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UNIQUENESS FOR MULTIDIMENSIONAL

HYPERBOLIC SYSTEMS

WITH COMMUTING JACOBIANS

HERMANO FRID AND PHILIPPE G. LEFLOCH

Abstract. We consider nonlinear hyperbolic systems of conser-
vation laws in several space dimensions whose Jacobian matrices
commute and, more generally, systems that need not be conser-
vative. Generalizing a theorem by Bressan and LeFloch for one-
dimensional systems, we establish that the Cauchy problem admits
at most one entropy solution depending continuously upon its ini-
tial data. The uniqueness result is proven within the class (intro-
duced here) of locally regular BV functions with locally controled
oscillation. These regularity conditions are modeled on well-known
properties in the one-dimensional case. Our uniqueness theorem
also improves upon the known results for one-dimensional systems.

1. Introduction

In this paper we consider hyperbolic systems of conservation laws

∂tu+
d
∑

k=1

∂kf
k(u) = 0, u = u(x, t) ∈ U , x ∈ R

d, (1.1)

where U is an open and bounded subset of R
N , the flux-functions

fk : U → R
N are given smooth mappings, and the notation x =

(x1, . . . , xd), ∂k := ∂xk
is used. We also treat their nonconservative

generalization

∂tu+
d
∑

k=1

Ak(u) ∂ku = 0, (1.2)

where the matrices Ak(u) need not be of the form Dfk(u). When refer-
ring to (1.1) we also use the notation Ak(u) := Dfk(u). Hyperbolicity
for (1.1) and (1.2) means that, for every unit vector ν = (νk) ∈ R

d

and for every state u ∈ U , the matrix
∑d

k=1 νkA
k(u) admits N real
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(not necessarily distinct) eigenvalues λj(u; ν) and a full basis of right-
eigenvectors rj(u; ν), 1 ≤ j ≤ N . It is also assumed that the wave
speeds are uniformly bounded in the sense that

sup
1≤j≤N

u∈U , |ν|=1

∣

∣λj(u; ν)
∣

∣ < λ∞, (1.3)

where |ν| denotes the Euclidean norm of a vector ν. (Of course, such a
bound is always available on any compact subset of U , at least.) Note
that, for the results in this paper, the set U need not be “small” nor
connected.

It is well-known that discontinuities appear in initially smooth solu-
tions of (1.1) and that it is necessary to consider “entropy solutions” in
the sense of distributions. Various entropy conditions have been intro-
duced in the literature, depending on the properties of the coefficients
Ak of the system [23, 10, 26, 24]. (We will be more specific in Sections 3
and 5 below.) Recall that, in one space dimension (d = 1) and when
U is a small neighborhood of a constant state in R

N at least, Glimm’s
existence theory [18] indicates that the “natural” function space asso-
ciated with (1.1) is the class BV of functions with bounded variation.

A general uniqueness theory is available in the case of one space
dimension. Bressan and LeFloch [8] proved that the Cauchy problem
for (1.1) (with d = 1) admits at most one entropy solution satisfying
the tame variation condition, which requires, in essence, that the to-
tal variation on an interval at a given time controls the total variation
along any space-like curve included in the domain of determinacy of
the given interval. The tame variation property is satisfied by solutions
constructed, for instance, by the Glimm scheme ([27, 25, 20, 21, 28, 3]
for recent works) or by the vanishing viscosity method [4], and, there-
fore, the theorem in [8] provides a uniqueness result in the same class
where the existence is known. Later, it was observed [7, 9] that the
uniqueness result remains true under even weaker conditions (tame
oscillation or bounded variation on spacelike lines). These results as-
sumed that all characteristic fields of (1.1) were genuinely nonlinear
or linearly degenerate. The uniqueness theory was finally extended
[2] to encompass hyperbolic systems with general flux-functions and
(nonclassical) entropy solutions that do not satisfy standard entropy
criteria, as well as to nonconservative systems of the form (1.2) (with
d = 1). See [24] for details.

By contrast, very little is known on systems in several space di-
mensions. It has been pointed out by Rauch [29] based on an earlier
theorem by Brenner [5] that the Cauchy problem is never well-posed
in BV unless the matrices Ak(u) commute. Dafermos recognized the
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importance of the class of hyperbolic systems with commuting

Jacobians, as a first milestone toward developing a general theory
for multidimensional hyperbolic systems (although this class does not
seem to include examples of direct interest in continuum physics).

For these systems, Dafermos [12] was able to derive uniform a priori
bounds on entropy solutions, especially Lp bounds in the case N = 2
and d ≥ 1, for all p ≥ 1. One key property of such systems is the ex-
istence of a common basis of eigenvectors for all matrices Ak(u). It is
conceivable that the existence of BV solutions could be established for
systems with commuting Jacobians, when initial data have small total
variation. The recent work on multidimensional, rotationally invariant
systems ([1] and the references therein) represents one very interesting
step in this direction, although solutions of such systems may not al-
ways have bounded variation due to a loss of strictly hyperbolicity and
other degeneracies.

The aim of the present paper is to generalize the one-dimensional
uniqueness theory to multidimensional systems, under the structure
assumption that the matrices Ak(u) in (1.1) and (1.2) commute. We
refer to this class as systems with “commuting Jacobians” although, in
(1.2), the matrices Ak(u) need not be Jacobian matrices. For reasons
explained below, we consider solutions that are slightly better behaved
than BV . Roughly speaking, we call a BV function locally regular

if it admits traces (at all but a set of zero measure for the (d − 1)-
dimensional Hausdorf measure Hd−1) in the pointwise sense rather than
in the averaged L1 sense as is the case for arbitrary functions with
bounded variation. In addition, following previous experience with
one-dimensional systems, we assume that the solutions have locally

controled oscillation in the sense that, loosely speaking, for almost
every t > 0, for each x ∈ R

d, and for any ε > 0, there exists a r0 > 0
such that ε plus the oscillation of u(t) in any ball B(x; r) (with 0 <
r ≤ r0) controls the oscillation in the forward domain of dependence of
B(x; r).

For one-dimensional systems, solutions to the Cauchy problem with
initial data with small total variation satisfy the tame variation con-
dition and, therefore, our (much weaker) locally controled oscillation
condition. The regularity results established by Glimm and Lax [19],
DiPerna [15], Dafermos [11, 13], and Liu [27] imply that the entropy so-
lutions to systems of conservation laws are actually BV locally regular
with locally controled oscillation.

Our aim is proving that, within the class of locally regular BV func-
tions with locally controled oscillation (see precise definitions in Section
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2 below), the Cauchy problem associated with a system with commut-
ing Jacobian (1.1)-(1.2) has at most one solution depending continu-
ously on its initial data. Our method of proof is based on a suitable
generalization of the arguments in [8] to the multidimensional setting.
Part of the analysis consists of writing a suitable decomposition of a
function of bounded variation v = v(x), x ∈ R

d, which exhibits regions
of large or small local oscillation for v. While this is elementary when
d = 1 (and the decomposition can actually be based on the total vari-
ation), this is no longer so when d > 1 and this explains why we have
to restrict attention in this paper to the class of locally regular BV
functions.

The regularity conditions are modeled on stronger properties sat-
isfied in the one dimensional case, and it is conceivable that, in the
multidimensional case and for systems with commuting Jacobians con-
sidered in this paper, these regularity assumptions may eventually be
established together with the existence theory.

2. Preliminary definitions and notations

Let w ∈ BV (Rd) (the space of integrable functions with bounded
variation). It is well known that the function w induces a decomposition
of R

d of the form (e.g. Federer [17])

R
d = Cw ∪ Jw ∪ Ew, (2.1)

where Cw is the set of points of approximate continuity of w, Jw the set
of approximate jump discontinuity, and Hd−1(Ew) = 0. The set Jw is
Hd−1-rectifiable and so, except for a set of Hd−1-measure zero, can be
covered with a countable family, {Sα

w}, of graphs of functions of class
C1, γα

w : R
d−1 → R, that is,

Jw ⊂
(

⋃

α

Sα
w

)

∪Nw, Hd−1(Nw) = 0. (2.2)

We then define the jump of w on the graph Sα
w (restricted to the ball

BR) as

[Sα
w]R := ess sup{|[w(x)]| : x ∈ Sα

w ∩BR},
where the (essential) supremum is taken with respect to the measure
Hd−1⌊(Sα

w ∩BR), and BR is the open ball in R
d of radius R centered

at the origin. As usual, [w(x)] := w+(x) − w−(x), where w±(x) are
the approximate limits from each side of the tangent hyperplane at x,
determined according to a continuous, unit, normal vector field να

w(x)
to Sα

w.
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Given an open set Ω ⊂ R
d and a point x ∈ Ω̄ the local oscillation at

the point x (of the restriction of w to the set Ω̄) is defined by

oscx(w|Ω̄) := lim sup
ρ→0

osc (w|Ω̄ ∩B(x; ρ)),

where, for any measurable set A, the oscillation of w in the set A is

osc (w|A) := ess sup
x∈A

w(x) − ess inf
x∈A

w(x).

The standard notions of approximate continuity points and approxi-
mate jump points of general BV functions are based on the (averaged)
L1 norm. We now introduce a class of BV functions which admit values
at continuity points as well as left- and right-hand limits in a classical,
pointwise sense.

Definition 2.1. We say that w ∈ BV (Rd) is a locally regular BV func-
tion with respect to some countable family of graphs of C1-functions,

{Sα
w}, and we write u ∈ BV

loc
reg(Rd), if the graphs Sα

w cover Jw in the
sense (2.2) and the following property holds true. Given any ε, R > 0,

let {Sβ
w,ε,R} denote the smallest subfamily of {Sα

w ∩BR} containing all
sets Sα

w ∩BR where the jump of the function w is greater than ε,

[Sα
w]R > ε,

and let Sw,ε,R be the union of all sets in this subfamily. Then {Sβ
w,ε,R}

should be finite and, for some positive integer Nε, there should be a
decomposition

BR \ Sw,ε,R =:
Nε
⋃

i=1

Ωε
i , (2.3)

where Ωε
i are open sets and w has small local oscillation at each point

x ∈ Ω̄ε
i , 1 ≤ i ≤ Nε,

oscx(w|Ω̄ε
i ) ≤ ε.

Remark 2.1. Clearly, when d = 1 we have BV
loc
reg(R) = BV (R).

Proposition 2.1. (Pointwise traces of locally regular BV functions.)

Assume that w ∈ BV
loc
reg(Rd), with respect to a countable family of

graphs of C1-functions {Sα
w}. Then, for all x ∈ R

d out of a set of Hd−1

measure zero contained in
⋃

α Sα
w, either w is continuous at x or else

x ∈ Sα0
w for some α0 and the following limits exist

lim
y→x

y∈(Sα0
w )±

w(y) = w±(x), (2.4)

where (Sα
w)+ and (Sα

w)− denote the two disjoint parts of R
d above and

below the graph Sα
w.
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Proof. It suffices to prove the assertion for x ∈ BR, with arbitrary R.
First, if x ∈ Cw ∩BR then, for any n ∈ N, x /∈ Sw,1/n,R and, so, for each
n we may find rn > 0 such that osc(w|B(x; rn)) ≤ 1/n and, hence, w
is continuous at x.

Second, if x ∈ Jw ∩⋃α Sα
w, then x ∈ Sw,1/n,R for all n greater than

some fixed n0 (determined by |[w(x)]| > 1/n0). The sets Ω
1/n
i intro-

duced in (2.3) have piecewise C1 boundary. It is not restrictive to
suppose that x belongs to the smooth part of the boundary of exactly
two such open sets, for each n greater than n0 since this is true for all
x ∈ Jw ∩⋃α Sα

w, out of a set of Hd−1–measure zero. For such a point
x, there exists α0 such that x ∈ Sα0

w and for any n sufficiently large
there is rn > 0 such that

osc(u|B(x; rn) ∩ (Sα0
w )±) ≤ 1

n
,

which proves the existence of the limits in (2.4) and concludes the
proof. �

Let U ⊂ R
N be any bounded open set and T > 0. We consider

functions u : R
d × [0, T ] → U such that

u ∈ L∞((0, T );BV (Rd)) ∩ Lip([0, T ];L1(Rd)). (2.5)

From (2.5) it follows that u ∈ BV (Rd × (0, T )) and u induces a decom-
position of R

d × (0, T ),

R
d × (0, T ) = Cu ∪ Ju ∪ Eu, (2.6)

where we use the notation Cu,Ju, Eu introduced earlier. We want to
establish a correspondence between the decomposition associated with
the function u and the decompositions (of the type (2.1)) associated
with the functions u(t) for t ∈ (0, T ). This will lead us to Definition
2.4, below.

Remark 2.2. We remark that, from (2.5), u(t) ∈ BV (Rd) for all t ∈
[0, T ] and the total variation of u(t) with respect to the space variables
is uniformly bounded in [0, T ]. Also, we can extend the decomposition
(2.6) to R

d×[0, T ] by extending in a natural way the notions of approx-
imate continuity and approximate jump discontinuity to the boundary
hyperplans R

d × {0} and R
d × {T}. For instance, we say that u is

approximately continuous at (x0, 0), denoting (x0, 0) ∈ Cu, if

lim
ρ→0

1

ρ|B(x0; ρ)|

∫ ρ

0

∫

B(x0;ρ)

|u(x, t) − u(x0, 0)| dx dt = 0,

and (x0, 0) is said to be a point of approximate jump discontinuity, or,
in short, (x0, 0) ∈ Ju, if for some unity vector ν̄ ∈ R

d+1 and two vectors
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u+, u− ∈ U we have

lim
ρ→0

1

ρ|B(x0; ρ)|

∫ ρ

0

∫

B(x0;ρ)

|u(x, t) − ūν̄(x− x0, t)| dx dt = 0,

where

ūν̄(x, t) =

{

u−, (x, t) · ν̄ < 0,

u+, (x, t) · ν̄ > 0.

Analogously, we define the same notions for points in the boundary
hyperplane R

d × {T}.
We assume that:

(A1) (Spacelike property.) There is a countable family {Sα
u } of graphs

of C1-functions γα
u : R

d−1 × R → R, (ȳ, t) 7→ γα
u (ȳ, t), in which

the variable t is one of the parameters, such that

Ju ⊂
(

⋃

α

Sα
u

)

∪Nu, Hd(Nu) = 0.

Moreover, there is λ > 0 such that

|γα
u (ȳ, t1) − γα

u (ȳ, t2)| < λ|t1 − t2|, ∀ȳ ∈ R
d−1, t1, t2 ∈ [0, T ]. (2.7)

(A2) (BV locally regular property at fixed time.) For almost every

t ∈ [0, T ), the function u(t) belongs to BV
loc
reg(Rd) with respect

to {Sα
u(t)}, where Sα

u(t) denotes the graph of the C1-function

γα
u(t)(y) := γα

u (y, t). In particular, this implies that, for almost

every t ∈ [0, T ),

Ju(t) ⊂
(

⋃

α

Sα
u(t)

)

∪Nu(t), Hd−1(Nu(t)) = 0. (2.8)

(A3) (Regular jump points.) For fixed α, let Sα
u be given by the

parametrization

yd = γu(ȳ, t), where ȳ = (y1, . . . , yd−1).

Let t0 ∈ [0, T ) be out of the exceptional null set in (A2), and
let ȳ0 ∈ R

d−1be such that

(ȳ0, γu(t0)(ȳ0), t0) ∈ Ju and (ȳ0, γu(t0)(ȳ0)) ∈ Ju(t0).

Then, for any ε > 0 we should have some δε > 0 with the
following property. For 0 < h0 < T − t0, define the function
ū(y, t), in the region |ȳ − ȳ0| < δε, |yd − γu(t0)(ȳ)| ≤ λh0 and
t0 ≤ t ≤ t0 + h0, by

ū(y, t) =

{

u−(ȳ, γu(t0)(ȳ)), if γu(t0)(ȳ) − λh0 ≤ yd < γu(ȳ, t), t0 ≤ t ≤ t0 + h0,

u+(ȳ, γu(t0)(ȳ)), if γu(t0)(ȳ) + λh0 ≥ yd > γu(ȳ, t), t0 ≤ t ≤ t0 + h0.
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Then

lim sup
h→0

1

2λh2

∫ t0+h

t0

dt

∫ λh

−λh

ds

∫

yd−γu(t0)(ȳ)=s

|ȳ−ȳ0|<δ

|u(y, t) − ū(y, t)| dHd−1(y)

< εHd−1(Sα
u(t0),ȳ0,δ), for all 0 < δ ≤ δε, (2.9)

where Sα
u(t0),ȳ0,δ := Sα

u(t0) ∩ {y ∈ R
d : |ȳ − ȳ0| < δ}.

Remark 2.3. Assumption (A1) requires that the C1-functions whose
graphs cover Hd–almost all Ju may all be taken with domains in d-
dimensional subspaces of R

d+1 containing the t-axis (that is, the graphs
are spacelike). In the forthcoming discussion, u will denote a BV
solution of a hyperbolic system ((1.1) or (1.2)), for which the principle
of finite speed of propagation applies. Therefore, Assumption (A1)
is natural and follows from the above principle. In fact, at points
(x, t) ∈ Ju where a tangent space to Ju is defined, with unit normal
ν(x, t), we must have |ν(x, t) · ed+1| < δ∞ < 1, with δ∞ independent
of (x, t), where ed+1 is the (forward) unit vector in the direction of the
t-axis.

Remark 2.4. Assumption (A3), in the context referred to in the above
remark, is coherent also with Assumption (A1) since, the (initial) values
u(t0)±(ȳ, γu(t0)(ȳ)) being close to u(t0)±(ȳ0, γu(t0)(ȳ0)), respectively, and
the unit normal vectors to T(ȳ,γu(t0)(ȳ))(Sα

u(t0)) being also close, for |ȳ −
ȳ0| < δ, it is to be expected that the solution u(y, t) behaves as in
the one-dimensional case in the whole region |yd − γu(t0)(ȳ)| ≤ λh and
t0 ≤ t ≤ t0 + h, for h > 0 sufficiently small at least and with λ =
λ∞ (introduced in (1.3)). We also observe that Assumption (A3) is
automatically true in the one-dimensional case since, in this case,

lim
h→0

1

h2

∫ t0+h

t0

∫ y0+λh

y0−λh

|ū(y, s) − ¯̄u(y, s)| dy dt = 0,

where

¯̄u(y, t) =

{

u−(y0, t0), if (y, t) ∈ (T(y0,t0)(Sα
u ))−,

u+(y0, t0), if (y, t) ∈ (T(y0,t0)(Sα
u ))+,

,

due to the C1-regularity of Sα
u , where (T(y0,t0)(Sα

u ))± denote the half-
spaces to the left and right of the tangent line T(y0,t0)(Sα

u ).

Some technical lemmas are in order, before we can introduce our
main definitions. For u ∈ BV (Rd × (0, T )) and 0 < s < T , denote
by Es

u the points of the exceptional set Eu belonging to the hyperplane
{t = s} of R

d × (0, T ).
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Lemma 2.1. For u ∈ BV (Rd × (0, T )) one has Hd−1(E t
u) = 0 for

almost every t ∈ (0, T ).

Proof. This is a direct consequence of the fact that Hd(Eu) = 0 and the
inequality

∫ ∗

(0,T )

Hd−1{x : (x, t) ∈ Eu} dt ≤ 2
α(d− 1)

α(d)
Hd(Eu), (2.10)

where α(m) is them-dimensional Lebesgue measure of them-dimensional
unit ball and the superscript * indicates upper-integral; this inequality
follows from Proposition 2.10.27 in [17]. �

Lemma 2.2. Let u be a function satisfying (2.5), (A1), and (A2), and
let Ju be the jump set of u and Ju(t) be the jump set of u(t), t ∈ (0, T ).
For s ∈ (0, T ), set J s

u := Ju ∩ {t = s}. Then, for almost every
t ∈ (0, T ) we have

Hd−1(Ju(t) \ J t
u) = 0.

Proof. By (A1) we have J t
u ⊂ ⋃α Sα

u(t)

⋃N t
u, where we have set N s

u :=

Nu ∩ {t = s} and Nu is the same as in (A1). Since, by (2.10), with Eu

replaced by Nu, Hd−1(N t
u) = 0, for almost every t ∈ (0, T ), the result

then follows from (2.8). �

Definition 2.2. Let u ∈ L∞((0, T );BV (Rd)) ∩ Lip([0, T ];L1(Rd)),
satisfying (A1), (A2) and (A3) above. We say that t ∈ (0, T ) is
not a time of interaction if t is a time for which (A2) holds and
Hd−1(E t

u) = Hd−1(Ju(t)\J t
u) = 0; we denote the subset of [0, T ) consist-

ing of such values of t by Ic(u), and set I(u) = [0, T ) \Ic(u). Here, we
use the convention E0

u := R
d \ (J 0

u ∪ C0
u), where J 0

u and C0
u are defined

according Remark 2.2.

Remark 2.5. We observe that, in view of Lemmas 2.1 and 2.2, one has
H1(I(u)) = 0.

We now introduce a new condition which is concerned with the time-
dependence of functions.

We will use the following notation. For (x0, t0) ∈ R
d×(0, T ), r, λ > 0,

the domain of determinacy of the point (x0, t0) is

D(x0, t0, r, λ) := {(x, t) ∈ R
d × (0, T ) : |x− x0| < r − λ(t− t0), t ≥ t0}

(2.11)
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and, for every open set Ω ⊂ R
d,

D(Ω, t0, λ) := {(x, t) ∈ R
d×(0, T ) : there exists x0 ∈ Ω, r > 0 such that

B(x0, r) ⊂ Ω and (x, t) ∈ D(x0, t0, r, λ)}, (2.12)

and, for 0 ≤ t0 < s < T ,

Ω(s, t0, λ) = {(x, t) ∈ D(Ω, t0, λ) : t = s}. (2.13)

We will frequently omit λ in the above notations whenever there is no
possible confusion.

Definition 2.3. Let u ∈ L∞((0, T );BV (Rd))∩Lip([0, T ];L1(Rd)) . We
say that u has locally controled oscillation in time if there exists λ > 0
and a constant C0 > 0 such that for all t0 ∈ [0, T ) we have that, for all
open set Ω ⊂ R

d, with piecewise smooth boundary, and for all x0 ∈ Ω̄
and ε > 0, there exists r0 > 0 such that

osc(u|D(B(x0; r) ∩ Ω, t0, λ)) ≤ C0 osc(u(t0)|B(x0; r) ∩ Ω) + ε (2.14)

for all 0 < r ≤ r0.

Remark 2.6. It is straightforward to see that in the one-dimensional
case, the notion of locally controled oscillation is weaker than that of
tame oscillation adopted in [7], due to the presence of the parameter ε
in Definition 2.3.

Remark 2.7. Let u ∈ L∞((0, T );BV (Rd))∩Lip([0, T ];L1(Rd)) and sat-
isfy (A1) and (A2). For fixed α, let Sα

u be given by the parametrization

yd = γu(ȳ, t), where ȳ = (y1, . . . , yd−1).

Let t0 ∈ (0, T ) be out of the exceptional null set in (A2), and let
ȳ0 ∈ R

d−1 be such that the pointwise limits u(t0)±(γu(t0)(ȳ0)) exist and
coincide, so that u(t0) is continuous at γu(t0)(ȳ0). It is straightforward
to see that if u has locally controled oscillation in time then (2.9) holds
for such (ȳ0, t0). Indeed, it suffices to take δε small enough so that the
oscillation of u(t0) in the region |ȳ − ȳ0| < δε, γu(t0)(ȳ) − h < yd <
γu(t0)(ȳ) + h, is less than, say, ε/2 if h is small enough. Then, the
locally controlled oscillation property will implies that the oscillation
of u in the region t0 ≤ t ≤ t0 + h, |ȳ − ȳ0| < δε, γu(t0)(ȳ) − h < yd <
γu(t0)(ȳ) + h, is less than ε for h sufficiently small, and so (2.9) follows.
Also, the ȳ0 satisfying either the conditions in assumption (A3) or else
the conditions in this remark encompass Hd−1-almost all of R

d−1.

We now ready to introduce the class of functions which will be of
interest for the main uniqueness result in this paper.
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Definition 2.4. We denote by O(0, T ;BV
loc
reg(Rd)) the class of all func-

tions u ∈ L∞(Rd × (0, T ),U) satisfying (2.5), (A1), (A2), (A3) and
possessing locally controled oscillation in time.

Remark 2.8. In the one-dimensional case (d = 1) and by the results in
Glimm and Lax [19] and DiPerna [15], solutions of hyperbolic systems
(1.1) obtained by Glimm’s method (for instance) belong precisely to

the class O(0, T ;BV
loc
reg(Rd)). In fact, the regularity properties in the

one-dimensional case are even stronger. See [19, 15, 13, 27] for details.

3. Hyperbolic systems of conservation laws

In this section we state the main uniqueness result of this paper
in the case of conservative and genuinely nonlinear systems, i.e., the
Cauchy problem admits at most one solution depending L1 continu-
ously upon its initial data, among all possible entropy solutions in the

class O(0, T ;BV
loc
reg(Rd)). We begin by recalling some basic terminol-

ogy. We say that a Lipschitz function P : U → R is an entropy for
(1.1) with associated entropy flux Q : U → R

d if

∇P (u)∇fk(u) = ∇Qk(u) for k = 1, · · · , d and almost every u ∈ U .
(3.1)

If P is strictly convex we say that the pair (P,Q) is a strictly convex
entropy pair.

Definition 3.1. Consider a hyperbolic system of conservation laws
(1.1) endowed with a strictly convex entropy pair (P,Q). A function
u ∈ L∞(Rd × (0, T );U) is called an entropy solution of (1.1) if the
equations (1.1) as well as the entropy inequality

∂tP (u) +
d
∑

k=1

∂kQ
k(u) ≤ 0 (3.2)

hold in the sense of distributions in R
d × (0, T ).

We consider entropy solutions of (1.1) in O(0, T ;BV
loc
reg(Rd)) with a

prescribed initial data

u(x, t)|t=0 = u0(x), (3.3)

where u0 ∈ BV (Rd;U), which is assumed in the usual sense for func-
tions in Lip([0, T ];L1(Rd)). In what follows the parameter λ appearing

in (A3) and in (2.14), in the definition of the class O(0, T ;BV
loc
reg(Rd)),

will always be assumed to be λ∞, that is, the corresponding function
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will belong to O(0, T ;BV
loc
reg(Rd)) for λ = λ∞. As in [8] our unique-

ness result is conditioned to the existence of a semigroup of entropy
solutions, defined naturally as follows.

Definition 3.2. A continuous semigroup of entropy solutions of (1.1)
is a mapping S : K × [0,∞) → K defined on a non-empty subset K of
BV (Rd;U) such that the following three properties hold:

(1) (Semigroup property.) For all t1, t2 ≥ 0 and u0 ∈ K, we have
S(0)u0 = u0, S(t1)u0 ∈ K and S(t2) ◦ S(t1)u0 = S(t2 + t1)u0.

(2) (Continuous dependence.) For some fixed constant K > 0 and
for all u0, v0 ∈ K and t1, t2 ≥ 0,

‖S(t2)u0 − S(t1)v0‖L1(Rd) ≤ K(‖u0 − v0‖L1(Rd) + |t2 − t1|).
(3) (Entropy solution.) For each function u0 ∈ K the function

u∗(t) := S(t)u0

is an entropy solution of (1.1) belonging to the class

O(0, T ;BV
loc
reg(Rd)).

(4) (Consistency with single jump.) Let ν ∈ R
d, with |ν| = 1, and

ū0 be given by

ū0(x) =

{

u−, x · ν < 0,

u+, x · ν > 0,

and suppose there is σ ∈ R such that

−σ(u+ − u−) +
d
∑

k=1

νk(f
k(u+) − fk(u−)) = 0,

and

−σ(P (u+) − P (u−)) +
d
∑

k=1

νk(Q
k(u+) −Qk(u−)) ≤ 0.

Let ν̄ = 1√
1+σ2 (ν1, . . . , νd,−σ) and

ū(x, t) =

{

u−, (x, t) · ν̄ < 0

u+, (x, t) · ν̄ > 0
, (x, t) ∈ R

d × R+.

Then, we must have [S(t)(ū0)](x) = ū(x, t) for all t > 0, x ∈ R
d.

(5) (Consistency with regularity of the initial data) If, for u0 ∈ K∩
BV

loc
reg(Rd), u∗(x, t) = [S(t)(u0)](x) and we have Hd−1(E0

u∗) =
Hd−1(Ju0 \ J 0

u∗) = 0 then 0 is not a time of interaction for u∗,
that is, 0 is not in the exceptional null set of (A2).
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(6) (Finite speed of propagation.) Given any open set Ω ⊂ R
d, the

values of u∗ on D(Ω, t0, λ
∞) depend only on the values of u∗(t0)

on Ω, for all t0 ≥ 0.

All of the properties above are standard for one-dimensional systems,
and the existence of a continuous semi-group in that case is now well-
known. (See [6, 24] for references.) We expect that the same existence
result could be obtained for multidimensional systems with commuting
Jacobians, and it is the subject of this paper to establish the uniqueness
of such solutions.

We now state our main uniqueness result for hyperbolic systems of
conservation laws (1.1).

Theorem 3.1. (Main uniqueness result.) Assume that the system of
conservation laws (1.1) admits a strictly convex entropy pair, has gen-
uinely nonlinear characteristic fields (in the sense that

∇λj(u; ν) · rj(u; ν) 6= 0

for all u ∈ U and j = 1, . . . , N), and has commuting Jacobian matri-
ces. Suppose also that there exists a continuous semigroup of entropy
solutions of (1.1), defined on some non-empty subset K of BV (Rd;U).
Then, given any u0 ∈ K,

u∗(t) := S(t)u0

is the only entropy solution u of (1.1),(3.3) satisfying

u ∈ O(0, T ;BV
loc
reg(Rd))

and u(t) ∈ K for all t ∈ [0, T ] and T > 0.

Theorem 3.1 improves and extends to the multidimensional context
the main theorems in [8, 7]. We prove it in the next section by follow-
ing the general strategy adopted in [8]. The situation in several space
dimensions is much more involved, since standard pointwise proper-
ties of functions in BV (R) are not shared by arbitrary functions in
BV (Rd) when d > 1, and this precisely motivated the introduction of

the class BV
loc
reg(Rd). This, seemingly unavoidable, restriction on the

class BV (Rd), by itself, does not make straightforward the generaliza-
tion of the one-dimensional arguments: new ideas have to be developed
to overcome several difficulties not present in the one-dimensional case,
as we will see in Section 4.

We point out that the assumption of genuine nonlinearity is required
if one expects a single entropy inequality to guarantee uniqueness for
the Cauchy problem. For non-genuinely nonlinear systems, even in
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one space dimension, a single entropy inequality can not prevent the
possibility of undercompressive, nonclassical shocks [24] and therefore
multiple solutions to the Cauchy problem. In Section 5 below we dis-
cuss a framework which is adapted to this degree of generality.

4. Tangency property and proof of the main theorem

The purpose of this section is to give the proof of Theorem 3.1.
The decisive step is provided by the following theorem which is of
independent interest (as noted in [2] when d = 1).

Theorem 4.1. (Tangency property.) Consider the hyperbolic system
(1.1) and assume that it has commuting Jacobian matrices, genuinely
nonlinear characteristic fields, and is endowed with a strictly convex en-

tropy pair. Let u and v be two entropy solutions in O(0, T ;BV
loc
reg(Rd)).

If, for some t0 /∈ I(u) ∪ I(v), one has

u(t0) = v(t0) almost everywhere in R
d, (4.1)

then, for any R > 0,

lim
t→t0
t>t0

1

t− t0

∥

∥u(t) − v(t)
∥

∥

L1(BR(t,t0,λ∞))
= 0, (4.2)

where we use notation (2.13) with Ω = BR.

We will prove the above theorem in several steps. Let ε > 0. We
begin by considering the graphs containing big jumps of either u or
v. In view of (4.1) we have {Sβ

u(t0),ε,R} = {Sβ
v(t0),ε,R}. Let us fix a

graph S ∈ {Sβ
u(t0),ε,R} and let γ : Bd−1

R → R be the corresponding

parametrization, γ̃(ȳ) = (ȳ, γ(ȳ)), ȳ ∈ Bd−1
R , where Bd−1

R denotes the
open ball in R

d−1 of radius R centered at the origin. Let Su and Sv

be the graphs in R
d+1 corresponding to u and v, respectively, whose

section at BR × {t = t0} coincide with S. Finally, let Dt0,R ⊂ Bd−1
R be

given by

Dt0,R × {t = t0} = Du ∩ (Bd−1
R × {t = t0}) = Dv ∩ (Bd−1

R × {t = t0}),
where Du and Dv are the sets described in (A3) corresponding to Su

and Sv, respectively. Note that Hd−1(Bd−1
R −DR,t0) = 0. Here and in

what follows we include in Du and Dv the points of continuity of u and
v according with Remark 2.7 and, thus, we simply refer to assumption
(A3). We also set

Nε = #{Sβ
u(t0),ε,R}, Lε = Hd−1(Su(t0),ε,R).
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In view of Assumption (A3) and by applying Besicovitch’s covering
theorem (see, e.g., [16], p. 35) we may select a countable family of
disjoint closed balls, {B(ȳi; δi)}∞i=1 so that the following four properties
hold:

(1) for Hd−1–almost every ȳ ∈ B(ȳi; δi) and (ȳi, γ(ȳi)) ∈ Ju(t0) ∩
J t0

u ∩ J t0
v , one has |[u(ȳ, t0)]| > 0;

(2) if ȳi is such that u(t0)+(ȳi, γ(ȳi)) = u(t0)−(ȳi, γ(ȳi)) then

osc(u(t0)|B(γ̃(ȳi); 2δi)) <
ε2

N2
εLε

;

(3) moreover

lim sup
h→0

1

2λ∞h2

∫ t0+h

t0

dt

∫ λ∞h

−λ∞h

ds

∫

yd−γ(ȳ)=s
|ȳ−ȳi|<δi

(|u(y, t)−ū(y, t)|+|v(y, t)−v̄(y, t)|) dHd−1(y)

<
ε2Hd−1(Sȳi,δi

)

3N2
εLε

, (4.3)

where Sȳi,δi
= γ̃(B(ȳi; ri)), ū and v̄ are defined as in Assumption

(A3);
(4) and

Hd−1

(

γ̃
(

Dt0,R −
⋃

i

B(ȳi; ri)
)

)

= 0.

On the other hand, by Rankine-Hugoniot’s relation, for all j ∈
{1, . . . , n}

[
∑d

k=1 νk(x, t0)f
k
j (u(x, t0))]

[uj(x, t0)]
=

[
∑d

k=1 νk(x, t0)f
k
j (v(x, t0))]

[vj(x, t0)]
,

whenever (x, t0) ∈ γ̃(Dt0,R) is such that |[u(x, t0)]| = |[v(x, t0)]| > 0.
So, for such (x, t0), we have

T(x,t0)(Su) = T(x,t0)(Sv).

Hence, by the C1-regularity of Su and Sv, if (ȳi, γ(ȳi)) ∈ Ju(t0) ∩J t0
u ∩

J t0
v , we have

lim
h→0

1

2λ∞h2

∫ t0+h

t0

dt

∫ λ∞h

−λ∞h

ds

∫

yd−γ(ȳ)=s
|ȳ−ȳi|<δi

|ū(y, t) − v̄(y, t)| dHd−1(y) = 0.
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Furthermore, if u(t0)
+(ȳi, γ(ȳi)) = u(t0)

−(ȳi, γ(ȳi)), then

lim sup
h→0

1

2λ∞h2

∫ t0+h

t0

dt

∫ λ∞h

−λ∞h

ds

∫

yd−γ(ȳ)=s
|ȳ−ȳi|<δi

|ū(y, t) − v̄(y, t)| dHd−1(y)

<
ε2Hd−1(Sȳi,δi

)

3N2
εLε

, (4.4)

may be obtained directly from the smallness of the oscillation for y ∈
B(γ̃(ȳi); 2δi). In this way, we can find N0 ∈ N and h0 > 0 such that

Hd−1

(

γ̃
(

Dt0,R −
N0
⋃

i=1

B(ȳi; ri)
)

)

<
ε2

6KN2
εLε

,

where K ≥ max{‖u‖∞, ‖v‖∞}, and

1

2λ∞h2

∫ t0+h

t0

dt

∫ λ∞h

−λ∞h

ds

∫

yd−γ(ȳ)=s
|ȳ−ȳi|<δi

|u(y, t)−v(y, t)| dHd−1(y) <
2ε2Hd−1(Sȳi,δi

)

3N2
εLε

,

for 0 < h < h0 and i = 1, . . . , N0. (4.5)

Therefore, in the neighborhood of large shocks, the L1 distance be-
tween the solutions u and v is estimated as

1

2λ∞h2

∫ t0+h

t0

dt

∫ λ∞h

−λ∞h

ds

∫

yd−γ(ȳ)=s
|ȳ|<R

|u(y, t) − v(y, t)| dHd−1(y) <
ε2

N2
ε

,

for 0 < h < h0. (4.6)

Finally, we apply the following simple lemma from [2] (see also [24],
Chap. 10).

Lemma 4.1. Let w : (a, b) × [0, h] → R be a bounded and measurable
function satisfying the L1 Lipschitz continuity property

‖w(τ2) − w(τ1)‖L1(a,b) ≤ K |τ2 − τ1|, τ1, τ2 ∈ [0, h],

for some constant K > 0. Then, we have

1

h

∫ b

a

∣

∣w(ξ, h)
∣

∣ dξ ≤
√

2K

(

1

h2

∫ h

0

∫ b

a

|w| dξdτ
)1/2

,

whenever the right-hand side is less than K.
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Set
γβ = γβ

u(t0) = γβ
v(t0),

and

W β(h) = {y ∈ BR : γβ(ȳ) − λ∞h ≤ yd ≤ γβ(ȳ) + λ∞h}.
We have
1

h

∫

∪βW β(h)

|u(x, t0 + h) − v(x, t0 + h)| dx

≤
Nε
∑

β=1

1

h

∫ λ∞h

−λ∞h

( ∫

yd−γβ(ȳ)=s
|ȳ|<R

|u(y, t0 + h) − v(y, t0 + h)| dHd−1(y)

)

ds

≤ 2
√
λ∞K

Nε
∑

β=1











1

2λ∞h2

∫ t0+h

t0

∫ λ∞h

−λ∞h

( ∫

yd−γβ(ȳ)=s
|ȳ|<R

|u(y, t) − v(y, t)| dHd−1(y)

)

ds dt











1/2

We have thus arrived at the following estimate

1

h

∫

∪βW β(h)

|u(x, t0 + h) − v(x, t0 + h)| dx < 2
√
λ∞Kε. (4.7)

We now deal with the regions where the pointwise oscillation is less
than or equal to ε. We have

BR \ Su(t0),ε,R = ∪N ′
ε

j=1Ω
j
ε,

and, for each x ∈ Ω̄j
ε, j = 1, . . . , N ′

ε,

oscx u(t0) = oscx v(t0) ≤ ε.

We fix j = j0 and set Ω = Ωj0
ε . We take a covering of Ω̄ by a finite

number of ball,

Ω̄ ⊂
Mε
⋃

l=1

B(xl; rl),

with
osc(u(t0)|B(xl; rl)) ≤ 2ε, l = 1, . . . ,Mε,

such that each one of the balls B(xl; rl) intersects at most Nd such
other balls, where Nd depends only on the dimension d. We may find
h1 = h1j0 > 0 such that

Ω(t, t0, λ
∞) ⊂

Mε
⋃

l=1

D(B(xl; rl), t0, λ
∞), t0 ≤ t ≤ t0 + h1.
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We set, for short, Bl = B(xl; rl). Then

Ω̄(t0 + h, t0, λ
∞) ⊂

Mε
⋃

l=1

Bl(t0 + h, t0, λ
∞), for 0 < h ≤ h1.

Let also

Ωl(t0 + h, t0) := Ω(t0 + h, t0, λ
∞) ∩Bl(t0 + h, t0, λ

∞).

Define ũ out of a set of Hd-measure zero by

ũ(x, t) :=
u+ + u−

2
.

Fix l ∈ {1, . . . ,Mε}. Set

Ak := Ak(ũ(xl, t0)), λk
j := λk

j (ũ(xl, t0)), lj := lj(ũ(xl, t0)).

Let u(x, t) be the solution of the linear hyperbolic problem

∂tu+
d
∑

k=1

Ak∂ku = 0, t ≥ t0,

u(t0) = u(t0).

(4.8)

For (x, t) ∈ Ju, let ψ(u−, u+) be the shock speed given by Rankine-
Hugoniot relation, that is,

ψ(u−, u+)[u] =
d
∑

k=1

νk[f
k(u)], (4.9)

where ν = (ν1, . . . , νd) is the unit normal to Ju(t) at x. We may write
(1.1) in the form

∂tu+
d
∑

k=1

Ak(ũ)∂ku = µ, (4.10)

where

µ =

( d
∑

k=1

νkA
k(ũ) − ψ(u−, u+)

)

(u+ − u−)Hd⌊Ju. (4.11)

We rewrite (4.10) as

∂tu+
d
∑

k=1

Ak∂ku = µ+
d
∑

k=1

(Ak − Ak(ũ))∂ku. (4.12)
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Taking the difference of (4.12) and (4.8) and multiplying by lj, j =
1, . . . , N , we arrive at

∂t(lj(u−u))+
d
∑

k=1

λk
j∂k(lj(u−u)) = ljµ+

d
∑

k=1

lj(A
k−Ak(ũ))∂ku. (4.13)

For x0 ∈ Ωl(t0 + h, t0) and r > 0 such that B(x0; r) ∈ Ωl(t0 + h, t0), let

Cj(x0; r) = Cj[B(x0; r)] :=

{

(x, t) ∈ R
d × (0, T ) :

(

x1+λ
1
j(t0+h−t), . . . , xd+λd

j (t0+h−t)
)

∈ B(x0; r), t0 ≤ t ≤ t0+h

}

By Gauss-Green’s formula we have

∫

Cj(x0;r)

{∂t(lj(u− u)) +
d
∑

k=1

λk
j∂k(lj(u− u))} dx dt

=

∫

B(x0;r)

lj(u− u)(x, t0 + h) dx. (4.14)

On the other hand, by the controled oscillation property we have both

|ljµ(Cj(x0; r))| ≤ O(ε)

∫ t0+h

t0

TV (u(t)|Cj
t (x0; r)) dt (4.15)

and

|lj(Ak − Ak(ũ))∂ku(C
j(x0; r))| ≤ Cε

∫ t0+h

t0

TV (u(t)|Cj
t (x0; r)) dt

(4.16)
where Cj

s(x0; r) = Cj(x0; r) ∩ {t = s}. Combining (4.14), (4.15) and
(4.16), we arrive at the estimate
∣

∣

∣

∣

∫

B(x0;r)

lj(u− u)(x, t0 + h) dx

∣

∣

∣

∣

≤ O(ε)

∫ t0+h

t0

TV (u(t)|Cj
t (x0; r)) dt.

(4.17)
Now we have the following simple lemma.

Lemma 4.2. Let µ1, µ2 be two Radon measures defined on the open
set Ω ⊂ R

d, with µ2 ≥ 0. Assume that for all x0 ∈ Ω and r > 0, such
that B(x0; r) ⊂ Ω we have

|µ1(B(x0; r))| ≤ µ2(B(x0; r)). (4.18)

Then, we have

|µ1| ≤ µ2. (4.19)
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Proof. First we note that the inequality (4.18) extends to all open sets
Ω′ ⊂ Ω. Indeed, by Besicovitch’s covering theorem, we may find a
countable disjoint family of open balls {Bα}, with

⋃

αBα ⊂ Ω′ and

(|µ1| + µ2)(Ω
′ \
⋃

α

Bα) = 0.

Hence,

|µ1(Ω
′)| = |µ1(

⋃

α

Bα)| ≤
∑

α

|µ1(Bα)| ≤
∑

α

µ2(Bα) = µ2(
⋃

α

Bα) = µ2(Ω
′).

It also extends to compact sets. Indeed, given a compact K ⊂ Ω,
denoting Kδ = {x ∈ Ω : dist(x,K) < δ}, we have

|µ1(K)| = lim
δ→0

|µ1(Kδ)| ≤ lim
δ→0

µ2(Kδ) = µ2(K).

Finally, let Ω− and Ω+ be two disjoint Borel sets such that Ω = Ω+∪Ω−

and µ1 ≥ 0 over Ω+, µ1 ≤ 0, over Ω−. Given any Borel set B ⊂ Ω, set
B+ = B ∩ Ω+, B− = B ∩ Ω−. We have

|µ1(B
±)| = sup{|µ1|(K) : K ⊂ B±, compact}

≤ sup{µ2(K) : K ⊂ B±, compact} = µ2(B
±),

and so, we arrive at

|µ1|(B) = |µ1(B
+)| + |µ1(B

−)| ≤ µ2(B
+) + µ2(B

−) = µ2(B).

�

Applying Lemma 4.2 to (4.17), we obtain
∫

Ωl(t0+h,t0)

|lj(u− u)(x, t0 + h)| dx ≤ O(ε)

∫ t0+h

t0

TV (u(t)|Ωl(t, t0)) dt.

Analogously, we have
∫

Ωl(t0+h,t0)

|lj(v − u)(x, t0 + h)| dx ≤ O(ε)

∫ t0+h

t0

TV (v(t)|Ωl(t, t0)) dt,

and, so,
∫

Ωl(t0+h,t0)

|(u− v)(x, t0 + h)| dx

≤ O(ε)

∫ t0+h

t0

(

TV (u(t)|Ωl(t, t0)) + TV (v(t)|Ωl(t, t0))
)

dt.

(4.20)
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Since each one of the balls B(xl; rl) intersects at most Nd such other
balls, where Nd depends only on the dimension d, we further conclude

∫

∪Ωj(t0+h,t0)

|(u− v)(x, t0 + h)| dx

≤ O(ε)

∫ t0+h

t0

(

TV (u(t)| ∪ Ωj(t, t0)) + TV (v(t)| ∪ Ωj(t, t0))
)

dt

≤ hO(ε) sup
t0≤t≤t0+h

(

TV (u(t)|BR(t, t0)) + TV (v(t)|BR(t, t0))
)

. (4.21)

Hence, setting h∗ = min{h0, h1j, j = 1, . . . , N ′
ε}, from (4.7) and (4.21),

for 0 < h ≤ h∗, we have

1

h

∫

BR(t0+h,t0)

|u(x, t0 + h) − v(x, t0 + h)| dx

≤ 2
√
λ∞K ε+O(ε) sup

t0≤t≤t0+h

(

TV (u(t)|BR(t, t0))+TV (v(t)|BR(t, t0))
)

.

(4.22)

Since ε > 0 is arbitrary, this concludes the proof of Theorem 4.1.

Conclusion of the proof of Theorem 3.1. We conclude the proof of The-
orem 3.1 by applying the following lemma whose proof maybe found
in [6, 24].

Lemma 4.3. For every u0 ∈ K and every Lipschitz continuous map
u : [0, T ] → L1(Rd), with u(t) ∈ K, for all t ∈ [0, T ], and u(0) = u0,
the semi-group of solutions S : K × [0,∞) → K satisfies the estimate
∫

Ω(t1,0)

|u(x, t1) − (S(t1)u0)(x)| dx

≤ K

∫ t1

0

lim inf
h→0

1

h

(∫

Ω(t+h,0)

|u(x, t+ h) − (S(h)u(t))(x)| dx
)

dt,

(4.23)

for any open set Ω ⊂ R
d and all t1 ∈ (0, T ), where we use notation

(2.13) ommiting λ = λ∞.

Observing that Ω(t + h, 0) = Ωt(t + h, t), where Ωt = Ω(t, 0), we
obtain from Theorem 4.1 that the integrand in the right-hand side of
(4.23) vanishes for almost all t ∈ [0, T ]. The application of Theorem 4.1
is justified once we show that, for any t0 > 0, if t0 is not an interaction
time for u then t0 is not an interaction time for u∗t0(x, t) := S(t−t0)u(t0),
t ≥ t0, which, by property (5) of semigroups, will be established if we
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show that: (i) (x0, t0) ∈ Cu(t0) implies (x0, t0) ∈ Cu∗
t0

; (ii) if (x0, t0) is

a density point of Ju(t0) ∩ J t0
u , where a unit normal to Ju(t0), ν, is

defined, then (x, t0) ∈ Ju∗
t0

. The locally controlled oscillation property

immediately gives (i). Assertion (ii), on the other hand, follows from
properties (2), (4) and(6) of continuous semigroups. Indeed, we have

lim
ρ→0

1

|B(x0; ρ)|

∫

B(x0;ρ)

|u(t0)(x) − ū0(x− x0)| dx = 0,

where ū0 is as in property (4) of Definition 3.2. Hence, using properties
(2), (4) and (6) of Definition 3.2, we get

lim
ρ→0

1

ρ|B(x0; ρ)|

∫ t0+ρ

t0

∫

B(x0;ρ)

|u∗t0(x, t) − ū(x− x0, t− t0)| dx dt = 0,

which proves the assertion. Here, again, ū is as in (4) of Definition 3.2.
Hence, we conclude
∫

Ω(t,0)

|u(x, t1) − [S(t1)u0](x)| dx = 0, for all t1 ∈ (0, T ).

This completes the proof of Theorem 3.1. �

5. Extension to nonconservative systems and

nonclassical entropy solutions

In this section we extend Theorem 3.1 to systems in nonconserva-
tive form. Consider the nonlinear hyperbolic system (1.2). Following
[2, 24], to define the notion of entropy solutions we prescribe a family
of admissible discontinuities Φ ⊂ U × U and a family of admissi-

ble speeds ψ : Φ →
(

−λ∞, λ∞
)

satisfying the following consistency
property for all pairs (u−, u+) ∈ Φ:

∣

∣

∣

∣

∣

(

d
∑

k=1

Ak(u+)νk − ψ(u−, u+)
)

(u+ − u−)

∣

∣

∣

∣

∣

≤ C |u+ − u−|2, (5.1)

where νk is the normal to the discontinuity surface and C > 0 is a
fixed constant. We denote by u+ a pointwise representative of a BV
function u.

Definition 5.1 (General concept of entropy solution). Let Φ ⊂ U ×U
be a set of admissible jumps and ψ : Φ →

(

−λ∞, λ∞
)

be a family of

admissible speeds satisfying (5.1). A function u : R
d × (0, T ) → U

satisfying (A1) and (A2) in Section 2 is called a (Φ, ψ)–admissible

entropy solution of (1.2) or, in short, an entropy solution if the
following two conditions hold:
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• The restriction of the measure ∂tu+
∑d

k=1A
k(u+) ∂ku to the

set Cu vanishes identically, that is,
∫∫

B

∂tu+
d
∑

k=1

Ak(u+) ∂ku = 0 for every Borel set B ⊂ Cu. (5.2)

• at each point (x, t) ∈ Ju, such that x ∈ Ju(t) and the upward
(with respect to the corresponding graphs) unit normals ν̃(x, t)
and ν(x, t), to Ju and Ju(t), respectively, are defined, the limits
u±(x, t) and the speed λu(x, t), determined by

ν̃(x, t) =
1

(1 + λu(x, t)2)1/2
(ν(x, t),−λu(x, t)),

satisfy

(u−(x, t), u+(x, t)) ∈ Φ, λu(x, t) = ψ(u−(x, t), u+(x, t)). (5.3)

From (5.1), (5.2), and (5.3) we deduce that if u is an entropy solution
then, for every Borel set B,
∫∫

B

(

∂tu+
d
∑

k=1

Ak(u+) ∂ku
)

=

∫∫

B∩C(u)

(

∂tu+
d
∑

k=1

Ak(u+) ∂ku
)

+

∫

B∩J (u)

(

−λu +
d
∑

k=1

Ak(u+) νk

)

(u+ − u−) dHd

=

∫

B∩J (u)

(

d
∑

k=1

Ak(u+) νk − ψ(u−, u+)
)

(u+ − u−) dHd.

A continuous semigroup of (Φ, ψ)–admissible entropy solutions for
(1.2) is defined in exactly the same way as in Section 3. Then, by the
same arguments as the ones used for Theorem 3.1, we arrive at the
following uniqueness result for hyperbolic systems (1.2) which extend
to the multidimensional context the result in [2] for the one-dimensional
case.

Theorem 5.1. (Uniqueness of (Φ, ψ)–admissible solutions.) Let
Φ ⊂ U × U be a set of admissible jumps and ψ : Φ →

(

−λ∞, λ∞
)

be a
family of admissible speeds satisfying (5.1). Suppose that there exists a
continuous semigroup of (Φ, ψ)–admissible entropy solutions of (1.2),
defined on some non-empty subset K of BV (Rd;U), satisfying the fol-
lowing consistency property with single jumps: If a function v = v(x, t)
is made of a single (admissible) jump discontinuity (v−, v+) ∈ Φ prop-
agating with the speed ψ(v−, v+), then v(0) ∈ K and

v(t) = S(t)v(0), t ≥ 0.
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Then, given any u0 ∈ K and T > 0, u∗(x, t) = (S(t)u0)(x) is the only

entropy solution u of (1.2),(3.3) satisfying u ∈ O(0, T ;BV
loc
reg(Rd)) and

u(t) ∈ K, for all t ∈ [0, T ].

It is clear that the consistency property above is necessary for unique-
ness, for otherwise one could find two distinct solutions starting with
the same initial data and the conclusion of Theorem 5.1 would obvi-
ously fail.
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