
HAL Id: hal-00121710
https://hal.science/hal-00121710

Preprint submitted on 21 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hyperbolic conservation laws and spacetimes with
limited regularity

Philippe G. LeFloch

To cite this version:
Philippe G. LeFloch. Hyperbolic conservation laws and spacetimes with limited regularity. 2006.
�hal-00121710�

https://hal.science/hal-00121710
https://hal.archives-ouvertes.fr


Hyperbolic conservation laws and spacetimes

with limited regularity

Philippe G. LeFloch1

Laboratoire Jacques-Louis Lions & CNRS UMR 7598, University of Paris VI,
75252 Paris, France. lefloch@ann.jussieu.fr

1 Introduction

Hyperbolic conservation laws posed on manifolds arise in many applications
to geophysical flows and general relativity. Recent work by the author and his
collaborators attempts to set the foundations for a study of weak solutions de-
fined on Riemannian or Lorentzian manifolds and includes an investigation of
the existence and qualitative behavior of solutions. The metric on the manifold
may either be fixed (shallow water equations on the sphere, for instance) or
be one of the unknowns of the theory (Einstein-Euler equations of general rel-
ativity). This work is especially concerned with solutions and manifolds with
limited regularity. We review here results on three themes: (1) Shock wave
theory for hyperbolic conservation laws on manifolds, developed jointly with
M. Ben-Artzi (Jerusalem); (2) Existence of matter Gowdy-type spacetimes
with bounded variation, developed jointly with J. Stewart (Cambridge). (3)
Injectivity radius estimates for Lorentzian manifolds under curvature bounds,
developed jointly with B.-L. Chen (Guang-Zhou).

2 Conservation laws on a Riemannian manifold

In the present section, (Mn, g) is a compact, oriented, n-dimensional Rieman-
nian manifold. As usual, the tangent space at a point x ∈ Mn is denoted by
TxM

n and the tangent bundle by TMn :=
⋃

x∈Mn TxM
n, while the cotangent

bundle is denoted by T ⋆Mn = T ⋆
xMn. The metric structure is determined by

a positive-definite, 2-covariant tensor field g.
A flux on the manifold Mn is a vector field f = fx(ū) depending smoothly

upon the parameter ū. The conservation law associated with f reads

∂tu + divg (f(u)) = 0, (1)

where the unknown u = u(t, x) is defined for t ≥ 0 and x ∈ Mn and the
divergence operator is applied to the vector field x 7→ fx(u(t, x)) ∈ TxM

n.
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We say that the flux is geometry-compatible if

divg fx(ū) = 0, ū ∈ R, x ∈ Mn. (2)

We propose to single out this class of conservation laws as an important case
of interest, which leads to robust Lp estimates that do not depend on the
geometry of the manifold. The equations arising in continuum physics do
satisfy this condition.

Equation (1) is a geometric partial differential equation which depends
on the geometry of the manifold only. All estimates must take a coordinate-
independent form; in the proofs however, it is often convenient to introduce
particular coordinate charts. We are interested in solutions u ∈ L∞(R+ × Mn)
assuming a prescribed initial condition u0 ∈ L∞(Mn):

u(0, x) = u0(x), x ∈ Mn. (3)

We extend Kruzkov theory of the Euclidian space R
n (see [8]) to the case of

a Riemannian manifold, as follows.
Let f = fx(ū) be a geometry-compatible flux on the Riemannian manifold

(M, g). A convex entropy/entropy-flux pair is a pair (U,F ) where U : R → R

is convex and F = Fx(ū) is the vector field defined by

Fx(ū) :=

∫ ū

∂u′U(u′) ∂u′fx(u′) du′, ū ∈ R, x ∈ Mn.

Given u0 ∈ L∞(Mn) a function u ∈ L∞
(
R+, L∞(Mn)

)
is called an entropy

solution to the initial value problem (1), (3) if the following entropy inequal-
ities hold

∫ ∫

R+×Mn

(
U(u(t, x)) ∂tθ(t, x) + gx

(
Fx(u(t, x)), gradg θ(t, x)

))
dVg(x)dt

+

∫

Mn

U(u0(x)) θ(0, x) dVg(x) ≥ 0,

for every convex entropy/entropy flux pair (U,F ) and all smooth function
θ = θ(t, x) ≥ 0 compactly supported in [0,∞) × Mn.

Theorem 1 (Well-posedness theory on a Riemannian manifold. I).
Let f = fx(ū) be a geometry-compatible flux on a Riemannian manifold
(Mn, g). Given u0 ∈ L∞(Mn) there exists a unique entropy solution u ∈
L∞(R+ × Mn) to the problem (1)–(3). Moreover, for each 1 ≤ p ≤ ∞,

‖u(t)‖Lp(Mn;dVg) ≤ ‖u0‖Lp(Mn;dVg), t ∈ R+,

and, given two entropy solutions u, v associated with initial data u0, v0,

‖v(t) − u(t)‖L1(Mn;dVg) ≤ ‖v0 − u0‖L1(Mn;dVg), t ∈ R+.
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The framework proposed here allows us to construct entropy solutions on a
Riemannian manifold via the vanishing diffusion method or the finite volume
method [1, 4]. Following DiPerna [6] we can introduce the (larger) class of
entropy measure-valued solutions (t, x) ∈ R+ × Mn 7→ νt,x.

Theorem 2 (Well-posedness theory on a Riemannian manifold. II).
Let f = fx(ū) be a geometry-compatible flux on a Riemannian manifold
(Mn, g). Let ν be an entropy measure-valued solution to (1)–(3) for some
u0 ∈ L∞(Mn). Then, for almost every (t, x), νt,x = δu(t,x), where u ∈
L∞(R+ × Mn) is the unique entropy solution to the problem.

Finally we can relax the geometry compatibility condition and consider
a general conservation law associated with an arbitrary flux f . More general
conservation laws solely enjoy the L1 contraction property and leads to a
unique contractive semi-group of entropy solutions.

Theorem 3 (Well-posedness theory on a Riemannian manifold. III).
Let f = fx(ū) be an arbitrary (not necessarily divergence-free) flux on (Mn, g),
satisfying the linear growth condition

|fx(ū)|g . 1 + |ū|, ū ∈ R, x ∈ Mn.

Then there exists a unique contractive, semi-group of entropy solutions u0 ∈
L1(Mn) 7→ u(t) := Stu0 ∈ L1(Mn) to the initial value problem (1), (3).

For the proofs we refer to [4]. See [1] for the convergence of the finite
volume schemes on a manifold. Earlier material can be found in Panov [12]
(n-dimensional manifold) and in LeFloch and Nedelec [10] (Lax formula for
general metrics including the case of spherical symmetry).

3 Conservation laws on a Lorentzian manifold

Motivated by the application to general relativity, we can extend the theory to
a Lorentzian manifold. Let (Mn+1, g) be a time-oriented, (n+1)-dimensional
Lorentzian manifold, g being a metric tensor with signature (−,+, . . . ,+).
Tangent vectors X can be separated into time-like vectors (g(X, X) < 0), null
vectors (g(X, X) = 0), and space-like vectors (g(X, X) > 0). The null cone
separates time-like vectors into future-oriented and past-oriented ones. Let ∇
be the Levi-Cevita connection associated with the Lorentzian metric g.

A flux on the manifold Mn+1 is a vector field x 7→ fx(ū) ∈ TxM
n+1, de-

pending on a parameter ū ∈ R. The conservation law on (Mn+1, g) associated
with f is

divg

(
f(u)

)
= 0, u : Mn+1 → R. (4)

It is said to be geometry compatible if

divg fx(ū) = 0, ū ∈ R, x ∈ Mn+1. (5)
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Furthermore, f is said to be a time-like flux if gx

(
∂ufx(ū), ∂ufx(ū)

)
< 0,

x ∈ Mn+1, ū ∈ R.
Note that our terminology here differs from the one in the Riemannian

case, where the conservative variable was singled out. We are interested in
the initial-value problem associated with (4). We fix a space-like hypersurface
H0 ⊂ Mn+1 and a measurable and bounded function u0 defined on H0. Then,
we search for u = u(x) ∈ L∞(Mn+1) satisfying (4) in the distributional sense
and such that the (weak) trace of u on H0 coincides with u0:

u|H0
= u0. (6)

It is natural to require that the vectors ∂ufx(ū) are time-like and future-
oriented.

We assume that the manifold Mn+1 is globally hyperbolic, in the sense that
there exists a foliation of Mn+1 by space-like, compact, oriented hypersurfaces
Ht (t ∈ R): Mn+1 =

⋃
t∈R

Ht. Any hypersurface Ht0 is referred to as a Cauchy
surface in Mn+1, while the family Ht (t ∈ R) is called an admissible foliation
associated with Ht0 . The future of the given hypersurface will be denoted by
Mn+1

+ :=
⋃

t≥0 Ht. Finally we denote by nt the future-oriented, normal vector

field to each Ht, and by gt the induced metric. Finally, along Ht, we denote
by Xt the normal component of a vector field X, thus Xt := g(X, nt).

A flux F = Fx(ū) is called a convex entropy flux associated with the
conservation law (4) if there exists a convex U : R → R such that

Fx(ū) =

∫ ū

0

∂uU(u′) ∂ufx(u′) du′, x ∈ Mn+1, ū ∈ R.

A measurable and bounded function u = u(x) is called an entropy solution of
the geometry-compatible conservation law (4)-(5) if

∫

M
n+1

+

g(F (u), gradg gθ) dVg +

∫

H0

g0(F (u0), n0) θH0
dVg0

≥ 0.

for all convex entropy flux F = Fx(ū) and all smooth θ ≥ 0 compactly sup-
ported in Mn+1

+ .

Theorem 4 (Well-posedness theory on a Lorentzian manifold). Con-
sider a geometry-compatible conservation law (4)-(5) posed on a globally hy-
perbolic Lorentzian manifold Mn+1. Let H0 be a Cauchy surface in Mn+1,
and u0 : H0 → R be measurable and bounded. Then, the initial-value prob-
lem (4)-(6) admits a unique entropy solution u = u(x) ∈ L∞(Mn+1). For
every admissible foliation Ht, the trace uHt

exists and belong to L1(Ht), and
‖F t(uHt

‖L1(Ht) is non-increasing in time, for any convex entropy flux F .
Moreover, given any two entropy solutions u, v,

‖f t(uHt
) − f t(v|Ht

)‖L1(Ht)

is non-increasing in time.



Conservation laws and spacetimes with limited regularity 5

We emphasize that, in the Lorentzian case, no time-translation property
is available in general, contrary to the Riemannian case. Hence, no time-
regularity is implied by the L1 contraction property.

4 Existence of matter Gowdy-type spacetimes with

bounded variation

Vacuum Gowdy spacetimes are inhomogeneous spacetimes admitting two
commuting spatial Killing vector fields. The existence of vacuum spacetimes
with Gowdy symmetry is well-known and the long-time asymptotics of solu-
tions have been found to be particularly complex. In comparison, much less
emphasis has been put on matter spacetimes. Recently, LeFloch, Stewart and
collaborators [3, 11] initiated a rigorous mathematical treatment of the cou-
pled Einstein-Euler system on Gowdy spacetimes. The unknowns of the theory
are the density and velocity of the fluid together with the components of the
metric tensor. The existence for the Cauchy problem in the class of solutions
with (arbitrary large) bounded total variation is proven by a generalization of
the Glimm scheme. Our theory allows for the formation of shock waves in the
fluid and singularities in the geometry. The first results on shock waves and
the Glimm scheme in special and general relativity are due to Smoller and
Temple [14] (flat Minkowski spacetime) and Groah and Temple [7] (spheri-
cally symmetric spacetimes). The novelty in [3, 11] is the generalization to a
model allowing for both gravitational waves and shock waves.

The metric is given in the polarized Gowdy symmetric form

ds2 = e2a (−dt2 + dx2) + e2b (e2c dy2 + e−2c dz2), (7)

where the variables a, b, c depend on the time variable t and the space variable
x, only. We consider Einstein field equations Gαβ = κTαβ for perfect fluids
with energy density µ > 0 and pressure p = µc2

s. Here, the sound speed cs is
a constant with 0 < cs < 1 and Gαβ denotes the Einstein tensor, while κ is a
normalization constant.

The 4-velocity vector uα of the fluid is time-like and is normalized to be of
unit length and we define the scalar velocity v and relativistic factor ξ = ξ(v)
by (uα) = e−a ξ (1, v, 0, 0) and ξ = (1 − v2)−1/2. The matter is described by
the energy-momentum tensor Tαβ = (µ + p) uαuβ + p gαβ , from which we
extract the fields τ , S and Σ:

T 00 = e−2a
(
(µ + p) ξ2 − p

)
=: e−2aτ,

T 01 = e−2a(µ + p) ξ2v =: e−2aS,

T 11 = e−2a
(
(µ + p)ξ2v2 + p

)
=: e−2a Σ.

After very tedious calculations we arrive at the constraint equations
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2 at bt + 2 ax bx + b2
t − 2 bxx − 3 b2

x − c2
t − c2

x = κ e2a τ,

−2 at bx − 2 ax bt + 2 btx + 2 bt bx + 2 ct cx = κ e2a S,

and the evolution equations

att − axx = b2
t − b2

x − c2
t + c2

x +
κ

2
e2a (−τ + Σ − 2 p),

btt − bxx = −2b2
t + 2b2

x +
κ

2
e2a (τ − Σ),

ctt − cxx = −2 bt ct + 2 bx cx.

The evolution equations for the fluid, ∇βTαβ = 0, are the Euler equa-
tions

τt + Sx = T1, St + Σx = T2,

in which the source terms T1, T2 are nonlinear in first-order derivatives of the
metric and fluid variables.

We propose to reformulate the Einstein-Euler equations in the form of a
nonlinear hyperbolic system of balance laws with integral source-term, in the
variables (µ, v) and w :=

(
at, ax, βt, βx, ct, cx

)
, where β = e2b. It is convenient

to also set α = e2a. The functions α, b (and a, β) are determined by

α(t, x) = e2a(t,x), a(t, x) =
∫ x

−∞
w2(t, y) dy,

b(t, x) = 1
2 lnβ(t, x), β(t, x) = 1 +

∫ x

−∞
w4(t, y) dy.

Obviously, we are interested in solutions such that β remains positive.
The equations under consideration consist of three sets of two equa-

tions associated with the propagation speeds ±1, the speed of light (after
normalization). The principal part of the fluid equations are the standard
relativistic fluid equations in a Minkowski background, with wave speeds
λ± = (v ± cs)/(1 ± v cs). To formulate the initial-value problem it is nat-
ural to prescribe the values of µ, v, w on the initial hypersurface at t = 0,
denoted by (µ0, v0, w0).

Our main result is:

Theorem 5 (Existence of Gowdy spacetimes with compressible mat-
ter). Consider the (µ, v, w)-formulation of the Einstein-Euler equations on a
polarized Gowdy spacetime with plane-symmetry. Let the initial data (µ0, v0, w0)
be of bounded total variation, TV (µ0, v0, w0) < ∞, satisfying the constraints,
and suppose that the corresponding functions α0, b0 are measurable and bounded,
sup |(α0, b0)| < ∞. Then the Cauchy problem admits a weak solution µ, v, w
such that for some increasing C(t)

TV (µ, v, w)(t) + sup |(α, b)(t, ·)| 6 C(t), t ≥ 0,

and are defined up to a maximal time T 6 ∞. If T < ∞ then either the
geometry variables α, b blow up: limt→T

(
sup

R
|α(t, ·)| + |b(t, ·)|

)
= ∞, or the

energy density blows up : limt→T sup
R
|µ(t, ·)| = ∞.
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Hence, the solution exists until either a singularity occurs in the geometry
(e.g. the area β of the 2-dimensional space-like orbits of the symmetry group
vanishes) or the matter collapses to a point. To our knowledge this is the first
global existence result for the Euler-Einstein equations.

If a shock wave forms in the fluid, then µ, v will be discontinuous and, as
a consequence, w3x and w4x might also be discontinuous. In fact, Theorem 5
allows not only such discontinuities in second-order derivatives of the geometry
components (i.e. at the level of the curvature), but also discontinuities in
the first-order derivatives which propagate at the speed of light. The latter
correspond to Dirac distributions in the curvature of the metric.

5 Lower bounds on the injectivity radius of Lorentzian

manifolds

Motivated by the application to spacetimes of general relativity and by earlier
results established by Anderson [2] and Klainerman and Rodnianski [13], we
investigate in [5] the geometry and regularity of (n+1)-dimensional Lorentzian
manifolds (M, g). Under curvature and volume bounds we establish new injec-
tivity radius estimates which are valid either in arbitrary directions or in null
cones. Our estimates are purely local and are formulated via the “reference”
Riemannian metric ĝ T associated with an arbitrary future-oriented time-like
vector field T .

Our proofs are based on suitable generalizations of arguments from Rie-
mannian geometry and rely on the observation that geodesics in the Euclidian
and Minkowski spaces coincide, so that estimates for the reference Riemannian
metric can be carried over to the Lorentzian metric. Our estimates should be
useful to investigate the qualitative behavior of spacetimes satisfying Einstein
field equations.

We state here one typical result from [5] encompassing a large class of
Lorentzian manifolds. Fix a point p ∈ M , and let us assume that a domain
Ω ⊂ M containing p is foliated by spacelike hypersurfaces Σt with normal
T , say Ω =

⋃
t∈[−1,1] Σt. Assume also that the geodesic ball BΣ0

(p, 1) ⊂
Σ0 is compactly contained in Σ0. Consider the following assumptions where
K0,K1,K2 and v0 are positive constants:

K0 ≤ −
∣∣ ∂

∂t

∣∣∣
2

g
≤ 1/K0 in Ω, (8)

|LT g|bg T
≤ K1 in Ω, (9)

|Rmg|bg T
≤ K2 in Ω, (10)

volg(BΣ0
(p, 1)) ≥ v0, (11)

We prove in [5] :
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Theorem 6 (Injectivity radius estimate for Lorentzian manifolds).
Let (M, g) be a Lorentzian manifold satisfying (8)–(11) at a point p ∈ M .
Then, there exists a positive constant i0 depending on the foliation bounds
K0,K1, curvature bound K2, volume bound v0, and dimension n so that the
injectivity radius at p is bounded below by i0, that is Inj(M, g, p) ≥ i0.
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