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A version of the Glimm method

based on generalized Riemann problems

John M. Hong1 and Philippe G. LeFloch2

Abstract

We introduce a generalization of Glimm’s random choice method, which
provides us with an approximation of entropy solutions to quasilinear hy-
perbolic system of balance laws. The flux-function and the source term of
the equations may depend on the unknown as well as on the time and space
variables. The method is based on local approximate solutions of the gen-
eralized Riemann problem, which form building blocks in our scheme and
allow us to take into account naturally the effects of the flux and source
terms. To establish the nonlinear stability of these approximations, we
investigate nonlinear interactions between generalized wave patterns. This
analysis leads us to a global existence result for quasilinear hyperbolic
systems with source-term, and applies, for instance, to the compressible
Euler equations in general geometries and to hyperbolic systems posed on
a Lorentzian manifold.
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1. Introduction

1.1 Hyperbolic systems of balance laws. This paper3 is concerned with
the approximation of entropy solutions to the Cauchy problem for a quasilinear
hyperbolic system

∂tu + ∂xf(t, x, u) = g(t, x, u), t > 0, x ∈ R, (1.1)

u(0, x) = u0(x), x ∈ R, (1.2)

where u = u(t, x) ∈ R
p is the unknown. We propose here a generalized version

of the Glimm scheme [10] which allows us to deal with a large class of mappings
f, g and take into account the geometric effect of the flux and source terms. Our
scheme is based on an approximate solver for the generalized Riemann problem,
based on an asymptotic expansion introduced by LeFloch and Raviart [17]. The
approach provides high accuracy and stability, under mild restrictions on the
equation and the data.

In (1.1), the flux f = f(t, x, u) ∈ R
p and the source-term g = g(t, x, u) ∈ R

p

are given smooth maps defined for all (t, x, u) ∈ R+ × R × U , where U is a
small neighborhood of the origin in R

p, and the initial data u0 : R → U is a
function with bounded total variation. We assume that the Jacobian matrix
A(t, x, u) := Df

Du
(t, x, u) admits p real and distinct eigenvalues,

λ1(t, x, u) < λ2(t, x, u) < . . . < λp(t, x, u),

and therefore a basis of right-eigenvectors rj(t, x, u) (1 ≤ j ≤ p), Finally, we
assume that each characteristic field is either genuinely nonlinear (∇λj(t, x, u) ·
ri(t, x, u) 6= 0) or linearly degenerate (∇λj(t, x, u) · ri(t, x, u) = 0).

One important motivation for considering general balance laws (1.1) comes
from the theory of general relativity. In this context, the vector u typically
consists of fluid variables as well as (first order derivatives) of the coefficients of
an unknown, Lorentzian metric tensor. (See [3, 5] and the reference therein.)
One can also freeze the metric coefficients and concentrate on the dynamics of
the fluid. For instance, the compressible Euler equations describing the dynamics
of a gas flow in general geometry read:

∂tρ + ∂x(ρv) = −
∂xa

a
ρv −

∂ta

a
ρ,

∂t(ρv) + ∂x(ρv2 + p) = −
∂xa

a
(ρv2) −

∂ta

a
ρv,

∂t(ρE) + ∂x(ρvE + pv) = −
∂xa

a
(ρvE + pv) −

∂ta

a
ρE

(1.3)

3This paper is based on notes written by the second author in July 1990, for his Habilitation
memoir (Chapter XI) at the University of Paris VI.
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where a = a(t, x) > 0 can be regarded as the cross section of a time-dependent
(moving) duct, and ρ, v, p(ρ, e), e, and E = e + u2/2 are the density, velocity,
pressure, internal energy, and total energy of the gas, respectively. The system
(1.3) describes a situation where the fluid does not affect the variation of the duct;
i.e. the function a(t, x) is given and, for simplicity, smooth. The system (1.3) is
of the form (1.1) with u = (ρ, ρv, ρE)T , f = f(u) = (ρv, ρv2 + p, ρvE + pv)T and
g = g(t, x, u) = −∂xa

a
g1(u) − ∂ta

a
u where g1(u) = (ρv, ρv2, ρvE + pv)T .

We are interested in solutions to (1.1)-(1.2) which have bounded total variation
in space for all times and satisfy the equations in the sense of distributions,
together with an entropy condition [15, 8, 16]. In the special case that

f = f(u), g = 0,

the existence of global entropy solutions was established by Glimm [10], assum-
ing that the initial data u0(x) has sufficiently small total variation. Recall that
two main ingredients in Glimm’s random choice method are (1) the solutions of
Riemann problems and (2) a projection step based on a sequence of randomly
chosen points.

Let us first indicate some of the earlier work on the subject. The system (1.1)
with

f = f(x, u), g = g(x, u),

was treated in pioneering work by Liu [20, 21], via a suitable extension of the
Glimm method: the approximate solutions are defined by pasting together steady
state solutions, i.e., solutions v = v(x) of the ordinary differential equation

d

dx

(
f(x, v)

)
= g(x, v).

He established the existence of solutions defined in a finite interval of time [0, T )
as long as either T or the L1 norms of g and ∂g/∂u are sufficiently small. Next,
assuming in addition that the eigenvalues of the matrix A(x, u) never vanish
(so that no resonance takes place), Liu deduced a global existence result (with
T = +∞). Steady-state solutions were also used in the work by Glimm, Marshall,
and Plohr [12].

For more general mappings f, g, the existence for (1.1)-(1.2) is established by
Dafermos and Hsiao [7] and Dafermos [8, 9]. They assume that fx(u

∗, t, x) =
g(u∗, t, x) = 0 at some (equilibrium) constant state u∗, hence u∗ is a solution
of (1.1) around which (1.1) can be formally linearized. They also require that
the linearized system satisfies a dissipative property. Their main result concerns
the consistency and stability of a generalization of the Glimm method, yielding
therefore the global existence of entropy solutions to (1.1). In [7], the approximate
solutions to the Cauchy problem on each time step are based on classical Riemann
solutions with initial data suitably modified by both the source term g and the
map θ := A−1 fx.
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Next, Amadori et al. [1, 2] developed further techniques to establish the
existence of solutions for a large class of systems having f = f(u) and g = g(x, u),
and discussed Dafermos-Hsiao dissipative condition. For some particular systems
(of two or three equations) the condition that the total variation be small can be
relaxed; see for instance Luskin and Temple [22], Groah and Temple [11], Barnes,
LeFloch, Schmidt, and Stewart [3], and the references cited therein. In these
papers, the decreasing of a total variation functional (measured with respect to a
suitable chosen coordinate) was the key to establish the stability of the scheme.

1.2 A new version of the Glimm method. In the present paper we
provide an alternative approach to Dafermos-Hsiao’s method, and introduce a
generalized version of the Glimm scheme for general mappings f, g. Integrability
assumptions will be required (and discussed later on) on the matrix A and the
mapping q : R+ × R × U → R

p defined by

q(t, x, u) := g(t, x, u) −
∂f

∂x
(t, x, u). (1.4)

It should be emphasized that only this combination of the source and the flux
will be important in our approach, which can be summarized as follows.

First, we study the generalized Riemann problem associated with the system
(1.1), i.e. the Cauchy problem with piecewise constant initial data. The existence
of solutions defined locally in spacetime in a neighborhood of the initial discon-
tinuity was studied in Li and Yu [18] and Harabetian [13]. Contrary to the case
where f, g only depend upon the unknown u, no closed formula is available for the
solutions of the generalized Riemann problem. We propose here an approximate

Riemann solver, inspired by a technique of asymptotic expansion introduced by
Ben-Artzi and Falcovitz [4] (for the gas dynamics equations) and LeFloch and
Raviart [17] (for general hyperbolic systems of balance laws); see also [6].

Our scheme for solving approximately the generalized Riemann problem can
be re-interpreted as a splitting algorithm (the hyperbolic operator and the source
term being decoupled). Since an approximate (rather than an exact) solution
to the generalized Riemann problem is used, it is crucial to establish an error
estimate which we achieve in Proposition 2.1 below, under a mild assumption on
the data u0, f, g. This estimate will be necessary to ensure the consistency of our
generalized Glimm method.

Second, we study the nonlinear interaction of waves issuing from two general-
ized Riemann problems, and establish a suitable extension of Glimm’s estimates
[10] to the general system (1.1); cf. Proposition 3.3. This is a key, technical part
of our analysis.

Third, we introduce our scheme and prove its stability in total variation, under
the assumption that the initial data u0 has sufficiently small total variation and
that the total amplification due to (the derivatives of) f, g to the total variation
of the solution is sufficiently small; cf. Theorem 4.3. More precisely, we impose
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that
∂2A

∂t∂u
,

∂2A

∂x∂u
, q,

∂q

∂u

are sufficiently small in L1(R+ × R).
Finally, we conclude with the convergence of the proposed scheme (Cf. The-

orem 5.1) which yields the global existence of entropy solutions for the Cauchy
problem (1.1)-(1.2). The solution satisfies an entropy inequality and has bounded
total variation in x for all t ≥ 0. Our results cover in particular the case

∂tu + ∂xf(u) = g(t), (1.5)

for which global existence of entropy solutions is established under the sole as-
sumption

∫ +∞

0

|g(t)| dt << 1. (1.6)

Without further restriction on the flux f , this condition is clearly necessary in
order to apply the Glimm method, since, for instance in the trivial case p = 1
and f = 0, (1.5) reduces to the differential equation

∂tu = g(t). (1.7)

On one hand, the condition (1.6) holds if and only if every solution of (1.7)
remains close to a constant state, which is a necessary condition in order to apply
the Glimm method. On the other hand, when one of the eigenvalues of the system
(1.1) vanishes, the amplitude of solutions could become arbitrarily large and the
solutions would not remain bounded —except when the source term satisfies a
“damping” property in time.

As a direct application, the global existence of entropy solutions to (1.3)
follows, if the source g and its derivative ∂g

∂u
are sufficiently small in L1(R+ ×R),

which is the case, for instance, if the support of (at, ax) is sufficiently small.

2. An approximate solver for the generalized Riemann
problem

In the present section, we introduce an approximate solution to the general-
ized Riemann problem associated with the system (1.1), and we derive an error
estimates (see Proposition 2.1 below).

Given t0 > 0, x0 ∈ R, and two constant states uL, uR ∈ R
p, we consider the

generalized Riemann problem, denoted by RG(uL, uR; t0, x0), and consisting of
the following equations and initial conditions:

∂tu + ∂xf(t, x, u) = g(t, x, u), t > t0, x ∈ R, (2.1)
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u(0, x) =

{
uL, x < x0,
uR, x > x0.

(2.2)

Replacing f and g in (2.1) by f(t0, x0, u) and 0, respectively, the problem
RG(uL, uR; t0, x0) reduces to the classical Riemann problem,which we denote by
RC(uL, uR; t0, x0), that is the equations

∂tu + ∂xf(t0, x0, u) = 0, u(t, x) ∈ R
p, t > t0, x ∈ R (2.3)

together with the initial data (2.2). This problem was solved by Lax under the
assumption that the initial jump |uR − uL| be sufficiently small: the solution to
RC(uL, uR; t0, x0) is self-similar (i.e. depends only on x−x0

t−t0
) and consists of at most

(p + 1) constant states uL = u0, u1, . . . , up = uR, separated by rarefaction waves,
shock waves or contact discontinuities; see Figure 2.1.

The following terminology and notation will be used throughout this paper.
Let WC = WC(ξ; uL, uR; t0, x0) be the solution of RC(uL, uR; t0, x0) with ξ =
(x − x0)/(t − t0). We say that the problem RC(uL, uR; t0, x0) is solved by the
elementary waves (ui−1, ui) (i = 1, . . . , p) if each constant state ui belongs to
the i-wave curve Wi(ui−1) issued from the state ui−1 in the phase space, and
(ui−1, ui) is called an i−wave of RC(uL, uR; t0, x0). When the i-characteristic field
is genuinely nonlinear, the curve Wi(ui−1) consists of two parts, the i-rarefaction
curve and the i-shock curve issuing from ui−1; if i-characteristic field is linearly
degenerate, the curve Wi(ui−1) is a C2 curve of i-contact discontinuities. Call εi

the strength of the i-wave (ui−1, ui) along the i-curve, so that, for a genuinely
nonlinear i-field, we can assume that εi ≥ 0 if (ui−1, ui) is a rarefaction wave, and
εi ≤ 0 if (ui−1, ui) is a shock wave. On the other hand, εi has no specific sign if
(ui−1, ui) is a contact discontinuity.

Let εi(uL, uR; t0, x0) denote the wave strength of the i-wave (ui−1, ui) in the
Riemann problem RC(uL, uR; t0, x0), and vector ε = (ε1, . . . , εp) denote the wave

strength of RC(uL, uR; t0, x0) (so |ε| is equivalent to the total variation of

WC(ξ; uL, uR; t0, x0)).

In addition, we let σ−
i = λi(ui−1, t0, x0) and σ+

i = λi(ui, t0, x0) be the lower and
upper speeds of the i-rarefaction wave (ui−1, ui) respectively, and σi be the speed
of the i-shock or i-contact discontinuity. If the i-wave is a shock or a contact
discontinuity we set σ−

i = σ+
i = σi.

From the implicit function theorem we deduce that the states ui and the
speeds σ±

i are smooth functions of uL, uR, t0, and x0. Moreover, one can check
that ui = uL + O(1)|uR − uL| (i = 0, 1, . . . , p), and, for an i-shock (ui−1, ui),

σi = λi(ui−1; t0, x0) + O(1) |ui − ui−1|, i = 1, 2, . . . , p,

where O(1) is bounded function possibly depending on uL, uR ∈ U , t0 ≥ 0, and
x0 ∈ R.
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Consider next the generalized Riemann problem on which a large litera-
ture is available [18, 13, 4, 6, 17]. First, we recall [18] that the solution of
RG(uL, uR; t0, x0) is piecewise smooth and has a local structure which is sim-
ilar to the one of the associated classical Riemann problem RC(uL, uR; t0, x0).
Following [17] we consider an approximate Riemann solution of the problem
RG(uL, uR; t0, x0), denoted by WG(t, x; uL, uR; t0, x0) and defined by

WG(t, x; uL, uR; t0, x0) = WC(ξ) + (t − t0) q(t0, x0, WC(ξ)) (2.4)

for t > t0 and x ∈ R. Here, the function q(t, x, u) is given by (1.4), and

ξ =
x − x0

t − t0
, WC(ξ) = WC(ξ; uL, uR; t0, x0).

Observe that the function WG(t, x; uL, uR; t0, x0) is constructed as a superposi-
tion of the corresponding classical Riemann solution WC(ξ; uL, uR; t0, x0) and an
asymptotic expansion term (t − t0)q(t0, x0, WC(ξ)) (see Figure 2.2).

Within a region where function WC(ξ) is a constant, the function

WG(t, x; uL, uR; t0, x0)

is a linear function of t, namely,

WG(t, x; uL, uR; t0, x0) = ui + (t − t0)q(t0, x0, ui), σ+
i <

x

t
< σ−

i+1 (2.5)

for i = 0, 1, . . . , p. By convention, σ+
0 := −∞ and σ−

p+1 := +∞. Whenever there
will be no ambiguity, we will use the notation WG(t, x) or WG(t, x; uL, uR) for
WG(t, x; uL, uR; t0, x0).

To describe the structure of WG(t, x; uL, uR; t0, x0), it is convenient to say that
the approximate solution WG(t, x, uL, uR; t0, x0) consists of an i-wave (ui−1, ui) if
(ui−1, ui) is an i-wave of the corresponding classical Riemann solution

WC(ξ; uL, uR; t0, x0).
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Figure 2.1 : Classical Riemann solution (p=2),
uL, u1 and uR are constant states, u = u(ξ) is a function of ξ = x

t
.

Figure 2.2 : Generalized Riemann solution (p=2),
uL(t), u1(t), uR(t) are functions of t and ũ(t, ξ) is constructed by (2.4).

We now prove that the function WG(t, x) defined in (2.4) approximately solves
the problem RG(uL, uR; t0, x0), by evaluating the discrepancy between WG(t, x)
and the exact solution of RG(uL, uR; t0, x0). Given any s > 0 and r > 0, and any
C1 function θ : R+ × R → R with compact support, we now show that the term

∆(s, r; θ) :=

∫ t0+s

t0

∫ x0+r

x0−r

{WG ∂tθ + f(t, x, WG) ∂xθ + g(t, x, WG) θ
)

dxdt (2.6)

is of third order in r, s, provided that the condition (2.7) holds.

Proposition 2.1. Let θ : R+ ×R → R be a compactly supported, C1 function.
Then, for every (t0, x0) ∈ R+ × R, uL, uR ∈ U , and any positive numbers s, r
satisfying the (Courant-Friedrichs-Levy -type) stability condition

s

r
sup |λi(t, x, u)| ≤ 1 (2.7)

(the supremum being taken over 1 ≤ i ≤ p, (t, x) ∈ R+ × R, and u ∈ U), the
function WG(t, x) = WG(t, x; uL, uR; t0, x0) satisfies

∆(s, r; θ) =

∫ x0+r

x0−r

WG(t0 + s, ·)θ(t0 + s, ·)dx−

∫ x0+r

x0−r

WG(t0, ·)θ(t0, ·)dx

+

∫ t0+s

t0

f(·, x0 + r, WG(·, x0 + r))θ(·, x0 + r)dt

−

∫ t0+s

t0

f(·, x0 − r, WG(·, x0 − r))θ(·, x0 − r)dt

+ O(1)(s2 + r2)(s + r + |uR − uL|)||θ||C1,

(2.8)
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where ∆(s, r; θ) is given in (2.6) and ||θ||C1 = ||θ||C0 + ||∂tθ||C0 + ||∂xθ||C0.
The left-hand side of (2.8) vanishes when WG(t, x) is replaced by the exact

solution of RG(uL, uR; t0, x0). Thus, the right hand side of (2.8) represents the
error due to the choice of approximate solution WG(t, x).

Remark 2.2. 1. Condition (2.7) ensures that the waves in RC(uL, uR; t0, x0) can
not reach the lines

{
x = x0 ± r

}
for t ≤ t0 + s, so that the waves in the rectangle

region D(to,x0) ≡ [x0−r, x0 +r]× [t0, t0 +s) do not interact with the waves outside
D(to,x0).

2. In a different context, Liu [20] derived earlier an estimate similar to (2.7),
but for an approximation based on steady state solutions of the hyperbolic system
and with initial data consisting of two steady state solutions of (2.1) (with f =
f(u) and g = g(x, u)).

3. Our formula (2.11) yields a possible generalization to the class of quasilinear
systems (1.1) of the notion of (classical) Riemann solver introduced by Harten
and Lax in [14].

4. One can check similarly that WG satisfies an entropy inequality associated
with an entropy pair (when available). The error terms are completely similar to
those found in (2.11). This will be used to show that the weak solution generated
by the random choice method satisfies all the entropy inequalities.

Proof. Without loss of generality, we can assume that (t0, x0) = (0, 0). Given
a C1 function θ with compact support in R+ × R, we define m(t, x) := WG∂tθ +
f(t, x, WG)∂xθ+g(t, x, WG)θ. From (2.6) we have ∆(s, r; θ) =

∫ s

0

∫ r

−r
m(t, x)dxdt.

Next, we decompose ∆(s, r; θ) as

∆(s, r; θ) =

p∑

i=0

∆1
i (s, r; θ) +

∑

i−rare.

waves

∆2
i (s, r; θ) (2.9)

where

∆1
i (s, r; θ) :=

∫ s

0

∫ σ−

i+1
t

σ+

i t

m(t, x) dxdt, 1 ≤ i ≤ p − 1,

∆1
0(s, r; θ) :=

∫ s

0

∫ σ−

1
t

−r

m(t, x) dxdt, ∆1
p(s, r; θ) :=

∫ s

0

∫ r

σ+
p t

m(t, x) dxdt,

and (if the i-wave, 1 ≤ i ≤ p, is a rarefaction wave)

∆2
i (s, r; θ) :=

∫ s

0

∫ σ+

i t

σ−

i t

m(t, x) dxdt

9



We first compute ∆1
i in the region where classical Riemann solution WC is a

constant state. According to the form of WG(t, x) in (2.5), it follows that

WG(t, x) = ui + t q(0, 0; ui) (2.10)

for x
t
∈ [σ+

i , σ−
i+1], i ∈

{
1, 2, . . . , p−1

}
. By a simple calculation and the definition

of q in (1.4), we have

∂tWG + ∂xf(t, x, WG) − g(t, x, WG) = q(0, 0; ui) − q(t, x, WG)

for i ∈
{
1, 2, . . . , p − 1

}
. By multiplication by the function θ and then using

integration by parts, we obtain

∆1
i (s, r; θ) =

∫ σ−

i+1
s

σ+

i
s

WG(s, x)θ(s, x)dx

+

∫ s

0

(f(t, σ−
i+1t, WG(t, σ−

i+1t)) − σ−
i+1WG(t, σ−

i+1t))θ(t, σ
−
i+1t)dt

−

∫ s

0

(f(t, σ+
i t, WG(t, σ+

i t)) − σ+
i WG(t, σ+

i t))θ(t, σ+
i t)dt

−

∫ s

0

∫ σ−

i+1
t

σ+

i t

(
q(0, 0; ui) − q(t, x, WG)

)
θ(t, x) dxdt.

(2.11)

By the property that q is Lipschitz continuous with respect to t, x and u on the
compact set [0, s] × [−r, r] and the form of WG(t, x) in (2.10), the last term on
the right hand side of (2.11) can be estimated by O(s3) ||θ||C0 with the bound
O(1) depending on q. Therefore, equality (2.11) leads to

∆1
i (s, r; θ) =

∫ σ−

i+1
s

σ+

i s

WG(s, x)θ(s, x)dx

+

∫ s

0

(f(t, σ−
i+1t, WG(t, σ−

i+1t)) − σ−
i+1WG(t, σ−

i+1t−))θ(t, σ−
i+1t)dt

−

∫ s

0

(f(t, σ+
i t, WG(t, σ+

i t + 0)) − σ+
i WG(t, σ+

i t+))θ(t, σ+
i t)dt

+ O(1)s3 ||θ||C0

(2.12)

for i = 1, 2, . . . , p − 1. In the same fashion one can show that

∆1
0(s, r; θ) =

∫ σ−

1
s

−r

WG(s, x)θ(s, x)dx −

∫ 0

−r

WG(0, x)θ(0, x)dx

+

∫ s

0

(f(t, σ−
1 t, WG(t, σ−

1 t−)) − σ−
1 WG(t, σ−

1 t−))θ(t, σ−
1 t)dt

−

∫ s

0

f(t,−r, WG(t,−r))θ(t,−r)dt

+ O(1)s2(s + r)||θ||C0 + O(1)sr2||θ||C0,

(2.13)
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and

∆1
p(s, r; θ) =

∫ r

σ+
p s

WG(s, x)θ(s, x)dx −

∫ r

0

WG(0, x)θ(0, x)dx

+

∫ s

0

f(t, r, WG(t, r))θ(t, r)dt

−

∫ s

0

(f(t, σ+
p t, WG(t, σ+

p t+)) − σ+
p WG(t, σ+

p t+))θ(t, σ+
p t)dt

+ O(1)s2(s + r)||θ||C0 + O(1)sr2||θ||C0.

(2.14)

Next, suppose that WC(t, x) consists of an i-rarefaction wave in the region{
(t, x)|x

t
∈ [σ−

i , σ+
i ]
}

for some i ∈ 1, . . . , p. It follows that WG(t, x) in this region
is of the form

WG(t, x) = W̃C(
x

t
) + t q(0, 0; W̃C(

x

t
))

where W̃C(x
t
) is the i-rarefaction wave of the classical Riemann problem

RC(uL, uR; t0, x0).

By setting ξ = x
t
, WG(t, x) = W̃G(t, ξ), and the technique of change of variables

(t, x) → (t, ξ), we obtain

∂tWG + ∂xf(t, x, WG) − g(t, x, WG)

= ∂tW̃G −
ξ

t
∂ξW̃G +

1

t
∂ξf(t, tξ, W̃G) − g(t, tξ, W̃G)

=
1

t

(∂f

∂u
(t, tξ, W̃G) − ξI)(I + t

∂q

∂u
(0, 0, W̃C)

)
·
dW̃C

dξ
+ q(0, 0, W̃C) − q(t, tξ, W̃C)

(2.15)

where I is the p × p identity matrix. Since W̃C(ξ) is a rarefaction wave for the
system (2.3), this implies that

1

t

(
− ξ · I +

∂f

∂u
(0, 0, W̃C)

)
·
dW̃C

dξ
= 0. (2.16)

Thus, by applying (2.16) to (2.15) we obtain

∂tWG + ∂xf(t, x, WG) − g(t, x, WG)

=
1

t

(∂f

∂u
(t, x, WG) −

∂f

∂u
(0, 0, W̃C)

)
·
dW̃C

dξ

+ (
∂f

∂u
(t, x, WG) − ξI)

∂q

∂u
(0, 0, W̃C) ·

dW̃C

dξ
+ q(0, 0, W̃C) − q(t, x, WG).

(2.17)
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Next, we multiply (2.17) by θ(t, x) and integrate the equation over the region of
i-rarefaction wave: t < s and x

t
∈ [σ−

i , σ+
i ]. Due to the Lipschitz continuity of ∂f

∂u

and the fact that ∂f
∂u

, ∂q
∂u

, dfWC

dξ
and q remain bounded in [0, s] × [−r, r], the right

hand side of (2.17) is bounded by O(1)s2(s + |ui − ui−1|). Therefore, by (2.17)
again, we deduce the estimate

∆2
i (s, r; θ) =

∫ σ+

i s

σ−

i s

WG(s, x)θ(s, x)dx

+

∫ s

0

(f(t, σ+
i t, WG(t, σ+

i t)) − σ+
i WG(t, σ+

i t))θ(t, σ+
i t)dt

−

∫ s

0

(f(t, σ−
i t, WG(t, σ−

i t)) − σ−
i WG(t, σ−

i t))θ(t, σ−
i t)dt

+ O(1)s2(s + |uR − uL|)‖θ‖C0.

(2.18)

Next, note that an i-shock wave satisfies the Rankine-Hugoniot condition

f(0, 0, ui) − σiui = f(0, 0, ui−1) − σiui−1,

and this implies that the approximate solution WG(t, x) satisfies
∫ s

0

[(f(t, σit, WG(t, σit+)) − σiWG(t, σit+))]θ(t, σit)dt

−

∫ s

0

[(f(t, σi−1t, WG(t, σi−1t−)) − σi−1WG(t, σi−1t−))]θ(t, σi−1t)dt

= O(1)s2|uR − uL|‖θ‖C0

(2.19)

where the bound O(1) depends on the Lipschitz constant of f and L∞-norm of
q. Finally, by the estimates (2.9), (2.12)-(2.14) and (2.18)-(2.19), we obtain

∆(s, t; θ) =

p∑

i=0

∆1
i (s, t; θ) +

∑

i−rare.

waves

∆2
i (s, t; θ)

=

∫ σ−

i s

−r

WG(s, x)θ(s, x)dx +

p−1∑

i=1

∫ σ−

i+1
s

σ+

i s

WG(s, x)θ(s, x)dx

+
∑

i−rare.

waves

∫ σ+

i s

σ−

i s

WG(s, x)θ(s, x)dx +

∫ r

σ+
p s

WG(s, x)θ(s, x)dx

−

∫ 0

−r

WG(0, x)θ(0, x)dx −

∫ r

0

WG(0, x)θ(0, x)dx

+

∫ s

0

f(t, r, WG(t, r))θ(t, r)dt−

∫ s

0

f(t,−r, WG(t,−r))θ(t,−r)dt

+ O(1)(s2 + r2)(s + r + |uR − uL|) ||θ||C1,

which leads to (2.8) and completes the proof.
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3. Wave interaction estimates

In this section we study the nonlinear interaction of waves issuing from two
Riemann solutions and we derive estimates on the wave strengths.

We emphasize that the generalized Riemann solution, nor the approximate
solution WG(t, x) of the generalized Riemann problem RG(uL, uR; t0, x0) is not
self-similar. The solution does not consist of regions of constant value separated
by straight lines. We thus should be careful in defining the wave strengths In fact,
we still define here the wave strengths by using the underlying, classical Riemann
solution WC(t, x). We will see later that this strategy is accurate enough and
that the discrepancy in total variation between WG(t, x) and WC(t, x) on each
time step is uniformly small (Cf. Section 4) when our Glimm scheme is applied to
the problem (1.1), (1.2). The same observation applies to the potential of wave
interaction to be introduced later.

In the rest of the section, all waves are considered as waves from some classical
Riemann problem unless specified otherwise. We say that an i-wave and a j-wave
approach each other (or interact in the future) if either i > j, or else i = j and
at least one of two waves is a shock wave. Suppose there are two solutions from
different classical Riemann problems with strengths denoted by α = (αi, . . . , αp)
and β = (βi, . . . , βp), then the wave interaction potential associated these two
solutions is defined by

D(α, β) :=
∑

(i,j)

|αiβj|, (3.1)

where the notation (i, j) under the summation sign indicates an i-wave in one
solution approaching a j-wave in the other solution, and the summation is on all
approaching waves; also αi or βi is negative when i = j. In addition, given a
(uL, uR; t0, x0) ∈ U × U × R+ × R, the wave strengths in RC(uL, uR; t0, x0) are
denoted by ε(uL, uR; t0, x0).

We first recall:

Lemma 3.1. (Glimm) 1) Given a (t0, x0) in R+ × R and uL, uM , uR in U ,
we have

|γ − (α + β)| = O(1)D(α, β) (3.2)

where

α = ε(uL, uM ; t0, x0), β = ε(uM , uR; t0, x0), γ = ε(uL, uR; t0, x0). (3.3)

2) Let vL, vR be two constant states in U , then

D(γ, δ) = D(α, δ) + D(β, δ) + O(1)|δ|D(α, β), (3.4)
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and

D(δ, γ) = D(δ, α) + D(δ, β) + O(1)|δ|D(α, β)

where α, β and γ are given in (3.3), and δ is given by δ = ε(vL, vR; t0, x0).
The following lemma describes the dependence of the wave strengths and

potential D(·, ·) with respect to their arguments. We introduce the following
“local norm” of a given function ϕ(t, x, u)

Nx1,x2

t1,t2 (ϕ) = sup
{
|ϕ(t, x, u)| ; t ∈ [t1, t2], x ∈ [x1, x2], u ∈ U

}
, (3.5)

where the supremum is taken over any function u ∈ U and (t, x) ∈ [t1, t2]×[x1, x2].

Lemma 3.2. 1) The wave strength ε = (εi)1≤i≤p : U × U × R+ × R → R
p

is a C2 vector function of its arguments. Furthermore, for any (uL, uR), (u′
L, u′

R)
in U × U and any (t0, x0), (t

′
0, x

′
0) in R+ × R, we have

|α′ − α| = O(1)|α|(|u′
L − uL| + |u′

R − uR| + C0
1 |t

′
0 − t0| + C0

2 |x
′
0 − x0|)

+ O(1)|(u′
R − u′

L) − (uR − uL)|
(3.6)

where

α = ε(uL, uR; t0, x0), α′ = ε(u′
L, u′

R; t′0, x
′
0), (3.7)

and the constants C0
1 and C0

2 are given by

C0
1 := N

x0,x′

0

t0,t′
0

(
∂2A

∂t∂u
), C0

2 := N
x0,x′

0

t0,t′
0

(
∂2A

∂x∂u
). (3.8)

2) For given (uL, uR), (vL, vR), (u′
L, u′

R), (v′
L, v′

R) in U×U and (t1, x1), (t2, x2),
(t′1, x

′
1), (t′2, x

′
2) in R+ × R, we have

D(α′, β ′) = D(α, β) + O(1)|α||(v′
R − v′

L) − (vR − vL)|

+ O(1)|β||(u′
R − u′

L) − (uR − uL)|

+ O(1)|α||β|
(
|u′

L − uL| + |u′
R − uR| + |v′

L − vL| + |v′
R − vR|

)

+ O(1)|α||β|
∑

m=1,2

{Cm
1 |t′m − tm| + Cm

2 |x′
m − xm|}

+ O(1)|(u′
R − u′

L) − (uR − uL)| · |(v′
R − v′

L) − (vR − vL)|

(3.9)

where

α = ε(uL, uR; t1, x1), β = ε(vL, vR; t2, x2),

α′ = ε(u′
L, u′

R; t′1, x
′
1), β ′ = ε(v′

L, v′
R; t′2, x

′
2),

(3.10)

and the constants Cm
1 , Cm

2 are defined by

Cm
1 := N

xm,x′

m

tm,t′m
(
∂2A

∂t∂u
), Cm

2 := N
xm,x′

m

tm,t′m
(

∂2A

∂x∂u
), m = 1, 2. (3.11)
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Proof. The regularity of functions εi, i = 1, 2, . . . , p, is a consequence of smooth-
ness of the flux function f and the result of [15]. Moreover, the functions ∂2εi

∂t∂uR

and ∂2εi

∂x∂uR
are bounded if ∂2A

∂t∂u
, ∂2A

∂x∂u
are bounded.

To show (3.6), we note that εi(uL, uR; t0, x0) = 0 when uR = uL. Then, by the
regularity of εi, i = 1, 2, . . . , p, we can express εi(uL, uR; t0, x0), εi(u

′
L, u′

R; t′0, x
′
0)

as

εi(uL, uR; t0, x0) =

∫ 1

0

∂εi

∂uR
(uL, (1 − τ)uL + τuR; t0, x0)dτ · (uR − uL),

εi(u
′
L, u′

R; t′0, x
′
0) =

∫ 1

0

∂εi

∂uR
(u′

L, (1 − τ)u′
L + τu′

R; t′0, x
′
0)dτ · (u′

R − u′
L).

Applying the definition of {C0
j : j = 1, 2.} in (3.8) and the norm in (3.5), we

obtain

εi(u
′
L, u′

R; t′0, x
′
0) − εi(uL, uR; t0, x0)

=

∫ 1

0

(
∂εi

∂uR
(u′

L, (1 − τ)u′
L + τu′

R; t′0, x
′
0) −

∂εi

∂uR
(uL, (1 − τ)uL + τuR; t0, x0))dτ · (uR − uL)

+

∫ 1

0

∂εi

∂uR

(u′
L, (1 − τ)u′

L + τu′
R; t′0, x

′
0)dτ · ((u′

R − u′
L) − (uR − uL))

= O(1){|u′
L − uL| + |u′

R − uR| + C0
1 |t

′
0 − t0| + C0

2 |x
′
0 − x0|}|uR − uL|

+ O(1)|(u′
R − u′

L) − (uR − uL)|,

Therefore, by the observation of (3.7) and the fact that

|uR − uL| = O(1)|ε(uL, uR; t0, x0)| = O(1)|α|,

we obtain (3.6).

Next we derive (3.9). By applying (3.6) directly, we have

α′
i = αi + O(1)|α|{|u′

L − uL| + |u′
R − uR| + C1

1 |t
′
1 − t1| + C1

2 |x
′
1 − x1|}

+ O(1)|(u′
R − u′

L) − (uR − uL)|,

β ′
j = βj + O(1)|β|{|v′

L − vL| + |v′
R − vR| + C2

1 |t
′
2 − t2| + C2

2 |x
′
2 − x2|}

+ O(1)|(v′
R − v′

L) − (vR − vL)|

for i, j = 1, 2, . . . , p where the constants {Cm
j : j, m = 1, 2.} are given in (3.11)

and (3.5). We define A := {|u′
L −uL|+ |u′

R −uR|+ C1
1 |t

′
1 − t1|+ C1

2 |x
′
1 −x1|} and

B := {|v′
L − vL| + |v′

R − vR| + C2
1 |t

′
2 − t2| + C2

2 |x
′
2 − x2|}. Then by multiplying
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two previous equations together and using the fact that A, B are of order O(1)
for (uL, uR), (u′

L, u′
R) ∈ U × U , we obtain

α′
iβ

′
j = αiβj + O(1)|α||β|(A + B) + O(1)|α||(v′

R − v′
L) − (vR − vL)|

+ O(1)|β||(u′
R − u′

L) − (uR − uL)|

+ O(1)|(u′
R − u′

L) − (uR − uL)| · |(v′
R − v′

L) − (vR − vL)|,

i, j = 1, 2, . . . , p. Summing up previous equations for i, j = 1, 2, . . . , p, we obtain
(3.9). The proof is completed.

Using Lemmas 3.1 and 3.2, we obtain wave interaction estimates –which can
be interpreted as a generalized version of [10].

Proposition 3.3. 1) Suppose that s, r are two positive numbers and (t0, x0)
is in R+ × R. Also assume that uL, uM , uR, uL + µL, uR + µR are constant
states in U and α, β and γ are the wave strengths of solutions of three classical
Riemann problems RC(uL, uM ; t0, x0 − r), RC(uM , uR; t0, x0 + r) and RC(uL +
µL, uR + µR; t0 + s, x0), i.e.,

α = ε(uL, uM ; t0, x0 − r), β = ε(uM , uR; t0, x0 + r),

γ = ε(uL + µL, uR + µR; t0 + s, x0).
(3.12)

Then we have

|γ| = |α| + |β| + O(1)D(α, β)

+ O(1)(|α|+ |β|)(|µL| + |µR| + C1s + C2r)

+ O(1)|µR − µL|

(3.13)

where constants C1 and C2 are defined by

C1 := Nx0x0

t0,t0+s

( ∂2A

∂t∂u

)
, C2 := Nx0−r,x0+r

t0,t0

( ∂2A

∂x∂u

)
. (3.14)

2) Let α, β, γ be the wave strengths as described in (3.12). Also, for a given
(vL, vR) in U × U and (t1, x1) in R+ × R, we define δ = ε(vL, vR; t1, x1). Then

D(γ, δ) = D(α, δ) + D(β, δ) + O(1)|δ|D(α, β) + O(1)|δ||µR − µL|

+ O(1)|δ|(|α|+ |β|)(|µL| + |µR| + C1s + C2r),
(3.15)

and

D(δ, γ) = D(δ, α) + D(δ, β) + O(1)|δ|D(α, β) + O(1)|δ||µR − µL|

+ O(1)|δ|(|α|+ |β|)(|µL| + |µR| + C1s + C2r)
(3.16)

where constants C1 and C2 are given in (3.14).
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Proof. By the definition of γ in (3.12) and Lemma 3.2 with u′
L = uL + µL,

u′
R = uR + µR, t′ = t0 + s, x′

0 = x0, we obtain

γ = ε(uL, uR; t0, x0) + O(1)|ε(uL, uR; t0, x0)|
(
|µL| + |µR| + C1 s

)

+ O(1) |µR − µL|
(3.17)

where constant C1 is given in (3.14). Similarly, by Lemma 3.2 we have

ε(uL, uM ; t0, x0) = α + O(1)C2|α|r, (3.18)

ε(uM , uR; t0, x0) = β + O(1)C2|β|r. (3.19)

On the other hand, Glimm’s interaction estimates (3.2), (3.3) lead to

ε(uL, uR; t0, x0) = ε(uL, uM ; t0, x0) + ε(uM , uR; t0, x0)

+ O(1)D(ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)).
(3.20)

Also, by (3.9)-(3.11) with α′ = ε(uL, uM ; t0, x0) and
β ′ = ε(uM , uR; t0, x0), we obtain

D(ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)) = D(α, β) + O(1)|α||β|C2r. (3.21)

Then, from (3.17)-(3.21) it follows that

|γ| = |α| + |β| + O(1)D(α, β) + O(1)(|α|+ |β| + |α||β|)C2r

+ O(1)|ε(uL, uR; t0, x0)|(|µL| + |µR| + C1s) + O(1)|µR − µL|

= |α| + |β| + O(1)D(α, β) + O(1)(|α|+ |β|)C2r

+ O(1)|ε(uL, uR; t0, x0)|(|µL| + |µR| + C1s) + O(1)|µR − µL|.

(3.22)

Also, we see that estimates (3.20) and (3.21) yield

|ε(uL, uR; t0, x0)| = |ε(uL, uM ; t0, x0)| + |ε(uM , uR; t0, x0)|

+ O(1)D(ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0))

=|α| + |β| + O(1)D(α, β) + O(1) (|α|+ |β|) C2r

+ O(1)|α||β|C2r

=(|α| + |β|)(1 + O(1)C2r) + O(1)D(α, β) + O(1)|α||β|C2r,

which in particular implies that

|ε(uL, uR; t0, x0)| = O(1)(|α|+ |β|). (3.23)

Therefore, combining (3.22) with (3.23), we obtain (3.13).
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Next we derive (3.15). The proof of (3.16) is similar, and is omitted. By the
estimate (3.4) we see that

D(ε(uL, uR; t0, x0), δ) = D(ε(uL, uM ; t0, x0), δ) + D(ε(uM , uR; t0, x0), δ)

+ O(1)|δ|D(ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)).
(3.24)

On the other hand, estimate (3.9) yields

D(γ, δ) = D(ε(uL, uR; t0, x0), δ) + O(1)|δ||µR − µL|

+ O(1)|ε(uL, uR; t0, x0)||δ|(|µL| + |µR| + C1s),
(3.25)

D(ε(uL, uM ; t0, x0), δ) = D(α, δ) + O(1)|α||δ|C2r, (3.26)

D(ε(uM , uR; t0, x0), δ) = D(β, δ) + O(1)|β||δ|C2r, (3.27)

and

D(ε(uL, uM ; t0, x0), ε(uM , uR; t0, x0)) = D(α, β) + O(1)|α||β|C2r. (3.28)

Thus, by applying (3.23), (3.25)-(3.28) to (3.24), we obtain the estimate (3.15).
The proof is completed.

We just showed in Proposition 3.3 that Glimm’s interaction estimates (Lemma
3.1) remain valid for the quasilinear hyperbolic system (1.1) up to certain error
terms. The following immediate consequence of Proposition 3.3 will be the key
to the forthcoming stability result.

Corollary 3.4 Following the notations and assumptions in Proposition 3.3 and
letting

µL := −sq(t0 + s, x0, uL), µR := −sq(t0 + s, x0, uR)

in (3.14), we have

|γ| = |α| + |β| + O(1)D(α, β)

+ O(1)(|α|+ |β|)
(
(C1 + C3 + C4) s + C2 r

)
,

(3.29)

D(δ, γ) = D(δ, α) + D(δ, β) + O(1)|δ|D(α, β)

+ O(1)|δ|(|α|+ |β|)
(
(C1 + C3 + C4) s + C2 r

)
,

(3.30)

D(γ, δ) = D(α, δ) + D(β, δ) + O(1)|δ|D(α, β)

+ O(1)|δ|(|α|+ |β|){(C1 + C3 + C4)s + C2r}
(3.31)

where constants C1, C2 are given in (3.14) and C3, C4 are given by

C3 := Nx0x0

t0,t0+s(q(t, x, u)), C4 := Nx0x0

t0,t0+s(
∂q

∂u
(t, x, u)). (3.32)
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Proof. By the observation of (3.23) we obtain

|µR − µL| = s|q(t0 + s, x0, uR) − q(t0 + s, x0, uL)|

= s
∂q

∂u
(t0 + s, x0, ū) · |uR − uL|

= O(1)C4s|ε(uL, uR; t0, x0)|

= O(1)(|α|+ |β|)C4s

(3.33)

where ū ∈ U and C4 is given in (3.32). Therefore, by combining (3.33) with the
result of Proposition 3.3, we obtain (3.29)-(3.31) . The proof is completed.

4. Stability of the generalized Glimm method

We are in position to introduce our version of Glimm scheme for the approx-
imation of the quasilinear system (1.1). Then we rely on the wave interaction
estimates in Section 3 and prove a stability result.

The approximate solution to the Cauchy problem (1.1), (1.2) is defined as
follows. Given two positive constants s and r satisfying the C-F-L condition
(2.7), we introduce the constant

λ∗ :=
r

s
. (4.1)

Let also a =
{
ak : ak ∈ (−1, 1), k ∈ N

}
be an equidistributed sequence. We

divide the (t, x) plane into

tk = ks, xh = hr, k = 0, 1, 2, . . . , h ∈ Z. (4.2)

Next, we construct an approximate solution ur(t, x) of the problem (1.1), (1.2)
in the following way. First, the initial data u0(x) is approximated by a piecewise
constant function

ur(0, x) = u0(hr), x ∈ [(h − 1)r, (h + 1)r), h is odd. (4.3)

Then, within domain 0 ≤ t < s, we construct an approximate solution WG(t, x)
for each generalized Riemann problem with initial data ur(0, x) to obtain ur(t, x)
in region

{
(t, x); 0 ≤ t < s

}
. If ur(t, x) has been constructed for t < ks, k ∈ N,

we set

ur(ks, x) := ur(ks−, (h + ak)r) (4.4)

for x ∈ [(h−1)r, (h+1)r), k+h is odd. Again, we solve the generalized Riemann
problems with initial data ur(ks, x) given in (4.4) to construct ur(t, x) within
region

{
(t, x); ks ≤ t < (k+1)s}. Following the process (4.3), (4.4) consecutively,
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we then construct our approximate solution ur(t, x) of (1.1), (1.2). In other words,
the approximate solution to the problem (1.1), (1.2) generated by the generalized
Glimm scheme is given by

ur(t, x) = WG(t, x; ur(ks, (h − 1)r), ur(ks, (h + 1)r); ks, hr) (4.5)

for (t, x) ∈ [ks, (k + 1)s) × [(h − 1)r, (h + 1)r), k + h is even.

Next we study the stability of ur(t, x) in L∞ and BV norms. This requires
the description of mesh points, mesh curves and immediate successors before-
hand. Recall that the values of ur(t, x) on t = ks are determined by the values
of ur(t, x) at points {(ks−, (h + ak)r); h ∈ Z, k + h is odd}, we call these points
{(ks, (h + ak)r) : k = 0, 1, 2, · · · , h ∈ Z, k + h is odd} the mesh points of
approximate solution ur(t, x). We obtain a set of diamond regions by connecting
all mesh points with segments. An unbounded piecewise linear curve I is called a
mesh curve if I lies on the boundaries of those diamond regions. Suppose I is a
mesh curve, then I divides the (t, x) plane into I+ and I− regions, such that I−

contains t = 0. We say two mesh curves I1 > I2 ( I1 is a successor of I2) if every
point of I1 is either on I2 or contained in I+

2 . And, I1 is an immediate successor
of I2 if I1 > I2 and every mesh point of I1 except one is on I2. Note that the
difference between I1 and I2 is determined by a diamond region if one is an im-
mediate successor of the other.

Next, to simplify the notations, we set uk,h := ur(ks, hr) when k + h is odd.
By the observation of (2.4) and (4.5), we have

uk,h = ũk,h + s q((k − 1)s, hr, ũk,h), k + h is odd,

where ũk,h is the value of RC(uk−1,h−1, uk−1,h+1; (k − 1)s, hr) at (ks−, (h + ak)r),
i.e.,

ũk,h = WC(ak
r

s
; uk−1,h−1, uk−1,h+1; (k − 1)s, hr)

with the function WC given in Section 2. Next, given a pair (k0, h0), k0+h0 is even,
we note that the (t, x)−plan consists of the diamond regions Γk0,h0

with center
(k0s, h0r) and vertices (mesh points)

S := ((k0 − 1)s, (h0 + ak0−1)r), W := (k0s, (h0 − 1 + ak0
)r),

E := (k0s, (h0 + 1 + ak0
)r), N := ((k0 + 1)s, (h0 + ak0+1)r)

(4.6)

(see Figure 4.1). We set

uS := uk0−1,h0
, uW := uk0,h0−1, uE := uk0,h0+1, uN := uk0+1,h0

, (4.7)

and

ũS := ũk0−1,h0
, ũW := ũk0,h0−1, ũE := ũk0,h0+1, ũN := ũk0+1,h0

. (4.8)
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Note that uW and uE are the states in RG((k0 − 1)s, (h0 − 1)r) and RG((k0 −
1)s, (h0 + 1)r) respectively, i.e.,

uW = ũW + s q((k0 − 1)s, (h0 − 1)r, ũW ),

uE = ũE + s q((k0 − 1)s, (h0 + 1)r, ũE).

Figure 4.1 : Diamond region Γk0,h0

Now we define the strengths of waves in ur(t, x). However, the set up for
the waves strengths of ur(t, x) becomes crucial due to the lack of self-similarity
of approximate solution WG(t, x), the strengths of waves in WG(t, x) can not be
defined in the traditional way as described in [15]. To overcome the difficulty,
we first solve the associated classical Riemann problems with the initial data
{ur(ks−, (h+ak)r); x ∈ [(h−1)r, (h+1)r), k +h is odd} (see (4.4)) within each
time step. So we construct a new function ũr(t, x) defined on R+ × R. Then we
define the strengths of approximate waves in ur(t, x) based on classical waves in
ũr(t, x). More precisely, given a wave (ui−1(t), ui(t)) in ur(t, x), there exist two
corresponding constant states ui−1, ui and a classical Riemann wave (ui−1, ui)
with strength ε(ui−1, ui) in ũr(t, x), then the strength of (ui−1(t), ui(t)) is defined
as ε(ui−1, ui).

Next, we show that, under the condition that the L1(R+ × R)-norms of q
and ∂q

∂u
are small, the sum of strengths for waves in ur(t, x) crossing mesh curve

J can be regarded as an equivalent norm for the total variation of ur(t, x) on
J . By the fact that the term |ε(ui−1, ui)| is equivalent to the total variation
of (ui−1, ui) for any classical Riemann wave (ui−1, ui), it is equivalent to show
that the total variation of ur(t, x) on J is equivalent to the total variation of
ũr(t, x) on J . To show this, let Jk be a mesh curve lying within k-th time level
{(t, x); ks ≤ t < (k + 1)s}, and let TV (ur(t, x), Jk), TV (ũr(t, x), Jk) denote the
total variations of ur(t, x), ũr(t, x) on Jk respectively. Suppose there is a wave
(ui−1(t), ui(t)) in ur(t, x), issued from (ks, ir) and crosses Jk, also (ui−1, ui) is
the corresponding classical Riemann wave of (ui−1(t), ui(t)) (so (ui−1, ui) is also
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issued from (ks, ir) and crosses Jk). If (ui−1, ui) is a shock wave, then by (2.4)
we can easily obtain that

|TV ((ui−1(t), ui(t)); Jk) − TV ((ui−1, ui); Jk)|

≤ s |
∂q

∂u
(ks, ir, ūi)| TV ((ui−1, ui); Jk) + s

(
|q(t0, x0, ui−1)| + |q(t0, x0, ui)|

)
,

where ūi ∈ U and TV ((ui−1(t), ui(t)); Jk), TV ((ui−1, ui); Jk) denote the total
variations of (ui−1(t), ui(t)), (ui−1, ui) crossing Jk. Similarly, if (ui−1, ui) = ūi(ξ)
is a rarefaction wave with ξ ∈ [ξ1, ξ2], then we obtain

|TV ((ui−1(t), ui(t)); Jk) − TV ((ui−1, ui); Jk)|

≤ s |
∂q

∂u
(ks, ir, ūi(ξ̃)| TV ((ui−1, ui); Jk) + s(|q(t0, x0, ui−1)| + |q(t0, x0, ui)|)

for some ξ̃ ∈ [ξ1, ξ2] and ūi(ξ̃) ∈ U . Summing up the previous inequalities with
respect to the waves crossing Jk we obtain

|TV (ur(Jk)) − TV (ũr(Jk))|

≤ O(s) ‖
∂q

∂u
‖L1(R+×R) TV (ũr(Jk)) + O(s) ‖q‖L1(R+×R)

for any mesh curve Jk, and this is enough to imply that the total variations of
ur(t, x) and ũr(t, x) on any mesh curve Jk are equivalent when ‖q‖L1(R+×R) and

‖ ∂q
∂u

‖L1(R+×R) are small, we then show the statement.

We note that the waves entering each diamond region may come from two
generalized Riemann solutions, we certainly need to know the constant states of
corresponding classical Riemann solutions at the left and right vertices of diamond
region to calculate those wave strengths separately. We proceed as follows.

First, using the notations in (4.7), (4.8), we define the strength of the waves
entering the diamond region Γk0,h0

, k0 + h0 is even, by

ε∗(Γk0,h0
) := |ε(ũW , uS; (k0 − 1)s, (h0 − 1)r)|

+ |ε(uS, ũE; (k0 − 1)s, (h0 + 1)r)|

and the strength of the waves leaving Γk0,h0
by

ε∗(Γk0,h0
) := |ε(uW , ũN ; k0s, h0r)| + |ε(ũN , uE; k0s, h0r)|. (4.9)

Since ũN is a constant state in WC(uW , uE; k0s, h0r), we can write

ε∗(Γk0,h0
) = |ε(uW , uE; k0s, h0r)|. (4.10)

Next, for k0+h0 is even, we let Q(Γk0,h0
) denote the potential of waves interaction

in the diamond Γk0,h0
, i.e.,

Q(Γk0,h0
) := D(ε(ũW , uS, (k0 − 1)s; (h0 − 1)r), ε(uS, ũE, (k0 − 1)s, (h0 + 1)r))
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where D(·, ·) is defined in (3.1). Given a mesh curve J , we note that there are two
types of waves crossing J . The first kind of waves are (ũk,h−1, uk−1,h), k+h = even
(waves of type I), the second type of waves are (uk−1,h, ũk,h+1), k+h = even (waves
of type II). More precisely, waves of type I are either of the form (ũk,h−1, uk−1,h)
entering Γk,h (left in-coming waves of Γk,h), or (ũk+1,h, uk,h+1) leaving Γk,h (right
out-going waves of Γk,h). Waves of type II are either of the form (uk−1,h, ũk,h+1)
entering Γk,h (right in-coming waves of Γk,h), or (uk,h−1, ũk+1,h) leaving Γk,h (left
out-going waves of Γk,h), see Figures 4.2 (a), (b). Next we define the linear
functional L(J) for the waves in ur(t, x) crossing mesh curve J by

L(J) :=
∑

type I

|ε(ũk,h−1, uk−1,h; (k − 1)s, (h − 1)r)|

+
∑

type II

|ε(uk−1,h, ũk,h+1; (k − 1)s, (h + 1)r)|.
(4.11)

From previous analysis, we see that functional L(J) is equivalent to the total vari-
ation of ur(t, x) crossing mesh curve J . Next we define the quadratic functional
Q(J) of ur(t, x) by

Q(J) :=
∑

(α,β)

D(α, β) (4.12)

where the notation (α, β) under summation sign denotes a pair of waves α, β
crossing J and approach, and D(α, β) is given in (3.1). Furthermore, we define
the Glimm functional F (J) of ur(t, x) for mesh curve J by

F (J) := L(J) + K Q(J). (4.13)

Our goal is to show that functional F remains uniformly bounded on all mesh
curves provided that constant K in (4.13) is sufficiently large, and this leads
to the result that functional L can be bounded by a constant times the total
variation of initial data u0(x). To show this, the first step is to estimate the
possible changing amount of L and Q when waves pass through one mesh curve
and into an immediate successor. The estimates of changing amounts of L and
Q are stated as follows.

Figure 4.2(a) : Waves of type I crossing mesh curve J

Figure 4.2(b) : Waves of type II crossing mesh curve J
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Proposition 4.1. Given two mesh curves J1 and J2 such that J2 is an imme-
diate successor of J1, let Γk0,h0

denote the diamond region bounded by J1 and J2.
Then functionals L and Q satisfy

L(J2) − L(J1) = O(1){Q(Γk0,h0
) + ε∗(Γk0,h0

)(C0
1 + λ∗C

0
2 + C0

3 + C0
4)s}, (4.14)

Q(J2) − Q(J1) = − Q(Γk0,h0
) + O(1)L(J1)Q(Γk0,h0

)

+ O(1)L(J1)ε∗(Γk0,h0
)(C0

1 + λ∗C
0
2 + C0

3 + C0
4 )s

(4.15)

where constants λ∗ is defined in (4.1) and C0
j , 1 ≤ j ≤ 4, are given by

C0
1 := Nh0r,h0r

(k0−1)s,k0s(
∂2A

∂t∂u
), C0

2 := N
(h0−1)r,(h0+1)r
(k0−1)s,(k0−1)s (

∂2A

∂x∂u
), (4.16)

C0
3 := Nh0r,h0r

(k0−1)s,k0s(q(t, x, u)), C0
4 := Nh0r,h0r

(k0−1)s,k0s(
∂q

∂u
(t, x, u)) (4.17)

where N is defined in (3.5). Note that {C0
j ; 1 ≤ j ≤ 4} depend on h0,k0.

Proof. Let uS, uW , uE, uN be the constant states described in (4.6)-(4.7), we
first derive (4.14). By the definitions of ε∗ and ε∗ in (4.9), (4.10) and L in (4.11),
we find

L(J2) − L(J1) = |ε(uW , ũN ; k0s, h0r)| + |ε(ũN , uE; k0s, h0r)|

− |ε(ũW , uS; (k0 − 1)s, (h0 − 1)r)|

− |ε(uS, ũE; (k0 − 1)s, (h0 + 1)r)|

= ε∗(∆k0,h0
) − ε∗(∆k0,h0

).

(4.18)

Next, by applying the definition of λ∗ in (4.1) and the estimates (3.29), (3.32) to
(4.18) with the choice of uL = ũW , uM = uS, uR = ũE , µL = uW − ũW , µR =
uE − ũE , t0 = (k0 − 1)s and x0 = h0r, we obtain

ε∗(Γk0,h0
) = ε∗(Γk0,h0

) + O(1)Q(Γk0,h0
)+ O(1)ε∗(Γk0,h0

)
(
(C0

1 + C0
3 + C0

4)s + C0
2r
)
,

and this gives (4.14).

To prove (4.15), we define several notations for the rest of the section. First,
given (k, h), k + h= even, we let vector εk−1,h−1/2 denote the strength of waves
issued from ((k− 1)s, (h− 1)r) entering Γk,h, and let vector εk−1,h+1/2 denote the
strength of waves issued from ((k − 1)s, (h + 1)r) entering Γk,h. More precisely,
the vector εk−1,h−1/2 measures the strength of waves of type I entering Γk,h and
εk−1,h+1/2 measures the strength of waves of type II entering Γk,h. Next, given
a mesh curve J , let J[h−1,h] (J[h,h+1] respectively) denote the segment of J in
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R+ × [(h− 1)r, hr] (R+ × [hr, (h + 1)r]). Then we define vectors εJ,h−1/2, εJ,h+1/2

as the strengths of waves crossing J[(h−1),h], J[h,h+1] respectively. We will drop the
sign J in εJ,h−1/2 and εJ,h+1/2 when J is specified. We also set

εW,S := εh0−1/2, εS,E := εh0+1/2,

εW,N := ε(uW , ũN ; k0s, h0r), εN,E := ε(ũN , uE; k0s, h0r).

Since J2 is an immediate successor of J1, the diamond region bounded by J1, J2

can be specified as Γ(k0, h0) with center (k0s, h0r), and J1, J2 coincide out-
side Γ(k0, h0). We will also drop the signs J1, J2 without confusion. From the
definition of Q in (4.12), we have

Q(J2) − Q(J1)

=
∑

h<h0

(
D(εh−1/2, εW,N) + D(εh−1/2, εN,E) − D(εh−1/2, εW,S) − D(εh−1/2, εS,E)

)

+
∑

h>h0+1

(
D(εW,N , εh−1/2) + D(εN,E, εh−1/2) − D(εW,S, εh−1/2) − D(εS,E, εh−1/2)

)

+ D(εW,N , εN,E) − D(εW,S, εS,E).

From (3.1) we see that

D(εW,N , εN,E) = 0. (4.19)

Also, for any h ∈ Z we observe that

D(εh−1/2, εW,N) + D(εh−1/2, εN,E) = D(εh−1/2, εW,E) (4.20)

for h < h0, and

D(εW,N , εh−1/2) + D(εN,E, εh−1/2) = D(εW,E, εh−1/2) (4.21)

for h > h0 + 1. Thus, by (4.19)-(4.21) we obtain

Q(J2) − Q(J1)

=
∑

h<h0

(
D(εh−1/2, εW,E) − D(εh−1/2, εW,S) − D(εh−1/2, εS,E)

)

+
∑

h>h0+1

(
D(εW,E, εh−1/2) − D(εW,S, εh−1/2) − D(εS,E, εh−1/2)

)

− D(εW,S, εS,E).

(4.22)

Finally, applying (3.30) and (3.31) to (4.22) and using the fact that D(εW,S, εS,E) =
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Q(Γk0,h0
), we obtain

Q(J2) − Q(J1)

= −D(εW,S, εS,E) +
∑

h∈Z

h 6=h0,h0+1

(
O(1)|εh−1/2|D(εW,S, εS,E)

+ O(1)|εh−1/2|(|εW,S| + |εS,E|)((C
0
1 + C0

3 + C0
4 )s + C0

2r)
)

= −Q(Γk0,h0
) + O(1)L(J1)Q(Γk0,h0

) + O(1)L(J1) ε∗(Γk0,h0
)((C0

1 + C0
3 + C0

4) s + C0
2 r),

which leads to (4.15). This completes the proof.

Before stating a crucial technical lemma, let us introduce a notation about
mesh curves. We say that a mesh curve J is of the type (k0, k0 +1) if all the mesh
points on J have the form of {(ks, (h + ak)r) : k = k0, k0 + 1}.

Lemma 4.2. Given a positive integer k0, let J1 and J2 be two mesh curves
of type (k0 − 1, k0) and (k0, k0 + 1) respectively. We assume that there exists a
positive constant M∗ such that

L(J1) ≤ M∗. (4.23)

If M∗ is sufficiently small and the constant K in (4.13) is sufficiently large, then
the functional F satisfies the following inequality

F (J2) ≤ F (J1) + O(1)s
∑

h0∈Z

ε∗(Γk0,h0
)(C0

1 + λ∗C
0
2 + C0

3 + C0
4 ) (4.24)

where the bound O(1) depends on M∗ and K, and the constants C0
j := C0

j (h0, k0),
1 ≤ j ≤ 4, in (4.16), (4.17) depend on h0 ∈ Z.

Proof. Given h0 ∈ Z, we multiply (4.15) by constant K in (4.13) and add it
to (4.14). Then by the assumption that J1 and J2 are two mesh curves of type
(k0 − 1, k0) and (k0, k0 + 1), we obtain

F (J2) − F (J1) = − K
∑

h0∈Z

Q(Γk0,h0
) + O(1)[1 + KL(J1)]

{∑

h0∈Z

Q(Γk0,h0
)

+
∑

h0∈Z

ε∗(Γk0,h0
)(C0

1 + λ∗C
0
2 + C0

3 + C0
4 )s

}
.

Next, by the observation that
∑

h0∈Z
Q(Γk0,h0

) = Q(J1), the equation above im-
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plies that

F (J2) − F (J1) = −KQ(J1) + O(1)(1 + KL(J1))Q(J1)

+ O(1)s
∑

h0∈Z

ε∗(Γk0,h0
)(C0

1 + λ∗C
0
2 + C0

3 + C0
4 )

= Q(J1){K[O(1)L(J1) − 1] + O(1)}

+ O(1)s
∑

h0∈Z

ε∗(Γk0,h0
)(C0

1 + λ∗C
0
2 + C0

3 + C0
4 )

≤ Q(J1){K[O(1)M∗ − 1] + O(1)}

+ O(1)s
∑

h0∈Z

ε∗(Γk0,h0
)(C0

1 + λ∗C
0
2 + C0

3 + C0
4 ).

The last inequality is an application of (4.23). We see that the term K[O(1)M∗−
1] + O(1) is negative, if M∗ is sufficiently small and K is sufficiently large. Thus,
(4.24) holds for such M∗ and K. This completes the proof.

We now establish the stability of generalized Glimm method, which is the
main result of this section. We denote by TV (·) the total variation of a function.

Theorem 4.3 Fix a constant state u∗ and assume that the initial data u0 =
u0(x) is a function of bounded variation such that

||u0 − u∗||L∞ and TV (u0) are sufficiently small. (4.25)

Assume also that the mappings A(t, x, u) := Df
Du

(t, x, u) and q(t, x, u) in (1.4) are
smooth and such that

the L1(R+ × R) norm of
∂2A

∂t∂u
, λ∗

∂2A

∂x∂u
, q,

∂q

∂u
are sufficiently small. (4.26)

Then, the approximate solutions ur(t, x) are bounded uniformly in the L∞ and
BV norms:

||ur − u∗||L∞(R+×R) ≤ O(1)
(
||u0 − u∗||L∞(R) + TV (u0) + C

)
, (4.27)

TV (ur(t, ·)) ≤ O(1)
(
TV (u0) + C

)
, (4.28)

where

C :=
∣∣∣
∣∣∣ ∂

2A

∂t∂u

∣∣∣
∣∣∣
L1(R+×R)

+ λ∗

∣∣∣
∣∣∣ ∂2A

∂x∂u

∣∣∣
∣∣∣
L1(R+×R)

+ ||q||L1(R+×R) +
∣∣∣
∣∣∣∂q

∂u

∣∣∣
∣∣∣
L1(R+×R)

(4.29)

Furthermore, the function ur(t, x) is Lipschitz continuous in time, i.e., for t1, t2 >
0,

∫

R

|ur(t1, x) − ur(t2, x)| dx ≤ O(1)(|t2 − t1| + s) (TV (u0) + C). (4.30)
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Proof. We apply an induction argument based on Lemma 4.2 to show that the
approximate solution ur(t, x) is uniformly bounded in L∞ and total variation.
First, we show that the condition (4.23) in Lemma 4.2 holds under the assump-
tions (4.25), (4.26). By induction, given k0 ∈ N, we let Jk0−1/2 denote the mesh
curve of type (k0 − 1, k0). For k0 = 1, we see that

F (J1/2) ≤ O(1)
(
TV (u0) + K[TV (u0)]

2
)
. (4.31)

This means that there exists a positive constant M∗, as described in (4.23), such
that F (J1/2) ≤ M∗, and in particular, L(J1/2) ≤ M∗ if TV (u0) is sufficiently
small. Next, suppose that

L(Jk+1/2) ≤ M∗ for k = 0, 1, . . . , k0 − 1. (4.32)

We intend to show that (4.32) still holds for k = k0. Since Jk0−1/2 is a mesh curve
of type (k0 − 1, k0), this implies that Jk0+1/2 is a mesh curve of type (k0, k0 + 1)
so that Lemma 4.2 can be applied. Therefore we obtain

F (Jk0+1/2) ≤ F (Jk0−1/2) + O(1)s
∑

h0∈Z

ε∗(Γk0,h0
)(C0

1 + λ∗C
0
2 + C0

3 + C0
4 )

...

≤ F (J1/2) + O(1)s
k0∑

k=1

∑

h0∈Z

ε∗(Γk,h0
)(C0

1 + λ∗C
0
2 + C0

3 + C0
4).

Then, by
∑

h0∈Z

ε∗(Γk,h0
) = L(Jk−1/2), k ∈ N,

this leads to

F (Jk0+1/2) ≤ F (J1/2) + O(1)

k0∑

k=1

sL(Jk−1/2) sup
h0∈Z

(C0
1 + λ∗C

0
2 + C0

3 + C0
4 ). (4.33)

Next, by (4.31)-(4.33) we find

F (Jk0+1/2) ≤ O(1)(1 + K TV (u0)) TV (u0)

+ O(1)M∗

k0∑

k=1

sup
h0∈Z

(C0
1 + λ∗C

0
2 + C0

3 + C0
4 )s.

(4.34)

From the definitions of C0
j and the assumption that the constant C in (4.29) is

finite, we see that

lim
r→0

∞∑

k=1

sup
h0∈Z

(C0
1 + λ∗C

0
2 + C0

3 + C0
4)s = C. (4.35)
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Therefore, from (4.34) and (4.35) we obtain the inequality

F (Jk0+1/2) ≤ O(1){(1 + K TV (u0)) TV (u0) + M∗C}, (4.36)

and in particular,

L(Jk0+1/2) ≤ O(1){(1 + K TV (u0)) TV (u0) + M∗C}. (4.37)

We note that the functional L in (4.37) only depends on the constants M∗, C and
the total variation of u0, thus it enables us to choose TV (u0) and C sufficiently
small such that O(1)(1 + K TV (u0)) TV (u0) ≤

M∗

2
and O(1) CM∗ ≤

M∗

2
and this

implies that

L(Jk0+1/2) ≤ M∗.

Therefore (4.32) holds for k = k0, we just showed that L(k0 + 1/2) has uniform
bound for all k0 ∈ N, which implies that functional L of ur(t, x) has global bound.
Since L is a functional equivalent to the total variation of ur(t, x), we prove that
the total variation of ur(t, x) has an uniform bound for all t ≥ 0 and all finite
r > 0, so as well the L∞ norm of ur(t, x). To prove (4.28), we apply (4.4), (4.5)
to ur(t, x) and we use the fact that TV (ur(k0s, ·)) = O(1) F (Jk0+1/2) to (4.36),
then (4.28) is established. For the proof of (4.27) and (4.30), we follow the lines
of proof in [10]. The proof is completed.

We note that if ∂2A
∂t∂u

, λ∗
∂2A
∂x∂u

, q and ∂q
∂u

in (4.26) belong to L∞, then inequalities
(4.27), (4.28) and (4.30) remain valid in a finite interval [0, T ] with T sufficiently
small.

5. Convergence of the generalized Glimm method

In Section 4 we established the BV stability of the scheme together with
a time continuity property. By Helly’s theorem ,there exists a subsequence of
approximate solutions, still denoted by {ur(t, x)} and converging strongly in L1

loc

to a limit function u = u(t, x). Moreover, by the estimates (4.23), (4.24), the
function u is uniformly bounded and is of bounded variation in x. We now prove
that the limit u is indeed an entropy solution of the Cauchy problem. The proof
relies on the error estimate derived in Section 2.

Theorem 5.1 Suppose that the initial data u0(x) is sufficiently close to a con-
stant state in L∞ and BV , and that the L1 norms of ∂2A

∂x∂u
, ∂2A

∂t∂x
, q, and ∂q

∂u
are

sufficiently small in R+ × R. Let {ur(t, x) : r > 0} be the sequence of approxi-
mate solutions constructed by the generalized Glimm scheme (4.3)-(4.5). Then,
for any equidistributed sequence {ak}k∈N, there exists a subsequence of {ur(t, x)}
converging in L1

loc to a function u = u(t, x) which is an entropy solution of the
Cauchy problem (1.1), (1.2).
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Remark 5.2. Assume that U is a convex subset of Rp, we say that (U, F ),
U : U ∈ R

p → R and F : R+ ×R×U → R, is an entropy pair of the system (1.1)
if U is a convex function on U and

∂F

∂u
=

DU

Du

∂f

∂u
on R+ × R × U .

Furthermore, a function u : R+ ×R → R
p is called an entropy solution of (1.1) if

u = u(t, x) is a weak solution of (1.1) satisfying

∂tU(u) + ∂x(F (t, x, u)) ≤
DU

Du
(u){g(t, x, u)− (∂xf)(t, x, u)} + (∂xF )(t, x, u)(5.1)

in the sense of distributions, for every entropy pair (U, F ).

Proof. The proof is based on the result of Proposition 2.1. Let {ur(t, x)} denote
a sequence of approximate solutions constructed by generalized Glimm scheme
(4.3)-(4.5). Then, by the stability result and Helly’s theorem, there exists a
subsequence of {ur(t, x)} converging almost everywhere to a function u ∈ L1

loc

with bounded total variation. Given any test-function θ : R+ × R → R with we
define the residual of ur as

R(ur, θ) :=

∫

R+

∫

R

{ur∂tθ + f(t, x, ur)∂xθ + g(t, x, ur)θ}dx dt +

∫ ∞

−∞

u0(x)θ(0, x)dx

Note that u is a weak solution to (1.1), (1.2) if and only if R(u, θ) = 0 for any
test-function θ. By Lebesgue’s theorem, we see that

|R(ur, θ) −R(u, θ)| → 0 as r → 0.

Thus, to show that u is a weak solution of (1.1), (1.2), it is equivalent to show
that R(ur(t, x), θ) tends to zero as r vanishes. To show this, we first let χk0,h0

supp (θ)

denote a characteristic function having the same support as the test-function θ.
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Then, by construction of ur(t, x) and by (2.8), we can write

R(ur, θ)

=
∞∑

k0=0

∑

h0+k0
even

∫ (k0+1)s

k0s

∫ (h0+1)r

(h0−1)r

(
ur∂tθ + f(t, x, ur)∂xθ + g(t, x, ur)θ

)
dx dt

=

∞∑

k0=0

∑

h0+k0
even

O(1)(s2 + r2)(s + r + |uk0,h0+1 − uk0,h0−1|)χ
k0,h0

supp (θ)

+

(
∞∑

k0=0

∑

h0+k0
even

(∫ (h0+1)r

(h0−1)r

ur((k0 + 1)s−, x)θ((k0 + 1)s, x)dx

−

∫ (h0+1)r

(h0−1)r

ur(k0s+, x)θ(k0s, x)dx

)
+

∫ ∞

−∞

u0(x)θ(0, x)dx

)

+

∞∑

k0=0

∑

h0+k0
even

(∫ (k0+1)s

k0s

f(t, (h0 + 1)r, ur(t, (h0 + 1)r−))θ(t, (h0 + 1)r)dt

−

∫ (k0+1)s

k0s

f(t, (h0 − 1)r, ur(t, (h0 − 1)r+))θ(t, (h0 − 1)r)dt

)
.

(5.2)

Let Ω1(r), Ω2(r) and Ω3(r) denote the terms on the right hand side of (5.2),
respectively. We first estimate Ω1(r). By a direct calculation and (4.2), (4.28),
we obtain

Ω1(r) =O(1)r +

∞∑

k0=0

∑

h0+k0
even

O(1)(s2 + r2)(|uk0,h0+1 − uk0,h0−1|)χ
k0,h0

supp (θ)

≤O(1)r +
∑

k0∈N

O(1)(s2 + r2)(T.V.{u0(x)} + C)χk0,h0

supp (θ)

≤O(1)r.

(5.3)

Next we calculate Ω3(r). By the property of the Lipschitz continuity of f , q and
(2.4), (4.5), we obtain

Ω3(r)

= O(1)
∞∑

k0=0

∑

h0+k0
even

∫ (k0+1)s

k0s

|ur(t, (h0 + 1)r+) − ur(t, (h0 − 1)r−)| · (χk0,h0

supp (θ))dt

= O(1)
∞∑

k0=0

∑

h0+k0
even

( ∫ (k0+1)s

k0s

t|q(k0s, (h0 + 2)r, ũk0,h0+1) − q(k0s, h0r, ũk0,h0+1)| · (χ
k0,h0

supp (θ))dt
)

= O(1)
∑

k0

∑

h0

∫ (k0+1)s

k0s

t r · (χk0,h0

supp (θ)) dt.
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It follows that

Ω3(r) = O(1)r. (5.4)

It remains to estimate Ω2(r). It is a standard matter to check that

Ω2(r) = −

∞∑

k0=1

∑

h0+k0
even

∫ (h0+1)r

(h0−1)r

[ur](k0s, x)θ(k0s, x)dx

−

∫ +∞

−∞

(ur(0, x) − u0(x))θ(0, x)dx

where [ur](k0s, x) := ur(k0s+, x) − ur(k0s−, x). We let J({ak}, r, θ) denote the
term

∞∑

k0=1

∑

h0+k0
even

∫ (h0+1)r

(h0−1)r

[ur](k0s, x)θ(k0s, x)dx.

By the construction of ur(t, x) in (4.3), we see that the term
∫ +∞

−∞
(ur(0, x) −

u0(x))θ(0, x)dx on the right hand side of (5.5) vanishes as r tends to zero. In
addition, by a result of Liu [19] we obtain that, for any equidistributed sequence
{ak}k∈N, J({ak}, r, θ) tends to zero as r approaches to zero. This implies that

Ω2(r) → 0 as r → 0 (5.5)

for every equidistributed sequence {ak}k∈N. We refer the reader to [19] for the
details of the estimate of Ω2(r). Finally, by (5.3), (5.4) and (5.5), we obtain

R(ur, θ) → 0 in L1 as r → 0,

which means that the limit function u satisfies R(u, θ) = 0. Therefore, u is a
weak solution of the Cauchy problem (1.1), (1.2).

To prove that u is an entropy solution satisfying the entropy inequality (5.1),
it is equivalent to show that, for any entropy pair (U, F ) and test-function θ ≥ 0,
the function u satisfies∫

R+

∫

R

U(u)θt + F (t, x, u)θx + P (t, x, u)θdxdt +

∫

R

U(u0(x)) θ(x, 0) dx ≥ 0,(5.6)

with

P (t, x, u) :=
DU

Du
· (g −

∂f

∂x
)(t, x, u) + (∂xF )(t, x, u).

We note that the result of Proposition 2.1 can be applied to show that u(t, x)
satisfies (5.6) for any entropy pair (U, F ). In turn, this implies that u is an
entropy solution of the Cauchy problem (1.1), (1.2), and the proof of Theorem
5.1 is completed.
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