and 0 < γ < 1. For every w ∈ C0((−T, T ),H1(R2)), the function

Φ(w) belongs to C0((−T, T ),H1(R2)). Moreover, for T ≤ 1 and w̃ ∈ C0((−T, T ),H1(R2)), if

sup
t∈(−T,T )

(

‖w(t)‖H1(R2) + ‖w̃(t)‖H1(R2)

)

≤ R,
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then

sup
t∈(−T,T )

‖Φ(w)(t) − Φ(w̃)(t)‖H1(R2) ≤ C(γ, U0)(1 +R2) T γ sup
t∈(−T,T )

‖w(t) − w̃(t)‖H1(R2). (5)

The proof relies mainly on estimates for fU0
(w), combined with classical Strichartz esti-

mates.

Lemma 1. Let w ∈ H1(R2) and 1 < r < 2 be given. Then fU0
(w) = f1(w) + f2(w), where

f1(w) ∈ L2(R2), f2(w) ∈ Lr(R2), and

‖f1(w)‖L2 ≤ C(U0)(1 + ‖w‖2
H1), ‖f2(w)‖Lr ≤ C(r, U0)‖w‖H1(1 + ‖w‖2

H1).

Proof. We write f1(w) = −∆U0 +(|w+U0|2−1)U0 and f2(w) = (|w+U0|2−1)w and expand

|U0 + w|2 − 1 = (|U0|2 − 1) + 2U0 · w + |w|2.

Since by assumption w ∈ H1(R2), we have by Sobolev embedding w ∈ Lp(R2) for any 2 ≤
p < +∞ with ‖w‖Lp ≤ C(p)‖w‖H1 . Since by assumption U0 ∈ V, and hence U0 ∈ L∞(R2)
and (1− |U0|2) ∈ L2(R2), it follows that (|U0 +w|2 − 1) ∈ L2(R2). The conclusion follows by
Hölder’s inequality.

Lemma 2. Let w ∈ H1(R2) and 1 < r < 2 be given. Then ∇fU0
(w) = g1(w) + g2(w), where

g1(w) ∈ L2(R2), g2(w) ∈ Lr(R2), and

‖g1(w)‖L2 ≤ C(U0)(1 + ‖w‖2
H1), ‖g2(w)‖Lr ≤ C(r, U0)‖w‖H1(1 + ‖w‖2

H1).

Proof. Differentiating, we write

∂xi
fU0

(w) = −∆∂xi
U0 + ∂xi

(|U0 + w|2 − 1)(U0 + w) + (|U0 + w|2 − 1)∂xi
(U0 + w).

Expanding once more |U0 + w|2 − 1 = (|U0|2 − 1) + 2U0 · w + |w|2, we set

g1(w) = − ∆∂xi
U0 + ∂xi

(|U0|2 − 1)U0 + ∂xi
(2U0 · w)U0

+ 2(∂xi
U0 · w)w + (|w|2 + (|U0|2 − 1))∇U0

and

g2(w) =∂xi
(|w|2)(U0 + w) + 2(U0 · ∂xi

w)w + ∂xi
(|U0|2 − 1)w

+ (|U0|2 − 1 + |w|2 + 2(U0 · w))∇w + 2(U0 · w)∇U0.

Since by assumption |U0|2 − 1 ∈ L2 ∩L∞, we have |U0|2 − 1 ∈ Lp for all 2 ≤ p ≤ +∞. By the
Gagliardo-Nirenberg inequality (see lemma A.1 of the Appendix),

‖∇U0‖L4(R2) ≤ 4
√

18 ‖U0‖
1

2

L∞(R2)‖∆U0‖
1

2

L2(R2), (6)

and by Sobolev embedding ‖w‖Lp ≤ C(p)‖w‖H1 . The conclusion then follows using various
Hölder’s inequalities, and the assumption U0 ∈ V.
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Proof of Proposition 1 Recall that by the Strichartz estimates (see e.g. [8, 5]) we have for
every 1 < r ≤ 2

‖
∫ t

0
ei(t−s)∆f(s, ·)ds‖L∞

t
L2

x(R×R2) ≤ C(r)‖f‖
L

2r
3r−2

t Lr
x(R×R2)

.

It follows by Hölder’s inequality that for every T > 0,

‖
∫ t

0
ei(t−s)∆f(s, ·)ds‖L∞

t L2
x((−T,T )×R2) ≤ C(r)T

3

2
− 1

r ‖f‖L∞

t Lr
x((−T,T )×R2). (7)

Set

ΦN (w) = −i
∫ t

0
ei(t−s)∆fU0

(w(s))ds.

Combining Lemma 1 and Lemma 2 with (7) for f1(w), f2(w), g1(w) and g2(w), we are led,
for 1 < r < 2 and 0 < T < 1, to the estimate

‖ΦN (w)‖L∞

t H1
x((−T,T )×R2) ≤ C(r)T

3

2
− 1

r (1 + ‖w‖3
L∞

t H1
x((−T,T )×R2)). (8)

Moreover, for 0 ≤ |t|, |t′| < T, we have

ΦN (w)(t′) − ΦN (t) = (ei(t
′−t)∆ − Id)ΦN (t) − i

∫ t′

t
ei(t

′−s)∆fU0
(w(s))ds.

Similar computations as above yields

‖
∫ t′

t
ei(t

′−s)∆fU0
(w(s))ds‖H1(R2) ≤ C(r)|t′ − t| 32− 1

r (1 + ‖w‖3
L∞

t H1
x((−T,T )×R2)).

Combined with the fact that t 7→ eit∆ is a strongly continuous group on H1(R2), we therefore
infer that Φ(w) ∈ C0((−T, T ),H1(R2)).

For the second statement in Proposition 1, we write

fU0
(w) − fU0

(w̃) = (|U0 + w|2 − 1)(w − w̃) + (|U0 + w|2 − |U0 + w̃|2)(U0 +w)

= (|U0 + w|2 − 1)(w − w̃) + (2U0 · (w − w̃)) + |w|2 − |w̃|2)(U0 + w̃).

Decomposing each term as in Lemma 1 and Lemma 2 we obtain, if

‖w‖L∞((−T,T ),H1(R2)) + ‖w̃‖L∞((−T,T ),H1(R2)) ≤ R,

that

‖ΦN (w) − ΦN(w̃)‖L∞((−T,T ),H1(R2)) ≤ C(U0)(1 +R2)‖w − w̃‖L∞((−T,T ),H1(R2)),

i from which (5) follows.
We are now in position to assert local existence

Proposition 2. Let U0 ∈ V be given. For every R > 0 there exists a constant T ∗ depending

only on U0 and R such that for every w0 ∈ H1(R2) satisfying ‖w0‖H1 ≤ R equation (2) has

a unique solution w ∈ C0((−T ∗, T ∗),H1(R2)). Moreover, if ‖w̃0‖H1 ≤ R, and w̃ denotes the

corresponding solution to (2), then

‖w − w̃‖L∞((−T ∗,T ∗),H1(R2)) ≤ 2‖w0 − w̃0‖H1(R2).
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Proof. The proof follows from the standard contraction mapping theorem applied to the map
Φ. We first show that for T ∗

0 is sufficiently small, then Φ maps B(2R), the ball of radius 2R
centered at zero in L∞((−T ∗

O, T
∗
0 ),H1(R2)), into itself. Indeed, for the linear part of Φ,

‖eit∆w0‖H1(R2) = ‖w0‖H1(R2) ≤ R.

On the other hand, by (8) we have, for w ∈ B(2R),

‖ΦN (w)‖L∞((−T ∗

0
,T ∗

0
),H1(R2)) ≤ C(U0)(T

∗
0 )

1

2 (1 + 8R3) < R

if T ∗
0 is sufficiently small. For the contraction, we deduce form (5) that for 0 < T ∗ < T ∗

0 ,

‖ΦN (w̃) − ΦN (w)‖L∞((−T ∗,T ∗),H1(R2)) ≤ C(U0)(T
∗)

1

2 (1 + 4R2)‖w̃ − w‖L∞((−T ∗,T ∗),H1(R2))

so that if T ∗ is sufficiently small

‖ΦN (w̃) − ΦN (w)‖L∞((−T ∗,T ∗),H1(R2)) ≤
1

2
‖w̃ − w‖L∞((−T ∗,T ∗),H1(R2)). (9)

Finally, for the continuous dependence upon the initial datum, we write w − w̃ as eit∆(w0 −
w̃0) + ΦN (w) − ΦN (w̃), so that

‖w − w̃‖L∞((−T ∗,T ∗),H1(R2)) ≤ ‖w0 − w̃0‖H1(R2) + ‖ΦN (w̃) − ΦN (w)‖L∞((−T ∗,T ∗),H1(R2))

and the conclusion follows from (9).

3 Global existence

In order to prove global existence, we will prove that the renormalized energy remains con-
served. In a first step, we establish the previous statement for more regular solutions. In this
direction, we begin with

Proposition 3. Let U0 ∈ V and w0 ∈ H2(R2). There exists T0 > 0 depending only on U0

and ‖w0‖H2(R2) and a unique solution w to (2) in C0((−T0, T0),H
2(R2)).

Proof. Since H2(R2) is continuously embedded in L∞(R2), the map w 7→ fU0
(w) is locally

lipschitz on H2(R2) and the conclusion follows from standard (semi)-group theory.

Lemma 3. Let T > 0 and w ∈ C0((−T, T ),H2(R2)) be a solution of (2). Then

d

dt
ẼU0

(w(t)) = 0 for t ∈ (−T, T ). (10)

Moreover,

‖w(t)‖H1(R2) ≤ ‖w0‖H1(R2) exp(C|t|) for t ∈ (−T, T ), (11)

where the constant C depends only on U0 and ‖w0‖H1(R2).
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Proof. Invoking once more the embedding of H2(R2) into L∞(R2), we deduce that the term
fU0

(w) belongs to L∞
loc((−T, T ), L2(R2)). On the other hand, ∆w ∈ L∞

loc((−T, T ), L2(R2)),
and therefore we deduce from (2) that ∂tw ∈ L∞

loc((−T, T ), L2(R2)). We may thus compute
the derivative

d

dt
ẼU0

(w(t)) =

∫

R2

∇w · ∇∂tw +

∫

R2

fU0
(w) · ∂tw

=

∫

R2

(−∆w + fU0
(w)) · ∂tw =

∫

R2

(i∂tw) · ∂tw = 0

which yields (10). For the second statement, by Cauchy-Schwarz inequality we have, for any
w ∈ H1(R2),

ẼU0
(w) ≥ 1

2
‖∇w‖2

L2(R2) − C(U0)‖w‖L2(R2) +

∫

R2

(1 − |U0 + w|2)2
4

.

so that

V (t) +
1

2
‖∇w‖2

L2(R2) ≤ ẼU0
(w0) +C(U0)‖w‖L2(R2) (12)

where we have set V (t) = 1
4

∫

(1 − |U0 + w(t)|2)2. On the other hand, we may compute

d

dt

∫

R2

|w|2 = 2

∫

R2

w · ∂tw = 2

∫

R2

iw · [∆w − ∆U0 + (1 − |U0 + w|2)(U0 + w)]

= −2

∫

R2

iw · (∆U0 + (1 − |U0 + w|2)U0)

so that

| d
dt

‖w(t)‖2
L2(R2)| ≤ C(U0)‖w(t)‖L2(R2) + ‖w(t)‖L2(R2)V (t). (13)

Combining (12) and (13), we deduce

| d
dt
‖w(t)‖2

L2(R2)| ≤ C(U0, ẼU0
(w0))(1 + ‖w(t)‖2

L2(R2)),

therefore
(1 + ‖w(t)‖2

L2(R2)) ≤ (1 + ‖w0‖2
L2(R2)) exp(C|t|)

and the conclusion (11) then follows from (12).

Lemma 4. Let w ∈ C0((−T, T ),H2(R2)) be a solution to (2). There exists a constant T1 > 0
depending only on U0 and ‖w0‖H1(R2) such that, if T ≤ T1,

‖w‖L∞((−T,T ),H2(R2)) ≤ C(U0, ‖w0‖H1(R2))‖w0‖H2(R2).

Proof. We consider the equation for m = ∆w, namely

i∂tm+ ∆m = ∆fU0
(w).

We expand the right hand side of this equation as

−∆2U0 + (|U0 +w|2 − 1)∆(U0 +w) + ∆(|U0 +w|2 − 1)(U0 +w) + 2∇(|U0 +w|2)∇(U0 +w).
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As in the proof of Lemma 2, invoking various Hölder’s inequalities and Sobolev embeddings,
we obtain that for any 1 < r < 2,

‖∆fU0
(w)‖L∞(L2+Lr) ≤ C(U0, ‖w0‖H1)(1 + ‖∆w‖L∞L2).

Therefore, it follows from Strichartz inequality that

‖m‖L∞((−T,T ),L2(R2)) ≤ ‖∆w0‖L2(R2) + C(U0, ‖w0‖H1(R2))T
1

2 (1 + ‖m‖L∞((−T,T ),L2(R2))).

We choose T1 so that C(U0, ‖w0‖H1(R2))T
1

2

1 = 1
2 , and we obtain

‖∆w‖L∞((−T,T ),L2(R2)) ≤ C(U0, ‖w0‖H1(R2))(1 + ‖∆w0‖L2(R2)).

We may now prove

Proposition 4. For U0 ∈ V and w0 ∈ H2(R2), equation (2) has a unique global solution

w ∈ C0(R,H2(R2)).

Proof. Let T ∗ be the maximal time of existence for (2) with initial datum w0, and assume
that T ∗ < +∞. In view of Proposition 3, this implies that

lim inf
t→−T ∗

‖w(t)‖H2(R2) + lim inf
t→T ∗

‖w(t)‖H2(R2) = +∞. (14)

On the other hand, by (11),

α := sup
t∈(−T ∗,T ∗)

‖w(t)‖H1(R2) < +∞.

By Lemma 3, we obtain, for every 0 < T < T ∗,

sup
t∈[−T,T ]

‖w(t)‖H2(R2) ≤ C(U0, α)
T∗

T1
+1‖w0‖H2(R2),

a contradiction with (14).

Proof of Theorem 1. Notice first that, in view of Proposition 4, Theorem 1 has already
been proved when the perturbation w0 belongs to H2(R2). For the general case we proceed
by approximation: let w0 ∈ H1(R2) and (wn

0 )n∈N be a sequence in H2(R2) such that wn
0 →

w0 in H1(R2) as n → +∞. We denote by wn the global solutions given by Proposition
4 and corresponding to the initial data wn

0 , and by w the solution given by Proposition 2
and corresponding to w0. Let T ∗∗ denote the maximal time of existence of w. In view of
Proposition 2, if T ∗∗ < +∞ then necessarily

sup
t∈(−T ∗∗,T ∗∗)

‖w(t)‖H1(R2) = +∞. (15)

Assume that T ∗∗ < +∞. We infer from Lemma 3 applied to each wn
0 that

R := sup
n→+∞

max
t∈[−T ∗∗,T ∗∗]

‖wn(t)‖H1(R2) ≤ C‖w0‖H1(R2),

9



where C depends only on U0, ‖w0‖H1(R2) and T ∗∗. Invoking Proposition 2 with w̃0 = wn
0 and

passing to the limit n→ +∞ we obtain

sup
t∈(−T ∗,T ∗)

‖w(t)‖H1(R2) ≤ R,

where T ∗ ≤ T ∗∗ is given in the statement of Proposition 2 and depends only on U0 and R.
After at most T ∗∗/T ∗ shifts in time and further uses of Proposition 2, we finally deduce that

sup
t∈(−T ∗∗,T ∗∗)

‖w(t)‖H1(R2) ≤ R < +∞,

a contradiction with (15). Hence T ∗∗ = +∞ and the proof is complete.

Proof of Theorem 2. Conservation of (renormalized) energy as well as continuous depen-
dence upon the initial datum have already been proved for w0 ∈ H2(R2). As in the proof of
Theorem 1, the general case follows by approximation. We omit the details.

Appendix

A special case of the Gagliardo-Nirenberg inequality on R
N states that , for any function

u ∈ H2(RN ) ∩ L∞(RN ), we have

‖∇u‖L4(RN ) ≤ (9N)
1

4 ‖u‖
1

2

L∞(RN )
‖∆u‖

1

2

L2(RN )
(16)

The proof of this inequality is actually elementary. By density, it suffices to prove it for
u ∈ C∞

c (RN ). We write, for i = 1, ..., N ,

u4
xi

= u3
xi
uxi

.

Integrating by parts on R
N , we are led to

∫

RN

u4
xi

= −
∫

RN

3u2
xi
uxixi

u.

Using Cauchy-Schwarz inequality, we obtain

‖uxi
‖4

L4(RN ) ≤ 3‖uxi
‖2

L4(RN )‖uxixi
‖L2(RN )‖u‖L∞(RN ),

so that by summation

N
∑

i=1

‖uxi
‖4

L4(RN ) ≤ 9‖∆u‖2
L2(RN )‖u‖2

L∞(RN )

and the conclusion follows from the inequality of means. This result can be extended in our
context to fields which do not necessarily tend to zero at infinity as follows.

Lemma A1. For any u ∈ L∞(R2) such that ∆u ∈ L2(R2), we have

‖∇u‖L4(R2) ≤ 18
1

4 ‖u‖
1

2

L∞(R2)‖∆u‖
1

2

L2(R2).
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Proof. Let (̺ε)ε>0 be a standard mollifier, and consider for R > 1 the cut-off function χR(·) =
χ( ·

R
), where 0 ≤ χ ≤ 1 is a smooth function such that χ ≡ 1 on B(1) and χ ≡= 0 outside

B(2). We set
uε = u ∗ ̺ε, and uε,R = uεχR.

Since uε,R ∈ C∞
c (R2), we may apply the classical Gagliardo-Nirenberg inequality to assert

that

‖∇uε,R‖L4(R2) ≤ 18
1

4 ‖uε,R‖
1

2

L∞(R2)‖∆uε,R‖
1

2

L2(R2).

We expand ∇uε,R = ∇uεχR + uε∇χR and ∆uε,R = ∆uεχR + 2∇uε∇χR + uε∆χR.
Clearly, we have, for some constant C > 0 depending only on χ,

‖∆uεχR‖L2(R2) ≤ ‖∆u‖L2(R2), and ‖ uε∆χR‖L2(R2) ≤ C‖u‖L∞R−1.

Similarly, we write

‖∇uεχR‖L4(R2) ≤ ‖∇(uεχR)‖L4(R2) + ‖uε∇χR)‖L4(R2)

≤ ‖∇uε,R‖L4(R2) + C‖u‖L∞(R2)R
− 1

2 .

Combining the previous inequalities, we obtain, for R > 1,

‖∇uεχR‖L4(R2) ≤ 18
1

4 ‖u‖
1

2

L∞(R2)‖∆u‖
1

2

L2(R2) + C(‖u‖L∞(R2)R
− 1

2 + ‖∇uε‖L∞(R2\B(R))). (17)

Next, we let ε fixed and send R to +∞. We claim that

lim
R→+∞

‖∇uε‖L∞(R2\B(R)) = 0. (18)

Indeed, since ∆uε = ̺ε ∗ ∆u and ∆u ∈ L2(R2), we have, for every k ≥ 2,

lim sup
|x|→+∞

∫

B(x,1)
|Dkuε|2 = 0.

Therefore, by Sobolev embedding

lim sup
|x|→+∞

osc(∇uε, B(x, 1)) = 0,

and thus, for every r > 0,
lim sup
|x|→+∞

osc(∇uε, B(x, r)) = 0.

Since uε ∈ L∞, the claim follows. Passing then to the limit R → +∞ in (17), we are led to
the inequality

‖∇uε‖L4(R2) ≤ 18
1

4‖u‖
1

2

L∞(R2)‖∆u‖
1

2

L2(R2).

Finally, we let ε tend to zero to obtain the conclusion.
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