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SINGULAR LIMITS IN PHASE DYNAMICS
WITH PHYSICAL VISCOSITY AND CAPILLARITY

K.T. JOSEPH AND P.G. LEFLOCH

A. Following pioneering work by Fan and Slemrod who
studied the effect of artificial viscosity terms, we consider the sys-
tem of conservation laws arising in liquid-vapor phase dynamics
with physical viscosity and capillarity effects taken into account.
Following Dafermos we consider self-similar solutions to the Rie-
mann problem and establish uniform total variation bounds, al-
lowing us to deduce new existence results. Our analysis cover
both the hyperbolic and the hyperbolic-elliptic regimes and apply
to arbitrarily large Riemann data.

The proofs rely on a new technique of reduction to two coupled
scalar equations associated with the two wave fans of the system.
Strong L1 convergence to a weak solution of bounded variation
is established in the hyperbolic regime, while in the hyperbolic-
elliptic regime a stationary singularity near the axis separating
the two wave fans, or more generally an almost-stationary oscil-
lating wave pattern (of thickness depending upon the capillarity-
viscosity ratio) are observed which prevent the solution to have
globally bounded variation.

1. I

The Navier-Stokes equations for van der Waals fluids with viscos-
ity and capillarity effects included, allow one to model the dynamics
of liquid-vapor flows. The associated set of first-order conserva-
tion laws is of hyperbolic or hyperbolic-elliptic type, and admits
propagating discontinuities (shock waves). The singular limit cor-
responding to vanishing viscosity and capillarity coefficients allows
one to select physically admissible, discontinuous solutions to the
first-order conservation laws. In particular, this yields an approach
to select solutions to the so-called Riemann problem, when the ini-
tial data consists of two constant states separated by a single jump.
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Our purpose in the present paper is to derive uniform (viscosity-
capillarity independent) bounds and to justify this singular limit in
the context of nonlinear elasticity and phase transition dynamics.

Attention will be concentrated on the following system of two
conservation laws:

∂v

∂t
−
∂

∂x

(
σ(w) − ǫ

∂v

∂x
+ δ
∂2w

∂x2

)
= 0,

∂w

∂t
−
∂v

∂x
= 0,

(1.1)

where v = v(t, x) and w = w(t, x) represent the velocity and deforma-
tion gradient of the fluid or solid material under consideration. We
consider also the associated first-order system

∂v

∂t
−
∂

∂x
(σ(w)) = 0,

∂w

∂t
−
∂v

∂x
= 0,

(1.2)

and impose Riemann initial data

(v,w)(0, x) =

{
vl,wl, x < 0,

vr,wr, x > 0,
(1.3)

where vl, vr,wl,wr ∈ R are given constants. Solutions of (1.2)-(1.3) are
known to be self-similar, that is, to depend only upon the variable
y := x/t.

When viscosity and capillarity terms are taken into account, the
corresponding set of differential equations reads

− y v′ − σ(w)′ = ǫ v′′ − δw′′′,

− y w′ − v′ = 0,
(1.4)

supplemented with the boundary conditions

lim
y→−∞

(v,w)(y) = (vl,wl), lim
y→+∞

(v,w)(y) = (vr,wr). (1.5)

Our main objective in this paper is to establish :

(1) the existence of a smooth, self-similar solution to (1.4)-(1.5)
having uniformly bounded total variation,

TV(vǫ,wǫ) . |vr − vl| + |wr − wl|, (1.6)

with the implied constant being independent of ǫ, δwithin the
range δ/ǫ2 << 1, and

(2) the strong convergence of vǫ,wǫ toward a weak, self-similar
solution v,w to the first-order conservation laws (1.2).
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An outline of our main results is as follows.
Assuming first that the system (1.2) is hyperbolic we provide a

rather direct proof of the above two properties, first in the viscosity-
only case (Section 2) and then for general viscosity-capillarity (Sec-
tion 3). In this regime, it is known that the limiting solutions in
general contains nonclassical shocks, with depend upon the ratio
δ/ǫ2; see [16].

Next, we investigate the generalization to the hyperbolic-elliptic
regime, and discover a concentration phenomena near the axis x = 0
separating the two wave fans. This seems to be consistent with
numerical experiments with the model under consideration, but it
would be interesting to check numerically the feature discovered here
analytically. In the context of phase dynamics, it is also well-known
that the limiting solutions contains subsonic phase boundaries which
again depend on the capillarity to viscosity ratio; see [23, 25, 27, 1,
15, 21, 22].

Observe that our results cover arbitrary large Riemann data and
physical viscosity and capillarity terms. Our results supplement the
earlier, pioneering work by Fan and Slemrod [7, 8] where an artificial,
“full” viscosity was used. Our technique of proof in the present paper
is quite different from the one in [7], as we introduce a decomposition
of the system of equations (1.4) into two coupled scalar equations.

Finally, we provide various generalization to the boundary value
problem and more general classes of conservation laws.

Recall that the activity on self-similar vanishing viscosity limits
started with an extensive research by Dafermos [2]–[5] (see also [6])
who advocated the use of self-similar regularizations to capture the
whole structure of wave fans within solutions of the Riemann prob-
lem. Self-similar approximations in the context of phase transition
dynamics were studied by Slemrod [23, 25], Fan and Slemrod [7], who
covered large data solution and artificial regularization terms. Next,
small data solutions to general systems were treated by Tzavaras [28]
(conservative systems) and LeFloch and Tzavaras [18, 19] (noncon-
servative systems).

Self-similar diffusive-dispersive approximations for general sys-
tems were investigated in LeFloch and Rohde [17]. Joseph and
LeFloch [9]–[12] extended the technique to cover boundary value
problems, relaxation approximations, and general diffusion matri-
ces. The present paper is the continuation of [9]–[12]. For issues
related to the discretization of the viscosity and capillarity terms, we
refer to [24, 14].
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2. E   

We begin with the case that δ = 0 and σw > 0. We will prove:

Theorem 2.1 (Vanishing viscosity limit in elastodynamics). Assume
that the system (1.2) is uniformly hyperbolic, in the sense that there exits a
positive constant c0 such that

inf
w∈R
σw(w) ≥ c2

0 > 0.

Then, given arbitrary Riemann data vl,wl and vr,wr, the viscous Riemann
problem (1.4)-(1.5) with δ = 0 admits a solution vǫ,wǫ which has uniformly
bounded total variation and converges pointwise to a limit v,w. This limit
is a weak solution of the Riemann problem (1.2)-(1.3).

It is worth observing that the solutions wǫ, vǫ contain a mild singu-
larity at y = 0: their derivatives up to order C/ǫ only are continuous
at y = 0. Hence, this singularity vanishes in the limit ǫ → 0. The
singularity is due to a factor y appearing in the key equation (2.2)
below, in front of the term with the highest order derivative.

Proof. Step 1. Reduction to a scalar equation for the component w. To
simplify the notation we suppress the subscript ǫ. We will first study
the problem on a finite interval [−L,L] with L chosen to be sufficiently
large and we will show the existence of a solution to (1.4) satisfying
the boundary conditions

(v,w)(−L) = (vl,wl), (v,w)(L) = (vr,wr). (2.1)

First, we observe that the system can be reduced to a single scalar
equation for the unknown w. Namely, using v′ = −y w′ in the first
equation of (1.4) we find

(y2 + ǫ − σw(w)) w′ = −ǫ y w′′, (2.2)

which will be studied in two regions [−L, 0] and [0,L] with the fol-
lowing boundary conditions

w(−L) = wl, w(0−) = w∗, (2.3)

w(0+) = w∗, w(L) = wr, (2.4)

where w∗ is a parameter to be determined so that the boundary con-
dition on the variable v (which has been eliminated from (2.2)) is
satisfied. This condition is obtained by integrating over [−L,L] the
second equation in (1.4):

vr − vl =

∫ L

−L

v′ dy = −L wr + Lwl +

∫ L

−L

w dy. (2.5)
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This is a global, integral condition on the solution w. We will now
solve the problem (2.2)–(2.5).

Our boundary condition can be justified as follows. If we search
for a piecewise smooth solution of (1.4), then clearly the measure
v′ = −yw′ can not have a mass point at y = 0, hence v is continuous.
Similarly, by the first equation in (1.4) the function σ(w)− ǫv′ must be
continuous at y = 0. But, using again the equation ǫv′ = −yǫw′ we
see that σ(w) itself must be continuous. Finally, since σ is assumed to
be strictly increasing, w must be continuous.

Based on the function w we can define a(y) := y − (σw(w(y)) − ǫ)/y,

consider the integral
∫ y

α±
a(x) dx on [−L, 0) and on (0,L] with α− ∈

[−L, 0) and α+ ∈ (0,L], respectively. Let us show that the minimum
with respect to y of this integral is attained at

ρ± := ±(σw(w(ρ±)) − ǫ)1/2.

For definiteness, consider the case α = α− ∈ [−L, 0) with α− < y; then
∫ y

α

a(x) dx ≥

∫ y

α

(x −
(σM

w − ǫ)

x
) dx ≥ (y2 − α2)/2 + log(α/y)σ

M
w −ǫ,

which tends to infinity as y → 0. Necessarily, the minimum is at-
tained away from 0. As this integral has quadratic growth in y, for
L large the minimum ρ = ρ− is attained in (−L, 0) and is given by the
equation ρ2 − σw(w(ρ)) + ǫ = 0.

This choice of ρ± gives
∫ y

ρ−
a(x) dx ≥ 0. By setting

ϕ−(y) :=
e
−(1/ǫ)

∫ y

ρ−
a(x) dx

∫ 0

−L
e
−(1/ǫ)

∫ y

ρ−
a(x) dx

ϕ+(y) :=
e
−(1/ǫ)

∫ y

ρ+
a(x) dx

∫ L

0
e
−(1/ǫ)

∫ y

ρ+
a(x) dx
,

the problem under consideration is equivalent to

w(y) =



wl + (w∗ − wl)

∫ y

−L

ϕ− dx, y < 0,

wr + (w∗ − wr)

∫ L

y

ϕ+ dx, y > 0,
(2.6)

together with the boundary condition (2.5).
To find w∗, we used the continuity of the solution at y = 0 namely,

w(0−) = w(0+) = w∗ and v(0−) = v(0+) = v∗. Integrating the equation
v′ = −yw′ from −L to 0 and from 0 to L and using (2.6), we get

v∗ − vl = (w∗ − wl)

∫ 0

−L

−yϕ−(y)dy,
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vr − v∗ = (w∗ − wr)

∫ L

0

yϕ+(y)dy.

Adding these formulas and solving for w∗, we get

w∗ =
vr − vl + wr

∫ L

0
yϕ+ dy − wl

∫ 0

−L
yϕ− dy

∫ L

0
yϕδ+ dy −

∫ 0

−L
yϕδ− dy

, (2.7)

which provides us with the value of w∗.
Observe that the denominator is bounded away from zero. To

evaluate its minimum value (in terms of the constitutive function σ
and the Riemann data) we now need to analyze the functions ϕ±.

Step 2. Properties of the functions ϕ±. We will show now that the
support of the functions ϕ± is essentially concentrated away from
the axis y = 0. Let σm

w = min−L≤y≤L σw(w(y)), σM
w = max−L≤y≤L σw(w(y)),

λm
ǫ = (σm

w − ǫ)
1/2 and λM

ǫ = (σM
w − ǫ)

1/2. We claim that there exists a
constant C > 0 such that

0 < ϕ−(y) ≤
C

ǫ



e−
(y+λM

ǫ )2

2ǫ , −L ≤ y < −λM
ǫ ,

1, −λM
ǫ ≤ y < −λm

ǫ ,

e−
(y+λM

ǫ )2

2ǫ , −λm
ǫ ≤ y < −λm

ǫ /4,

(−2y/λm
ǫ )

3λm
ǫ

4ǫ , −λm
ǫ /4 ≤ y ≤ 0,

(2.8)

0 < ϕ+(y) ≤
C

ǫ



(2y/λm
ǫ )

3λm
ǫ

4ǫ , 0 ≤ y ≤ λm
ǫ /4,

e−
(y−λm

ǫ )2

2ǫ , λm
ǫ /4 ≤ y < λm

ǫ ,

1, λm
ǫ ≤ y < λM

ǫ ,

e−
(y−λM

ǫ )2

2ǫ , λM
ǫ < y < L.

(2.9)

This is proved as follows. First, in the interval 0 ≤ y ≤ λm
ǫ /4 we

find
∫ y

ρ+

(x2 − σw(x) + ǫ)

x
dx ≥

∫ y

λm
ǫ /2

(x2 − σw + ǫ)

x
dx

=

∫ λm
ǫ /2

y

(σw − ǫ − x2)

x
dx

≥ (3/4)(λm
ǫ )2

∫ λm
ǫ /2

y

dx

x
= log(λm

ǫ /2y)(3/4)λm
ǫ

2

,
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and, next, for y > λM
ǫ∫ y

ρ+
(x2 − σw(x) + ǫ)dx ≥

∫ y

λM
ǫ

(x2 − σw(x) + ǫ)

x
dx

=

∫ y

λM
ǫ

(x − (σw(x) + ǫ)1/2)(1 +
(σw(x) + ǫ)1/2

x
)dx

≥

∫ y

λM
ǫ

(x − λM
ǫ )dx =

(y − λM
ǫ )2

2
.

The other cases are completely similar. Since, on the other hand, it is
easy to check that

∫ 0

−L

e
−(1/ǫ)

∫ y

ρ−
a(x) dx

dy ≥ Cǫ,

∫ L

0

e
−(1/ǫ)

∫ y

ρ+
a(x) dx

dy ≥ Cǫ,

this completes the derivation of the properties of ϕ±.

Step 3. Existence result. Observe that w∗ consists of the sum of

vr − vl∫ L

0
yϕ+ dy −

∫ 0

−L
yϕ− dy

=
vr − vl

∫ −λm
ǫ

−λM
ǫ
−yϕ− dy +

∫ λM
ǫ

λm
ǫ

yϕ+ dy +O(ǫn)

and a convex combination of wl,wr. In view of this observation,
together with the estimates (2.8) and (2.9), we get

|w∗| ≤ max(wl,wr) +
|vr − vl|

2λm
ǫ +O(ǫn)

≤ max(wl,wr) +
|vr − vl|

c0
=: Λ0

and we arrive at the uniform bound

|w∗| ≤ Λ0. (2.10)

Replacing now w∗ (by its value given in (2.7)) in the formula (2.6)
we can define a mapping w ∈ C0([−L,L]) 7→ T(w) ∈ C0([−L,L]). We
claim that, for fixed ǫ, the function T(w) is of class C1 and

‖T(w)‖C0 ≤ Λ0,

‖T(w)′‖C0 ≤
C

ǫ
(|wr − w∗| + |wr − w∗|).

Indeed, these estimates follow immmediatly from (2.6), (2.8), and
(2.9)

In consequence, the operator T is a compact map from the convex

bounded set
{
w / ‖w‖C0([−L,L] ≤ Λ0

}
into itself. By Schauder’s fixed
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point theorem, T has a fixed point which satisfies (2.6) and, clearly,
is of class C1. Furthermore, in view of (2.6) and (2.7), we have
∫ L

−L

|w′(y)|dy ≤ |wr − w∗| + |wl − w∗| ≤ |wr − wl| +
2

c0
|vr − vl| (2.11)

and
∫ L

−L

|v′(y)|dy ≤

∫ L

−L

|yw′(y)|dy ≤ (λM
0 +1)

(
|wr−wl|+

2

c0
|vr−vl|

)
. (2.12)

Next, since all of the estimates are uniform in L, we can let L→∞
and we conclude with existence of a solution (vǫ,wǫ) on defined on the
whole real line (−∞,∞). This function (vǫ,wǫ) is a bounded solution
of (1.4)-(1.5) and has uniformly bounded total variation

∫ ∞

−∞

(
|w′(y)| + |v′(y)|

)
dy ≤ (λM

0 + 2)
(
|wr − wl| +

2

c0
|vr − vl|

)
.

By Helly’s compactness theorem, it admits a subsequence converging
pointwise to a limit (v,w), as ǫ goes to zero. Clearly, the limit is a
weak solution of the problem (1.2)-(1.3). �

3. E     

In this section, we consider the full system with physical viscosity
and capillarity included. We will prove:

Theorem 3.1 (Vanishing viscosity-capillarity limit in elastodynam-
ics). Assume that inf σw ≥ c2

0 > 0. Then, given arbitrary Riemann data
vl, vr,wl,wr, the problem (1.4)-(1.5) with δ = γǫ2, γ > 0, admits a solution
vǫ,wǫ which has uniformly bounded total variation and converges to a limit
v,w. This limit is a weak solution to the Riemann problem (1.2)-(1.3).

Observe that this is a large data result.

Proof. Step 1: reduction to a scalar equation. We will first study the
problem on a finite interval [−L,L] with L chosen to be sufficiently
large with boundary conditions

(v,w)(−L) = (vl,wl), (v,w)(L) = (vr,wr). (3.1)

As before, the system can be reduced to a single scalar equation
for the unknown w. Namely, using v′ = −y w′ in the first equation of
(1.4) we find

(y2 + ǫ − σw(w)) w′ = −ǫ y w′′ − δw′′′, (3.2)
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which will be studied in two regions [−L, 0] and [0,L] with the fol-
lowing boundary conditions

w(−L) = wl, w(0−) = w∗, (3.3)

w(0+) = w∗, w(L) = wr, (3.4)

where w∗ is a parameter to be determined so that the boundary con-
dition on the variable v (which has been eliminated from (2.2)) is
satisfied. This condition is obtained by integrating over [−L,L] the
second equation in (1.4):

vr − vl =

∫ L

−L

v′ dy = −L wr + Lwl +

∫ L

−L

w dy. (3.5)

This is a global, integral condition on the solution w. We will now
solve the problem (3.2)–(3.5).

We will follow a method originally introduced by LeFloch and
Rohde [17] for small amplitude solutions of systems of conservation
laws. Setting ϕ = eβH, the differential equation under consideration
becomes

δ[H′′ + 2H′β′ +Hβ′′ +Hβ′2] + ǫy[H′ +Hβ′] + (y2 + ǫ − σw)H = 0

Setting the coefficient of H′ equal to 0, we get β′ =
−ǫy

2δ , thus β(y) =
−ǫy2

4δ ,
and

H′′ =
µ(w(y), y)

δ
H, (3.6)

where

µ(w(y), y) = σw + y2(
ǫ2

4δ
− 1) −

ǫ

2
. (3.7)

We take δ = γǫ2 and, in this case,

µ(w, y) = σw + y2(
1

4γ
− 1) −

ǫ

2
> 0,

provided ǫ, γ > 0 are sufficiently small. Upon integrating this equa-
tion for H and substituting, we get

φ(y) =
1 + Φ(y)

(4γµ)1/4
e

p(y,ρ)
ǫ , (3.8)

where

|Φ(y)| +
ǫγ1/2

2µ(y)1/2
|Φ′(y)| ≤ ǫγ1/2k,

k :=

∫ L

−L

µ−5/4|µ′|2dx +

∫ L

−L

µ−3/2|µ′′|dx
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and

p(y, ρ) :=

∫ y

ρ

(
−x

2γ
+

√
µ(w(x), x)

γ
)dx

=

∫ y

ρ

(
−x

2γ
+

√
σw − ǫ/2 + x2(1/4γ − 1)

γ
dx

=
1

2γ

∫ y

ρ

x(−1 +
√

1 + 4γ(σw − ǫ/2 − x2))dx.

(3.9)

Here, ρ is the maximizer of the the integral

max
−L<y<L

∫ y

α

(
−x

2γ
+

√
µ(w(x), x)

γ
)dx.

Indeed ρ satisfies

ρ2 − σw(w(ρ)) + ǫ/2 = 0,

which has pairs of solutions ρ− ∈ [−L, 0) and on ρ+ ∈ (0,L], satisfying

ρ± = ±(σw(w(ρ±)) − ǫ/2)1/2.

We consider ϕ− and ϕ+ on [−L, 0] and [0,L], defined by

φ−(y) =
1 + Φ(y)

(4γµ)1/4
e

p(y,ρ−)
ǫ (3.10)

φ+(y) =
1 + Φ(y)

(4γµ)1/4
e

p(y,ρ+)
ǫ (3.11)

and setting

ϕ−(y) :=
φ−(y)

∫ 0

−L
φ−(x) dx

ϕ+(y) :=
φ+(y)

∫ L

0
φ+(x) dx

,

the problem under consideration is equivalent to

w(y) =


wl + (w∗ − wl)

∫ y

−L
ϕ− dx, y < 0,

wr + (wr − w∗)
∫ L

y
ϕ+ dx, y > 0,

(3.12)

together with the boundary condition (2.5). The latter can be ex-
pressed in its original form involving w′ (see the second equation in
(1.4)) and yields

w∗ :=
vr − vl + wr

∫ L

0
yϕ+ dy − wl

∫ 0

−L
yϕ− dy

∫ L

0
yϕ+ dy −

∫ 0

−L
yϕ− dy

. (3.13)
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Observe that the denominator in the formula for w∗ is bounded away
from zero. To find the value of the minimum in terms of the con-
stitutive function σ and the Riemann data we need the following
properties of ϕ±

Step 2: Properties of ϕ±. With the same σm
ǫ and σM

ǫ as before, set
λm
ǫ = (σm

w−ǫ/2)1/2 andλM
ǫ = (σM

w −ǫ/2)1/2. There exist constants C1 > 0,
and C > 0 depending only on γ, σm

w , σ
M
w and such that

0 < ϕ−(y) ≤
C1

ǫ



e
C(y+λM

ǫ )2

ǫy , −L ≤ y < −λM
ǫ ,

1, −λM
ǫ ≤ y < −λm

ǫ ,

e−
C(y+λm

ǫ )2

ǫ , −λm
ǫ ≤ y < −γ1/2λm

ǫ ,

e−
C|y−λm

ǫ γ
1/2|

ǫ , −γ1/2λm
ǫ ≤ y ≤ 0,

(3.14)

0 < ϕ+(y) ≤
C1

ǫ



e−
C|y−λm

ǫ γ
1/2|

ǫ , 0 ≤ y ≤ γ1/2λm
ǫ ,

e−
C(y−λm

ǫ )2

ǫ , γ1/2λm
ǫ ≤ y < λm

ǫ ,

1, λm
ǫ ≤ y < λM

ǫ ,

e−
C(y−λM

ǫ )2

ǫy , λM
ǫ < y < L.

(3.15)

First, we prove the estimates for ϕ+. Consider the region y > λM
ǫ

p(y, ρ+) =

∫ y

ρ+

(−x

2γ
+

√
σw − ǫ/2 + x2(1/4γ − 1)

γ

)
dx

≤

∫ y

λM
ǫ

(−x

2γ
+

√
σw − ǫ/2 + x2(1/4γ − 1)

γ

)
dx

=
1

2γ

∫ y

λM
ǫ

x
(
− 1 +

√
1 + 4γ

(σw − ǫ/2 − x2)

x2

)
dx

≤
λM
ǫ

2γ

∫ y

λM
ǫ

(
− 1 +

√
1 + 4γ

(σw − ǫ/2 − x2)

x2

)
dx,
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and, for y > λM
ǫ ,

p(y, ρ+) =≤
λM
ǫ

2γ

∫ y

λM
ǫ

2γ
(σw − ǫ/2 − x2)

x2
dx

≤ λM
ǫ

∫ y

λM
ǫ

(σw − ǫ/2)1/2 − x)
(σw − ǫ/2)1/2 + x)

x2
dx

≤ λM
ǫ

∫ y

λM
ǫ

(σw − ǫ/2)1/2 − x)

x
dx

≤
λM
ǫ

y

∫ y

λM
ǫ

(λM
ǫ − x)dx = −

λM
ǫ

y

(y − λM
ǫ )2

2
.

Now, consider the region γ1/2λm
ǫ /2 ≤ y ≤ λm

ǫ ,

p(y, ρ+) =

∫ y

ρ+

(−x

2γ
+

√
σw − ǫ/2 + x2(1/4γ − 1)

γ

)
dx

≤

∫ y

λm
ǫ

(−x

2γ
+

√
σw − ǫ/2 + x2(1/4γ − 1)

γ

)
dx

≤

∫ λm
ǫ

y

( x

2γ
−

√
σw − ǫ/2 + x2(1/4γ − 1)

γ

)
dx

=
1

2γ

∫ λm
ǫ

y

x
(
1 −

√
1 + 4γ

(σw − ǫ/2 − x2)

x2

)
dx

≤
λm
ǫ

4γ1/2

∫ λm
ǫ

y

(
1 −

√
1 + 4γ

(σw − ǫ/2 − x2)

λm
ǫ

)
dx,

and, for γ1/2λm
ǫ /2 ≤ y ≤ λm

ǫ ,

p(y, ρ+)− ≤
λm
ǫ

4γ1/2

∫ λm
ǫ

y

4γ
(σw − ǫ/2 − x2)

λm
ǫ

)dx

≤ −C

∫ λm
ǫ

y

4γ(σw − ǫ/2)1/2 − x)(σw − ǫ/2)1/2 + x)dx

≤ −C

∫ λm
ǫ

y

(σw − ǫ/2)1/2 − x)dx

≤ −C

∫ λM
ǫ

y

(λm
ǫ − x)dx = −C

(y − λm
ǫ )2

2
.
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For 0 ≤ y ≤ γ1/2λm
ǫ /2,

p(y, ρ+) =

∫ y

ρ+

(−x

2γ
+

√
σw − ǫ/2 + x2(1/4γ − 1)

γ

)
dx

≤

∫ y

λm
ǫ γ

1/2

(−x

2γ
+

√
σw − ǫ/2 + x2(1/4γ − 1)

γ

)
dx

≤

∫ λm
ǫ γ

1/2

y

( x

2γ
−

√
σw − ǫ/2 + x2(1/4γ − 1)

γ

)
dx

≤

∫ λm
ǫ γ

1/2

y

(
γ1/2λǫ

2γ
−
λm
ǫ

γ1/2
)dx

=

∫ λm
ǫ γ

1/2

y

−
λm
ǫ

2γ1/2
dx = −C|y − λm

ǫ γ
1/2|.

The other cases are identical. One can also check (for some c > 0)
∫ 0

−L

φ−(y)dy ≥ c ǫ,

∫ L

0

φ+(y)dy ≥ c ǫ,

so that the desired properties of ϕ+, ϕ−, follow.

Existence arguments. Now w∗ is sum of convex combination of
wl,wr and the quantily

vr − vl∫ L

0
yϕ+ dy −

∫ 0

−L
yϕ− dy

=
vr − vl

∫ −λm
ǫ

−λM
ǫ
−yϕ− dy +

∫ λM
ǫ

λm
ǫ

yϕ+ dy +O(ǫn)
.

From this we get

|w∗| ≤ max(wl,wr) +
|vr − vl|

2λm
ǫ +O(ǫn)

≤ Λ0.

We can now replace w∗ (given by (3.13)) in (3.12) and arrive at a
mapping w ∈ C0([−L,L]) 7→ T(w) ∈ C0([−L,L]). For fixed ǫ, T(w) is of
class C1, and

‖T(w)‖C0 ≤ Λ0,

‖T(w)′‖C0 ≤
C

ǫ
(|wr − w∗| + |wr − w∗|).

These estimates follow from (3.12) (3.14) and (3.15)
Thus, T is a compact map from a convex bounded set {w : ‖w‖C0 ≤

Λ0} into itself. By Schauder’s fixed point theorem, T has a fixed
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point in C0[−L,L] and satisfies (3.12) and so the solution is of class
C1. Furthermore, in view of (3.12) and (3.13),
∫ L

−L

|w′(y)|dy ≤ |wr − w∗| + |wl − w∗| ≤ |wr − wl| + 2
|vr − vl|

c0
(3.16)

and∫ L

−L

|v′(y)|dy ≤

∫ L

−L

|yw′(y)|dy ≤ (λM
0 + 1)

(
|wr −wl|+ 2

|vr − vl|

c0

)
. (3.17)

As the estimates are uniform in L, we have existence of solution
(vǫ,wǫ) on (−∞,∞) we have (vǫ,wǫ) bounded solution of (1.4) and
(1.5) with uniform total variation∫ ∞

−∞

(|w′(y)| + |v′(y)|dy ≤ (λM
0 + 2)[|wr − wl| + 2

|vr − vl|

c0
]

By compactness there exists a sequence converges in L1 and pointwise
a.e. to a function (v,w) as ǫ goes to zero and solves (1.2) and (1.3)
with ǫ = 0. �

4. P    

We turn to the model of phase transition dynamics when the system
is not strictly hyperbolic, that is, when σw(w) is only non-negative, or
even is hyperbolic-elliptic when σw takes negative values.

To illustrate the key difficulty we will have to cope with, let us first
consider the example

a(y) = y + c/y,

with c a constant. When c ≥ 0, ρ+ = δ and
∫ y

ρ+
a(x)dx =

y2−ρ2
+

2
+

log(|y/ρ+|c) and so

e
− 1
ǫ

∫ y

ρ+
a(x)dx

= e
−(y2−ρ2

+)

2ǫ (y/ρ+)−c/ǫ = e
−(y2−δ2)

2ǫ (y/δ)−c/ǫ.

In this case

ϕ+(y) =
e
−(y2−δ2)

2ǫ (y/δ)−c/ǫ

∫ L

ρ+
e
−(y2−δ2)

2ǫ (y/δ)−c/ǫdy
,

which is concentrated at y = δ. For c < 0, we have, ρ+ = (−c)1/2 and

e
− 1
ǫ

∫ y

ρ+
a(x)dx

= e
−(y2+c)

2ǫ (y/(−c)1/2)−c/ǫ,

so that

ϕ+(y) =
e
−(y2+c)

2ǫ (y/(−c)1/2)−c/ǫ

∫ L

ρ+
e
−(y2+c)

2ǫ (y/(−c)1/2)−c/ǫdy
,
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which is concentrated at y = (−c)1/2.
In the previous section, to show that w∗ is bounded independent

of ǫ it was crucial that ϕ+ and ϕ− be concentrated away from 0. In the
above example, if c ≥ 0, we have seen that this is not the case. This is
the difficulty is getting estimates when σw(w(y)) oscillates, i.e. takes
both negative and positive values.

We now prove the following result:

Theorem 4.1 (Vanishing viscosity limit in phase dynamics). Suppose
that the first order system (1.2) is uniformly hyperbolic for large value of w
but may admit elliptic regions in the phase space, that is for some constants
M, c0 > 0

inf
|w|≥M

σw(w) ≥ c0
2.

Suppose also that there exist constants c1 > 0 and η > 0 such that |σw(w)| ≤
c1|w|

2−η for |w| > 1. Then for all Riemann data vl,wl and vr,wr in the
hyperbolic region of the phase space, i.e.

wl,wr ∈ H :=
{
w / σw > 0

}

the viscous Riemann problem (1.4)-(1.5), with δ = 0, admits a solution
vǫ,wǫ which has uniformly bounded total variation at least away from
y = 0, and more precisely

∫

R

(
|v′ǫ| + y |w′ǫ|

)
dy . |vr − vl| + |wr − wl|.

The functions vǫ,wǫ converge pointwise at all y , 0 to a limit v,w, which
is a solution of the Riemann problem (1.2)-(1.3) away from the axis y =
x/t = 0. Furthermore, v has bounded variation and so admits left- and
right-hand limits at y = 0, while the function w and its variation measure
dw/dy satisfy

|w| .
1

|y|
, y , 0,

∫

R

|y| |
dw

dy
| < ∞.

Hence, the component v only has globally bounded variation. In
turn, the conservation laws (1.2) are satisfied in the two regions x < 0
and x > 0, but a singularity may arise on the axis.

Proof. Step 1. A priori estimates for the components v,w. To simplify the
notation we suppress the subscript ǫ. We will first study the problem
away from the axis y = 0. We consider the function

a(y) = y − (σw(w(y)) − ǫ)/y, (4.1)
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and, given some δ > 0, we study the problem in two regions [−L,−δ]
and [δ,L], with the following boundary conditions

w(−L) = wl, w(δ−) = w∗, (4.2)

w(δ) = w∗, w(L) = wr. (4.3)

We set

ϕδ−(y) :=
e
−(1/ǫ)

∫ y

ρ−
aδ(x) dx

∫ −δ
−L

e
−(1/ǫ)

∫ y

ρ−
aδ(x) dx

, ϕδ+(y) :=
e
−(1/ǫ)

∫ y

ρ+
aδ(x) dx

∫ L

δ
e
−(1/ǫ)

∫ y

ρ+
aδ(x) dx

,

on [−L,−δ] and [δ,L] where ρ± are the points where
∫ y

a(x)dx attains
its global minimum.

Let us considerλM+
ǫ = sup1≤y≤L (σw(w) − ǫ)+1/2 and let c > max{1, λM+

ǫ }.

For y > c
∫ y

ρ+
(x2 − σw(x) + ǫ)dx ≥

∫ y

c

(x2 − σw(x) + ǫ)

x
dx

=

∫ y

c

((x − (σw(x) + ǫ)+)1/2)(1 +
((σw(x) + ǫ)+)1/2

x
)dx

≥

∫ y

c

(x − c)dx =
(y − c)2

2
.

So, for y > (1 + sup1≤y≤L((σw(w) − ǫ)+)1/2, we get

ϕ(y)dy ≤
1

ǫ
e−

(y−c)2

2ǫ (4.4)

and ∫ L

δ

yϕ(y)dy ≤ (2 + sup
1≤y≤L

((σw(w) − ǫ)+)1/2. (4.5)

We then set

w(y) =


wl + (w∗ − wl)

∫ y

−L
ϕδ− dx, y < −δ,

wr + (w∗ − wr)
∫ L

y
ϕδ+ dx, y > δ.

(4.6)

Here, we have taken w(−δ) = w(δ) = w∗ and we also take v(−δ) =
v(δ) = v∗. Integrating the equation v′ = yw′ from −L to −δ and δ to L
and using (4.6), we get

v∗ − vl = (w∗ − wl)

∫ −δ

−L

−yφ−(y)dy

and

vr − v∗ = (w∗ − wr)

∫ L

δ

yφ+(y)dy.
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Adding these formulas, we get

w∗ :=
vr − vl + wr

∫ L

δ
yϕδ+ dy − wl

∫ −δ
−L

yϕδ− dy
∫ L

δ
yϕδ+ dy −

∫ −δ
−L

yϕδ− dy
(4.7)

and, subtracting,

v∗ = vl +
[vr − vl + (wr − wl)

∫ L

δ
yϕδ+ dy]

∫ −δ
−L
−yϕδ− dy

∫ L

δ
yϕδ+ dy −

∫ −δ
−L

yϕδ− dy
. (4.8)

Now, v can be expressed in terms of the boundary data wl,wr, vl, vr

and δ:

vδ(y) =



vl +
[vr−vl+(wr−wl)

∫ L

δ
yϕδ+ dy]

∫ y

−L
−xϕδ− dx

∫ L

δ
yϕδ+ dy−

∫ −δ
−L
−yϕδ− dy

, −L ≤ y < −δ

vr +
[vl−vr+(wr−wl)

∫
−

Lδ−yϕδ− dy]
∫ L

y
xϕδ+ dx

∫ L

δ
yϕδ+ dy+

∫ −δ
−L
−yϕδ− dy

. L > y > δ.
(4.9)

Also, w(y) can be written as

wδ(y) =



wl + (v∗ − vl)

∫ y

−L
ϕδ− dx,

∫ −δ
−L

yϕδ− dx
y < −δ,

wr + (vr − v∗)

∫ L

y
ϕδ+ dx,

∫ L

δ
yϕδ+ dx

y > δ.

(4.10)

Now clearly v∗ is bounded independent of ǫ > 0,δ > 0 :

|v∗ − vl| ≤ |vr − vl| + L(|wr − wl|)

and from (4.9) and (4.10), we get the following estimates

|y| |wδ(y)| ≤ (|vr| + |vl|) + 2L(|wr| + |wl|),

|vδ(y)| ≤ 2(|vr| + |vl|) + L(|wr| + |wl|),

Also we have the following estimates on the derivatives of vδ,wδ.
∫

L>|y|>δ

|ywδ(y)′|dy ≤ (|vr − vl|) + L(|wr − wl|),

∫

L>|y|>δ

|vδ(y)′|dy ≤ (|vr − vl|) + L(|wr − wl|).



18 K.T. JOSEPH AND P.G. LEFLOCH

Furthermore, for all L > |y| > δ

|vδ(y)′| ≤
1

ǫδ

(
(|vr − vl|) + L(|wr − wl|)y

)
,

|wδ(y)′| ≤
1

ǫδ

(
(|vr − vl|) + L(|wr − wl|)

)
.

The existence of solution for fixed L follows from these estimates as
we will see. In order to pass L→∞, we need estimates independent
of L. For this we use the growth condition on σw. From the expression
(4.8) for v∗, and (4.5), we get

|v∗ − vl| ≤ |vr − vl| + (2 + sup
1≤y≤L

(σw(w) − ǫ)+1/2
)|wr − wl|.

Using this in (4.9) and (4.10), we get

sup
1≤y≤L

|wδ(y)| ≤ (|vr| + |vl|) + ((3 + sup
1≤y≤L

(σw(w) − ǫ)+1/2
)(|wr| + |wl|),

|vδ(y)| ≤ 2(|vr| + |vl|) + ((2 + sup
1≤y≤L

(σw(w) − ǫ)+1/2
)(|wr| + |wl|),

Now using our assumption |σw| ≤ c1|w|
2−η for |w| > 1 in the first in-

equality, we conclude that sup1≤y≤L |w
δ(y)| is independent of L. Sim-

ilar estimate holds for [−L ≤ y ≤ −1]. We get there exists a constant
C = C(vl, vr,wl,wr), independent of L such that

sup
1≤|y|≤L

|wδ(y)| ≤ C (4.11)

With this constant C, let λM = sup|w|≤C|σw(w)|1/2. From (4.4), we get
ϕδ+ is essentially supported in [δ, λM + 1]. Similar arguments give ϕδ−
is essentially supported in the interval [−λM − 1,−δ]. It follows from
(4.9) and (4.10) that there exists a constant C1∫

|y|>δ

|ywδ(y)′|dy ≤ (|vr − vl|) + C1(|wr − wl|),

∫

|y|>δ

|vδ(y)′|dy ≤ (|vr − vl|) + C1(|wr − wl|).

(4.12)

Step 2. Existence proof. For each δ > 0, we can apply Schauder’s fixed
point theorem, as was explained earlier, and we obtain a solution
(wδ, vδ) defined on the interval [−L,−δ]

⋃
[δ,L] and satisfying uniform

in ǫ > 0 total variation estimate. The estimates (4.11) and (4.12) allows
as to let L tend to infinity. By compactness, we have a solution (v,w)
defined in the region |y| > δ. Since δ > 0 is arbitrary, we obtain a
well-defined solution away from y = 0. Indeed, vδ has a uniform
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total variation on R and v admits left- and right-limit at y = 0. One
can check easily that the limit is a weak solution of the problem (1.2)-
(1.3) away from the axis y = 0 at least. Without a control on σ(w) near
y = 0 we can not exclude a concentration term on the axis. �

5. B R    

In this section, we outline how the method developed in previous
sections can be generalized to the boundary-value problem and in-
dicate several generalizations. It is well-known that in the strictly
hyperbolic case with nondegenerate function σ, the boundary Rie-
mann problem (in x > 0, t > 0)

vt − σ(w)x = 0, wt − vx = 0. (5.1)

with initial and boundary conditions

w(0+, t) = wb, v(x, 0) = vr,w(x, 0) = wr (5.2)

is well posed. This easily follows from an analysis of the wave curves
for the system corresponding to the left-moving and right-moving
characteristic families. The physical regularizations considered in
earlier sections is well-suited to handle this boundary value problem,
without producing boundary layers in the limit.

Consider the nonlinear elastodynamics with physical viscosity

−yv′ − σw(w)) w′ = ǫ v′′, −y w′ − v′ = 0, on [0,∞), (5.3)

with boundary conditions

w(0) = wb, v(∞) = vr,w(∞) = wr. (5.4)

Observe that, for the ”full” viscosity approximation, we need to
prescribe the component v at y = 0 and this generates a boundary
layer at y = 0, after passage to the limit ǫ → 0; see [10, 11]. In the
present case, we show that no boundary layer arises.

As in Section 2, the problem can be reduced to a scalar equation
for the unknown w

(y2 + ǫ − σw(w)) w′ = −ǫ y w′′, on [0,L], (5.5)

for sufficiently large L, with boundary conditions,

w(0) = wb,w(L) = wr. (5.6)

Once we have w, we get the component v from the equation yw′+v′ =
0 and the boundary condition v(L) = vr.

The fixed point argument in Section 2 yields a solution wǫ of (5.5)-
(5.6) which is of uniformly bounded variation. Furthermore, it can
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be represented by an integral formula in terms of the function ϕ+
introduced in Section 2

wǫ(y) = wr + (wb − wr)

∫ L

y

ϕ+ dx, y > 0.

Using that
∫ L

0
ϕ+(x)dx = 1, we get

wǫ(y) = wb + (wb − wr)

∫ y

0

ϕ+ dx, y > 0. (5.7)

Using (5.7) in the equation v′ = −yw′ and integrating from y to L, we
get

vǫ(y) = vr + (wb − wr)

∫ L

y

xϕ+ dx, y > 0, (5.8)

where we used v(L) = vr. Note that we cannot prescribe boundary
condition at v(0) arbitrarily, since from the above equation it follows
that

v(0) = vr + (wb − wr)

∫ L

0

xϕ+ dx.

As in Section 2, using the fact that ϕ+ decays exponentially we can
let L tend to∞. Again, using the properties (2.9) of ϕ+ near y = 0 in
(5.7), it follows easily that there exists C > 0, a constant independent
of ǫ, such that for all y > 0 close to the origin

|w(y) − wb| ≤ C y,

Hence, no boundary layer arises in this approximation at y = 0 and in
the limit as ǫ→ 0, the limit function w = w(y) satisfies the boundary
condition w(0+) = wb. We summarize our results in the following
theorem:

Theorem 5.1. Assume that inf σw ≥ c2
0 > 0. Then given arbitrary Rie-

mann boundary data, the problem (5.3)-(5.4) admits a solution vǫ,wǫ which
has uniformly bounded total variation and converges to a limit v,w which
is a solution of the boundary Riemann problem (5.1)-(5.2).

We now discuss a general system. The basic nature of the system
(5.1) is that v appear linearly and the characteristic speeds are equal in
magnitude and opposite in sign. Further using the second equation,
the system can be reduced to uncoupled equations for w. After
this reduction we solved for w first and then for v. Our results
can be generalized for systems of first order equations for w and v
vector valued functions, having same structure, using the ideas of
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the present work and the earlier work [10, 11] on boundary value
problems.

For example let F : RN → RN be a smooth function with A(w) =
DwF has real distinct positive eigenvalues λ1(w)2 < λ2(w)2 < ... <
λN(w)2 with a complete set of right-left normalized eigenvectors r j, j =
1, 2, ...N, l j, j = 1, 2, ...,N, l j.rk = δ jk.

We assume that there exists c0 > 0 such that λ j(w) ≥ c0 for all
j = 1, 2, ...N and for all w ∈ B(δ0), a ball of radius δ0 around a fixed
state that we take to be 0. We consider the system of 2N equations

∂v

∂t
−
∂

∂x

(
F(w)) = 0,

∂w

∂t
−
∂v

∂x
= 0,

(5.9)

where v = v(t, x) and w = w(t, x) are RN valued functions. The system
(5.1) is a special case of (5.9) with N = 1 and λ(w)2 = σw(w)

We consider boundary value problem for (5.9) on x > 0, t > 0.
When physical viscosity terms are taken into account, the corre-
sponding set of differential equations becomes

− y v′ − F(w)′ = ǫ v′′,

− y w′ − v′ = 0,
(5.10)

supplemented with the boundary conditions

lim
y→∞

(v,w)(y) = (vr,wr), w(0+) = wb. (5.11)

We first consider (5.10) on [0,L] with boundary conditions

(v,w)(L) = (vr,wr), w(0+) = wb. (5.12)

As in the previous case the problem can be reduced to first solving a
system for w(y) namely

(y2 + ǫ − A(w)) w′ = −ǫ y w′′, (5.13)

on [0,L], with boundary conditions,

w(0) = wb,w(L) = wr. (5.14)

Existence of uniformly BV solutions of this problem easily follows
from the work of Joseph and LeFloch [10, 11]. We just outline the
main steps omitting the details.

We decompose u′ in the basis of eigenvectors of A(u),

u′(y) =

N∑

j=1

a jr j(u), a j = 〈l j,u
′〉 (5.15)
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A straight forward calculation lead to the following system of non-
liear equations for a j, j = 1, 2, ...,N

ǫya′j + (y2 + ǫ − λ2
j (w))a j = D1(a, a) (5.16)

where
D1(a, a) = −ǫy

∑

k,i

aiak(Duri.rk) (5.17)

Observe that the linearized form of the equation (5.16) has the form

ǫ y a′j(y2 + ǫ − λ2
j (w)) a′j = 0,

and the corresponding wave measure ϕ j+ has exactly same proper-
ties (2.9) given in section 2. These wave measures naturally appear
when we invert the linear part of the equation (5.16). Because of the
quadratic righthand side this leads to interaction terms with differ-

ent families of wave measures which is controlled by
∑N

j=1 ϕ j+. Fixed
point arguments give a uniform BV solution wǫ(y) for the system
(5.13) and (5.14). The details are similar to Joseph and LeFloch [10]
and, therefore, are omitted. Then the BV estimate for v follows from
the second equation in (5.10) and

v(y) = vr +

∫ L

y

xw′(x)dx.

As the estmate (2.9) shows that ϕ j+ is essentially supported in
[λm

j
, λM

j
] we can let L go to infinity. Here λm

j
and λM

j
denotes the

minimum and maximum of λ j(w) on the ball B(δ0). We have the
following result.

Theorem 5.2. Assume that infλ j(w) ≥ c0 > 0. Then there exists δ1 >
0, δ2 > 0 such that, for wb,wr ∈ B(δ1) and arbitrary vr the boundary
Riemann problem (5.10)-(5.11) admits a solution vǫ,wǫwhich has uniformly
bounded total variation with wǫ(y) ∈ B(δ2) and converges to a limit v,w
which is a solution of the equation (5.9) with boundary conditions w(0+) =
wb,w(x, 0) = wr, v(x, 0) = vr.

Remark 5.3. This analysis is easily extended to the case with physical
viscosity and capillarity as well namely

− y v′ − F(w)′ = ǫ v′′ − γǫ2w′′′, γ > 0,

− y w′ − v′ = 0,
(5.18)

supplemented with the boundary conditions

lim
y→∞

(v,w)(y) = (vr,wr), w(0+) = wb. (5.19)
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As in the previous case, the problem can be reduced to first solving
a system for w(y), namely

(y2 + ǫ − A(w)) w′ = −ǫ y w′′ − γǫ2w′′′, (5.20)

on [0,L], for sufficiently large L, with boundary conditions

w(0) = wb,w(L) = wr. (5.21)

We decompose u′ in the basis of eigenvectors of A(u),

u′(y) =

N∑

j=1

a jr j(u), a j = 〈l j,u
′〉 (5.22)

and then the nonlinear equations for a j, j = 1, 2, ...,N take the form

γǫ2a′′j +ǫya′j+ (y2+ǫ−λ2
j (w))a j = D1(a, a)+D2(a, a)+D3(a, a, a), (5.23)

where
D1(a, a) = −ǫy

∑

k,i

aiak(Duri.rk)

D2(a, a) = −γǫ2(
∑

k,i

aia
′
k(Duri.rk) +

∑

k,i

(aiak)
′(Duri.rk

D3(a, a, a) = −γǫ2
∑

k,i,l

aiakalDu(Duri.rk)rl

The linearized equation for (5.23) is

γǫ2a′′j + ǫya′j + (y2 + ǫ − λ2
j (w))a j = 0,

and hence the wave measuresϕ j+ in this case has the same qualitative
properties as (3.15).

Existence of uniformly BV solutions of the problem (5.20) and (5.21)
can be easily deduced from [17]. Then, the BV estimate for v follows
from the second equation of (5.18). The details are omitted. We get
the following result:

Theorem 5.4. Assume that infλ j(w) ≥ c0 > 0. Then there exists δ1 and δ2

such that for wb,wr ∈ B(δ1) and for arbitrary vr, the problem (5.18)-(5.19)
admits a solution vǫ,wǫ, which has uniformly bounded total variation with
wǫ(y) ∈ B(δ2) and converges to a limit v,w which is a solution of the equation
(5.9) with boundary conditions w(0+) = wb,w(x, 0) = wr, v(x, 0) = vr.

Now let us consider the phase transition case with physical viscos-
ity and capillarity. Following previous sections , the system can be
reduced to a single scalar equation for the unknown w,

(y2 + ǫ − σw(w)) w′ = −ǫ y w′′ − γǫ2w′′′, γ > 0 (5.24)
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which can be studied in two regions [−L,−δ0] and [−δ0,L] away from
y = 0, with the boundary conditions

w(−L) = wl, w(−δ0) = w∗, (5.25)

w(δ0) = w∗, w(L) = wr, (5.26)

where w∗ is given by (4.7) with δ replaced by δ0 chosen as follows.
Following Sections 3 and 4, we can construct a BV solution w for
(5.24), in [−L,−δ0] and [δ0,L] with the boundary conditions (5.25)
(5.26), provided

µ(w, y) = σw + y2(
1

4γ
− 1) −

ǫ

2
> 0.

This is the case if we impose the restriction |y| > δ0 where

δ0 > (
4cγ

1 − 4γ
)1/2. (5.27)

Here, c > 0 is a constant such that σw(w) ≥ −c for all w.
We get the following result :

Theorem 5.5 (Vanishing viscosity-capillarity limit in phase dynam-
ics). Suppose that the first-order system (1.2) is uniformly hyperbolic for
large value of w but may admit elliptic regions in the phase space, that is for
some constants M, c0 > 0

inf
|w|≥M

σw(w) ≥ c0
2.

Suppose also that there exist positive constants c1, η such that |σw| ≤ c1|w|
2−η

for |w| > 1. Let c > 0 be such that σw(w) > −c for all w and suppose δ0

is chosen as in (5.27). Then, for all Riemann data vl,wl and vr,wr in the
hyperbolic region of the phase space, i.e.

wl,wr ∈ H :=
{
w / σw > 0

}

the viscous-capillarity Riemann problem (1.4)-(1.5), with δ = γǫ2, γ > 0
admits a solution vǫ,wǫ which has uniformly bounded total variation in
|y| > δ0, and more precisely

∫

|y|>δ0

(
|v′ǫ| + |w

′
ǫ|
)

dy . |vr − vl| + |wr − wl|.

The functions vǫ,wǫ converge pointwise at all |y| > δ0 to a limit v,w, which
is a solution of the Riemann problem (1.2)-(1.3) for |y| = |x/t| > δ0.
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For instance, the example σ(w) = u(u2 − 1) satisfies all the as-
sumptions of the theorem. We can not exclude that the vanishing
viscosity-capillarity approximations to the Riemann problem could
contain a highly oscillating (i.e. weakly but not strongly converg-
ing) pattern near the axis; its thickness would be 2δ0, at most. The
existence of such stationary waves is not surprising as it has been
observed numerically; they were never pointed out analytically until
now.

6. E      

Following our earlier work [12] we now return to the general dif-
fusion approximation for strictly hyperbolic systems with general
diffusion matrix B(u) of the form

−yu′ + A(u)u′ = ǫ(B(u)u′)′, (6.1)

and we consider an associated generalized eigenvalue problem.

Let µ j, l̂ j, r̂ j, j = 1, 2, . . . ,N be the eigenvalues and left and right-
eigenvectors given by

(
−y + A(v)

)
r̂ j(v, y) = µ j(v, y) B(v) r̂ j(v, y),

l̂ j(v, y) ·
(
−y + A(v)

)
= µ j(v, y) l̂ j(v, y) B(v).

(6.2)

Let us impose the normalization

l̂i(v, y) B(v) r̂ j(v, y) = 0 if i , j; l̂ j(v, y) B(v) r̂ j(v, y) = 1.

In the special case B(u) = I we have simply

µ j(v, y) = −y + λ j(v), r̂ j(v, y) = r j(v), l̂ j(v, y) = l j(v). (6.3)

So, we expect the eigenvalues and eigenvectors in (6.2) to be close
to to that of (6.3), at least in the case that B(v) = I + ηT(v, η) where

T(v, η) =
(
ti j(v, η)

)
with ti j(v, η) = O(1) and η << 1.

Lemma 6.1. If |B(v) − I| = O(η) is sufficiently small, then

µ j(v, y) = −y + λ j(u) +O(η), l̂ j(v, y) = l j(v) +O(η),

r̂ j(v, y) = r j(v) +O(η), l̂i(v, y) B(v) ∂ŷr j(v, y) = O(η).
(6.4)

Proof. When B has the form B(v) = I + ηT(v) where the matrix T(v)
does not depend on η, the desired estimates follow from classical
results. In the slightly more general case when T = T(v, η) we may
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argue as follows. First, note that the eigenvalues under consideration
are given by

det
((
−y I + A(v)

)
− µB(v)

)
= 0. (6.5)

Clearly, (6.5) is a polynomial equation in µ whose coefficients are

polynomials in the ti j’s. The leading coefficient det
(
I + η

(
ti j

))
is dif-

ferent from zero. Since the roots of (6.5) are distinct for ti j = 0, then
for η sufficiently small the roots of (6.5) (namely the µ j’s) are distinct
and depend smoothly upon the ti j’s with, in addition,

µ j(v, y) = −y + λ j(v) + η
∑

i

λi j(v, y) ti j(v, η) + . . . , (6.6)

where the coefficients λi j are smooth functions in y.
Since the corresponding left- and right-eigenvectors (which need

not be normalized at this stage) l̂ j and r̂ j are polynomials in ai j and
µ j, it follows that they are also smooth in the ai j’s. Substituting them
in (6.3) we get

l̂ j(v, y) = l j(v) + η
∑

i

li j(v, y) ti j(v, η) + . . . ,

r̂ j(v, y) = r j(v) + η
∑

i

ri j(v, y) ti j(v, η) + . . . ,
(6.7)

where li j and ri j depend smoothly upon y. From (6.7), it follows
that for η sufficiently small the expansion holds for the normalized

vectors l̂ j(v, y) and r̂ j(v, y). Finally, the required estimates (6.4) follow
from (6.6) and (6.7). This completes the proof of (6.4). �

By the same technique as above we can also prove:

Theorem 6.2. Under the conditions that |DuB(u)| < η and the characteris-
tic fields associated with A(u) are genuinely nonlinear, the generalized Lax
shock inequalities

λ̂ j(u(y+), y) ≤ y ≤ λ̂ j(u(y−), y)

are equivalent to the standard Lax shock inequalities,

λ j(u(y+)) ≤ y ≤ λ j(u(y−)),

where λ̂ j = 〈̂r j,A r̂ j〉.

Proof. We assume that ∇λ j · r j > 0. The key observation is that

∇λ̂ j · r̂ j is also positive and therefore the same part of the Hugoniot
curve is selected by the standard and by the generalized Lax shock
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inequalities. This is so because ∇λ̂ j · r̂ j = ∇λ j · r j + O(η) as we now
check.

When |DuB(u)| < ηwe see that DvT(v, η)| ≤ C and that the expansion
(6.7) is valid for the v-derivatives as well. This completes the proof.

�

We end this section with a further discussion of systems of two
equations, and provide some explicit calculations which lead to suf-
ficient conditions on the diffusion matrix B allowing us to apply the
techniques introduced earlier in this paper. Note first that (6.5) can
be written as

det
((
−y I + diag

(
λ1(v), λ2(v)

)
− µL(v) B(v) R(v)

)
= 0, (6.8)

where L(u) and R(u) are matrices of left- and right-eigenvectors as-

sociated with A(u). Namely, L(v) :=
(
l1(v), . . . , lN(v)

)
and R(v) :=(

r1(v), . . . , rN(v)
)
. Setting L(v) B(v) R(v) =

(
bi j(v)

)
, (6.8) becomes

(
det B(v)

)
µ2 −

(
b11(v) (λ2 − y)+ b22(v) (λ1 − y)

)
µ+ (λ1 − y) (λ2 − y) = 0.

Solving this quadratic equation in µ and using the notation

β(v) :=
b12(v) b21(v)

b11(v) b22(v)
, ai(v, y) :=

λi(v) − y

bii(v)
,

we arrive at

µ1(v, y) =

(
a2(v, y) + a1(v, y)

)
−
(
a2(v, y) − a1(v, y)

) (
1 + 4 β(v)

a2(v,y) a1(v,y)

a2(v,y)−a1(v,y)

)1/2

2 (1 − β(v)
,

µ2(v, y) =

(
a2(v, y) + a1(v, y)

)
+
(
a2(v, y) − a1(v, y)

) (
1 + 4 β(v)

a2(v,y) a1(v,y)

a2(v,y)−a1(v,y)

)1/2

2 (1 − β(v)
.

It is easy to see that µ1(v) and µ2(v) are real if 0 < β(v) < 1, which is
guaranteed if

b11(v) > 0, b22(v) > 0,

b12(v) b21(v) > 0.
(6.9)

The first condition above is also a necessary condition for viscous
shocks to be strictly stable in the sense of Majda and Pego [20].

Assuming (6.9), an easy calculation shows that the eigenvalues
µi(v) are separated:

µ2(v) − µ1(v) ≥ C > 0.
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It is easy to compute the corresponding right- and left-eigenvectors,
namely

r̂i(v, y) =
(
− b12(v)µi(v, y), λ1(v) − y − b11(v)µi(v, y)

)t
,

l̂i(v, y) =
(
− b21(v)µi(v, y), λ1(v) − y − b11(v)µi(v, y)

)
.

Finally, it is easily seen that the estimates (6.4) hold true when |B(u)−
I| = O(η).
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