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Abstract

We study the Cauchy problem for general, nonlinear, strictly hyperbolic systems
of partial differential equations in one space variable. First, we re-visit the construc-
tion of the solution to the Riemann problem and introduce the notion of a nondegen-
erate (ND) system. This is the optimal condition guaranteeing, as we show it, that
the Riemann problem can be solved with finitely many waves, only; we establish that
the ND condition is generic in the sense of Baire (for the Whitney topology), so that
any system can be approached by a ND system. Second, we introduce the concept of
inner speed variation and we derive new interaction estimates on wave speeds. Third,
we design a wave front tracking scheme and establish its strong convergence to the
entropy solution of the Cauchy problem; this provides a new existence proof as well
as an approximation algorithm. As an application, we investigate the time-regularity
of the graph solutions (X, U) introduced by the second author, and propose a geo-
metric version of our scheme; in turn, the spatial component X of a graph solution
can be chosen to be continuous in both time and space, while its component U is
continuous in space and has bounded variation in time.

1 Introduction

In this paper, we are interested in entropy solutions to general, nonlinear, strictly hyper-
bolic systems of partial differential equations in one space variable, and we investigate
several important issues of the theory, especially the Riemann problem, the wave interac-
tion estimates, and the graph solutions. In particular, a version of the wave front tracking
scheme is introduced below, which extends schemes originally introduced by DAFERMOS



[14], DIPERNA [17], BRESSAN [9], and RISEBRO [40] for genuinely nonlinear systems of
conservation laws (see also [4]). The new version applies to general systems that need not
be genuinely nonlinear nor in conservative form.

Recall that the front tracking scheme is a variant of the random choice scheme intro-
duced by GLiMM [18] for genuinely nonlinear, conservative systems. Recently, Glimm’s
scheme was extended to conservative systems with general flux by BIANCHINI [7], IGUCHI
AND LEFLOCH [23], and L1u AND YANG [38]. The key contributions in the above works
were the derivation of sharp estimates for the solution of the Riemann problem, together
with the introduction of suitable interaction functionals controling the total variation of
solutions to the Cauchy problem. The analysis in [7, 23, 38] took its roots in earlier works,
pioneered by Liu in 1981, on particular systems (see Liu [34, 35, 36, 37|, LEFLOCH ET
AL. [28, 21, 30], CHERN [13], and ANCONA AND MARSON [1, 2, 3]), and in the recent
developments on the vanishing viscosity method by BIANCHINI AND BRESSAN [8].

In comparaison to the Glimm scheme, implementing a front tracking scheme is more
demanding since, in addition to the interaction estimates and functionals controling the
growth of wave strenths (provided in [7, 23, 38]), one also needs a precise control of wave
speeds. In a front tracking method, when dealing with a general hyperbolic system and in
order to guarantee that the limiting function is the entropy solution of interest, it is often
necessary (at interactions) to split a given front into several fronts (of smaller strength,
say). Clearly, it is preferable to avoid to repeat this splitting step too often during the
evolution — for otherwise this could lead to a finite-time blow-up of the algorithm with
the number of wave fronts or of interactions points becoming infinite.

We found it convenient to introduce wave fronts that are not just single shocks or single
rarefactions but, rather, wave packets consisting of (finitely or possibly infinitely) many
shock and rarefaction waves propagating at the same speed. To control the speed of a j-
wave packet (u_, u) we introduce the notion of inner speed variation 9;(u_, u; ), defined as
the largest minus the smallest wave speeds within the wave packet under consideration. One
contribution in the present work is to provide sharp interaction estimates on 0;(u_,uy),
via suitable convexity and wave interaction arguments.

The present paper also provides a significant generalization of the earlier analysis by
IcucHr AND LEFLOCH [23], who dealt with general systems approached by piecewise
genuinely nonlinear (PGNL) ones. We introduce below the notion of a nondegenerate (ND)
system and we show that the ND condition is the optimal condition guaranteeing that the
Riemann problem is solvable with finitely many waves, only. Moreover, the nondegeneracy
condition is shown to be fully generic in the sense of Baire (in the Whitney topology), so
that any system can be approached by a nondegenerate one.

We also include below a discussion of hyperbolic systems in nonconservative form. Re-
call that, for such systems, the standard notion of a distributional solution does not apply,
and it was recognized in the 90’s by LEFLOCH [26, 27] and DAL MAso, LEFLOCH, AND
MURAT [16], that one must supplement the hyperbolic system with a prescribed family
of continuous paths, related with the “interior structure” of discontinuities in solutions
and typically constructed from the set of all traveling wave solutions associated with a
given parabolic regularization. The Riemann problem was solved in [16] for nonconser-
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vative, genuinely nonlinear systems, and a suitable generalization to the Glimm scheme
was proposed by LEFLOCH AND Liu [33]. We observe in this paper that both techniques
developed in [8] and [23] allow for generalizations to nonconservative systems.

In summary, our results provide a new proof of the global existence of the entropy solu-
tion (in the class of functions with tame variation) to the Cauchy problem associated with
a strictly hyperbolic system, and represent an alternative approach as well as a generaliza-
tion to the proofs given in [18, 33] (for genuinely nonlinear systems) and, more recently,
in [7, 8, 23, 38|.

On the other hand, recall that the uniqueness of the entropy solution was established
earlier by BRESSAN AND LEFLOCH [11] (for genuinely nonlinear, conservative systems),
Barri, LEFLOCH, AND PiccoLr [5] (for general conservative or nonconservative systems
and arbitrary jump relations), and BIANCHINI AND BRESSAN [8] (for vanishing viscosity
limits based the identity viscosity matrix).

Finally, we apply our front tracking scheme and investigate the time-regularity of the
graph solutions (X, U) introduced in LEFLOCH [31, 32]. We propose a geometric version
of our scheme and, in turn, provide here a new, more regular parametrization of the graph
solutions, which is not only continuous in space but also continuous in time, except at
countably many times where wave cancellations/interactions take place.

A brief outline of this paper follows. Section 2 deals principally with the Riemann
problem and generalizes the approach developed by Iguchi and LeFloch’s; in particular,
it includes the discussion of the nondegeneracy condition, wave interaction estimates, and
inner speed variation estimates. Section 3 provides a second proof of the inner speed vari-
ation estimates which follows the approach developed by Bianchini and Bressan. Section 4
contains a brief discussion of generalizations of our results to nonconservative systems.
Next, Section 5 provides our new version of the front tracking scheme, together with the
convergence proof. Finally, Section 6 shows how to apply the previous framework in order
to investigate the time-regularity of graph solutions.

2 Non-degenerate hyperbolic systems of conservation
laws

2.1 Notation

In the present section and in the following one we are primarily interested in conservative
systems. However, as we will explain in Section 4 many of the forthcoming arguments
carry over to nonconservative systems, with only minor modifications. We thus consider a
strictly hyperbolic system of conservation laws,

Ou~+ 0, f(u) =0, u=u(t,r) eRY, t>0,z€R, (2.1)

where, as is usual, we assume that all solutions take values in a neighborhood of some
constant state in RY — which is normalized to be the origin. We denote by Bs the open



ball in RY centered at the origin and having radius § > 0, and we assume that all values
u(t,r) € Bs, for some §; > 0. In (2.1), the map f: Bs, — R is smooth and, for each
u € Bs,, A(u) := D f(u) admits N real and distinct eigenvalues Ay (u) < --- < Ay(u). We
denote by r;(u) and [;(u) the left- and right-eigenvectors associated with A;(u), i.e.,

Alu) rj(u) = Aj(u)ri(u), - i(u) - A(u) = Aj(u) 1(w),
and normalized so that
ri =1, i(u) -ri(u) =1,
lLi(u) -rj(u) =0 fori#j.
In [23], the authors advocated to use, for each j-wave family, a foliation of By, based
on a global parameter u — p;(u), satisfying

Vi (u) - rj(u) # 0.

Each wave curve s — 1;(m) = 1¢;(m;uo) is parametrized to ensure that the state 1;(m)
lies on the submanifold {u;(u) =m}, ie.,

i (¥5(m)) = m.

In the present paper we adopt a particular global parametrization. We fix a constant vector
[ such that [ - r;(u) never vanishes,

T-75(u) £ 0,

and we set R

pj(u) = plu) =1 u.
Hence, our global parameter is also independent of the specific wave family under consid-
eration. The following formulas will involve the renormalized eigenvectors

N Tj T;

r; = = —.
V/Lj'?“j l'?“j

Recall that, for the j-integral curve
Oj(u_) = {wj(m;u_) /m, <m <m*}

defined by
Omw; =7j(w;),  wj(m—su_) =u_,

where m_ := p(u_), one can check that there exists d2 < d; such that the following property
holds. For all u_ € B;,, the map [m,, m*| 2 m — w;(m_;u_) is smooth and takes its values
in Bs,, and the end points m,, m* (depending on u_) satisfy w;(m.;u_), w;(m*;u_) € 0Bs,.
Moreover, one has

w;(m;ug) = ug + (m —mg) 7 (ug) + O(m — my)?
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with mg 1= p(ug).
Similarly, the j-Hugoniot curve

Hj(u-) = {v;(m;u_) /m, <m <m*},

defined by

=X (s vj(msus)) (vi(m;us) —us) + flo(m;u)) — fu-) =0,
satisfies
vi(m;ug) = ug + (m — myg) 7j(ug) + O(m — mo)?,

whereas the j-shock speed \;(m;u_) := \;(u_,v;(m;u_)) satisfies

A (m;ug) = Aj(ug) + %(V)xj -75) (o) (m — mg) + O(m — my)*.

As usual, we restrict attention to propagating discontinuities (u_,uy) with u, €
H,;(u_), satisfying the following entropy criterion [39, 41, 34, 35, 36, 37]. Setting
m_ = p(u-), my = p(uy), and

uy = vj(my;u-),

the shock (u_,u,) is said to be admissible if and only if

Nj(u_,uy) < Aj(m;u_)  for all m between m_ and m,.

In other words, the shock speed achieves its minimum value at the point m,. Following
24, 37, 23], we will be interested in combining rarefaction curves and shock curves and
constructing the j-wave curve issuing from a given left-hand state uy € Bs,,

W;(uo) = {1b;(m; ug) / my <m < m*},

where the end points of the curve satisfy

my = mje(ug) < p(ug) < mj(ug) =m”.

2.2 Riemann problem for nondegenerate systems

Recall that, following Liu’s pioneering contribution to the subject (L1u [34, 35, 36, 37]),
IcucHr AND LEFLOCH [23] constructed and investigated the regularity of the entropy
solution to the Riemann problem, for systems with piecewise genuinely nonlinear (PGNL)
flux (see below for a definition). Here, we introduce a larger class and we establish that all
of the results in [23] remain valid. Recall that all of the key estimates depend on the C?
norm of the flux only, and allowed the authors in [23] to cover any flux realized as a limit
of PGNL functions. Our more general condition will be shown to be fully generic, so that,
by density, we can cover systems with fully arbitrary flux.
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It will be convenient to introduce the notation (1 < j < N, u € By,)

w1\ (u) = rj(u) - VA (w),

J

) =) Vvl (w),  k=12,...,

together with the following definition. Note that the definition clearly makes sense for a
general matrix-valued mapping A which need not be a Jacobian matrix.

Definition 2.1. The matriz-valued mapping A = A(u) (u € By, ) is called nondegenerate

(ND, in short) if for every j =1,...,N and every u € Bs,, not all of the values 7r§k) (u)
(1 <k<N+1) are zero,

(m @, @, w" W) # (0,0.....,0),

When the ND condition holds, we will also say that (2.1) is a nondegenerate system or
that, in the conservative case, f is a nondegenerate flux.

For instance, in the scalar case N = 1 a function f : R — R is nondegenerate if and
only if f” and f” do not vanish simultaneously.

Given any nondegenerate flux f we can associate to each point u € Bs, its critical
exponent p = p;(u) as the smallest index & > 1 such that W](-k) (u) # 0. Our definition

includes the genuinely nonlinear flux for which W§1)(u) never vanishes (so that p;(u) = 1),
as well as the piecewise genuinely nonlinear (PGNL) flux introduced in [23] where it

was assumed that W](l)(u), 7r](-2) (u) never vanish simultaneously (so that p;(u) equals 1 or 2).
The case of linearly degenerate fields for which 7TJ(-1)(’LL) vanishes identically could be easily
included in the present discussion, but for simplicity in the presentation we prefer to cover
this case latter via a general density argument.

Our first objective is to generalize the construction in [23] and to prove that the Riemann
problem for ND flux can be solved uniquely and that the solution contains finitely many

waves, only.

Theorem 2.1. (Riemann problem for nondegenerate flux.)

Let (2.1) be a strictly hyperbolic system of conservation laws with nondegenerate flux f :
Bs, — RY. Then there exists 6y < 81 depending only upon the C? norm of f, such that the
following properties holds.

1. For all ug € Bs, and all j =1,..., N there exist m, = my.(ug) and m* = m}(up)
and a mapping ; = ;(m;ug) defined for my, < m < m* and Lipschitz continuous in both
arquments, such that

Yi(miug) € Bsy, My <m < m”,

(
¥;(p(uo); uo) = uo,
¢j(m*; u0)7 %‘(m*; UO) € 8852'

2. For each m € [m,,m*| there exist an integer q and a finite sequence of states
Ui, U, . .., Ugqy1 € Bs, such that

U1 = Y5 (m; ug)
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and (for all relevant values of k) ugr is connected to usgi1 by a j-rarefaction wave while
Usok11 1S connected to usgio by an admissible j-shock, with

Aj(g) < Aj(ur) <Aj(ur,ug) < Aj(ug) < -+
- < Nj(uggor, ung) < Ajung) < Aj(uzgi1).

3. For any Riemann data u;,u, € Bs, the Riemann problem (2.1),

(0, 1) = {ul, x <0,

Uy, x>0,

admits a unique, self-similar solution made of finitely many rarefaction waves and admais-
sible shock waves.

To establish these results we will explain how the arguments in [23] can be extended
to cover nondegenerate flux. Certain monotonicity properties of the shock speed along the
Hugoniot curve and its critical values play a central role in the construction of the wave
curves, and this will be the subject of the following section.

Once the Riemann problem is solved and provided finitely many waves only arise in the
construction, one can follow [23] and derive additional regularity and interaction estimates.
Indeed, we emphasize that the proofs therein rely only on the facts that the Riemann
solution contain finitely many waves and that all Hugoniot and integral curves associated
with (2.1) are smooth maps. We summarize here the results that we will need later.

Proposition 2.1. (Regularity of the wave curves.) Under the assumptions of Theorem 2.1,
for each j =1,...,N the map 1; = 1;(m;u) is Lipschitz continuous with respect to both
m,u (with Lipschitz constant depending only on the C? norm of f). Moreover, the first-
order derivatives of 1; with respect to m,w are Lipschitz continuous at the point m = p(u),
that 1s

vi(miu) =75(u) + O(m — p(u)),
Dytpy(m; u) = 1d—7(w) @1+ O(m — p(w)),
where ® denotes the tensor product of two vectors.

To any left-hand state u_ and a right-hand state uy = ;(my;u_), we associate the
wave strength
€j(u_,uy) = p(u_) — p(u-)
and the associated wave speed function \; j(s,my;u_), which by definition yields the

speed of waves making up the wave fan. leen two j-waves (u_,uy) and (u_,u) we
introduce the generalized angle between them7 as follows

my. (s',m/ ;u’ ) — (s, my;u_
;(u_,up;ul,u)) / / wU) = Al +/ >)7dsds’,

—m-) (m} —m’)

where my = p(uy) and m/, == p(u,).



Proposition 2.2. (Interaction estimates.) For all u;, uy,, and u, € Bs, and 1 <i,j < N
the following property holds. Suppose that u; is connected to u,, by an i-wave fan and that
U, 18 connected to u, by a j-wave fan. Then, the wave strengths €;(u;, u,) of the outgoing
Riemann solution connecting u; to u, satisfy (1 <k < N)

Ek(uly uT) == Ek(Ul, um) + €k<um7 uT) + 0(1) Q(ul7 U, UT)J
where Iquchi-LeFloch’s interaction potential is defined by

Q(ula U, ur) = Z @ij (ul, U, ur) ‘Ui(ula um) 0j (um7 ur)‘

i>7
and
0, i <7,
1, 1> ],
@Z'j(Ul,Um,Ur) = . .
1, i =7, (g, ) (U, u,) <0,

6, (i, iy Uy ), 8= J, 05(w, W) 05 (U, ur) > 0.

In the rest of this section, we derive a key estimate on wave speeds. Let us introduce
the following notion.

Definition 2.2. The inner speed variation of a j-wave connecting a left-hand state u_
to a right-hand state uy = ;(my;u_), is defined as

Vi(u_,uy) =9;(mysu)
= Xj X(u*7u+) _Xj (U,,UH,)
= N(my, my;us) — Nj(mo, my;ul).
For instance, ¥;(u_,us) = 0 if and only if u_ and u, are connected by a single admis-
sible discontinuity, while ¥, (u_,u;) = Aj(uy) — Aj(u_) if (but not only if) u_ and uy are
connected by a single rarefaction wave.

Theorem 2.2. (Properties of the inner speed variation.)
1. For any u_,u’ ,m it holds

D)+ miul) = 9 () + msu) + O(m) ol — u_|.
2. For any wy, U, Uy With wy, = V;(fm; w) and w, = ), (e ), setting ul, := V(1 w),
ﬁj(uhu;) = V;(r; up) = ﬁj(ﬂ?ﬂ? u) + O(|ptr — fiml)-

3. For any uj, Up, uy with wy, = Vj(fm;w) and w, = ¥;(pe; um) and monotonically
ordered along the wave curve,

0 (e wr) < max (9 (w, ), 9 (U, uy))

+ (X}nin(umaur) - >‘j (ul7um)>+ <2'2)
+O(1) Q(ur, i, ur).



In the application of Theorem 2.2 in the context of the front tracking scheme, every
front (u_,u,) will propagate with the speed X}mn(u_, uy ), so that the term (X;mn (U, Uy ) —
X;ﬂin(ul,um)) vanishes if the fronts (u;, u,,) and (u,,, u,) interact.

+
Finally, after establishing a density result of the class of non-degenerate flux (Theo-

rem 2.3 below) we can conclude that:

Corollary 2.1. All of the results stated in the present section remain valid for general,
strictly hyperbolic fluz that need not be nondegenerate, with the modification that a Riemann
solution may contain (not finitely many but) countably many waves.

2.3 Fundamental properties at critical points

From now it will convenient to work with the following variant of the maps ;, obtained
by replacing the vectors r; by the normalized vectors 77, i.e.

A0(w) = 7(w) - VAs(u

J

A ) =) VAR (), k=1,2,.,

Clearly, for every u and every j, the condition

aVw) =...=aPw) =0, 7"V £0

is equivalent to
A =...=7Pw) =0, 7 V(u) £0,
so that a statement involving the coeflicients 7; can be immediately restated with the
coefficients ;.
It is a well known fact that rarefaction curves and Hugoniot locus have a second-
order tangency property at their base point. Here, we prove a new, higher-order tangency
property which is satisfied at critical points. Recall that by differentiating the Rankine-

Hugoniot it follows that

(m —m_) O Xj(m;u_) = kj(m;u_) (N(v;(m;us)) = Xj(m;u)), (2.3)
where the function x; = k;(m;u_) > 0 is smooth, bounded, and bounded away from zero,
and satisfies k;(m_;u_) = 1.

Lemma 2.1. (Tangency property at critical points (I).) Suppose that, at some point u, €
Bs, and for some p > 1,
A ) =0, k=1,....p—1,
7 (u,) # 0.
Then, the shock curve v; and the rarefaction curve w; issuing from wu, are tangent at u,
up to the order p+ 1,

oM (my;uy) = 0Wwi(meuy), k=1,...,p+1, (2.5)

(2.4)
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while the shock speed satisfies

8,(,];))\j(m*;u*) =0, k=1,....p—1,

~(p) 2.6)
— 77 (uy) (
0PN, (my;u,) = 2 :

Proof. Proceeding by induction on k we first note that, for all m,
O TIN; (wj(ms,)) = B, (w; (i)
= V) (w;(m; ) - Oy (ms ), (27)

~(k+1
= 7rj(. Dw;(m; uy)).

Now, (2.5) and (2.6) are proven by induction: we consider the induction hypothesis at
the rank ¢ (for 0 < ¢ < p):

WX, (m*, w*) = 0 holds for k = 1,...,q— 1 and 8% (v — w)(m*, u*) = 0 holds
for k=0,...,q.

This is clearly satisfied at rank ¢ = 0. Suppose this is true at rank ¢ < p — 1; let us
establish it at rank g + 1.

For the claim on a,S‘{)Xj we proceed as follows. In view of (2.3) and after differentiation
with respect to m we obtain

— m—m,

szmw+ﬁ( @@mmgﬂmeWwy (2.8)

K5 (m; uy)
Considering (2.8) at the point m = m,, using (2.7) and the induction hypothesis, it follows
easily that aﬁ’;’Xj (my, uy) = 0 for k = g with ¢ < p.

We now consider the second claim about a,gﬁfﬂ)(v(m*, u*) — w(m*,u*)) = 0. By differ-

entiating the Rankine-Hugoniot relation, we find
O j(m) (vj(m) —u_) = (A(vj(m)) = X;(m)) mv;(m),

which is to be compared with the equation characterizing the integral curve w;(m) =
w;(m; uo),

0= (A(w;(m)) = X;j(w;(m))) Omw;(m).
The map z(m) := vj(m;u_) — w;(m; u) satisfies z(my) = 0. From the above identities we
deduce that

(A(wy) = Aj(w;)) Omz

= Ok (0 — )+ (Alwy) — () — Ayl + %) Gy 29

Using (2.4), (2.7), and the induction hypothesis on \; (now proven up to the g-th order
derivative) and by differentiating in m, the equation (2.9) yields

(A(ug) — Aj(uo)) OV 2(my, uy) = 0.

m
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(In the case ¢ = 0, no assumption on &(qf)xj(m*,u*) is needed, but only \;(m,;u,) =
Ai(u).) We deduce that, for some @) € R, we have 8%V z(m,, u,) = BUtr;(u,).
Now, the parameter along the curves is such that

(s (m)) = m = (v (m)). 2.10)

Differentiating this relation and using, again, the induction hypothesis we obtain

Va(u,) 84wy (m.) = Va(u,) 04+ Vvy(m.),

m

which yields &(ffl)z(m*, u,) = 0, and completes the induction.
It remains to prove (2.6) at the rank p and (2.5) at the rank p + 1. Using Leibniz
identity and retaining only the non-zero terms, we deduce from (2.8):

. (p)x, )
a(p))\j(m;u*) +pam 5 (M uy)

m

) = O ms ) =7 (),

which establishes the first claim. For the second claim, differentiating (2.9) p times, using
Leibniz identity, and keeping the relevant terms only, we obtain

(A(wy) — Xj(wy)) o0 z(m, w.)

— (PN 1) = DA (005 (mas02)) o+ DB () ) 1) = O,
in view of (2.6). Using again (2.10), this establishes (2.5). O

It follows from (2.3) that, at a critical point my where
OmAj(mo;u_) =0,
the shock speed must coincide with the characteristic speed,
Aj(mosu—) = Aj(vj(mo; u-)),
and it can also be checked from the Rankine-Hugoniot relation that
Oy (mosu_) = 70, (mosu_)). (2.11)

Generalizing this observation we now prove:

Lemma 2.2. (Tangency property at critical points (II).) If, for some u_,mg, and p,

a(k))\J(mo,u,) :O, k= 1,...,p,

m

a(p+1)X]’<m0; U,) # O,

m

(2.12)

then at the critical point vy := v;(mg;u_) one has



(mo — m_) OLTIN; (mos u) = 5 (mo; u_) 75 (uo), (2.13)

and the Hugoniot curve issuing from u_ 1is tangent up to order p to the integral curve
issuing from ug, that is

M v (me;u_) = 0 w;(mo;ug), k=0,...,p. (2.14)

Proof. We first rely on (2.8). By the assumption (2.12) the left-hand side vanishes at

m = my for all £ < p. Hence, we deduce that, for all k& < p, one has Q,E,If)/\j (vj)(mo;u_) = 0.
With (2.11) we then deduce

OmAj(vj(mo; u-)) = VA;(v(mo; u-)) Opvj(mo; u-) = VA; - 75(vj(mo; u-)),

Hence, /7?§1)(Uj(m0; u_)) = 0. Hence, using (2.9) and (2.10), one sees, as in Lemma 2.1 that
(2.14) is valid for p = 2.

More generally, if (2.14) is already established at the rank & then using (2.7) it follows
that
O A (v (mo; u)) = AN (w; (mo; uo))
Hence, we conclude that %](-k) (ug) = 0. Using the same procedure as above, one deduces
(2.14) at the rank k + 1.

For k = p the left-hand side of (2.8) at my is a multiple of the left-hand side of (2.13),

mo — m_ -
0 DN (mn:
ki(mo;u_) ™ 3(mo; =),

while the right-hand side equals %J(-p ) (up). Thus, (2.13) holds. O

Some further observations are in order.

Lemma 2.3. (Propagating discontinuities with coinciding speeds.) Suppose that (ug,u;)
and (uy,us) are shock waves satisfying the entropy criterion and propagating with the same
speed A,

uy = vj(ma;ug), ug = vi(me;ur),

Xj(UO, uy) = Xj(ula ug) = A,
where my and my satisfy p(ug) < my < mgo. Then, the discontinuity (ug,us) is a shock
satisfying the entropy criterion and propagating with the speed A,

uy = vj(ma;up), Aj(ug,ug) = A.

Lemma 2.4. (Equivalent formulation of the entropy criterion.) A discontinuity (u_,u, )
with uy € H;(u_) satisfies the entropy criterion if and only if

Ni(u_,uy) < Nj(msu_)  for all m between m_ and m.,

where m_ = p(u_) and my = p(uy).
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We only give the proof of Lemma 2.4, the proof of Lemma 2.3 being similar.
Proof. Set m_ := p(u_) and my := p(uy) and, for definiteness, assume that m_ < m,.
We must show that

A= N(u uy) > Xj(miuy), mo <m <mg.

By contradiction let us assume that there exists a “first” point mg € [m_, m, ) at which
the above condition fails, that is
Azxj(m;qu), m_ <m < my,
A=X(msuy), m=my, (2.15)
A< X(myuy),  0<m—my<1,

On the other hand, since the shock connecting u_ to u, being entropy admissible,
A< N(msul), m_<m<my. (2.16)

We treat the case where m_ < mg < m., the case where the point m( coincides with the
left endpoint m_ of the interval being analogous.
Let us expand A;(m;u,) in a neighborhood of m = my,

_ m — ma)PT! _
Aj(miug) = A+ ﬁ 8,§f+1)>\j(m0; ug) + O((m - mo)p+2)’

where 8&9

constant

H)Xj (mo;us) # 0. By Lemma 2.2 we know that up to a positive multiplicative

0, (o ) = 7 (u).

while all %\J(-k) (up) =0for k=1,...,p—1. On the other hand, since the shocks (u_,u ) and
(u0, uy) propagate at the same speed, A, the shock speed of (u_,up) is also A. (This is an
elementary fact, already stated in Lemma 2.3.) Therefore \;(mo;u_) = A and, similarly

as above, we can write

_ (m — mg)?*!

/\](m, U_) =A+ (q T 1)' 8,S?L+1)Xj(m0; U_) + O((m - mo)q+2),
where _
OIN (mos u-) = 71 (up),
while all %](-k) (ug) =0for k=1,...,g—1. Obviously, ¢ = p. However, in view of conditions

2.15) on \;(m;uy) we see that p must be even (with 7p) ug) > 0), while the condition
J + J
2.16) on A\;(m;u_) implies that p must be odd (with 7P ug) > 0). This is a contradiction.
j j
]
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2.4 Construction of the wave curves

In the rest of this section we sketch the proof of Theorem 2.1. Most of the arguments in [23]
carry over under our weaker assumption on f, and we will not repeat them. We will only
give the new ingredients of the proof. For definiteness, we assume that (V\; - 7;)(ug) > 0,
and we construct the part m > pu(ug) of the wave curve. Locally near uy we can use the
integral curve O, (uo).

Suppose that along the integral curve there exists a “first point” with coordinate p'(uqg)
where V; - r; vanishes and changes sign, that is by setting u' := w;(u' (ug); uo)

miug)) >0,  p(ug) < m < p'(up),

(

) 2.17
(VA - 7)) (wy(ms ) <0, 0<m— ' (ug) << 1, (2.17)

(

k=1,....p), 7@ <o.

Note that, clearly, p must be an odd integer.
It should be noted here that there can not be accumulation points in the critical set
along an integral curve. Indeed, if m! — m™ (I — co) were a sequence such that

(VA; 7)) (ws(m'; o)) = 0.

Then, by induction on k£ > 1 and using the intermediate value theorem we could find
sequences m®! such that "
~(k

T (wj(mk’l;uo)) = 0.

[e.e]

Letting [ — oo we would conclude that, at the point u™ := w;(m>; up),

A W) =0,  k=12,...

?

which is impossible since f is nondegenerate.
Note that the wave curve coincides with the integral curve up to the value p!(ug):

Wi(msuo) = wi(msug),  pluo) < m < pt(up).
We claim that p! is a continuous function of its argument. Namely, consider the function

Fi(m;u) =730 (wy(m; ),

which is smooth with respect to m and u. Since by assumption the state ug is such that
F(p' (uo); uo) = 0,

(OXFy) (1" (uo); wo) = /7%](-p+1)(wj(m; u)) < 0.

Therefore, one can locally solve the equation F;(u,u) = 0 in a neighborhood of g, in a
continuous manner.

14



To extend the wave curve we need a pattern made of a rarefaction wave followed by a
shock wave (actually a left-contact wave). For all meaningful values (n,m;u) we set

Gi(m,nju) = ml_n(xj(m;wj(mu))—Aj(wj(n;u))% m #n,
AR %(V)\j.?j>(wj(m;u)), m=n,

where u! := w;(u'(u); u). We will now apply the implicit function theorem to the equation
G(m,n;u) =0, (2.18)

and show that it defines a function n = v!(m;u) in the neighborhood of the point (m,u) =
(' (ug), ). As presented above, our construction is associated with the point u! at which
r;-Vj(u') = 0. The special case of a PGNL flux is straightforward since it can be checked
that r;- V- (r;- V) (u') # 0 implies that 9,G;(u! (uo), u* (uo), uo) # 0. Handling a general
nondegenerate flux is much more delicate and this is discussed now. We regard u as a
parameter and, for convenience, in the presentation we simply fix the point uy and skip
the dependence in u. We are interested in the corresponding singular point u! along the
rarefaction curve from wug, where 7+ (u!) # 0 and we must analyze (2.18) near
m' = p!(ug).

Consider first the case of a scalar conservation law. The function G is independent of

the variable u, and the equation under consideration reads

Using that f has a nondegenerate point at m, precisely, f®+?(m!) # 0 so that

fP2(m?l)
(p+2)!

one can check geometrically on the graph of the function f that the above condition

determines a unique solution n = v!(m) which, furthermore, can be easily expanded near

mlz

1)p+2

f(m) ~ (m —m" )",

vi(m) ~ ¢, (m —m?),

where the constant ¢, < 0 is the unique negative root of the equation

We now extend the above result to systems.
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Lemma 2.5. For o, > 0 sufficiently small, introduce the small cone
C:={|(n—m")—c,(m—m")| <alm—m!}.
Near the point (m,n) = (m', m') within the cone C the function G; admits the expansion
Gi(m,n) = Q;(m,n) + O() ((m —m"P* + (n — m')P*), (2.19)

where
Q;(m,n) = ((n—m') — ¢, (m —m")) R;(n,m),

2.20
Rym.m) = 7D (1) (m — )1 (n,m), 220

and the function S; is smooth and close to 1,
|S;j(m,n) — 1] < . (2.21)

Once this lemma is established, the implicit function theorem straightforwardly applies
to the mapping G; defined by

~ L Gj(m7 n) .
Gj(m,n) = (= )71 8, () in the cone C,

and extended arbitrarily outside C as a smooth map. By the above claim, we have

Gj(m,n) =7 D) ((n —m') — ¢, (m —m")) + O(1) (Im — m'[* + |n — m' ),
so that there exists a unique function v' = v*(m) defined in a neighborhood of m = m!
and such that

Gj(m,v'(m)) =0,
which, moreover, satisfies
vi(m) =m' +c,(m —m') +o(m —m').

In turn, the solution remains within the cone C (in a sufficiently small neighborhood of
m!, at least), and therefore v'(m) is a solution of the original equation (2.18).

It remains to prove Lemma 2.5 above. Relying on the tangency property between the
Hugoniot and integral curves (Lemma 2.1), one can replace the Hugoniot curve by the
rarefaction curve in the definition of G; while making an error of order (m —m!)P* + (n —
m!)PT1. Let us introduce the reduced flux

and set



We can rewrite the equation G;(m,n) = 0 in the following form

f](TZ?L : £]<n) _ /;/(n) + 0(1) ((m _ ml)p-i-l + (n . ml)p-&-l)'

The behavior of the flux in the neighborhood of u! leads to

N FEHD) (1)
M Trar

and the expression in (2.17) can be expanded exactly as in the scalar case, leading to the
result stated in the claim.

The mixed curve is now defined locally, and we discuss its extension. Consider the
shock speed of an arbitrary discontinuity connecting w;(n;ug) to v;(m;w;(n;up)), that is,

(m - ml)p+2’

Aj(m,n) = Xj(m;w;i(n;ug)).
By construction, at n = v!*(m) the shock speed coincides with the characteristic speed:
Aj(m, vt (m)) = Aj(w;(v' (m); uo)).

One can show that
1
(V- 75) (w; (vt (m); uo))

Ot (m) =

((9mAj)(m, vi(m)).

Since vV (u!) < 0, it follows that v*'(m) < 0 for m sufficiently close to u! and therefore
(Oj) (m, v (m)) <0, 0<m—p'(u) << 1.

This means that the speed of the left-contact decreases as m increases. The function
v(m;up) is well-defined until 9,,A; eventually vanishes (see in particular 9,,G;) at some
point with coordinate denoted by u? = u?(uy),

(D) (12, v (%5 ) = 0.
The wave curve is determined from the map m +— v;(m; w; (V' (m; ug); ug)), by
w; (m; uo), pluo) < m < pi(up),
vi(miuo) = § Ll ap)- 1 2
vj(m; w; (v (miue); uo)),  pt (uo) < m < p*(u).

As in [23] one can check that for each m € (u', u?) the state w;(v'(m); ug) is connected to
the right-hand state v;(m; w;(v'(m);ug)) by a shock wave satisfying the entropy criterion.
All of the remaining arguments of the construction of the wave curve in [23] can be extended
in a similar way as we have explained above.
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We observe that the construction requires finitely many waves only. Otherwise, if the
wave curve was made of infinitely many shock and rarefaction pieces, then there would be
an accumulation point of critical points, m! — m* (I — oo) such that

7 (w5 uo)) = 0.

Then, by induction on k£ > 1, using the intermediate value theorem and the higher-order
tangency property between shock and rarefaction curves as stated in Lemma 2.2, we would
obtain

7 (1 (m™;up)) = 0
for all k, which is impossible since f is nondegenerate.

After the wave curves are constructed, the Riemann problem can be solved as in [23].
This complete the discussion of Theorem 2.1. Propositions 2.1 and 2.2 are then immediate
from the results in [23]. From our construction, the following property of the Riemann
solution follows immediately.

Lemma 2.6. (Splitting property for the Riemann problem.) Consider a wave fan uy =
Yi(mysus), with m_ < my for definiteness, associated with the intermediate states uo,
.., Ugg+1 as defined in Theorem 2.1. Then the following two properties hold.
1. Fork =0,...,q and m € [u(uax), (uss1)], the solution of the Riemann prob-
lem (u—,v;(m;u_)) (resp. (Yj(m;u_),uy)) coincides with the restriction of the solution

of the Riemann problem (u_,uy) to the interval [Aj(m_,my;u_), Aj(¢;(m;u_))] (resp.
[ (05 (m; u_)), Aj(may, masu)]).

2. Fork=0,...,q and m € [u(ugks1), p(usgre)], the solutions of the Riemann prob-
lems (u—,vj(m;u_)) (respectively (¢j(m;u-),uy)) and (u—,uy) coincide in the interval

Aj(m_,my;us), Nj(uars1)] (respectively [Nj(uak+2), Aj(ma, my;u_)]).

We end this section with another property of Riemann solutions: roughly speaking, the
speeds within a wave fan can be determined by a convex or concave hull argument, which
is similar to what is classically done for a scalar conservation law. This property will not
be directly used in the rest of this paper.

Lemma 2.7. (Construction of a wave packet using the convex hull.) Let uy = ¢j(my;u_),
with m_ = p(u—) < my, and introduce the intermediate states uy,. .. us+1 as in Theo-
rem 2.1. By setting

fj(m) = 2\ f(wj(m;u—))a m_ §m§m+7
the convex hull g; == convy,_ m,)f; is precisely

( m

fi(m) = fi(max) + / A (45 (s )) i

maog
g;(m) = B Mo <M < Mgy, (2.22)
fi(magg1) + Aj(Uakt1,uzkr2) (M — Mogir),

Mop+1 < M < Mojyo.
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Moreover, f; cannot be affine in a subinterval of [m_, m.] where it coincides with convy,_ m,1f;
and, in consequence, the set of the intermediate values my, is nothing but the boundary of
the set

{m € [m_,m.]/ g;(m) = f;(m)}.

When my < m_, the same statements hold by replacing the convexr hull by the concave
one.

Note that, even though the wave curves ¢; are only Lipschitz continuous, the function
g; above is of class C'', as this is clear from its definition.

Proof. Let us here denote by g; the right-hand side of (2.22) (defined successively on
each interval [my, muy;q]. We will show that g; = convy,_ . )f;. Observe that g; is a
convex function, as a consequence of the fact that the wave speed function Xj (m,my;u_)
introduced earlier is non-increasing in m.

First of all, within a rarefaction interval [mag, Mok 1] the identity

m

F(@s(mo ) = flma) + [ (o)) dnd (2.23)
mag
follows directly by differentiating this relation and using the definition of the rarefaction
together with the normalization pu(vj(m)) = m.
Second, considering a shock wave (ugg, ugg+1) and using the Rankine-Hugoniot relation,
we obtain (for the end point values)

fj<u2k+2) - fj<u2k+1> = Xj<u2k+1a U2k+2)lA' (u2k+2 - U2k+1)

(U2k+1, U2k+2) mok4+2 — m2k+1)-

Hence, combining with the identity within rarefaction, we conclude that f; and g; coincide
within rarefaction intervals,

fi(m) =g;(m),  m € [may, Maj41]. (2.24)

In consequence, to establish (2.22) it is sufficient to prove that g; < f;. Moreover,
since these functions coincide on the intervals [may, mox11], we need only show g; < f;
on each interval [mggi1, Mokto]. So, we now establish that, for any @ = v,;(m;u_) with
Mopy1 < M < Mojga,

fi(m) > fi(uani1) + A (warir, uay2) (2 — mog 1) (2.25)
= g;(m).
To this aim, we consider the Riemann problem (u_, %) and the restriction of f; to the

interval [m_, m],

~

fi = Fjlm_ ]
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and we define g; by (2.22) with the intermediate states u}, ..., u,,; corresponding to this
problem. It follows from previous observations that, at the end point m,

fi(m) = g;(m).
In view of the splitting property in Lemma 2.6, it is clear that g;(mok+1) = fj(mak+1), and
g;(m) = gj(mayr1), Makt1 < m < m. (2.26)

Now, if ugp1 # u_, we have
@?(m%ﬂ) = f]/'(u2k+1)
= \j(ugky1) = Aj(Ugny1, Uakia),

since the two Riemann solutions coincide on a whole interval. If ugry; = u_, we have

G5 (Mmags1) = Nj(Uapi1, @) > Nj(ugky, Uskra),

as follows from the entropy criterion. This establishes (2.25).

Consider now the last statement in the lemma and suppose that f; is affine and co-
incides with convf; in some subinterval [my,mo| (m; < mg). Clearly, (mq,m2) does not
intersect a rarefaction interval (magy, mogi1) since this would contradict the nondegener-
acy assumption. Introducing @ as above, we see that the inequality (2.26) is strict unless
(ugk+1, @) is a single shock of the same speed as (ugj+1, Uokt2). But, if v;(+; ugk41) had this
property on [my, ms|, it would follow that v;(-; ugg+1) = w;(-; ugk+1) in that interval which,
again, would contradict the nondegeneracy of the flux. ]

2.5 Proof of the inner speed variation estimates

Proof of Theorem 2.2. 1. We only treat the case m > 0 since the case m < 0 is
similar. From the estimates on the strengths we have:

sup () +mi) = Gy ) i) Sl —u-| (227

Observe also that the variation of the shock speeds is essentially equiavelent to the variation
of the characteristics speeds, as follows
() +nu)) — N (p(u) +n;u
6l + 150 =) + ) 025)
=X (u) = Aj(u) + On) [u" — ul.
This is a consequence of the fact that all functions under consideration are smooth, and
that the equality holds (without remainder) when either n = 0 or v’ = w.
Denote v/, := ¥;(p(u’) + m;u’) and uy := ¥;(u(u—) + m;u_). To prove the first
statement in Theorem 2.2, we will establish

~max ~max

X () 4 misul) = X () +miu)

, , (2.29)
= Nj(uy) = Aj(us) + O(m) Ju, — uy]

20



A () A+ msl) = X (alus) + mi) (2.30)
= A (uZ) = Aj(u-) + O(m) [ul —u-|.

This implies the desired estimate, since by (2.27),
M) = Agloa) = Ay() = Ag(u-) + O(m) fu — u|

and v/, —uy| = [u_ —u_|+O(m) [u_ —u_]|.
We only consider (2.29), since (2.30) can be checked similarly. To prove (2.29), it is
sufficient to establish the inequality

S max

X () A+ myul) = N () + myul)

/ / (2.31)
S AW ) = Aj(us) + O(m) [y, — uyl.

This is so since u_ and u’_ play completely symmetric roles.
Each of the Riemann problems (u_,u;) and (u’,v/ ) are solved by a succession of
rarefaction waves and shock waves. Call m (resp. m’) the real in [0, m] defined as follows:

e If the problem (u_,uy) (resp. (u’_,u/)) ends with a non-trivial rarefaction wave, we
set m = m (resp. m' =m),

e If the problem (u_,uy) (resp. (u’,u)) ends with a non-trivial shock wave (@, u")

(resp. (@,u'")), we set m = u(a) - p(u™) (resp. m' = p(a) — p(u'")).
We distinguish between two main cases:

e Case 1: if m' > m. By the entropy criterion, the shock speed enjoys a monotonicity
property and we have

Nj(p(us) +m5uy) < N(p(us) +msuy) = NP (us, uy),
and the conclusion follows easily from (2.28).
e Case 2: if m' < m. In that case, there are two subcases:

— 2a. If the point @ of parameter value p(u_) + m’ in the problem (u_,u,)
corresponds to a rarefaction wave. In that case, we clearly have

N (plus) + my p(us) + myus) > Aj(@).
Hence, using Lemma 2.6, we can prove (2.31) as in Case 1, by considering the

Riemann problems (u_,¢;(pu(u—) +m/;u_)) and (v, ¢;(p(u’) + m/;u’)). (In
fact, in this case we only compare characteristic speeds.)

21



— If the point @ of parameter value p(u_)+m’ in the problem (u_,uy) corresponds
to a shock wave, say (uq,us), then

Ni(p(us) +my p(us) +myu_) > Aj(ug).

Again, using Lemma 2.6, we can apply Case 1 to the problems (u_,us) and
(w9 (p(ul )+ p(ug) — p(u_);u’)). Note here that the latter problem coincides
with (u”, /) up to the parameter p(u’ ) +m’ and has speeds greater than the
ones in (u’_,u/,).

2. Fix a left-hand state wu;, and let u,,, u, be two states on the j-wave curve from wu;, with
u, := ;(pr; ). Using the standard Lipschitz continuity property of the wave speed along
a given wave curve based at the point u; we obtain

~max ~max

)‘y ) (U’lv u/r) = )‘j‘ (u17 um) + O(Mm - :U’T)J

)‘j (ur, uy) = /\j (ur; um) + O — pir),

which yields the desired statement on the inner speed variation 9;(u;, u,) = X;-nax(ul, ul) —

AP ().

3. Introduce @, = ;(u,;u;). As we could construct “left-hand” wave curves as we did for
(right-hand) wave curves, one can introduce ,, such that

N(um) = Hm, Uy = %‘(Mr; Z~Lm)

It follows from the regularity of the left-hand wave curves and the wave interaction esti-
mates that

U, — U | = O[T — ur]) = O(1) Q(uy, U, wyr).
Now, using the first statement of the theorem, we deduce

A (s s Un) = Xj('a frs um) + O(1) Q (wr; U, ur).
We introduce two values of the parameter in the Riemann problem (u, @, ):

Mg := max {m € [, fim), / the point in the problem (u,, @)
with parameter m corresponds to a rarefaction Wave},
my, := min {m € [fm, 1], / the point in the problem (u, @,)

with parameter m corresponds to a rarefaction Wave},

with the convention that m, = py (resp. my = p,) when there is no rarefaction wave in the
corresponding parameter range. In the terminology of Lemma 2.7, the above conditions
can be stated as f;(m) = convy,, ,,1f;(m).

We now distinguish several cases that depend upon the values of m, and my,.
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e Suppose that pu; < m, < my < p,. In that case, using Lemma 2.6, we see that the
Riemann problem (u;,@,.) can be obtained by gluing three Riemann problems to-
gether: (u, ¥j(mq;w)), (¥;(ma;w),¥;(me;w)) (a single contact discontinuity), and
(¢ (mp; wy), @,). We then deduce that

ﬁj(ul,ﬂr)

= N (ftrs 5 ) = Nj (i1, s w1)

= N (s 5 Tm) — N (s i Tm )+ N (R s Tim ) — N (Rt fom W1)
= 0 (tmy ) + Nj (Homs 175 ) — N (111, o w) + O(1) Q (g, iy, wr )

and the desired inequality (2.2) follows.

e Suppose ; = m, < my < pp (resp. p < my < my = p.). In that case, by
the same arguments, we have 9,(w;, a,) = 9;(¥;(mp;w), @) (resp. 95(w, @) =
Vi (uy, j(mg;uy))) and, again, (2.2) follows.

e Suppose p; = m, < my = p,-. This case is obvious since the left-hand side of (2.2)
vanishes.

This completes the proof of Theorem 2.2. O

2.6 Proof of the density property

We will now establish that the nondegeneracy condition is generic. This section will cover
both conservative and nonconservative systems, characterized by a flux f or a matrix A,
respectively.

Let Q be an open set in RY. We are interested in matrix-valued mappings A = A(u)
(u € Q) of class C* satisfying the strict hyperbolicity property, that is, for any u € 2, the
matrix A(u) admits N distinct and real eigenvalues,

M(Aju) < ... < An(A4,u), (2.32)
and basis of left- and right-eigenvectors [;(A,u),7;(A, u), normalized so that

ri(Aw) =1, (A u)- ri(du) =1,
LA u)-rj(Au) =0 (i# ).

Let H be the subset of C'*°(2) consisting of all mappings A satisfying the strict hyperbolic-
ity condition (2.32) and such that the associated maps A;, [;, 7; are smooth. Recall that, in
a sufficiently small neighborhood of any constant matrix and under the assumption (2.32),
the maps Aj, [l;,r; indeed depend smoothly upon u. In this subsection however, we need
not assume that the set (2 is small.

(2.33)
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To every map A € ‘H we associate the following functions, by induction,

7TA1)(A, w) =1;(A,u) - Vyj(A u),

2.34
7r(,k+1)(A,U) — Tj(A,u)'VuW§k)<A7u)7 k=1,2,... ( )

We claim that:

Theorem 2.3. (Density of the set of nondegenerate systems.) Given any matriz-valued
map A € H there is a sequence A' € H such that

Al — A in the (strong) C*> Whitney topology, (2.35)
and A' is nondegenerate in the sense that, forl=1,2,...,u€Q, andj=1,...,N,

(ri (AL w), 7P (AL ), N (AL w)) # (0,0, ,0). (2.36)

J J >

Moreover, in the special case that A is conservative, i.e. A = Df, the sequence can be
chosen to be conservative, A' = Df', and f' converges to f in the Whitney topology.

Hence, all the results established earlier in this section for nondegenerate flux extend
to arbitrary, strictly hyperbolic flux, and this leads us to Corollary 2.1. In the following, a
map A € H (conservative or not) is fixed, and we consider the set

F = {(u, A(u)), u € Q}.

Clearly, (2.32) is an open condition and, therefore, for each v € €2 one can find § > 0 such
that the ball Bs(u) centered at w is included in € and all matrices B € Bs(A(u)) have N
real and distinct eigenvalues:

Ai(B) < ... < An(B),

and, therefore, basis of left- and right-eigenvectors Ly (B), ..., Ly(B) and Ry (B), ..., Ry(B),
which we will normalize so that

|R;(B)| =1, Li(B) - Ry(B) =1,

L;(B) - Rj(B> =0 (i#}j). (2.37)

Clearly, the maps A;, L;, R; depend smoothly upon B (at least locally), and represent
extension of the maps A;,[l;,7; to the ball Bs(A(u)). Reducing ¢ if necessary, we can
assume that for all By, By € Bs(A(u))

Li(By) - Ri(Bs2) > 1/2.

Now, in view of the paracompactness property of F, there exists a locally finite covering
of F by open sets finer than Bjs((u, A(u))). We define G as the unions of all balls in
such a covering. We define R;(B) and L;(B) on G for B € Bs/2(A) as the value of
R;(B) determined in that ball. It follows easily from this construction that this does not
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depend on the ball that contains B. Hence, we conclude that in G the maps G 2 A —
Aj(A), L;j(A), R;(A) are smooth.

To fix the idea we discuss the conservative case, with A = D f for some flux f. Minor
modifications are needed to cover the nonconservative case, which we omit.

Let O C C®(Q,RY) be a small neighborhood of the flux f, chosen so that (u, Dg(u)) €
G for all g € O and u € 2. Introduce the subset

Ji(0) = {jg(u) = (u,g(u),g(l)(u), . ,g(k)(u)) JueQ, ge O}
c JFQ,RY),

consisting of all k-th jets of maps from Q into RY. Here, ¢¥) denotes the j-order differential
of the map ¢, and the mapping jg is the k-th jet extension of g.

It follows easily from the definition (2.34) that the functions u — 7T](~k)( f,u) can be
expressed in terms of jets, that is

m (f.u) = uu. f (). SO (w). . O ()
= or(j7 (w),

where the functions ¢ : J*™1(Q,RY) — R are smooth in Jp41(O). Note in passing that
7rj(-k)( f,u) does not depend upon the first two components of the jet, u and f(u).
The proof of Theorem 2.3 follows from Thom’s transversality theorem, which we recall

for readers’ convenience (for a proof see, for instance, [22]), and a technical lemma that we
establish below.

(2.38)

Theorem 2.4 (Thom). Let X andY be two smooth manifolds, and Z be a submanifold of
the k-th jet space J*(X,Y') for some k > 0. Then, there exists a Baire set of second category
E C C®(X,Y) for the (strong) C* Whitney topology such that the k-th jet extension of
any f € E is transverse to Z, and consequently (j§)'(Z) is either the empty set or a
submanifold of M having the same codimension as Z .

Recall that a Baire set is a set whose complement is the union of at most countably
many, nowhere dense sets.

Lemma 2.8. For any k > 2, the set

7= {qejk(O)/goj(q):O,jzl,...,k—l}
c J*Q,RY)

s a submanifold of codimension k — 1.

Proof of Theorem 2.3. Applying Lemma 2.8 with £ = N +2, we obtain a submanifold Z
of JNT2(Q,RY). By Theorem 2.4, the set E of maps g : © — RY such that g is transversal
to Z is a Baire set of second category. For g € F we introduce

fe—
Uy u (750 (), 7w (g w),
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For any g € E, ¥;'(0) is either empty or is a submanifold of codimension N + 1. Clearly,
there are no submanifold of codimension N 4 1 in @ C RY, hence ¥, '(0) = (. Thus, one
can find a sequence f* € E converging to f for the Whitney topology. [

Proof of Lemma 2.8. It is enough to prove that the differential di;, of the mapping

Vet JHOLRY) 2 g (01(q), - - -5 or-1(q))

has constant maximal rank k — 1 for each ¢ in J*(Q,RY). Let us write (Ao, A1,..., Ax_1)
for a general vector of the tangent space at g, T,J%(Q, RY), with Ay, A; € RV, A; € R%,
i > 1, where d; = (N +1i— 1)!/[(N — 1)ldl].
By a straightforward induction argument we can check that it is sufficient to prove, for
every k,
(0,...,0,1) € Range(D1y). (2.39)

Denoting by f®*) the k-th order differential of f, we first observe that
i (fou) = DA (FD ()] (Ri(f P (u)))
= (Dar)(fP (@) - () (w) - [Ro(f P (w)],

where f is regarded as an element of £(RY; L(RY RN)).
It is straightforward to check, by induction, that the term in ;1 containing the
highest-order differential of f is

(Dar)(fP (W) - F P (u) - [ Ri(fD (w))],
where f*) is regarded as an element of L((RY)®F=1: L(RY RY)). In other words, we have
@k—l(uu f(u)v cee 7f(k)>(u))
= (D)) (f O (w)).f P (w).[@" Ri(fY ()] + Yna (u, f(w), ..., fED),

where 1)1 is a smooth function of j']f_l(u).
Hence, to establish (2.39), it is enough to prove that for all A € H there exists

A € LIRM)ZL LRY,RY)) = L((RY)*H RY)

such that
DaAi(A) - Ay - (@1 Ri(A)) # 0. (2.40)

Note that A, R;(A) and A;(A) are related together via the identity
ARi(A) = Ni(A)R;(A).
Differentiating this identity with respect to A (in the direction H), we obtain

HR;(A)+ A-DusR;(A)-H
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Taking the product by the left eigenvector L;(A) and using (2.33), this yields
Hence, we arrive at (2.40) by considering A sending ®" R;(A) to R;(A) and other elements
of a basis of (RM)®* to 0, and Ay =0,..., A;_; = 0. O

Remark 2.1. It follows from the above proof, that generically in f (or in A in the non-
conservative case), one has the stronger property that

{fuee [ (@@, ...7Pw)}

is a (possibly empty) submanifold of codimension k.
As a consequence, for such a flux and for almost every u € €0, the (Lipschitz continuous)

wave curve starting from u does not meet any point where (7'('](-1)(’&), 7TJ(-2) (u)) = (0,0).

2.7 The PGNL condition is not generic

We have established that any flux can be approached by a sequence of flux satisfying

(TP (w), ., 7N ) £ (0, 0)

for all v and 7. We will now prove that, in general, a flux cannot be approached by a
sequence of flux satisfying the stronger condition

(7 (w), ..., 7)) £ (0,...,0)

for all w and j. Hence, the latter condition is not generic. In particular, for N > 2, there
exist fluxes that cannot be smoothly approached by PGNL fluxes. Note that our coun-
terexample below is “local”, in the sense that it persists even if we shrink the neighborhood
of the base point under consideration. Moreover, our result is valid for both conservative
or nonconservative hyperbolic systems.

Consider flux f : RY — R of the following triangular form:

fi(u)
flug,...,uy) = fZ(U?W) :
fn(ug, S UN)
whose Jacobian matrix A(uy,...,ux) is given by
Oy f1(u1) 0 0
Oy fo(uy, us) Oy f2 (U1, us) 0 ... 0
aulfN(ul.,...,uN) (9u2fN(u1.,...,uN) (9uNfN(u1.,...,uN)
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Under the assumption
&Llfl < &szg < ... < 8uNfN,

the system of conservation laws associated with f is strictly hyperbolic, with
0
Aj(ug, ... un) = Oy, fi(u, ..., un), (U, ... un) = 0
1
It will be convenient to choose the component fy to be the following polynomial ex-
pression

o 2 3 N N+2
Inv(ur, .. uy) i=uguy +uguy 4. U Uy Uy,

while fi, ..., fy_1 are chosen arbitrarily but so that the strict hyperbolicity property holds
for all u in the ball Bs. One can compute

An(ug, ... u
v - - 241
= 2uiuy + 3uguy + ... + Nuy_quy  + (N + 2)uy ",
thus, since rn - V = 0,,,
7TJ(\})(U’17"'7UN) ::rN'v)‘N(ulv"'auN) (242)
=2uy+...+ NN = Duy_1ud 2+ (N +2)(N + 1) u,
and so on for all 7T](-N_1), in particular
(N—1) Y (N+2)! o
W](VN (u1,...,un) = NV uy_1 + 5= uy, (2.43)

TN )<U1,...,UN) = (N—|—2)' UpN-
Now, we claim that:

Proposition 2.3. Consider the triangular fluz f introduced above. For any 6 € (0,1) and
for all g sufficiently close to f on Bs (in the CN-norm), there exists a state u* € Bs such
that
1 * N *
@), ..., 7wV w)) = (0,...,0). (2.44)

Our proof below remains valid if, instead of flux g, we consider mappings A = A(u)
(u € Bs) which are sufficiently close to df.

Proof . Clearly, any perturbation g : Bs — RY of f is still strictly hyperbolic. Denote
by Rylg], Ax[g] the eigenvector and eigenvalues of Dg that are associated with the N-
characteristic family, and define Wg\})[g] (u),... ,WJ(VN) [9](u) in the usual way. To exhibit a

state satisfying (2.44) we consider the following vector field W([g] : Bs — R™:

Trl(\})[g](ula s ’UN)
W[g](ulv qu) = :
i [gl(u, )
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From (2.41)—(2.43) one sees that, for any (uy,...,uy) € Bs,

=

-1

WIf(ut, - un) - (ua, . un) = (G4 Dl + (N + 20y + Plus, ... uy),
1

J

where P(uq,...,uy) is a polynomial expression in uy, ..., uy such that which each term is
of degree 3, at least. It follows that for some o > 0 and for all § € (0, ) and (uy,...,uy) €
Ss (the sphere with radius ¢)

Wfl(u,...,un) - (u1,...,uy) > 0.

In consequence, for & € (0,dy), the index of the vector field W[f] around the sphere Ss is
1 (by a standard homotopy argument, for instance). Now, it follows that for all g close to
f, the vector field Wg] does not vanish on S5 and is of index 1 around Ss. Hence, Wg]
necessarily vanishes inside Bgs, and this establishes the claim. O

3 A second proof of the inner speed variation esti-
mates

3.1 Notation and preliminaries

In the present section, we rely on an alternative approach to the Riemann problem due
to BIANCHINI AND BRESSAN [8, 7, 6] and we provide a second proof of the inner speed
variation estimate already derived in the previous section.

Throughout, we consider a strictly hyperbolic system of conservation laws (2.1) and
use the notation of Section 2. Note that the parametrization (often denoted by the letter
s) along the wave curves will be here different from the one in the previous section. The
sup norm in R¥ is used throughout the present section.

The following framework is based on a prescribed family of “traveling waves”; for the
motivations of which we refer the reader to [27, 16, 31, 8, 6] and to the discussion in
Section 4 below. Consider a given family of smooth, vector-valued maps 7; = 7;(u, v;, ;)
for (u,vj,0;) € RV x R x R (presumably associated with viscous profiles of a regularized
version of (2.1)). Given a base point which can be assumed to be the origin in RY, and
setting 1 := 1;(0), etc., we can normalize the vectors 7 so that 3 - 75 = 1.

From 7; we can determine the speed functions Xj

Ai(u,v5,04) = l? - A(u) 7 (u, vj, 05),
and we assume as in [8] that, for some constant Cy > 0

o

9o (u,vj,07)| < Co vyl (3.1)

fij(u7070-j) :Tj(u)’ |
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and

O\ O
|52 vj,0)| < Colul, 572 (. v5,05)] < Colul o, (3.2)
j J

In particular, it follows that Xj (u,0,0;) = Aj(u).

Then, the wave curves associated with the system (2.1) are constructed in the following
way. Fix some small §; < §y and, for j = 1,...,N, s € [0,d1), and u_ € Bs,, define a
family of curves I';(s; u_), issuing from u_ and of “length” s, as follows:

Dj(sus) i= {3(r) = (u(r), v;(r), 05(7)) € Lip([0, 5] RY*2) /
u0) =u—_, p;(u(r)) = p;(u-)+r,
0,(0) =0, |o,(MI <01, oy () = XJ] < 2Cy 61 .

where p;(u) =13 - u. To any curve vy € I';(s; u_) we associate its j-flux function

Hib(r) = /OT X, (w, v;,0)(7") dr.

Define also the nonlinear operator 7; : v — (4, v;,5;) on I';(s,u_) by

u(r) =u_ + /OT@(U,Uj, o;)(7')dr',
5(r) = Fb(T) = convig.g fi11)(7), (3:3)
31(r) = 5 (comvp i),
Define a distance between v,~" € I';(s,u_) by
D(y,7") = dillu — || oo + llv; — vjl[Lr + [Jvjo5 — vjos L. (3.4)

It was established in [7] (Proposition 3.2 therein) that, for ¢, suitably small, the operator
7; is a contraction with constant 1/2 in the metric space I'j(s;u_) endowed with the
distance D. To any s and u_ we can thus associate a unique curve v* = 77, that satisfies
T;(v) ="

This allows us to introduce the wave curve v; = 1);(s; u_) by keeping, for every s > 0,
the end-point of the curve at 7 = s, only, i.e.

bj(sius) =75 (s)-

For every s > 0, the state u_ is connected to the right-hand state u := 1;(s; u_) along the
curve v* = (u*, v}, 0}) (associated with the given s, u_) and we can define the corresponding
J-wave fan:

u_, z/t <o;(0),
u(t,z) == S u(r), z/t=o0;(1),
u_, xft>o(s).
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When s < 0 a similar construction is done using the concave hull (denoted below by conc)
instead of the convex hull.

The wave curves are Lipschitz continuous and, by the implicit function theorem, any
Riemann problem (u;,u,) can be solved uniquely, by combining wave curves together,
ie.

U = V(s;u) = Yn(sn;Un_1(sn-1, ... Vi(s1;w))),
where we use the notation s := (s1,...,Sy).

To estimate the interaction between waves we introduce Bianchini-Bressan’s amount of
interaction [7] as follows. First of all, consider two waves of the same family

Uy = %‘(57“—)7 U/+ = ¢j(5/; ul—)v (35)

together with the corresponding curves + and +" and the corresponding j-flux f; = }’;h]

and f;’ = fj[v’]. Define the real 7 = Z(u_,uy;u’,u’,), as follows, where for definiteness
we assume that s > 0. (When s < 0 one should replace all convex/concave hulls by
concave/convex hulls.)

e If 5.5 >0, we set

o7 LA 7 €10, 5],
el {A@+ﬁﬁ_@,76bﬁ+ﬂ7 (3.6)

and
I(“—» U+;Ul_, ui{—)

::/0 convyo 4 (f; U fj/)(&) — convig,s(f; U E)(f)’

s+s’
“f

o If —s < <0, we set

conVipst)(f5 U T1)(€) = convio,en (5 U (€|,

s+s’
T(u_,upsu’,ul)) ::/
0

o
s+s’

COHV[QS]};’(é’) — COHV[O,s+s']J§(§)‘

conv ¢ f;(§) — conciey o o f (f)‘ ;

o If & < —s <0, we set

T(u_,uq;u’  ul)) ::/ conc[s,p]f]’.(g) — conc[sf’_s}fj’,(g)’

O ~ ~
+ / conciy o) f;(§) — conv[_&o]f]'»(f)’ .

—S
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More generally, define the amount of interaction associated with two Riemann problems
ur = V(s;uy), u, = V(s';u;) by

I(ulaur;u;7 Z|SZ |+ZI u_,u+,u U’—i—)
1<J

where the second sum is over all j-waves (u_,u) and (u”, v/ ) in the Riemann problems
(wg, ) and (U, u,), respectively. Now the interaction functional @) is defined as

Quty iy l) = 3 [si s |+Z/ / 0,(7) — 17l

1>]

It will be convenient also to set Q(uy, Um, uy) := Q Uy, Upy; U, uy) Tor all wy, wy,, w,.
Finally, we will need another distance between curves. Consider two curves v € I';(s;; u)
and 7" € T'j(s);u'), and restrict attention to the case where s; and s’ have the same sign.

If, for instance, both of them are positive we set s; := min(s;, s;) and

P(y,7) = D(7|[0,§j]77\/[0,§j]) + |sj — 3}|>
where the distance D introduced earlier is extended in an obvious way to any two curves

with the same length but not the same base point.

3.2 Interactions estimates on the inner speed variation

Recall from [7] the following version of Glimm’s interaction estimates.

Theorem 3.1. 1. Consider any three states uy, Up, u, such that u,, = V(syn;w), u, =
U (Spr; Um), and u, = Y(s;;u;). Then, the corresponding wave strength vectors satisfy

’Slr — Sim — Smr’ 5 I(uh Um,, ur)- (37)

2. Let ”yé-m, v, and ’yé.’“ be the curves associated with the j-waves in the Riemann
solutions under consideration. Define 7; by

l l .
7Y on [0, 847 + s77], if s, s >0,
~ Im im. J o m o
V= ’yj\[ﬂysngrS;m} on [0, 55"+ 5; ), if s < sy < 0,
mr R Im Im mr . mr _Jdm
’Vj\[s;”d—sgm]( si™)  on [s" 4 ST, 0], df ST < —si" <0,

where 7“” U™ is defined by

(3.8)
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(the definition when s;", 87" are negative being similar). Then, the curves satisfy the

following interaction estimates:

ZP(%,’Y?) 5 I(uluumaur)-
J

3. Consider a piecewise constant function with small total variation u : R — RN, Let v’
be the function obtained from u by replacing two consecutive Riemann problems (uy, ugi1)
and (Ugy1, Uks2) by (ug, ugs2). Then, for some ¢ > 0 we have the estimate

Q) < Q(u) — eI (up, upt1, Ugt2)- (3.9)

4. In the situation above, let Q' be the interaction amount associated with u but with
the i-th curve ~i in the Riemann problem (uy,uy.1) being replaced by ! corresponding to
another problem u} = 1;(uy). This modifies the Q in the following way:

Q' = Q)] < P(y/,7))- (3.10)

We now turn to the investigation of the inner speed variation ¥; (defined in the previous
section) which here takes the following form: given w, = ¢;(s, ;) with corresponding curve
v = (u, v, 0):

Uj(uur) = 0(s) — 0;(0).

We provide a new proof of the estimate already derived in the previous section.

Proposition 3.1. (Inner speed variation — same family.) Consider two j-wave fans

Um = wj(slm; ul)? Uy = ¢j(8mr; um)a

and denote by Y, = (U™ v o'™) and Y, = (W™, 0, 0™) the associated curves. Set
!/

ty, = Yi(Sim + Smr;w) and denote by v 1= (u',v},0}) the associated curve. Then, the

inner speed variation of the j-wave fan (uy,u,) satisfies the following estimates (assuming
Sim Z 0)
o Monotone case : 0 < Spm, Smr-

U (w, ul) <max (9(ug, tm ), 95 (U, ur))

+ (U]W(O) — ;’”(O))Jr + O(1) Z(ug, upm, uy.). (3-11)

e Non-monotone case (1) : 0 < Sin + Spr < Sim-
O (wg, ul) < 95 (ug, up) + O(1) Sl (3.12)

e Non-monotone case (1) : Sy + Spmr < 0 < Spp-
O (ug, ul) < 94 (Up, ur) + O(1) Sp. (3.13)
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Moreover, completely similar estimates hold in the case s;, < 0.

Proposition 3.2. (Inner speed variation — artificial wave fronts.) Consider three states
Uy, U, Uy Satisfying solely
Uy = ¢j(5; um)u
and let v = (u,v;,0;) be the curve associated with the wave (up,u,). Introduce u,, :=
¥j(s;w) and the corresponding curve v' = (u', v}, a%). Then, it holds
0 (up, ) = 0 (i, ur) + O(5) [t — .
A completely similar statement holds when (u;, u,,) is a j-wave and (uy,,u,) is an arbitrary

Jump discontinuity.

In fact, from the above statement, we can also deduce the desired estimate for the
interaction of waves of different families.

Proposition 3.3. (Inner speed variation — different families.) Consider three states uy, t,y,, u,
such that, fori # j,

Um = wj(slm;ul)7 Up = wi(smr; Um),
and denote by v'™ = (ul™ vl ol™) and 4™ = (W, 07", 07") the curves associated
with the wave (uy, uy,) and (Upy,,u,), respectively. Set also Uy, = Vi(Spmr;w) and @, =
V;i(Stm; Um), and denote by '™ = (u’lm,v}lm,a;-lm), AT = (W™ o o) the corre-

sponding curves. Then, one has

19](117”7 ﬂ"") = ﬂj(ula Um) + O(Slm Smr),
ﬁj(uh am) = ﬂz(uma ur) + O<Slm Smr)'

Corollary 3.1. Consider four states ug, ug, uy, u} such that

ur = j(siuo), oy = (s’ up)
with 0 < s < s'. Denote by v = (u,vj,05) and v = (v, v}, 0}) the curves associated with

the waves (ug, uy) and (uy,u}), respectively. Then, one has

|05(s") = 3(0) — 03 (s) + :(0)] < |uo — upl + [s" — 5. (3.14)

Clearly, Proposition 3.3 follows from the fact that
s < l(sw) —ul S s,

We postpone the proof of the other statements to Subsection 3.4. In the next subsection,
we derive some additional properties of the Riemann solver constructed via (3.3), which
will be useful in our proofs but are also of independent interest.
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3.3 Additional properties of the Riemann solver

To derive the inner speed variation estimates stated earlier, it will be convenient to de-
compose the problem of finding a fixed point of (3.3) in two steps: on one hand, finding
the geometric wave curves (that is the component u) and, on the other hand, finding the
speed of propagation of the wave fan (that is the components (v;, 0;)). This is the subject
of the following proposition. Consider the set

Ty(siu) i= {(05(), 05() € Lip([0, s, R?) /
05(0) = 0, [o;(7)] < b1, loy(7) = Y] < 2Co 01 |,
endowed with the sup norm |[|(v;,0;)]|ec := [|Vjllec + ||}l Given u* € Lip([0, s]; RY)
satisfying u}(7) = u_ + 7 and |u}(7) —u_| < 7, consider the operator
0;(7) := filu®,v5, 05](7) — convip g f[u”, vj, 5] (7),
53(7) = 3 (convip g filu s vy, 1) (7).

QL 2 (vy,05) — {

Lemma 3.1. Fiz u* € Lip([0, s|; RY) satisfying u;(1) = u_ + 7 and |[u}(1) —u_| < 7.
Provided the range of u* s included in a sufficiently small neighborhood of 0, the operator
QY admits a unique fived point in Y ;(s;u_), which will be denoted by (V¥ ,%%"). Moreover,
for some Cy > 0,

IV, 38) = (V5,2 oo < Ci[Ju’ = u?)oc.

Proof. We will prove that if the range of u* is included in a sufficiently small neighborhood
of 0, then the map Q¥ is a contraction with constant 1/2. Indeed, one has

1925 (v1,01) = Qf (v2,09)][00 S HEfj(‘,U V1, 01) — %fj(',u L2, 02) |00
SO v, 01) = Ay (Ut 02, 02) || o
With (3.2) this yields
192 (v1, 01) — Q (02, 02) ||
S Collu™ = uploo (1 + [[vj o) [[(v1, 1) = (v2, 02) |00,

This proves the first part of the lemma.
To establish the second part, we use the above contraction property and write

IV, 28 = (Vi B8 )l S 1967 (VS 2557) = (Ve 587 [loo

5 H:\/j(uh‘/sm?z]?) _Xj(u%‘/;uz’zlsu)HOO
Sl — uafle,
where the regularity of the function Xj has been used. This completes the proof. [
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We now state some properties of the curve describing the wave fan, under the as-
sumption that the u-component is already known. Introduce the translation operator
Ts . [ — 74 f, defined by

7(f)(y) == fly — ).

When a function u* is defined on an interval larger than [0, s], in order to simplify the

: : : ut oyt U0l 20,
notation, we simply write (V*, X% ) instead of (Vi ™" X%,

Lemma 3.2. (A splitting property.) Let 0 < s; < sy and u* € Lip([0, so], RY) be as in
Lemma 3.1. If
‘/sz;* (Sl) = 07

then (VX

S92

¥Y) coincides with (V!

w8 on the interval [0,s1], and coincides with the

T_g u* T_g u* .
translate 75, (V,, "3, X, ) on the interval [sq, so].

Proof. 1t suffices to check that (V2,5 )j0,s;) and 7, (V2

So So
the operators QZ{“””] and €, , respectively. But this property is a direct conse-
quence of the following fact: for every Lipschitz continuous function g : [0, s5] — R and
S1 € [O, 82]

51 ) |[s1,50) are fixed points of

"
T_s U
°1 7 [s1,82]

convips,1g on [0, s1],

(comvia.g)(s1) = g(s1) = convigug = { comioeld 0ot

O O
Now, we prove (compare with [6, Lemma 3.3]):

Lemma 3.3. (A monotonicity property.) For any 0 < s; < so and u* € Lip([0, s3], RY)
as i Lemma 3.1, it holds:
>3 on [0, s4). (3.15)

Proof. Set
sH = max{s €[0,s1], V' (s) = 0},

52
W, 3% is affine on the interval [s", s1]. Sup-
pose first that s~ > 0. We have V*"(s”) = 0 and, by Lemma 3.2, the curves (V,*',X%")
and (V", ) coincide on the interval [0, s"].
Hence, it is clear that (3.15) is valid in [0, s7], so that on the interval [s", s;] we obtain

and note that the function convyy s, f;(7, u*, V.

5 (s) > T (s7) = B4 (s7) = 24, (9)-

Recall here that, since «y is Lipschitz continuous, the function ]?j(”y) is W2,
Suppose next that sJ = 0. Because convig s, f;(7, u*, V2, X% ) is affine in [0,s,], it

suffices to establish (3.15) at s = 0. We distinguish between two cases:
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e cither 0 is an accumulation point of values s such that V*'(s) = 0. In this case, we
have p
S (0) = (0,0 VL) = Ay(ut(0),

) S1 )

and, on the other hand,

u* * d =~ x Yrut yut
252 (O) S Aj(u (O)) = Ef](()?u 7‘/52 7252>'

e or s° is the smallest positive T such that V*"(7) = 0. In that case, both £* and
X% are constant in the interval [0, s], the former coinciding with ¥. in [0, s°]
thanks to Lemma 3.2. Now, let us use (3.2) and recall that both X%, and ¥
are constant in [0, s“]. Recall also that both V4 and V4 are linear in [0, s] and
Vi (s2) = V4 (0) = V2 (0) = 0. We then find:

1w, ViE, 28) = fiw, Vi 3)

) S92 )

L0 (0,s%)
"

<Py, VAL B = N (ut, VL B

Y S92

L1(0,5%)
* u* u* u* u* ]. u*
S 'l (VR 252) = (Ve ) 0,50y < 5Vay (52),

89 ) —282

at least if u* remains within a small neighborhood of the base point 0. This yields us

fvj(u*, VS“A, ZZ)(SA) > conv[07s2]fj(u*, VSZ,

- 1.
252 )(8) + 5‘/32 (SA)7

which leads to (3.15) and completes the proof of Lemma 3.3.

O
From Lemma 3.3 we deduce:
Lemma 3.4. Let 51,8, >0, 5 € (0,s1), and u* € Lip([0, 51 + so]; RY). If
Vit (®) =0, (3.16)
then )
V() =0 (3.17)

Similarly, if (3.16) holds for some s € (s1,$1 + S2), then V;;Slu*(s —s1) =0.

Proof. We only prove the first statement since the second one is similar. We introduce

~ * U u
U= T—5U|[5,51+s2]> VS1+82¥§’ 231+32¥§'

Using Lemma 3.2, we obtain

() = 5., 0)

o ~ % u* u*
- ECOHV[0»51+S2]fj(S7 u ) 251—1—527 Vsl—i—sz)'
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Using V", (3) = 0, we then have

u* d u u
Eg (:§> = —f](S u 7‘/;1-"-82’ ZS1+82)
XU (3),0, 50, (3) = A (u"(3)).
Now, from Lemma 3.3 and 3.2, we deduce
nggl s(N) > 7—3 sH—sz S(N) Esl—i-SQ (N)
It follows that
7535, _5(8) > Mi(u*(3)).

But, on the other hand,

u d U
7—5231 s(g) - d—COIlV[OSI Tfj( ) 51 57231 s)(o)
d U U
S de (U, ‘/31 s?zsl s)(o)
Ai(u(3), 0,35, 5) = M (u'(3)).

Hence, we obtain

@) = (' (3) = 507 ).
But, we have also

VT (3) = 0 = V2 17(3), and 7, —5(3) = u”(3).

We introduce the curve (V,X) : [0, s;] — R? given by

(V2. 5¢), [0, 5],
)= {(V“ S5 [Rosl (3.18)

s1—3587 51—S8

MI

vV,
Clearly, 7 is Lipschitz continuous. To prove (3.17), it suffices to prove that (V",X%) =
(V,X), and hence that ¥ is a fixed point for Q7 .

Now the following property is satisfied by any Lipschitz continuous function g : [0, s1] —
R: if its convex hulls h; := convy 39 and hy := conviz, g satisfy

hi(5) = ha(5),  BA(S) = ha(s),

then convyps,)g coincides with hy in [0, s] and with hy in [5,s1]. Using the definitions of
(V%% and (V' ., 8% ), one deduces (V",X%) = (V,X) and hence (3.18). This

completes the proof of Lemma 3.4. O
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We conclude this section with a technical observation which will be useful in the course
of the proofs of the above statements.

Lemma 3.5. All of the curves v obtained by a fized point argument with the operator (3.3)
are Lipschitz continuous with a uniform Lipschitz constant.

Proof. Consider first the component (u,v;) part; the desired estimate is elementary in
view of the property ||d(convf)|le < [|df|lco- It remains to consider the oj-part and,
precisely, to prove

|0j(7) = o5(T)| < Clr = 7.

First of all, observe that for every f € W2 and 0 < x < y < s the convex hull
h := convyy 4 f satisfies

osc(h') < osc(f").
[=.9] [z.9]

(This is easily check by considering the contact points between f and h in [z,y]). Hence,
we have

jo5(r) = 0,()] S ose (N (v(7)),

(7]

and it follows that

0s¢(0;) < [|0uA;lloo [38;](10 + |06 0 [gsg](vj) + |05l oo [gg,c](fm-

[m7

Now, we already have uniform Lipschitz estimates on (u, v;), and it follows from (3.2) that
the coefficient in front of osc(o;) is less than 1/2, which allows us to conclude. O

3.4 Proof of the inner speed variation estimates

We begin with an elementary lemma.

Lemma 3.6. Given g € W>®([—M, M]), there exists a positive constant C; = Ci(g)
(depending upon M and sup |d*>g/du?|) such that, for all =M < a <b<c< M, one has

[ (convia,q9) |y — (convapg) lloe < Ci(c—b), (3.19)

1(convia,q9)ip.q — (convp.qg)'llee < C1 (b —a). (3.20)

A similar statement stands for the concave hull.

Proof. We limit our attention to the proof of (3.19) in the case of the convex hull since
the other inequalities are proven in the same way. We use the notation A,y := convy,yg,
etc. In view of this definition we note that

Rae < hiap) < g in [a,b],
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hence we can restrict attention to the case where a and c are the only contact points
between g and hj, . Hence one gets

wo = 9 —g(a)

[a.e] = c—a

As h!

[a,c]

(a) < hi,4(a) it is sufficient to prove that
g\¢) —gla
@)~ 2929 < oy,

Suppose that hj,; and g are not tangent at b, and denote by d < b the “last” contact
point of hj,y with g. It follows that

By (0) g(c) —gla) _ g(d)—g(b) gla) —g(c)

c—a d—2b a—c
g(d) —g(b) g(d) —g(c)
- d—0b d—c

In the latter inequality we used the fact that the point (d, g(d)) is above the line connecting
(a,g(a)) to (c,g(c)). The latter term in the inequality above is obviously O(c — b).
Now, in the case where hj,y and f are tangent at b, the difference is

w1 =0l gla) (@

- ) —gle)
< g0 ==

where we have used that (b, g(b)) is above the line connecting (a, g(a)) to (¢, g(c)). The
right-hand side is also clearly O(c — b) and this completes the proof of (3.19). O

Proof of Proposition 3.1. To simplify the notation, we use the index 1 (resp. 2) to
denote the objects (s, v = (u,v;, 0;)) relative to the left-middle pattern (that is, Im) (resp.
the middle-right pattern mr). We drop the index i corresponding to the wave family
(which is the same for all objects considered here). Recall that a prime indicates an object
corresponding the outgoing i-th wave.

We distinguish between three cases: s1,50 > 0, —s1 < s9 < 0 and s, < —s; < 0. The
cases where s; < 0 are treated similarly using the concave hull.

Case 1 : Assume s, 59 > 0.
Let us define v; U vy, by (3.8), let u# be the u-part of it. It follows from Theorem 3.1 and
Corollary 3.1 that

D(7/7 Ny 72) = O(l) I(ulv U, Um, U’T)J
where the distance D is given by (3.4). In particular,

lu® = wloo = O(1) T,
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which in turn yields, using Proposition 3.1,
u# u# u! u’
”(‘/.S1+SQ7 281+82) - <V91+827 251+82) HOO = O<1> I
Hence, to establish (3.11) it is sufficient to prove

ng+82<81 + 52) - 2.’:1#4»32 (O>

< max (o (1) = 1(0), 0%(s2) — #%(0) + (o(0) = 0" (0)) @20

e

Let us introduce

s1+s2

Sq = max{s € [0,s1], V2, (s) = O},

Sp := min {5 € [s1, 51 + sal, VZﬁSQ(s) = 0}.

u
s1+s2

is constant in [s,, sp]. Therefore, we see that

From Lemmas 3.2 and 3.4, we deduce that X
ut
S1+s2

coincides with ¥ in [0, s,], and with
T, 252 in [8p, 51 + s2]. Moreover, X

e if s, >0 and s, < s1 + S9, then

Sy (51 s2) — 21

S1+52

(0) = EZ(s2) == (0)
= 25 (s2) = BZ(0) + X2(0) — £5(0),

which yields (3.21).

o if 5, > 0 and s, = s; + sy (the equivalent could be done in the case s, = 0 and
Sp < 81+ Sg), then X 14, is constant in [s,, $1 + s3], hence

s

s1+s2

(s14 s2) — yu

Ss1+s2

0) = X(sa) = 25(0),

which yields again (3.21).

e if s, =0 and s, = s1 + S then Ef+52

satisfied.

is constant in [0, s; + $o|, hence the result is

Case 2 : Assume —s; < 59 < 0.

Let us write:
Y = Y1)0,81 45

It follows from Theorem 3.1 and Corollary 3.1 that

hence . ., ] ~
||(‘/87;+827 Eg1+82) - (‘/;i—l-é;g? 221—1—82)”()0 = O(l)I
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We note that, as all the speeds are bounded, Z = O(ss2). Hence, to establish (3.12) it
suffices to show
o (514 59) — 07 (0) < 01(s1) — 01(0) + O(s3).

As previously, using the contraction property, it is sufficient to prove that

ot
1928 o, (U1, T1)10,51452] = (V15 01) (0,51 459) /|0 = O(52).

Computing the difference, we are led to establish that
”[COHV[O,&]JC('Vl)]\[0781+82] - COHVHO,S1+82]JC(71)”MP = O(s2).

Using Lemma 3.6, the expression of ﬁ and the smoothness of Xi, we see that it is sufficient
to prove a uniform Lipschitz continuous estimate for the curves . This is precisely given
by Lemma 3.5.

Case 3 : Assume sy < —s7 < 0.
This case is done similarly as the previous one, and this completes the proof of Proposi-
tion 3.1. ]

Proof of Proposition 3.2. In the sequel, all objects (s, v = (u, v;,0;)) without a prime
are relative to the incoming j-wave, the objects with a prime to the outgoing one. Without
loss of generality, we assume that s > 0 and use convex hulls. We treat only the case that
the given j-wave is (U, u,), since the other case is similar. Define

ﬁ() = u() — U + Uy, f?() = (ﬁﬂ)a U)(')a
and consider d = u,,, — u;. For 0 < 7 < s we have

~ ~ ld o9 -
O = K0 = [ 5N us) + < vls) ()

0

In consequence, using the uniform bound available on the second-order derivatives of Xj,
we find

IS 3)C) = X0 ) + IGE)0) = (1)) Hl e o.sy = O(sld]),

and, in consequence,

153 () = ) = 7{5E)0) = 4(1)(0)}Hlwre = O(s]d]). (3.22)
Next, since |convf — convg|lyie < ||f — gllwre we deduce that
leonvip, f5(7) — convio o f5(3) = 7N (3)(0) = (N (O)Hlwro = O(sld]).  (3.23)
Let us now show that
I(VE 2% = (0,0 4+ {3 (3(0) = 4 (1(0)) D] = O(1) s]d]. (3.24)
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In view of (3.1) we have

N0) = Nj(um),  A(5(0)) = Aj(w).

We denote ¢ := o +Xj (7(0)) — Xj(yj(O)) and ¥ = (u,v, ). Using the contraction property,
to establish (3.24) it suffices to show

I(v,6) = % (v, 5)lle = O(1) sld].

Recall that ||dconvf — dconvg|le < ||df — dgl|s, and observe that g — convg remains
unchanged if one adds an affine function to g. Recalling also the definition of the operator
Q% we obtain

0.6) - )

= H.f]( )_COHVOS]f]( ) (:}/) OnV[Osf]( )Hoo

 lgreomioa fi) + G0 = X500 ~ Greomionfy (D)l
)

N H]EJ( )_COHV[OS]fJ( ) (’Y +COHV[Os]fJ( Moo
+ 1 £5(3) — convie g f;(7) — f;(% )+COHV[0s]fJ( Moo

- - d -
+ 1A (5(0)) = A (v(0)) + o~ f5(7,7) — Efj(ﬂ o
d -
L5 3) LA
Taking (3.22)-(3.23) into account, this yields

1(0,6) = Q(0,5)lloo S X7, v,0) = Ny(7,8,0,6) || o0 + O(1) 5],

and, using (3.2),

I(v,6) = % (@,0)lle < OQ)[[v]lxllo =Gl + O1) sld]

<
S O [[olleclum —wl| + O(1) s]d].

Since v = O(1) s (thanks to the bound on Xj in the domain under consideration) we
deduce (3.24), and it follows that

N (s) — X%(0) = B%(s) — B“(0) + O(1) sd|.
In view of the proof in Bianchini [7] (cf. Lemma 3.8 therein) we have
D(%,7") = O(s) lum — wl.

(This follows by the same procedure, it is sufficient to prove that D(%,7(¥)) is of order
O(1) |s||tm — w].) From Proposition 3.1 we deduce

IV, =) = (VE,Z0) oo = O(1) sld].
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which yields the desired conclusion. This completes the proof of Proposition 3.2 ]

Proof of Corollary 3.1. In view of Proposition 3.2, we see that it suffices to treat the
case up = upy. One can estimate |u! — “|2[0 gllzee by

[Ju — Uf[o,s} [P D(If(’nl[o,s})a ’Y\/[o,s])-

Recalling Lemma 3.6 and the uniform W2> estimates on f;(72) (by the regularity of i
and Lemma 3.5), we deduce that

Ju — U\’[O,S]HLOO Ss'— sl

In turn, with Proposition 3.1, this yields ||¥% — %[z~ < |8’ — s|. Using the uniform
Lipschitz continuity estimates on o;, to prove (3.14) it suffices to check

1(Z8 )0, = B Ml S 1" — sl

which, again, follows from the contraction property and Lemma 3.6. O

4 A generalization to nonconservative hyperbolic sys-
tems

We now turn our attention to nonlinear hyperbolic systems in nonconservative form, i.e.
Oyu+ A(u) Opu = 0, u=u(t,z) ERY, t>0 zecR. (4.1)

As usual, we assume that the matrix A(u) has real and distinct eigenvalues \;(u) and a
basis of left- and right-eigenvectors [;(u), r;(u), normalized as in Section 2. Our aim is to
extend to the nonconservative system (4.1) the theory of the Riemann problem discussed
in previous sections. Recall that the distributional definition of solution does not make
sense for nonconservative systems, and that a suitable notion of weak solution for such
systems was introduced in [26, 27, 16, 31] which is based on a prescribed family of Lipschitz
continuous paths. The Riemann problem for genuinely nonlinear and nonconservative
systems was solved in [26, 16]. We are here interested here in the generalization to systems
that need not be genuinely nonlinear.

Following LeFloch [27, 31] we can define the family of paths and, therefore, the gen-
eralized Rankine-Hugoniot relation for (4.1) from the family of traveling wave solutions
associated with a regularization with small diffusion

dyu+ A(u) Opu = €9, (B(u) O,u), (4.2)

where the diffusion matrix B = B(u) is, say, positive-definite.
We first observe that Bianchini-Bressan’s arguments generalize straightforwardly to
nonconservative systems. More precisely, the Riemann problem admits a unique entropy
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solution if the maps 7; satisfy the conditions imposed in the beginning of Section 3. On
the other hand, the interactions estimates (stated in Theorem 3.1) were established in [6]
in the case that the nonconservative system is regularized by an identity diffusion matrix
B(u) = Id. The rest of this section will thus be focused on extending Iguchi-LeFloch’s
method.

Using the notation in Section 3 introduced within Bianchini-Bressan’s method, this
amounts to fix vectors r; and to introduce the j-Rankine—Hugoniot curve H,(s;u_) =
u(s, s;u_) together with the shock speed \;(s,u_) = o;(s, s;u_), where we define the
map 7 — (u,v;,0;)(T,s;u_) by the differential system:

Oru(T) = 77]<U> Uj, Oj)(T)7

0,v;(7) = Xj(u,v5,07)() = 05(0), (4.3)
1[5~
7ir) = 0,00 = £ [ K(wvnoprar
with initial condition
u(0,s) = u_, v;(0,s) = 0. (4.4)

Theorem 4.1. When the shock curves are defined by (4.3), all of the results in Section 2,
i.e. the Riemann problem, reqularity of the wave curves, and interaction estimates for wave
strengths and inner speed variation, remain valid for the nonconservative system (4.1). In
particular, the Hugoniot curves defined by (4.3) satisfy

sOA;(s5u-) = rj(s;u_) (N (H;(s;us)) = Aj(s;us)), (4.5)
OsHj(s,u") = i (H;(s,us)) + R (s5u_) (A (H;(s;u-)) — Aj(s;us)), '

where the function k; = kj(s;u_) > 0 is smooth, bounded, and bounded away from zero,
and satisfies k;(5;u_) =1, and K; is a smooth vector-valued map.

Observe that no assumption (of genuinely nonlinearity) need be imposed on the ma-
trix A. Our result extends the construction of the Riemann problem given by Dal Maso,
LeFloch and Murat [16] for genuinely nonlinear systems. Dealing with non-genuinely non-
linear systems is more involved.

Observe also that no reference to the vectors r;(u, v;, 0;) is made in (4.5), so that some
further generalization of the above theorem is possible; see Remark 4.1 below.

Proof. The analysis in Section 2 relied on the key property (2.3) of the shock speed and
characteristic speed along the Rankine-Hugoniot curve. It is remarkable that this property
remains true when the shock waves for nonconservative systems are defined from traveling
waves. Differentiating (4.3) with respect to s, we obtain a linear differential system for the
“unknowns” v’ := d,u, v’ := 0yv, and o’ := 0,0:

Oru' = V7 (u,v;,05) - u' + 0yTj(u, v, 05) V' + 05T (u,v;,05) 0, (4.6a)
871/ = Vqu(U, vj, O'j) c + 81,}]-(71, vy, O'j) v’ + &,Xj(u, vj, O'j) — O'/, (46b>
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o' ==(\(u(s,s;u")) —o(s)) + é /OS {Vuxj(u, vj,05) - u'(t, s)

+ BN (u, vy, 05) U (t, 8) + Doy (u, v, aj)a’(s)}dt. (4.6¢)

The term \;(u(s, s;u_)) in (4.6¢) arises from the fact that v;(s,s,u_) = 0 and Xj(u, 0,-) =

/\J(U)
In view of (4.4), we have v/(0,s) = 0 and v'(0,s) = 0. Hence, from (4.6a)-(4.6b) it
follows that, given any s,

1w oo 0,7y + 10 | Loo 0,1 S T || oo 0,y + 10| 2o 0,m) + 107])- (4.7)

Hence, using (4.7) within (4.6¢) and noting that, by (3.1)-(3.2), we have |80Xj (u,vj,05)] <<
1, we can deduce (for sufficiently small 7, s)

0.0 S |Gy (uls, ), 1505, 5u), o (s5.)) — (). (48)

In other words, we have established the first equation in (4.5) with x; bounded.
Considering next the map H; we see that

85Hj<s;u*) = a‘r“(é’,s;u,) —+ asu(s,s;ui)
= fj(u, v, O')(S) + agu(s’ s; u_)'

To handle the first term, we observe that v;(s,s;u_) = 0 and 7;(u,0;0) = r;(u). For the
second one, we use again (4.7) which, together with (4.8), yields the second equation in
(4.5) with k; bounded.

We next establish some regularity on x;, %;. First, from (4.3) it follows that, for every
fixed s, the mapping (u, v, o) is of class C* with respect to the variable 7. On the other
hand, it was proven in [6] (see (3.26) therein) that this mapping is Lipschitz continuous
with respect to the variable s. Now, consider (4.6a)-(4.6b) as a linear differential system,
with Lipschitz continuous coefficients, the terms cointaining dso being viewed as a source-
term. (Recall, moreover, that d;0 is independent of 7.) Then, it follows that ' and v" can
be written in the form

(W', ') (7, 8) = 0s0(s) (h*(7,s), h" (T, 5)), (4.9)

where h*, h¥ are Lipschitz continuous in both variables and O(7) at most in the sup norm.
Taking (4.9) into account into (4.6¢) yields

O', _ )\j(u(‘S? S;U*)) - J(S)
s(1—p) ’

p = —/ (Vuxj(u7vjagj) -h(t,s)
0

S

+ DN (u, 05, 05) BY(t, 8) + DN (u, vj, Uj)> dt,
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where the coefficient p can be assumed to be sufficiently small. In consequence, k; is
Lipschitz continuous. We can derive further regularity on (u,v) by (4.6a)-(4.6b), and one
concludes by a bootstrapping argument.

Finally, the condition x;(0,u_) = 1 follows from (4.6¢c). Note here that the second
(integral) term is of order O(s) \X] (u(s, s;u_)) —o(s)| since v’, v" and &,Xj are precisely of
this order for ¢t € [0, s]. O

Remark 4.1. 1. Dal Maso, LeFloch, and Murat’s definition allows for more general jump
relations that need not be related to a specific reqularized model associated with (4.1). In
view of the discussion above, especially Proposition 4.1 it seems natural to fix a vector
valued map K; = Rj(s;u_) and a function k; = k;j(s;u_) satisfying (k;(0;u—) = 1) and to
prescribe the Hugoniot curve via the following differential system

OsH;(s;u") =15 (Hi(s;u")) + R (s;u—) (N (Hy(s3us)) — Aj(s;us)).

s _ (4.10)
s Ouj(s1us) = k(s;un) (N (H(su-)) = Aj(sius)),
with the initial conditions
M) =, N0 ) = Aju). (4.11)

Note the system is singular at s = 0. It is however not difficult to check that (4.10)-(4.11)
single out a unique (generalized) Hugoniot curve.

2. To close this section, we point out that, more generally, it would be interesting to
identify, within the DLM framework, suitable conditions on the family of paths ensuring
that the Riemann problem admits a solution that enjoys the properties exhibited in the
present paper. Recall that, for genuinely nonlinear systems, it is known that indeed the
Riemann problem has a unique solution [27, 16] and that the Glimm scheme converges

[33].

5 Existence theorem and approximation scheme

5.1 Existence result

In the present section we consider the Cauchy problem for a conservative or nonconserva-
tive, strictly hyperbolic system

Oru + A(u) Oyu = 0, u=u(t,z) € RY, (5.1)

with
u(0,2) = ug(x), =z €R, (5.2)
where the initial data ug : R — RY has sufficiently small, total variation TV (ug). All wave

speeds under consideration will remain within disjoint intervals (/\;.ni“, /\;-nax). We establish
here the convergence of a front tracking scheme for the approximation of (5.1)-(5.2). Our
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original contribution in this section is the introduction of a wave splitting strategy and the
derivation of new interaction estimates on wave speeds. In turn, this provides us with a
new existence theorem.

Following DAFERMOS, DIPERNA, BRESSAN, AND RISEBRO we construct approximate
solutions to the Cauchy problem (5.1)-(5.2), which are piecewise constant and consist of
finitely many propagating fronts. In addition to the j-fronts (1 < j < N) associated
with one of the wave family of the system we will introduce artificial fronts of small
total strength. More precisely, given ¢ > 0 we are going to construct a piecewise constant
approximate solution u® = u(t, x) satisfying the following properties:

e The function u®(¢,-) admits a finite number of discontinuities for each time ¢, and
the fronts meet at finitely many interaction points,

e The propagating discontinuities in u® are of two types:

— j-fronts (u_,u, ) associated with a family j € {1,..., N} and such that vy =
Y;(s;u_) for some s, and

— artificial fronts (u_,u, ) propagating with a fixed speed Ay larger than A3,
We sometimes refer to such a front as an (N + 1)-front. No condition is imposed
on the jump, and the strength of such a front is defined as

enr1(um, uy) = fuy —u_|.
e The inner speed variation of or each j-front (u_,u,) is uniformly small:

Uj(u,uy) = Ofe).

e The speed of any j-front (u_,u,) is uniformly close to its correct speed, that is,
calling A the speed of the front,

A= X(0;8u_) + O(e).
e The total strength of artificial fronts is uniformly small:

> Jus —u[=0().

artificial fronts

We will refer to a sequence of functions u¢ = u(t, z) satisfying the above properties as
an e-approximate front tracking solution.

Theorem 5.1. Consider a general, nonlinear, strictly hyperbolic system in conservative or
nonconservative form (5.1). Then there exists a constant ¢ > 0 such that for every initial
data of bounded variation uy with TV (ug) < ¢ there exists a sequence of e-approximate front
tracking solutions which, as € — 0, converges to the entropy solution of (5.1)-(5.2).
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5.2 Exact and approximate Riemann solvers

We summarize the properties of the Riemann solver that were established earlier via two
different techniques (Iguchi-LeFloch’s explicit construction, Bianchini-Bressan’s vanishing
viscosity approach). The Riemann solver is an application which associates, to any two
states u;, u, € By, (for some small 4; > 0), the self-similar solution v = u(§) (£ = x/t) of
the corresponding Riemann problem. We distinguish between the three sets of conditions
which we now describe.

Wave curves.

e The Riemann solution is determined from N wave curves ¢; = ¢;(s;u) (1 < j < N),
which are globally Lipschitz continuous and locally differentiable at the origin s = 0,
with

i0iu) =u, Dy(05u) = ().

e It consists of N + 1 states u; separated by N wave fans (u;, u;41), determined by

Ur = wN(SN;¢N_1(SN_1, e 7w1(31;ul) e ))7

Up =gy e, Wipr = 0i(8505), ., UN = U
The parameter values s; =: €j(uj,u;41) = €;(u, u,) are refered to as the wave
strengths, and s = (s, -, sy) is refered to as the strength vector. We also use

the notation
U(s;w) == Un(Sn; Un—1(Sn—1, -, ¢¥1(s15w) - +)).

e Bach j-wave packet (u;,uj11) = (uj,¢;(s;;u;)) consists of (finitely or countably)
many shock and rarefaction waves, defined as follows. Suppose for definiteness that
s; > 0. The range of the Riemann solution is a subset of the wave curve s € [0, s;] —
¥;(s;u ), determined by a continuous, non-decreasing wave speed

S € 0,s] o Kyl s5y) € [N, A
Its generalized inverse & +— (Xj)—l(& sj;u;) is a (possibly discontinuous) function

with bounded variation (which could be normalized to be right- or left-continuous).
The Riemann solution is given by

u;, & < X(0, 553 u),
u(§) = § ¥;(s;uy ), § = z;l(fa 853 Uj), (5.3)
wjpr = P;(s5u5), &> N85, 551 u;).

e Furthermore, the following superposition/decomposition property holds: given
any speed £ € (Xj(O, sj;u;), Nj(85,85;15)) and introducing s’ := X;l(ﬁ', sj;u;), the
wave packet (u;,1;(sj;u;)) can be obtained by simply patching together the wave
packet (u;,;(s";u;)) and the wave packet (¢;(s";u;),¥;(s5;4;)).
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Interaction estimates on wave strengths.

To any two wave packets (u_,uy) with uy = ¢;(s;u_) and (v_,v;) with vy = Pg(r;v_),
we can associate the potential of interaction and the amount of interaction

Qu_,uy;v_,vy) >0, I(u_,up;v,vy) >0

In turn, the potential of interaction between two Riemann problems (u;, u,) = (ug, - -+ , un)
and (v, v,) = (vo, -+ ,vy) is given by

Q(uhur;vhv’l‘) = ZQ(ui—lyui;vj—lavj)a
127
[(Ubur;vbvr) = Z[(ui—lauﬁvj—lavj)a

(]

and the interaction potential for a piecewise constant function is obtained by summing
Q(uy, up; vy, v,) over all the discontinuities.
The functions ) and I should satisfy the following properties:

1.
Q(us; w13 V5, vj41) = |ei(us, wir)] €5 (g, uja)l, L F 7,
Q(ui; Uir13 05, Vj41) S L€ (ui, wigr)| €5 (g, wypn)l,
Q(uo, Yi(s,u0); vi,vr) = Qug, ¥i(s', ug); vi, vp) + O(1)(Jug — ug| + [s — 8],
€j(u, ur) = €j(w, Up) + € (U, ur) + O(1) Ly,
where I, = I(uy, U U, Uy).

2. For u a piecewise constant function v with small total variation, we have for some
c> 0:

Q(u/) S Q(U) - CIZmT?

where u' is obtained by replacing the Riemann problems (u, t,), (tm,u,) with the
Riemann problem (uy, u,).

3. @ has the following behavior with respect to a decomposition of waves: if the Rie-
mann problem (ug, ug) can be decomposed into (ug, u;) and (ug, ug) according to the
property above, then the interaction functional remains unchanged when splitting
(uo, uz) as follows:

Q(UO,UQ;/UZ,UT) == Q(UO,Ul;'Ul,UT) + Q(UDUQ;UZ)U’I‘)?
Q(uo, ug; ug, u2) = Q(ug, ur;ug, ur) + Q(ur, uz; uy, ug)

_I_Q(U’U? Uy, Uy, Ug) + Q(ub Uz2; Ug, ul)‘
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Since our construction requires the introduction of artificial fronts, it is necessary to specify
how the interaction amount Q(u_, uy;v_,vy) is extended to artificial fronts. When at least
one of the two fronts is artificial, we define

Q(U,, U3V, U+)

. {|uJr —u_|€j(v_,vy), artificial front (u_,uy) and j-front (v_, v, ),

0, (v_,vy) artificial.

This definition is natural since artificial fronts meet all j-waves on their right-hand side,
but do not meet other artificial fronts nor waves on their left-hand side.

Interaction estimates on wave speeds.

To each wave packet (u;,uj11) = (uj,¥;(s5;u,)) we associate its minimum and maximum
speeds

—min -~ ~—max —

A (uguipn) = N0, s55u5), A (g, ui41) = NSy, 855 u5),
respectively, as well as its inner speed variation

O, ujin) == AP (g, wjen) — A (g, wjp1)-
More generally, when (u;, u;41) is the j-wave packet in the Riemann solution (u;,u,), we
use the notation
~ max ~ max

—min —min

A () = A5 (g up), A (wsue) == A (g, uj),
O (up, uy) = 0 (g, wj40)-
o When u, = 9;(s;w;) and ul. = ¢;(s"; 1)),
(0w, ur) = (g, u)| S 18— s+ Jug — wl, (5.4)

so that, in particular, J(u, ¢¥;(s,u)) < |s|.

e When (u,,u,) is a j-wave packet with u, := 1;(s; u,,), interacting with a Riemann
solution (u, u,,) then, setting u/, := ;(s;w),

(g, up,) < 05 (Um,uy) + O(1) |ug — up| |s]. (5.5)
The same inequality holds if the j-wave is located on the right.

e When wy, up,, u, is an interaction between two wave packets (of the same wave family
j) only:
— If €;(w, um) €j(tm, u,) > 0, then

U (uy, u,) < max(ﬁj(ul,um),ﬁj(um,ur))

—~min —~min

5.6
-+ ()\j (Um; ur) — )\j (ul,um))+ + O<1> I(uly um;um7u7’)' ( )
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— If €;(u, um) €j(tm, u,) <0, then

05 (w, w,) <max(V;(w, wm), 9 (um, u,))

+ O(1) min(|w,, — wl, |ty — Up))- (5.7)

Remark 5.1. The Riemann solvers described in Sections 2 and 3 satisfy the above condi-
tions with, in the first case, I = Q) and, in the second case, distinct values ) and L.

Approximate Riemann solvers.

We now introduce several approximate solvers which will be needed at each wave interac-
tion points. The approximate Riemann solutions are piecewise constant functions which
we construct in two steps. First, we introduce the intermediate states, that is, the wu-
components of the waves, and, second, we specify the speeds of each waves. Note that
the solutions contain j-waves propagating with a speed close to one of the characteristic
speeds of the system, as well as artificial waves propagating at the (large, constant) speed
Ani1. First of all, we define the intermediate states, as follows.

e Accurate solver. The intermediate states here are determined straightforwardly
from the ones in the exact Riemann solution (ug, u,).

e Approximate ij-solver for different families j > ¢. Given a j-front and an i-front,

U = i(s15w),  up = ViS5 U),

the approximate solver consists of the i-wave (u;,u), the j-wave (g, uz), and the
artificial front (us,u,) determined by

Up =y, Uy = i(se;uy), Up = j(s1;U1), Uz = Uy

e Approximate ii-solver for a single family . Given three states wu;, u,,, u, connected
by i-fronts,
U = Yi(s13w),  Ur = Pi(52;Um),

the approximate Riemann solution consists of the i-wave (u;,u,) and the artificial
front (@, u,) determined by

ﬁr = 77[)1(81 + S9; Ul).

e Artificial wave solver. When the left-hand front is an artificial front and the
right-hand one is an i-front satisfying

Ur = Ui(S; Um),

we introduce U, := 1;(s;u;) and the approximate Riemann solution consists of the
i-wave (ug, Uy,) and the artificial front (4, u,).
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The second part of our construction consists of prescribing the speeds of propagation of
the waves. Fronts having a large inner speed variation will need to be split in two or more
fronts. Fix a threshold ¢ > 0. First of all, note that artificial fronts are never split and
always travel at the speed Ay;. To handle j-wave packets (u_,us) = (u_, ¥;(s;;u_)), we
distinguish between two strategies:

e No-splitting strategy. In this case, we propagate (u_, uy) as a single front traveling
at the smallest speed of the associated wave fan.

e Splitting strategy. In this case, we replace the front by several smaller fronts
defined as follows. Using the wave speed function A;(s’) := \;(s', s;; u_) we introduce

.- ij<5j)8_xj(0)
o= 2(0) + 5 = KO p=0... P -1,

J+1

where |a| denotes the greatest integer less than or equal to @ > 0. Then, along the
wave curve from u_, we pick up the states associated with the speeds 1, that is

wy, = (s, u-)

;o {min{s’ € [0, s,],

. Ai(s)) = pp}, 5520,
P |\ max {s' € [s;,0], A,

(s") = 1y}, 55 <0
Then the i-wave packet is approximated by P fronts with small strength, as follows:

U—, .T/t < Ho,
u(t, ) = Qwy, ppy </t <p, ((pP=1,....,P—1),
Up, T/t > pp-y,

where, for simplicity in the notation, the Riemann solution has been centered at the
point (¢,z) = (0,0). Note that each front corresponds to an exact solution of the
system of conservation laws (in the sense that the right-hand state lies on the wave
curve issuing from the left-hand state) although its propagation speed (in general)
only approaches the true speed.

5.3 Front tracking approximations
We are now in a position to describe our algorithm, and we fix €, > 0 satisfying
§ < &%

Let ug be a piecewise constant approximation of ug such that

lug — wollrr < e, TV (ugy) < TV (uy), (5.8)

ug contains 1/e discontinuity points, at most. (5.9)
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At each discontinuity point of uf we use the accurate solver described earlier together
with the splitting strategy and we define the approximate solution u¢ = uf(¢, x) locally in
time. The solution is extended until two fronts meet. As usual, the speeds of the fronts may
need to be modified (cf. Remark 5.2 below) in order to ensure that only two fronts meet
at every interaction. To extend the approximate solutions, we distinguish between several
types of interactions and we use either the accurate or the approximate solver together
with the splitting or the no-splitting strategy.

As a rule, only fronts with inner speed variation less than or equal to € will be generated
by the scheme. However, after one or several interactions, the inner speed variation may
have increased so much that it is greater than 2¢ and need to be split in two fronts.

e Large interactions. We call large interaction an interaction that involves an i-front
(ug, u) and a j-front (u,,w,) such that

T(ug, U Wi, 1) > 6.

The solution is defined beyond the interaction time by using the accurate Riemann
solver, together with the following rule for the speeds of the fronts :

— For the outgoing i- or j-waves that have an inner speed variation ¢ < 2¢, we
use the no-splitting strategy.

— For all other outgoing waves we use the splitting strategy.

e Small interactions. We call small interaction an interaction that involve an i-front
(wg, up) and a j-front (u,,w,) such that

T(ug, Uy Uy, 1) < 0.

The solution is defined beyond the interaction time by using the approximate ij- or
1i-solvers. The speeds of the fronts are determined exactly as in the case of a large
interaction (recall that artificial fronts are never split).

e Artificial wave interactions. At an interaction between a left-hand artificial front
and a right-hand j-wave, we use the artificial interaction solver, with again the same
splitting/no-splitting strategy on the j-th outgoing wave.

Remark 5.2. The speeds of certain fronts may need to be slightly modified in order to avoid
both interaction points involving more than two fronts and interaction times involving more
than one interaction. Starting from t =0 or a time t at which an interaction has occured,
we let the fronts evolve at the speed determined earlier. We consider the first time 7 >t
where two fronts meet. If there are only two fronts involved, there is nothing to do. If
there are three (or more) fronts interacting at the time T (possibly at different locations),
we consider the most-left fronts a and ( (with o on the left of 3). Now, if a is a j-
front (1 < j < N), we increase the speed of o by an amount less than €, so that the
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new interaction time is beyond the time t. If v is an artificial front, then 3 must be a j-
front, and we diminish the speed of 3 by an amount less than € so that again that the new
interaction time is beyond time t. By this procedure, in both cases we have only decreased
the interaction time. Hence, as T was the first interaction time greater than t, the new
interaction time 7' € (t,T) corresponds to a single interaction of two fronts. An important
consequence of our construction is that two fronts that meet in the process would have met
regardless of the speed modification.

Based on the properties of the Riemann solver listed at the beginning of the present
section, it is a standard matter to derive uniform estimates for the following Glimm-type

functionals:
V) =Y leal, Q)= Qus,

« a,f3

where the summations are over all fronts «, 3 in the approximate solution at the time ¢.
Here, €, denotes the strength of the front o and @,p is the interaction amount between
two fronts «, (.

Proposition 5.1. There exist constants v, c,Cy > 0 so that for every initial data satisfying
TV (ug) < v and for every sequence ug satisfying (5.8)-(5.9), (as long as the number of
waves and the number of interaction remain finite) the quantity (V + CoQ)(t) is non-
increasing in t and, more precisely, at every interaction involving some fronts (uy, uy,),

(U, Uy)

[V +CoQ](t)
=V +GCQ)(t+) — (V+CoQ)(t—)

. ' _ (5.10)
< {—c min(|u, — wl, |u, — un|), non-monotone interactions,

—cI(ug, W U, ), otherwise.

5.4 Total number of fronts and interaction points

In view of Proposition 5.1, to establish that the algorithm is well-behaved we need only
show that the numbers of fronts and interaction points remain finite. Define

N
N(t) = Ni(t), Ni(t):=#{ j-fronts at time t},
k=1

N D, —
O:(t) =Y Oci(t),  O(t) = Y %

j-fronts

and introduce the functional
Ft):=C,(V(t)+ CoQ(t)) +36. + N(t),

where C} is some positive constant and Cj is the constant already introduced in (5.10).
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Lemma 5.1. For § sufficiently small and Cy large enough (depending on € and §) the
functional F is non-increasing.

Proof. The function F is constant away from interaction times; we distinguish between
every type of interactions. Each interaction involves a left-hand, i-front o = (wy, u,,,) with
strength s, (1 < i < N + 1) and a right-hand, j-front § = (u,,u,) with strength sg
(1 < j < N). We denote by 0,, N\, and eg,Xﬁ the inner speed variation and wave speed
function associated with the incoming waves. Call 7, the outgoing k-waves (1 < k < N+1),
with inner speed variation ¥,, and wave speed function Xﬁk‘ Finally, call Z the following
modified amount of wave interaction:

e 7 := I (the interaction amount at the point), unless the interaction is a non-monotone
interaction of waves of the same family,

e 7 = the strength of the smallest incoming wave, if the interaction is a non-monotone
interaction of waves of the same family.

We will summarize the evolution of the terms arising in F in a table (see Table 1),
according to the nature of the interaction, the family of the wave considered, and whether
the splitting strategy is applied or not. In this table, “i # j” (respectively “i = j7)
refers to interactions between waves of different (resp. same) family; “acc” (respectively
“app.”) stands for “accurate” (resp. “approximate”). We regard artificial interactions as
approximate interactions between waves of different families. Since artificial fronts are not
considered in the last two terms of F, they are not included in the table.

We fill up the cells of the table by relying on our interaction estimates on the strengths
and the inner speed variation, and the definition of the number of fronts when the splitting
strategy is applied. The following remarks are in order.

1. In the case of a monotone interaction between two fronts (u;,u,,) and (uy,,u,),

~min

the term (szn(um,ur) — A (Uz,um))+ in (5.6) vanishes. This is due to the fact that
fronts evolve at the minimum speed of the wave packet — except in the case described in
Remark 5.2. In the latter case, however, two fronts that meet would have met regardless
of the slight change in speed.

2. When the i-th or j-th outgoing wave is split, we have (for instance for the i-wave
Q):

e In the case of a monotone interaction of waves of the same family,

W] = 2] -1

max(@a: V) | o dyzep,

9 £

< -1+

e In the case of a non-monotone interaction of waves of the same family,

)] = (22 -1

19
Y 1
< —14+240(I(t
< -1+ 4 0()Z(),
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e Otherwise,

I, Dy 1
ij < 24 (’)(_
€ € €

Ni@®)] =1 )Z(1).

Moreover, we have

— | max(dy,, Vg) — 8) /e, non-monotone case,
[0:=4(1)] < .
— (V0 — 5) /€, otherwise.
The fact that the wave was split implies that 9,, > 2¢. From the estimate

< max(,,V5) + O(1)Z(t), non-monotone case,
T e + O(I(t), otherwise,

we deduce, in both cases,

O.,(0)] < -1+ o@z(t).

Using again (5.11), this yields

3[0.:(t)] < -1+ O(%)I— {

Vo /8, otherwise.

max(,,Yg)/e, non-monotone case,

(5.11)

Now, the desired conclusion follows from the inequalities summarized in Table 1. At
each interaction, we have [V + CyQ](t) < —(Cy/2)Z(t), as follows from Proposition 5.1.
Hence, it is sufficient to take C; = O(1/¢), except for the N — 2 (or N — 1) contributions
of 1 in N(¢) due to new fronts of families k # i, j in the accurate solver. But, such fronts
appear only with the accurate solver; hence, when Z(t) > 0, it suffices to take C; = O(1/0)

to cover all cases.

Number of fronts and interaction points.

O

e Finite number of j-fronts (1 < j < N ). It follows immediately from Lemma 5.1 that
the total number of j-fronts is bounded for all times. Moreover, observe that at all
interactions generating new j-fronts an amount > min(1, Cy C16/2) is used out of

F(t); this implies
N(t) 5

ST

e Number of accurate interaction points. From Proposition 5.1 it follows also that the

number of accurate interactions is finite.

e Number of interaction points using the splitting strategy. At such points, as seen in
the table, F decreases of an amount of 1 at least; hence, this case arises finitely many

times.
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Interaction | Wave k | Strategy [NVi] 3[Oc.k]
< e
splittin <% 1+ 0O(1/e)T -
iorj P 8 e (1/¢) +O(1/e)T
i # 3, acc no splitting 0 <0O(1/e)T
ki, | splitting 1+0(1/e)T 0
b < max(Vq,93) < _ max(Ja,¥p)
splittin € €
i PHTNS 14 0(1/e)T 14 0(1/e)T
b= At no splitting -1 <O(1/e)T
k1 splitting 1+0(1/e)T 0
< —fa_
splittin <% 4 O(1/e -
jorj | SPHttime | < HOQ/) +O(1/e)T
i J, app. no splitting 0 <01/e)T
k#1,7 | splitting 0 0
o < max(¥q,93) < _ max(¥a,9p)
‘ splitting € €
o i —1+0(1/5)T —1+0(1/e)T
©=J, app- no splitting -1 <O0(1/e)T
k#1 splitting 0 0

Table 1: Estimates across each type of interaction

o Number of approzimate i-interaction points using the no-splitting strategy. This num-
ber is also finite since a i-front is lost at these points.

o Number of approximate ij interaction points using the no-splitting strategy. When
tracing forward a given front by taking any front of the same family as its successor,
we see that two fronts of differents families that have met will not meet again, since
the speeds of different families are separated. Since interaction points from which at
least three j-fronts leave, are in finite number, this yields that approximate ij points
and artificial interaction points are finite in number.

e Number of artificial fronts. There are only a finite number of approximate interac-
tions and, therefore, the total number of artificial fronts is finite.

e Number of artificial interaction points using the no-splitting strategy. The same con-
sideration as for the approximate ij interaction points using the no-splitting strategy
applies.
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5.5 Number of fronts of early generations.

We already have a bound on the total number of fronts, but it will be crucial in the
next paragraph to have a sharp bound on their number, if we restrict to fronts of early
generations, as we describe now.

Front generations.

We define the generation g, of a front « as follows.

All fronts outgoing from the initial line have generation 1.

At an ij-interaction (an i-front o meeting a j-front 3), the generation of outgoing
i-fronts (resp. j, k # i,j) is fixed as g, (resp. ¢z, max(ga,gs) + 1), whether or not
these fronts are split.

At an i-interaction (of two i-fronts a and (3), the generation of the outgoing i-fronts
(resp. k # i) is fixed as min(ga, gg) (resp. max(ga,gs) + 1), whether or not these
fronts are split.

At an artificial interaction point the generation of each family is preserved.

Main estimate.
We define
/Tfk(T) := #{ fronts at time 7, of generation k},
P* := #{(a, B) fronts at time 7/ max(ga, gs) = k, a and 3 approaching},
Vo — €
ok = (=) . ef—est -
€ Z " € € €

£

ger?elf"g%?gno%k
Two fronts are said to be approaching if they are of the same family, or else if the front of
the largest family is on the left. Hence, P* represents the number of potential interactions
between fronts, with largest generation number equal to k. Note that artificial fronts
are taken into account in the above quantities (except for what concerns the inner speed
variation). Since there is no front of generation 0, all these quantities vanish for k& = 0.
Estimates on the number of fronts of generation < k are now derived.

Lemma 5.2. There exist a constant Cy = Cy(e) > 0, an increasing sequence Ay, = Ag(g) >
0, and two decreasing sequences By = By(¢) > 0 and Dy, = Dy(e) > 0, such that for all
k > 0 the functional

k k—1
Fi = CoAp(V + CoQ) + 3405 + Y BN + > D;P! (5.12)

=1 =1
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is mnon-increasing in time. This is true regardless of the value of § (small enough with
respect to €). Moreover, for each k, Ay(g) is bounded above by a polynomial expression in
1/e, while By(g) and Dg(e) are bounded below by polynomial expressions in .

Corollary 5.1. For each k, the total number of fronts of generation less than or equal to
k is

k
> N < o), (5.13)
i=1
where Ji(g) is polynomial in 1/e.

Proof of Lemma 5.2 and Corollary 5.1.

We start with two observations. First, from the proof in Section 5.4 that for some Cy =
Csy(e) = O(1/¢), the functional

G = Co(V 4+ Cy Q) + 30=F,

is non-increasing in time. Hence, if the result in the lemma is established for a given Ay,
then it remains true with a larger A,. Moreover, as seen in Lemma 5.1, G, decreases by 1,
at least, when an incoming wave is split.

Next, when an interaction creates new fronts, the total number of new fronts is at most
O(1/e), as follows from (5.4) and the fact that the total strength of the waves is bounded.

Now, the proof is done by induction on k. The case where k = 1 is essentially given by
Lemma 5.1. In fact, when the fronts of generation g > 2 have not to be considered, the
estimate on Cj can be replaced by Cy = O(1/¢). (Note that there is no artificial front of
generation 1.) We can choose for instance D; =1 and By = 1.

From now on, let us only consider the passage from k to k + 1, which is the heart of
the proof. Suppose that for a certain k£ > 1, the expression in (5.12) is non-increasing.
Whenever the property stated in Lemma 5.2 is established at the rank k, Corollary 5.1 at
the rank k follows immediately; hence, we can use (5.13) at the rank k.

The goal is to determine A4y (large enough) and Byyi, Dy (small enough) so that
the desired property is valid. We distinguish between several cases when one of the “new”
terms (that appear in Fj,; but did not appear in Fy), that is, ./\_/kJrl and P*, can grow.
This will provide us with some conditions on Ay, Bry1 and Dy, that we will be able to
fulfill by choosing these constants sufficiently large or small.

Consider the interaction of two fronts with corresponding amount of interaction 7. We
introduce the same notation Z as previously (including the case of artificial interaction),
that is, Z := @ (the potential at the interaction) unless the interaction is a non-monotone
interaction of waves of the same family, in which case Z is the strength of the smallest

k+1
wave. There are two cases where P* can grow, and two cases where N~ can grow.

1. Cases that increase P*.
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The value P* can grow in two ways: (1) an existing front of generation < k is split after
an interaction with another wave, or (2) a new front of generation < k is created after an
accurate interaction where the maximal generation of the incoming waves is exactly k — 1.
Note that we can measure the increase of P* by

[P*] < (number of new fronts ) x J,(e).

e First case: splitting of a front of generation k. In that case, the number of new fronts
is of order O(1/¢); we can compensate the increase of P* by taking A, = Ji.(¢)/e,
since the decrease of G in that case is at least 1.

e Second case: creation of a new front generation k. We suppose that no incoming
wave is split (if not, enhancing Aj, allows us to absorb this increase too.) Then, P*~!
decreases by 1, at least, and it suffices to consider Dy < eDy_1/Jx(e).

2. Cases that increase N .

The value N M can grow in two ways: (1) an existing front of generation k + 1 is split
after an interaction with another wave, or (2) a new front of generation k+1 is created after
an accurate interaction where the maximal generation of the incoming waves is exactly k.

o [irst case: splitting of a front of generation k + 1. In that case, the increase of the

—k .
term N 1 due to these new fronts is compensated by the decrease of Ay 1Gk1 (at
least A1), provided Ayyq > By as seen in Table 1.

e Second case: creation of a new front generation k + 1. Again we consider only the

case where there is no splitting of incoming waves. The increase of the term A o
due to these new fronts is of order N —2+ O(1/¢)Z (or N — 1+ O(1/e)I). In that
case, N'* (if incoming waves are of same family) or P* (otherwise) decrease by 1.
Hence, taking Bj; small with respect to By and Dy allows to get the decrease.

This concludes the proof of Lemma 5.2 and Corollary 5.1. [

5.6 Conclusion

The fact that the scheme converges to the entropy solution in the limit is a consequence
of the following two properties:

e The j-fronts (1 < j < N) travel approximately at the correct speed given by the
Rankine-Hugoniot relation.

e The total strength of artificial fronts remains uniformly small.

Both properties are now discussed.
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Accuracy of the speed of j-fronts.

From our construction it follows that, for any j-front «,
Vo < 2e.

Indeed, we have:

e When the front under consideration is generated by the accurate solver (or by the
initial solver), then ¥, < e.

e When the front is generated by an approximate solver, then either 9, < e (if the
solver happens to split the wave of the family of «) or ¥, < 2e¢ (otherwise).

Furthermore, the front travels at a speed which is the lowest speed in the wave packet up
to a € error at most. So, calling A the speed of the front and ¢®(s) any speed in the wave
packet, we also obtain

A —0%(s)] < 3e.

Total strength of artificial fronts.

We follow here the argument known in the genuinely non-linear/linearly degenerate case
(see, for instance, [10], Section 7.3.6).

Strength of an artificial front. From our previous discussion it follows that, for any artificial
front «,

lent1(a)] = O(1) 6.

Indeed, with the previous convention and thanks to the interaction estimates, the strength
of any new artificial front is of order 4. One can follow it during successive interactions.
Calling V, the total strength of fronts approaching « (that is, all j-fronts on its right), one
gets ([10], p. 139)

1Sa(t)] < O(1) dexp(C! (Vi + CoQ)).

Total strength of artificial fronts. For k > 1, we call Vi (resp. V;**) the total strength of
fronts (resp. of artificial fronts) of generation > k, and @ defined as previously, where the
sum is over all couple of fronts a and 3 for which max(ga, gs) > k.

The estimates on the strengths of waves according to their generation remain valid;
hence, provided the total variation is small enough, we can deduce that, for some v < 1
and for all times ¢,

Qx(t) < Cs", Vilt) < O™, (5.14)

Now, given any integer M we have

Vart(t) _ Z Vka'rt + Z Vkart'

k<M k>M
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The first term is estimated by

D>Vt < 0(1) 6.Jule),

k<M
while, for the second one,
M+1
Z V;Cart < 047 .
L=y
k>M

Hence, given € > 0, we can choose M so large that the second term above is less than €/2,
and next we choose 0 small enough so that the first term is less than £/2 too; hence

Vart(t) <e. (5.15)

Convergence.

Using the L{°(BV,) bound and the uniform bound on the wave speeds, it is a standard
matter to derive a Lip,(L!) bound. Relying on Helly’s theorem, these estimates allow us
to extract a converging subsequence, say

u — u € L, (RY).

We now check that u is an entropy solution. We will consider here the case of a conservative
system endowed with a convex entropy pair and prove that for any non-negative test-
function ¢ : Ry x R — R and for every smooth, convex entropy / entropy-flux pair
(n,q) : RN — R x RV,

lim inf/ / (n(u) ¢r + q(u) @s) dtdz > 0. (5.16)
t=0 JzeR

n—-+o00

Calling I,, the above integral, for supp(¢) C [0,7] x R we have
T
I = /0 D (Ealt) [(u)]at) = [a(u)]a ()t o) dt,

where z,, is the trajectory of the front « and [h], is the jump of a function h on the front
«. Thanks to the regularity of n and (5.15), the sum over artificial fronts is O(¢). The
statement (5.16) follows immediately from:

Lemma 5.3. For any j-front o and all times Ty and Ty one has

/T f(fca(t) (Y ]a() - la()a()p(t, za)dt (5.17)

2 —¢lsal[T2 = Tal [lellor
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Proof. Consider a front a connecting u_ to uy = 9;(sq,u_), and denote by (-, s, u_)
the corresponding wave speed function. Recall that the corresponding solution is given in
(5.3). Denote by @ the corresponding Riemann solution centered at the point (77, z,(71)).
The solution satisfies

/ [ 0@+ a@ren) anas | [ n(@)so(-,x)deZO- (5.18)

We also introduce, for t € [T}, T3],

a2/t <\,
u)a(t7$> - {u 7 I/ -

Uy, x/t> A,

where ), is the speed of the front o (that is, Ay = Ai(0, 54, u_) up to the additional change
of speeds in Remark 5.2). Clearly the left-hand side of (5.17) is equal to the left-hand side
of (5.18) when we replace © by w,. Hence, it is sufficient to prove that each term in the
the left-hand side of (5.18) yields an error of order €|s,||T5 — T ||¢||c: when one replaces
w by wq.

For the first integral, the difference is supported in a triangle whose area is of order
O(1)e(Ty, — T1), and the difference of the integrand is of order O(1) |s,|. For the second
integrals, the difference is supported in an interval whose length is of order O(1) e(T> —T),
and the difference of the integrand is again of order O(1) |s,|, which concludes the proof
of Lemma 5.3. ]

6 Time-regularity of graph solutions

We now use the front tracking scheme to study the regularity of graph solutions introduced
in [30]. To simplify the presentation it is convenient to assume that the flux f(u) is defined
for all u € RY. To begin with, we need a few definitions from [30]. (Note that Lipschitz
continuous representatives of all geometric maps under consideration are used throughout
the present section.)

6.1 Geometric version of the front tracking scheme

A parametrized graph is a map (X,U) : R — R x RY such that X and U are Lipschitz
continuous, and
0,X >0, lim X(s) = +oc.

s—too

A maximal interval [s_,s,] where X remains constant will be refered to as a vertical
segment of the graph. We say that the parametrized graph (X,U) contains a single
shock if the associated BV function U o X! is a step function with a single discontinuity
point. A (Lipschitz continuous), time-dependent parametrized graph is a map (X, U) :
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Ry xR — RxRY such that X,U € L>(R, Lip(R)), (X,U)(t) is a parametrized graph in
the sense above, and for every continuously differentiable function  with compact support
and uniformly with respect to ¢t > 0,

| / U 00t X) 0,X ds| < 10(t, )=o) (6.1)
R
A DLM family of paths (Dal Maso, LeFloch, and Murat [16]) is a Lipschitz contin-

uous map ® : [0,1] x RY x RY such that for all u, u,, u}, u!. € RN
(0w, up) = w, (L u,ur) = uy,
105 (5w, ) || Low0.2) S Jur — ], (6.2)
1D w, ur) = D3 up, ) [ o,0) S Jue — ] + [ur — wg

A family of Riemann graphs is a map (A, ®) : [0,1] x RY x RY — R x RY such that :

e For any wu;,u, € RY, (A(-;ul,ur),q)(-;ul,ur)) is a parametrized graph, and ® is a
DLM family of paths with moreover

IACs w,wr) = AGs ug ) oo 0.0y S T — ]+ |ur = gl

e The system of conservation laws (5.1) is satisfied: for every smooth function 6 : R —
R and all u;, u, € RY

1
/ (—A(s; u, Uy ) + D f o ®(s;uy, ur)) 0sD(s;uy, uy) 0 o A(s;up,u,)ds =0.  (6.3)
0

e Along every vertical segment [s_, s, ], the Riemann graph (A, ®)(-;u_, u) associated
with uy := ®(s4; 4, u,) contains a single shock and

D5 up, Up)|[s_ 5] = P(5u—, uy) 0 B, (6.4)
where (3 : [s_, sy] — [0,1] is the linear map satisfying 5(s_) =0, G(s;) = 1.

Definition 6.1. A family of Riemann graphs (A, ®) being fized, a parameterized graph
(X,U) : Ry xR — R x R is called a graph solution of (5.1) subordinate to (A, ®)
if:

o For every test-function 6 : R, x R — R,
// ( —Uo0(t,X)+ f(U) @ﬁ(t,X)) 0s X dsdt = 0. (6.5)
R+><R

e For almost every time t and on every vertical segment [s_,s.| the graph solution
coincides with a prescribed paths, more precisely

U(t)} =®(u_,uy)of, (6.6)

[s— 7S+]

where uy = U(t,s1), and B : [s_, sy] — [0,1] is the linear map satisfying B(s_) =0,
Blsy) =1,

65



Remark 6.1. (i) The condition (6.1) is equivalent to saying that the BV function u =
Uo X', belongs to Lip(R,, L*(R)), that is

lu(t) = @)@ S 16—t

(i) The condition (6.5) is equivalent to say that w = U o X' is a weak solution of
(5.1) in the sense of distributions.

(i1i) In Definition 6.1 the same parametrization (up to linear rescaling) is used for the
graph solution and the prescribed paths. This definition will be sufficient for the purpose of
the present paper.

To implement the front tracking scheme we will need to restrict the class of Riemann
graphs, relying here on the interaction amount Q(uw;, w,,, u,) associated with three constant
states.

Definition 6.2. Consider the strictly hyperbolic systems of conservation laws (5.1). A
family of Riemann graphs (A, ®) is said to satisfy the interaction estimates if for all
Up, U, Uy € RN such that u; is connected to u,, by an i-wave fan and u,, is connected
to u, by an i-wave fan

H(Av (I))(';ulyur) - <A7 @)(-;ul’um) \ (A’ @)(';umaur)”Ll(O,l) 5 Q(ulaumvur)v (67)

where (A, @) (-5 up, ) V (A, @) (5 Uy ur) 2 [0, 1] — RY s the arc-length parametrization of
the concatenation of the two maps.

By the result in the earlier section, there exists a family of Riemann graphs satisfying
the interaction estimates.

The main result in this section is as follows.

Theorem 6.1. (Geometric version of the front tracking scheme.) Let (A, ®) be a family
of Riemann graphs satisfying the interaction estimates. Let u® = u‘(t,x) be a sequence
of front tracking approximations for the Cauchy problem (5.1)-(5.2). Then there exists
a parametrized graph (X, U€) such that X¢ is Lipschitz continuous in both (t,s), U¢ is
continuous in the space variable s, and the following uniform estimates hold:

[(0: X, 05 X) || Loo(ry xm) < 1, [0:U | 2oy xr) S TV (u0),

6.8
W) — U ()l S Ja() — a(#)], 6,8 >0, (6:8)

where a® : Ry — Ry is a non-increasing, uniformly bounded function measuring the amount
of cancellation and interaction in ut. Moreover, (X, U) converges uniformly for all but
countably many times t toward the graph solution (X, U) of the Cauchy problem (5.1)-(5.2).

Furthermore, the map X is Lipschitz continuous in both wvariables (t,s) while U is
Lipschitz continuous in s and satisfies

IU#) = U@ e@ < lat) —alt)], 120, (6.9)

where a : Ry — Ry s the pointwise limit a. In particular, U is continuous at all but
countably many times t.
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Remark 6.2. [t is known that the BV solution u of the problem (5.1)-(5.2) belongs to the
space Lip(Ry, L'(R)), which is expressed by the condition (6.3). In contrast, the estimate
(6.9) provides a control of the component U even in the vertical segments.

6.2 Proof of convergence
Step 1.

We begin by defining the parameterization. The standard approach consists of introducing
the arc-length parametrization of the graph of u¢, which is based on the total variation
map x +— TVZ® _(u(t)). In order to ensure that the graph be continuous in time and
since the total variation of u¢ may change at times where two fronts meet, we need to
modify the arc-length parametrization as follows. We will take into account the interaction
and cancellation of waves, and take advantage of the decrease of the generalized Glimm
functional. To the sequence u¢, let us associate the non-negative measure p¢ consisting of
Dirac masses concentrated at the points (o, xg) where two fronts (u;, ), (tm, u,) meet.
The point mass at (to, ) is the scalar uc(to, x¢) given by

(1 (to, zo) = — (Q(to+) — Q“(to—)) > 0. (6.10)

In view of the results in previous sections the total mass of this measure is uniformly
bounded
IR, xR) S 1.

Let A be a large positive constant, larger than all speeds A; as well as the speed Ay
of artificial waves introduced in the front tracking scheme. Consider the map

o(t,x) =x+ V(t,z) + p(Qa), (6.11)

where V¢ is the total strength of waves at time t on the left of z, and we have introduced
the triangular region

Q.= {(s,y) / 0<s<H, y<z— A (t—s)}

Clearly, for every time ¢, the map o°(t) is strictly increasing in x. Moreover, ¢ is continuous
in time except along polygonal lines which are transverse to the line ¢t =constant.
Let us now define X¢: R, x R — R by

X = (o)7L (6.12)

By the properties of ¢¢ just mentioned and the fact that u€ is piecewise constant, it is not
difficult to check that X°¢ is Lipschitz continuous in both ¢ and s.

Finally, for every ¢ that is not an interaction time, following [16] we define U¢(t) from
u(t) and X¢(t) by completion based on the given family of paths ®. Precisely for each ¢, to
the family of paths ® and the BV function u(¢) one can associate a unique locally Lipschitz
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continuous, parametrized graph (X¢, U¢)(t) called the ®-completion of u(t), characterized
by the conditions that
u(t) = U o (X)), (6.13)

and, on every maximal interval [s_, s, ] on which X¢(¢) is constant equal to some value z,

Ue(t)‘ = O (u(t,x—),u(t,z+)) o 0, (6.14)

[s—s+]
where (3 : [s_, sy| — [0, 1] is the linear map satisfying 5(s_) =0, G(s;) = 1.

The regularity in space is clear by construction, since u¢ has uniformly bounded total
variation in space and we are using (a modification of) the arc-length parametrization.
The function J;.X° behaves essentially like 0,X¢ in a neighborhood of a single wave front.
On the other hand, the function X remains constant at an interaction point. This yields
easily the uniform bounds for 0,X¢, 9, X¢, 0,U*.

To control 0,U¢ we observe that

\U(t,s) —U(t',s)| S |t — | sup |0:sU(t, s)|
S|t =t sup TV (uf),

provided there is no interaction point within the time interval [¢,#']. Thus we only need to
discuss the behavior of 9,U¢ at interaction times.

Consider a point (ty,zg) of interaction of two wave fronts, (u, u,,) and (uy,,u,), and
denote by [} := [si, S|, I = [Sm, Sr] the s-intervals describing the incoming fronts, with

Sm — s1 = |e(ug, up)|, Sp — Sm = |€(tpm, u,)]

In view of (6.10) and (6.11), the interval I = [s;, s,] is used to parameterize the outgoing
wave fan. Let us begin with two waves of different families. Comparing the graphs before
and after the interaction we can write

|U(to+) — U(to—) |l o) = [[U(to+) — U (to—)l|z (1)

< min(s, — S, Sr — Sm),

since whenever the left-hand side is Lipschitz continuous in the data wu;, u,,, u, and vanishes
whenever the right-hand side vanishes. By integration in s this inequality leads us to the
L' bound

[U(to+) = U(to= )2y = IU(to+) — U (to—)lL2(r)
< (80 = s) |U(to+) — U(to—)l (1)
< (8 — ) min(s,, — S, Sp — Sm)
< 2(Sm = 81) (S0 — Sm) S |um — wi| |ur — wpm.

Since the interaction potential between two waves of different families is quadratic we have
obtained

1U(to+) = U(to=) i) S Q°(fo—) — @ (to+). (6.15)
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At a point where two fronts of the same family meet, we need a more precise bound
and we rely on the property (6.7) satisfied by the family of Riemann graphs. We have
immediately

U (to+) = U(to=)|lzrwy = U (to+) — U (to=)|zr ()
S Qto—) — Qto+),

which completes the derivation of uniform estimates.

(6.16)

Step 2.

We now justify the passage to the limit ¢ — 0. On one hand, let us denote by u the
limit of the sequence of front tracking approximations u¢. On the other hand, consider the
parametrized graphs (X¢, U¢). In view of the uniform Lipschitz bound on X(¢) (see (6.8))
and after extracting a subsequence if necessary we can assume that there exists a Lipschitz
continuous function X such that

X€(t) — X (t) uniformly on all compact subsets in (¢, ),

6.17

s X, 0 X — 0,X, 0, X weak-+ in L. ( )
On the other hand, since U¢ and 0,U¢ are uniformly bounded we can find U(t) defined for
all rational numbers ¢ such that

U(t) — U(t) weak-* in W) (6.18)

for all rational ¢ at least. Using the uniform bound on 0;U¢ (see (6.8)) it follows that U can
be actually defined for all times and that the convergence above holds at all but countably
many times t. Let us set w := U o X.

For ¢ fixed the inverse map (X¢)~!(¢) is monotone increasing and thus converges point-
wise some some limit Y. From the identity X€o (X€¢)~! = id we deduce that X oY = id,
so that Y is the (generalized) inverse of X. In turn, passing to the limit in the relation
Uco (X! = uf yields w = U o X! = u. In other words the BV function associated
with the limiting graph is exactly the function w. In particular, the graph satisfy the
conservation law in the sense (6.5).

To conclude it remains to determine the vertical parts of (X, U) and establish (6.6). We
will check that (X, U) coincides (up to re-parametrization) with the ®-completed graph of
u whose arc-length parameterization is denoted by (Y, Vs):

(X,U) = (Y, V)0 p, (6.19)

where # : R — R is an increasing, onto, and Lipschitz continuous map. In particular,
(6.19) implies that the vertical parts in both graph coincide so that (6.6) holds.

The statement (6.19) is a non-trivial property of the front tracking scheme which we
will establish by relying on the well-known property of local uniform convergence : for
all but countably many times ¢ and for each n > 0, any point x € R must be

69



1. either a point of continuity of u(t) for which there exist a neighborhood N, (x) and a
real €, > 0 sufficiently small so that for all y € N, (z) and € < ¢,

u(t,y) = ul(t, ) + |ult,y) — ult, z)] <, (6.20)

2. or else a point of jump for u(t) for which there exist a neighborhood N,(x), a suf-
ficiently small real €, > 0, and a sequence of points z¢ € N,(x), so that for all
y € Ny(x) and € < ¢,

|U€(Zf7y) - U(t, ;L':l:)| + ‘U(Zf, y) - U(t, ;L':I:)| <n if Y § s (621)

Specifically, the argument presented now shows that the local uniform convergence of
functions implies, for the associated ®-completed graphs, the convergence in the uniform
sense of graphs.

Fix a time t at which u(t) — u(t) uniformly locally. Given 1 > 0 we can select finitely
many points 2y, ..., 2, so that

S fuglt ) —u(t,z)| <. (6.22)

TERTF21 e 2m,

To each z; we associate a neighborhood N, (z;) and a point 2§ so that the property (6.21)
holds at z; with 7 replaced by n/m:

() — (e, 5 )| + u(t,9) — ult, )] < nfm 62
if ys2f,ye€ N, (z;).

For each R > 0 consider the compact set Kg := [—R, R\, N,(z;). By (6.20), to each
point © € Ky we can associate an open neighborhood N, (z) that should be sufficiently

small so it does not contain any of the z; and
[ (t,y) = u(t, 2)| + |u(t,y) —u(t,2)] <n, y e Ny(z) (6.24)

holds. By compactness we can extract finitely many points 2,41, ... 2, so that the whole
family of N, (z;) form a covering of [—R, R]:

p

[—R.R] C | Ny(2)).

=1

Note that, in view of the Lipschitz continuity property of the map ® (see (6.2)), the
graph distance associated with u¢ and wu is clearly controled in the L*° norm. Such an
estimate is used within each region of small oscillations, as follows. Set uji’h 1= uf(t, 2j£)
and uJjE = u(t, z;%) for j = 1,..., m. By distinguishing between regions of large jump and
regions of small oscillations we can estimate the graph distance between the approximate
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graphs (X€, U¢) and the ®-completion (Y, V), as follows (where the constants Cp, Cs, . ..
depend upon Lip(P) only)

dist (X<, U°), (Y, Vs)) < Dy + D,
with, for the shock regions (j =1,...m),

D, =2 sup sup [u(t, y) = ult, )]
J=1,..., m IENW(Zj)7m§Zj
yGNn(Z’§)’y§Z;‘

+ 2 Lip(®) sup sup |u(t,y) — u(t, )]
J=L...mayeN, (z;),2,ySz;
+ 2 Lip(®) sup sup u(t,y) — u'(t, z)]

«]:1 """ m xnyNn(Z§)7$7y§Z§

b s sup [B(siw " u) — Blsiuru)
Jj=1,...m s€[0,1]

and, for the regions with small oscillations (j =m +1,...p),

D2 = sup sup |U,E(t, y) - U,(t, IL’)|
j=mtL . 2yENy (2)
+Lip(®)  sup  sup ult,y) — ult, @) + [u(t,y) — u(t, ).
J=m+1,...p x,y€Ny(z;)

Using again the Lipschitz continuity of ® we can write

D (s;u; " ul") — B(s;ur,ul)| < Lip(®) (Ju;

h — h
) Yy s Uy 7 %y i —UJ|+|U;_ —U+|)

J

Therefore in view of (6.23) and (6.24) we find
diSt((X€> Ue)a (K Vi’)) < 077
where the constant C only depends upon Lip(®). This completes the proof of Theorem 6.1.
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