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WELL-POSEDNESS THEORY

FOR GEOMETRY COMPATIBLE HYPERBOLIC

CONSERVATION LAWS ON MANIFOLDS

MATANIA BEN-ARTZI1 AND PHILIPPE G. LEFLOCH2

Abstract. Motivated by many applications (geophysical flows,
general relativity), we attempt to set the foundations for a study of
entropy solutions to nonlinear hyperbolic conservation laws posed
on a (Riemannian or Lorentzian) manifold. The flux of the conser-
vation laws is viewed as a vector-field on the manifold and depends
on the unknown function as a parameter. We introduce notions
of entropy solutions in the class of bounded measurable functions
and in the class of measure-valued mappings. We establish the
well-posedness theory for conservation laws on a manifold, by gen-
eralizing both Kruzkov’s and DiPerna’s theories originally devel-
oped in the Euclidian setting. The class of geometry-compatible

(as we call it) conservation laws is singled out as an important case
of interest, which leads to robust L

p estimates independent of the
geometry of the manifold. On the other hand, general conservation
laws solely enjoy the L

1 contraction property and leads to a unique
contractive semi-group of entropy solutions. Our framework allows
us to construct entropy solutions on a manifold via the vanishing
diffusion method or the finite volume method.

1. Introduction

The theoretical work on discontinuous solutions to nonlinear hy-
perbolic conservation laws has been restricted so far to problems set
in the Euclidian space R

n. Motivated by numerous applications, to
geophysical fluid flows (shallow-water equations on the surface on the
Earth) and general relativity (Euler-Einstein equations describing neu-
tron stars and black holes) in particular, we attempt in the present
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paper to set the foundations for a study of weak solutions (including
shock waves) to hyperbolic conservation laws posed on a Riemannian or
Lorentzian manifold. Recall that Kruzkov’s theory [6] deals with equa-
tions posed in the Euclidian space R

n and provides existence, unique-
ness, and stability of L1∩L∞ entropy solutions to nonlinear hyperbolic
balance laws in several space dimensions. In addition, in the case of
conservation laws with “constant flux”, depending solely on the conser-
vative variable but not on the time and space variables, solutions are
known to satisfy the maximum principle as well as the L1 contraction
and total variation diminishing (TVD) properties.

The above stability features play a central role in the theory and
numerical analysis of hyperbolic conservation laws. The purpose of
this paper is to introduce a suitable generalization of Kruzkov’s theory
when solutions are defined on a manifold rather than on R

n. An investi-
gation of the interplay between the geometry of manifolds with limited
regularity and the analysis of hyperbolic partial differential equations
(for non-smooth functions) appears to be particularly challenging. We
hope that the framework initiated here will lead to further works on
this important subject.

Let (Mn, g) be an oriented, compact, n-dimensional Riemannian
manifold. One of our tasks will be to define a suitable class of con-
servation laws posed on Mn to which the stability properties of the
Euclidian space could possibly extend. It should be observed that, on
a manifold, there is no concept of “constant flux” –in the sense that
the flux would be “independent” of the space (and time) variable, since
as we will see below the flux is a section of the tangent bundle TMn.
Indeed, the flux at a point x ∈ Mn belongs to the tangent space TxM

n

to the manifold at that point. The Euclidian space is special in that it
is possible to choose the flux f(u) at an arbitrary point x ∈ R

n and to
parallel-transport it to the whole space R

n; the vector field generated
in this fashion remains constant in x and, therefore, smooth. By con-
trast, if a tangent vector is selected at one point of the manifold one can
not, in general, associate with it by parallel-transport a unique smooth
vector field on the manifold; this is a consequence of the curvature of
Mn. As an example, we recall that any vector field on S2 (the unit
sphere in R

3, an important example arising in geophysical flows and
motivating our study) must have two critical points, at least, or else
must be discontinuous.

An outline of this paper is as follows. In Section 3, we introduce
the class of geometry-compatible conservation laws on Mn based on
divergence-free flux, which we single out as a class of particular inter-
est. We then define the notions of entropy pair and entropy solution



GEOMETRY COMPATIBLE CONSERVATION LAWS ON MANIFOLDS 3

in the function space L∞(R+ × Mn). In Section 4, we show the exis-
tence of entropy solutions via the so-called vanishing diffusion method,
and establish that solutions to geometry-compatible conservation laws
enjoy Lp stability properties (for all p) that are independent of the

geometry of the manifold. Next, Section 5 is devoted to the general
well-posedness theory on a Riemannian manifold, and covers both L∞

solutions (following Kruzkov [6]) and measure-valued solutions (follow-
ing DiPerna [3]).

In turn, we obtain a versatile framework allowing us to establish
the convergence toward the unique entropy solution of any sequence of
approximate solutions satisfying all of the entropy inequalities (possibly
up to some small error). Our geometry-independent bounds should be
useful for the numerical analysis of stable and robust, shock-capturing
schemes adapted to hyperbolic equations posed on manifolds. In this
direction, the follow–up paper [1] will cover the convergence of finite
volume methods based on non-Cartesian meshes, and the derivation of
total variation diminishing (TVD) estimates.

The remaining of the paper contains several generalizations of in-
terest. In Section 6 we show that the well-posedness theory can be
developed in the function space L1 for general conservation laws that
need not be geometry-compatible; we prove that the L1 contraction
property hold at this level of generality, but that for p > 1 the Lp

stability properties may be violated. Finally, in Section 7 we discuss
the well-posedness theory for conservation laws posed on a Lorentzian
manifold, including for instance the Schwarzschild spacetime.

2. Preliminaries

In this preliminary section, we briefly review some key concepts and
results from Kruzkov’s theory in the Euclidian space. Consider the
hyperbolic conservation law

∂tu+
n∑

j=1

∂j
(
f j(u, ·)

)
= 0, u = u(t, x) ∈ R, t > 0, x ∈ R

n, (2.1)

where ∂j := ∂/∂xj and f : R × R
n → R

n is a given smooth mapping,
refered to as the flux of (2.1). Observe that in (2.1) (as well as in (2.3)
below) the divergence operator acts on the x-coordinate and takes into
account the dependence in x = (xj) of both the solution u = u(t, x)
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and the flux f = (f j(ū, x)), that is
n∑

j=1

∂j
(
f j(u(t, x), x)

)

=
n∑

j=1

((
∂uf

j
)
(u(t, x), x) ∂ju(t, x) +

(
∂jf

j
)
(u(t, x), x)

)
.

As is well-known [2, 5, 6, 7, 9, 12], solutions of (2.1) are generally dis-
continuous and must be understood in the weak sense of distributions.
In addition, for the sake of uniqueness one should restrict attention
to entropy solutions characterized by an infinite family of inequalities.
For simplicity, assume first that the flux is divergence-free, that is

n∑

j=1

(
∂jf

j
)
(ū, x) = 0, ū ∈ R, x ∈ R

n. (2.2)

(This assumption is motivated by Lemma 2.1 below.) When the con-
dition (2.2) is imposed, the entropy inequalities associated with the
equation (2.1) take the form

∂tU(u) +
n∑

j=1

∂j
(
F j(u, ·)

)
≤ 0,

U ′′ ≥ 0,

F j(ū, x) :=

∫ ū

∂uU(u′) ∂uf
j(u′, x) du′, x ∈ R

n, ū ∈ R, j = 1, . . . , n.

(2.3)
Relying on Kruzkov’s theory [6] and the arguments given later in this
paper, one can check that, given any divergence-free flux and initial
data u0 ∈ L1(Rn) ∩ L∞(Rn), the initial value problem (2.1),

u(0, x) = u0(x), x ∈ R
n, (2.4)

admits a unique entropy solution u ∈ L∞
(
R+, L

1(Rn)∩L∞(Rn)
)

which,
moreover, satisfies the Lp stability properties

‖u(t)‖Lp(Rn) ≤ ‖u0‖Lp(Rn), t ≥ 0, p ∈ [1,∞], (2.5)

together with the L1 contraction property: for any two entropy solu-
tions u, v

‖v(t) − u(t)‖L1(Rn) ≤ ‖v(t′) − u(t′)‖L1(Rn), 0 ≤ t′ ≤ t. (2.6)

Furthermore, one has the following regularity property: If the initial
data has bounded total variation, that is u0 ∈ BV (Rn), then the solu-
tion has bounded variation for all times, that is u ∈ L∞

(
R+, BV (Rn)).
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In the Euclidian setting, the condition (2.2) arises in the following
way.

Lemma 2.1. A necessary and sufficient condition for every smooth

solution of (2.1) to satisfy the infinite list of additional conservation
laws (2.3) is that the divergence-free condition (2.2) holds.

Proof. This follows readily by multiplying the conservation law (2.1)
by the derivative ∂uU(u) of an arbitrary function U(u), using the chain
rule, and taking advantage of the fact that the function U is arbitrary.
Namely, we have

n∑

j=1

∂j(F
j(u, ·)) =

n∑

j=1

(∂uF
j)(u, ·) ∂ju+ (∂jF

j)(u, ·)

=
n∑

j=1

(
∂uU ∂uf

j
)
(u, ·) ∂ju+ (∂jF

j)(u, ·),

so that

∂tU(u) + ∂j
(
F j(u, ·)

)
=

n∑

j=1

(∂jF
j)(u, ·) − ∂uU(u) (∂jf

j)(u, ·).

Now, by imposing that the right-hand side of the above identity van-
ishes for all entropy U and by differentiating in u the corresponding
relation while using the definition of F j in (2.3), we obtain

∂uuU(u) (∂jf
j)(u, ·) = 0.

Since U is arbitrary, the desired claim follows. �

Observe that Kruzkov’s theory in R
n also covers flux that need not

satisfy our condition (2.2), and actually applies to balance laws of the
general form

∂tu+
n∑

j=1

∂j
(
f j(u, ·)

)
= h(u, ·), u = u(t, x) ∈ R, (2.7)

where f = (f j(ū, t, x)) and h = h(ū, t, x) are given smooth mappings.
Provided h is Lipschitz continuous in the u-variable (uniformly in t, x),
the initial value problem associated with (2.7) admits a globally de-
fined, unique, entropy solution u ∈ L∞

loc(R+×R
n). Note, however, that

the general equation (2.7) does not enjoy the Lp stability, L1 contrac-
tion and TVD properties. Most of the literature on scalar conservation
laws is restricted to the case of a constant flux f = f(ū) which, clearly,
arises as a special case of (2.2). As pointed out earlier, there is no such
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concept as a “constant flux” in the context of manifolds, and a suitable
generalization of (2.2) will arise in our analysis.

3. Geometry-compatible conservation laws

Background and notation. Throughout this paper, (Mn, g) is a
compact, oriented, n-dimensional Riemannian manifold. As usual, the
tangent space at a point x ∈ Mn is denoted by TxM

n and the tan-
gent bundle by TMn :=

⋃
x∈Mn TxM

n, while the cotangent bundle is
denoted by T ⋆Mn = T ⋆xM

n. The metric structure is determined by a
positive-definite, 2-covariant tensor field g, that is, at each x ∈ Mn, gx
is a inner product on TxM

n.
In local coordinates x = (xj), the derivations ∂j := ∂

∂xj form a basis
of the tangent space TxM

n, while the differential forms dxj determine a
basis of the cotangent space T ⋆xM

n. Here and below, we use Einstein’s
summation convention on repeated indices so, for instance, in local
coordinates

g = gij dx
idxj, gij = g(∂i, ∂j).

The notation < Xx, Yx >gx
:= gx(Xx, Yx) may also be used for the inner

product of Xx, Yx ∈ TxM
n.

We denote by (gij) the inverse of the positive definite matrix (gij).
The metric tensor will be used to raise and lower indices, so that to
each vector X = (Xj) one associates the covector (Xj) via

Xj := gij X
i.

Recall that the differential df of a function f : Mn → R is the section
of the cotangent bundle T ⋆xM

n, that is dfx ∈ T ⋆xM
n, defined by

dfx(Xx) = Xx(f), Xx ∈ TxM
n.

We denote by dVg the volume form on Mn, which in local coordinates
reads

dVg =
√

|g| dx1 . . . dxn,

with |g| := det(gij) > 0. The gradient of a function h is obtained
from dh by using the isomorphism between TMn and T ∗Mn via the
Riemannian scalar product. In local coordinates, the gradient of a
function h is the vector field

gradg h = (∇jh) =
∂

∂xj
:= gij∂ih

∂

∂xj
.

To the metric tensor g one associates a covariant derivative operator
∇, characterized by the condition ∇g = 0. In particular, the covariant
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derivative of a vector field X = Xj ∂
∂xj is the (1, 1)-tensor field whose

coefficients in local coordinates are

∇jX
i := ∂jX

i + Γikj X
k, i, j = 1, . . . , n,

where the Christoffel’s symbols are determined from the metric tensor
by

Γikj :=
1

2
gil

(
∂kglj + ∂jgkj − ∂lgkj

)
.

The divergence of the vector field X is the function

divgX := ∇jX
j = ∂jX

j + Γjkj X
k. (3.1)

Recall the duality relation∫

Mn

g
(
gradg h,X

)
dVg = −

∫

Mn

h divgX dVg, (3.2)

which is valid for any smooth function h and vector field X, at least.
Interestingly enough, it follows from (3.2) that, in local coordinates,

divgX = (
√

|g|)−1 ∂j(
√

|g|Xj), (3.3)

which shows that the divergence operator on vector fields depends upon
|g|, only.

A class of conservation laws. The observation made earlier in Lem-
ma 2.1 in the Euclidian setting provides us the motivation for the defini-
tion that we now introduce. As was already pointed out in the introduc-
tion, although Kruzkov’s theory applies to general balance laws (2.7),
the subclass defined by (2.1) and the condition (2.2) leads to many
properties (maximum principle, L1 contraction, Lp stability) which are
very desirable features that we attempt to guarantee on the manifold
Mn. At this stage of the discussion, we restrict attention to smooth
functions satisfying in a classical sense the partial differential equations
under consideration.

Definition 3.1. 1. A flux on the manifold Mn is a vector field f =
fx(ū) depending upon the parameter ū (the dependence in both variables
being smooth).

2. The conservation law associated with the flux f on Mn is

∂tu+ divg (f(u)) = 0, (3.4)

where the unknown is the scalar-valued function u = u(t, x) defined for
t ≥ 0 and x ∈ Mn and the divergence operator is applied, for each fixed
time t, to the vector field x 7→ fx(u(t, x)) ∈ TxM

n.
3. A flux is called geometry-compatible if it satisfies the condition

divg fx(ū) = 0, ū ∈ R, x ∈ Mn. (3.5)
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We will also refer to (3.4)-(3.5) as a geometry-compatible conserva-
tion law. Let us emphasize that (3.4) is a geometric partial differential
equation which depends on the geometry of the manifold, only, and
is independent of any particular system of local coordinates on M .
In particular, all estimates derived for solutions of (3.4) must take a
coordinate-independent form, while, in the proofs, it will often be con-
venient to introduce a particular chart.

Observe that, by the divergence theorem on Riemannian manifolds
([11], for instance), all sufficiently smooth solutions of (3.4) satisfy the
balance law

d

dt

∫

S

u(t, x) dVg(x) =

∫

∂S

gx
(
fx(u(t, x)), νx

)
dV∂S(x),

for every smooth, n-dimensional sub-manifold S ⊆ Mn with boundary
∂S. Here, ν denotes the outward unit normal to S, and V∂S is the
volume form induced on the boundary by restricting the metric g to
the tangent space T (∂S).

In local coordinates, the flux components f jx(ū) depend upon ū, x
and we will denote by ∂uf

j
x(ū) and ∂kf

j
x(ū) its ū- and xk-derivatives,

respectively. Before we proceed, observe that:

Lemma 3.2. Let f = fx(ū) be a geometry-compatible flux on Mn. In
local coordinates the conservation law (3.4) takes the (nonconservative)
form

∂tu(t, x) +
(
∂uf

j
x

)
(u(t, x)) ∂ju(t, x) = 0. (3.6)

Proof. It follows from the definition of the divergence operator (3.1)
that the conservation law (3.4) can be written as

∂tu(t, x) + ∂j
(
f jx(u(t, x))

)
+ Γjkj(x) f

k
x (u(t, x)) = 0.

The function ∂j
(
f jx(u(t, x)

)
is the sum of partial derivatives with re-

spect to the local coordinate x of the composite map x 7→ fx(u(t, x)),
that is

∂j
(
f jx(u(t, x))

)
=

(
∂uf

j
x

)
(u(t, x)) ∂ju(t, x) + (∂jf

j
x)(u(t, x)).

On the other hand, the condition in Definition 3.1 yields
(
∂jf

j
x

)
(ū, x) + Γjkj(x) f

k
x (ū) = 0, ū ∈ R, x ∈ Mn.

Writing this identity with ū = u(t, x) and combining it with the above
observations lead us to (3.6). �
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Weak solutions. We will be interested in measurable and bounded
functions u ∈ L∞(R+ × Mn) satisfying (3.4) in the sense of distribu-
tions and assuming a prescribed initial condition u0 ∈ L∞(Mn) at the
time t = 0:

u(0, x) = u0(x), x ∈ Mn. (3.7)

For the sake of uniqueness, we need an analogue of the entropy in-
equalities (2.3) proposed by Kruzkov in the Euclidian space R

n. These
inequalities are derived as follows.

First of all, consider smooth solutions u = u(t, x) of (3.4) and mul-
tiply the conservation law by the derivative ∂uU(u) of an arbitrary
function U . We obtain

∂tU(u(t, x)) + ∂uU(u(t, x)) divg
(
fx(u(t, x))

)
= 0,

which suggests to search for a vector field F = Fx(ū) such that

∂uU(u(t, x)) divg
(
fx(u(t, x))

)
= divg

(
Fx(u(t, x))

)
.

This relation should hold for all functions u = u(t, x), and is equiva-
lent to impose that the flux components f jx(ū) satisfy the two partial
differential equations

∂uU(ū) ∂uf
j
x(ū) = ∂uF

i
x(ū), 1 ≤ j ≤ n,

∂uU(ū)
(
∂jf

j
x(ū) + Γjkj(x) f

k
x (ū)

)
= ∂jF

j
x(ū) + Γjkj(x)F

k
x (ū),

(3.8)

for all ū ∈ R and x ∈ Mn. The first equation implies that Fx is given
by

Fx(ū) :=

∫ ū

∂wU(w) ∂wfx(w) dw ∈ TxM
n. (3.9)

Differentiating the second equation with respect to ū and using (3.9)
we find

∂uuU(ū)
(
∂jf

j
x(ū) + Γjkj(x) f

k
x (ū)

)
= 0.

Since U is arbitrary, a necessary and sufficient condition for (3.8) to
hold is that fx(ū) satisfies (3.5). Note in passing that necessarily Fx(ū)
satisfies also this condition.

This derivation provides us with an analogue of the definition (2.3)
of the Euclidian case. In turn, smooth solutions of any geometry-
compatible conservation law (3.4) satisfy the additional conservation
laws

∂tU(u(t, x)) + divg
(
Fx(u(t, x))

)
= 0, (3.10)

where U is arbitrary and F is given by (3.9).
We are now in position to introduce the notion of entropy solution

which generalizes Kruzkov’s notion to the case of manifolds. We require
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the equalities (3.10) to hold as inequalities only, as this arises naturally
by the vanishing diffusion method. (See Section 4).

Definition 3.3. Let f = fx(ū) be a geometry-compatible flux on the
Riemannian manifold (M, g).

1. A convex entropy/entropy-flux pair is a pair (U, F ) where U :
R → R is a convex function, and F = Fx(ū) is the vector field depend-
ing on the parameter ū defined by

Fx(ū) :=

∫ ū

∂u′U(u′) ∂u′fx(u
′) du′, ū ∈ R, x ∈ Mn. (3.11)

2. Given a function u0 ∈ L∞(Mn), a function u in L∞
(
R+, L

∞(Mn)
)

is called an entropy solution to the initial value problem (3.4)-(3.7) if
the following entropy inequalities hold
∫∫

R+×Mn

(
U(u(t, x)) ∂tθ(t, x) + gx

(
Fx(u(t, x)), gradg θ(t, x)

))
dVg(x)dt

+

∫

Mn

U(u0(x)) θ(0, x) dVg(x) ≥ 0,

(3.12)
for every convex entropy/entropy flux pair (U, F ) and all smooth func-
tions θ = θ(t, x) ≥ 0 compactly supported in [0,∞) × Mn.

4. Vanishing diffusion method on manifolds

In the present section, we construct solutions of the conservation law
(3.4) via the vanishing diffusion method. We establish the existence of
smooth solutions to a regularized version of (3.4) taking into account a
small diffusion term, and then establish that these solutions converge to
an entropy solution in the sense of Definition 3.3 as the diffusion tends
to zero. For convenience, we provide a proof that is based on a uniform
total variation bound, and refer the reader to the forthcoming section
for an alternative approach based on the concept of measure-valued
solution.

Recall that Mn endowed with the metric tensor g is a compact, ori-
ented, n-dimensional Riemannian manifold. We denote by Lp(Mn; dVg)
the usual Lebesgue spaces on the manifold (Mn, g). The Sobolev space
H1(Mn; dVg) is the space of all functions h ∈ L2(Mn; dVg) such that
gradg h ∈ L2(Mn; dVg) —where the gradient is defined in the distribu-

tional sense, via the formula (3.2). The spaces Hk(Mn; dVg) for k ≥ 2
are defined similarly.
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The total variation of a function h ∈ L1(Mn; dVg) is defined by

TV (h) := sup
‖ψ‖L∞(Mn)≤1

∫

Mn

h divg ψ dVg,

where ψ describes all C1 vector fields on the manifold. We denote
by BV (Mn; dVg) ⊂ L1(Mn; dVg) the space of all functions h with finite
total variation, endowed with the norm ‖h‖L1(Mn;dVg)+TV (h). For ma-
terial on BV functions we refer to [4, 12]. In particular, it is well-known
that the inclusion map of BV (Mn; dVg) in L1(Mn; dVg) is compact.

It is clear that, for all smooth functions h : Mn → R,

TV (h) =

∫

Mn

|gradg h|g dVg,

where | · |g denotes the Riemannian norm associated with g. Observe
also that, by taking a partition of unity determining a finite covering
of Mn by coordinate patches we can easily “localize” the concept of
total variation on the manifold, as follows.

Lemma 4.1. There exist finitely many (smooth) vector fields X(1),. . . ,
X(L) on Mn, a constant C0 ≥ 1 (depending only on the manifold), and
a chart covering the manifold such that:

(ii) each vector field X(l) is supported in a coordinate patch and

Span
{
X(1)
x , ..., X(L)

x

}
:= TxM

n, x ∈ Mn;

(ii) and for every smooth function h : Mn → R

1

C0

L∑

l=1

∫

Mn

|X(l)(h)|g dVg ≤ TV (h) ≤ C0

L∑

l=1

∫

Mn

|X(l)(h)|g dVg.

An initial data u0 being given in L∞(Mn) ∩BV (Mn; dVg), we want
to find a solution uǫ = uǫ(t, x) to the initial value problem

∂tu
ǫ + divg

(
fx(u

ǫ)
)

= ǫ∆gu
ǫ, x ∈ Mn, t ≥ 0, (4.1)

uǫ(0, x) = uǫ0(x), x ∈ Mn, (4.2)

where ∆g denotes the Laplace operator on the manifold Mn,

∆gv := divg gradg v

= gij
( ∂2v

∂xi∂xj
− Γkij

∂v

∂xk
)
.
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In (4.2), uǫ0 : Mn → R is a sequence of smooth functions satisfying

‖uǫ0‖Lp(Mn) ≤ ‖u0‖Lp(Mn), p ∈ [1,∞],

TV (uǫ0) ≤ TV (u0),

ǫ ‖uǫ0‖H2(Mn;dVg) ≤ C TV (u0), for some C > 0 depending only on Mn,

uǫ0 → u0 a.e. on Mn.
(4.3)

In the following, we use the notation u(t) instead of u(t, ·). We begin
with:

Theorem 4.2. (Regularized conservation law.) Let f = fx(ū) be a
geometry-compatible flux on a Riemannian manifold (Mn, g). Given
uǫ0 ∈ C∞(Mn) satisfying (4.3) there exists a unique solution uǫ ∈
C∞(R+ × Mn) to the initial value problem (4.1)-(4.2). Moreover, for
each 1 ≤ p ≤ ∞ the solution satisfies

‖uǫ(t)‖Lp(Mn;dVg) ≤ ‖uǫ(t′)‖Lp(Mn;dVg), 0 ≤ t′ ≤ t (4.4)

and, for any two solutions uǫ and vǫ,

‖vǫ(t)−uǫ(t)‖L1(Mn;dVg) ≤ ‖vǫ(t′)−uǫ(t′)‖L1(Mn;dVg), 0 ≤ t′ ≤ t. (4.5)

In addition, for every convex entropy/entropy flux pair (U, Fx) the so-
lution uǫ satisfies the entropy inequality

∂tU(uǫ) + divg
(
F (uǫ)

)
≤ ǫ∆gU(uǫ). (4.6)

All proofs are postponed to the end of this section.
Our next goal is to prove the strong convergence of the family {uǫ}ǫ>0

to an entropy solution of (3.4)-(3.7), as ǫ → 0. We will assume here
that the initial data has bounded total variation, and we refer to the
forthcoming section for a more general argument which does not re-
quire this assumption. From the estimates for the solutions obtained
in Theorem 4.2 we can deduce a uniform total variation bound in space
and time.

Lemma 4.3. (BV bounds for diffusive approximations.) There exists a
positive constant C1 depending on the geometry of Mn and ‖u0‖L∞(Mn),
only, such that the solutions uǫ given by Theorem 4.2 satisfy

TV (uǫ(t)) ≤ eC1 t
(
1 + TV (u0)

)
, t ∈ R+, (4.7)

‖∂tu
ǫ(t)‖L1(Mn;dVg) ≤ TV (u0) + ǫ ‖∆gu

ǫ
0‖L2(Mn;dVg), t ∈ R+. (4.8)

Observe that the right-hand side of (4.7) is independent of ǫ, while
the term ǫ C1‖∆gu

ǫ
0‖L2(Mn) arising in (4.8) is dominated by C TV (u0)

thanks to our assumption (4.3). At this juncture, we refer to [1] in
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which a sharp version of the above estimates is derived with a specific
constant C1 depending on the geometry of the manifold.

We are now in a position to state and prove the main result of this
section.

Theorem 4.4. (Convergence of the vanishing diffusion method on
a Riemannian manifold.) Let f = fx(ū) be a geometry-compatible
flux on a Riemannian manifold (Mn, g). Given any initial condi-
tion u0 ∈ L∞(Mn) ∩ BV (Mn; dVg) there exists an entropy solution
u ∈ L∞(R+ ×Mn) to the initial value problem (3.4)-(3.7) in the sense
of Definition 3.3, which is the limit of the sequence uǫ constructed in
Theorem 4.2 by vanishing diffusion.

Moreover, this solution has the following properties:

‖u(t)‖Lp(Mn;dVg) ≤ ‖u0‖Lp(Mn;dVg), t ∈ R+, 1 ≤ p ≤ ∞,

and, for some constant C1 > 0 depending on ‖u0‖L∞(Mn) and the ge-
ometry of Mn only,

TV (u(t)) ≤ eC1 t (1 + TV (u0)), t ∈ R+,

‖u(t) − u(t′)‖L1(Mn;dVg) ≤ TV (u0) |t− t′|, 0 ≤ t′ ≤ t.
(4.9)

Furthermore, if u, v are entropy solutions associated with some initial
data u0, v0, respectively, it hold

‖v(t) − u(t)‖L1(Mn;dVg) ≤ ‖v0 − u0‖L1(Mn;dVg), t ∈ R+. (4.10)

Proof of Theorem 4.2. By introducing a local chart of coordinates and
using the condition (3.5), one can reduce the equation (4.1) to a para-
bolic equation in the Euclidian space R

n:

∂tu
ǫ + (∂uf

j
x)(u

ǫ) ∂ju
ǫ = ǫ gij

(
∂i∂ju

ǫ − Γkij ∂ku
ǫ
)
. (4.11)

The local in time existence, uniqueness, and regularity of the solution
uǫ follows as in the Euclidian setting. By putting together several
charts to cover the whole manifold, one arrives at the local in time

well-posedness for the diffusive conservation law (4.1). Next, in order
to extend the solution to arbitrary times, one needs a uniform estimate
on the sup norm of the solution. This indeed follows in the form stated
in (4.4) for p = ∞, from the standard maximum principle for parabolic
equations.

Next, in every strip [0, T ] × Mn the dual equation associated with
(4.1) reads

∂tϕ+ gx
(
fx(u

ǫ), gradg ϕ
)

+ ǫ∆gϕ = 0,

for which a “terminal value” problem with data given at t = T is
now considered. This equation satisfies the maximum principle and,
by duality, the inequality (4.4) for p = 1 follows. The inequality for



14 M. BEN-ARTZI AND P.G. LEFLOCH

intermediate values p ∈ (1,∞) is then obtained by straightforward
interpolation.

We next proceed with the derivation of (4.5). The function wǫ :=
vǫ − uǫ satisfies the equation

∂tw
ǫ + divg (bǫxw

ǫ) = ǫ∆gw
ǫ, (4.12)

where

bǫx :=
fx(v

ǫ) − fx(u
ǫ)

vǫ − uǫ

is a smooth vector field on Mn. As in the argument above, the dual
equation associated with (4.12) satisfies the maximum principle and
so, by duality,

‖wǫ(t)‖L1(Mn;dVg) ≤ ‖wǫ(t′)‖L1(Mn;dVg), 0 ≤ t′ ≤ t,

which is precisely (4.5).
Finally, to show (4.6) we multiply (4.1) by ∂uU(uǫ), where (U, F ) is

a convex entropy pair in the sense of Definition 3.3. We get

∂tU(uǫ) + divg Fx(u
ǫ) = ǫ ∂uU(uǫ) ∆gu

ǫ.

In view of the definition of ∆g we can write in local coordinates

∂uU(uǫ) ∆gu
ǫ = ∆gU(uǫ) − ∂2

uU(uǫ) gjk ∂ju
ǫ∂ku

ǫ. (4.13)

Since ∂2
uU is non-negative (U being convex) and the matrix (gjk) is

positive definite (since g is a Riemannian metric tensor), the second
term in the right-hand side of (4.13) is non-positive. This establishes
the desired inequality (4.6). �

Proof of Lemma 4.3. To establish (4.7) we rely on Lemma 4.1: without
loss of generality, it is sufficient to estimate ‖∂1(ψu

ǫ(t))‖L1(Mn;dVg) for
every smooth ψ supported in a coordinate patch O with ‖ψ‖L∞(Mn) ≤ 1.
Multiplying (4.11) by ψ and differentiating with respect to x1, the
function wǫ := ∂1(ψ u

ǫ) is found to satisfy

∂tw
ǫ(t, x) + ∂j

(
(∂uf

j
x)(u

ǫ(t, x))wǫ(t, x)
)

= A(x, uǫ, gradg u
ǫ)(t, x) + ǫ∆gw

ǫ(t, x),

where A depends linearly on gradg u
ǫ and smoothly upon x, uǫ (and

is supported in O). We now multiply the identity above by sgn(wǫ)
and integrate over Mn. At this juncture we note that, since wǫ ∈
H2(Mn; dVg) at least,

sgn(wǫ) ∂tw
ǫ = ∂t|w

ǫ|, sgn(wǫ) ∂jw
ǫ = ∂j|w

ǫ|,

sgn(wǫ) ∆gw
ǫ ≤ ∆g|w

ǫ|,
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where the latter inequality must be understood in the sense of distri-
butions.

Relying on the bound ‖uǫ(t)‖L∞(Mn) ≤ ‖u0‖L∞(Mn) which follows
from (4.4), we then deduce that there exists a constant C1 > 0 (de-
pending on both ‖u0‖L∞(Mn) and the geometry of Mn) such that

d

dt

∫

Mn

|wǫ(t)| dVg ≤ C1 + C1

∫

Mn

|gradg u
ǫ(t)|g dVg.

This estimate can now be repeated for each of the (finitely many) vector
fields X(1), . . . , X(L), and the desired conclusion (4.7) finally follows
from Gronwall’s lemma.

To establish (4.8) we differentiate (4.11) with respect to t and note
that

divg
(
∂tfx(u

ǫ)
)

= ∂tdivg
(
fx(u

ǫ)
)
,

∆g

(
∂tfx(u

ǫ)
)

= ∂t∆g

(
fx(u

ǫ)
)
.

Also, the vector field ∂tfx(u
ǫ(t, x)) satisfies the condition (3.5) (with

respect to the explicit dependence on x).
It therefore follows that the function zǫ = ∂t(u

ǫ) satisfies

∂tz
ǫ(t, x) +

∂

∂yj

(
(∂uf

j
x)(u

ǫ(t, y)) zǫ(t, y)
)
y=x

= ǫ∆gz
ǫ(t, x). (4.14)

(In other words, the explicit dependence of (∂uf
j
x)(u

ǫ(t, x)) on x is not
differentiated.) Note that

sgn(zǫ)
∂

∂yj

(
(∂uf

j
x)(u

ǫ(t, y)) zǫ(t, y)
)
y=x

=
∂

∂yj

(
(∂uf

j
x)(u

ǫ(t, x)) |zǫ(t, x)|
)
y=x

.

Defining the vector field rx := (∂ufx)(u
ǫ(t, x)) |zǫ(t, x)| we have, by the

condition (3.5), that the second term in the left-hand side of (4.14)
satisfies

∂j
(
(∂uf

j
x)(u

ǫ(t, x)) |zǫ(t, x)|
)

= divg rx.

Multiplying (4.14) by sgn(zǫ) and integrating over Mn, we obtain

d

dt

∫

Mn

|zǫ(t)| dVg ≤ 0.

In turn, we can write
∫

Mn

|zǫ(t)| dVg ≤

∫

Mn

|zǫ(0)| dVg.
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Alternatively, this inequality can be derived from (4.5) by choosing
v(t, x) = v(t + α, x) with α → 0. Using the equation (4.1) we can
estimate the above term at t = 0:∫

Mn

|zǫ(0)| dVg ≤ ‖gradg u
ǫ
0‖L1(Mn;dVg) + ǫ ‖∆gu

ǫ
0‖L2(Mn;dVg)

≤ TV (uǫ0) + ǫ ‖∆gu
ǫ
0‖L2(Mn;dVg).

Finally, applying this estimate to each of the vector fieldsX(1), . . . , X(L),
we arrive at the estimate (4.8). This completes the proof of Lemma 4.3.

�

Proof of Theorem 4.4. In view of the sup norm estimate (4.4) and the
uniform, space L1 estimates (4.7), we see that the sequence uǫ(t) is
uniformly bounded in BV (Mn; dVg) for every time t and is therefore
compact in L1(Mn; dVg). Applying this argument at all rational times
t and then picking up a diagonal sequence we can ensure that a subse-
quence uǫj(t) converges to some limit u(t) in the L1 norm, as ǫj → 0, for
all rational t. Next, in view of the uniform time estimate (4.8), the limit
u(t) extends to all values of the time variable, with uǫj(t) → u(t) in
L1(Mn; dVg). Letting ǫj → 0 in the inequalities (4.6) one then deduces
that u satisfies all of the entropy inequalities

∂tU(u) + divg
(
F (u)

)
≤ 0

in the weak sense (3.12).
In fact, by working in a localized coordinate patch and using the en-

tropy formulation (4.6) with U(u) = |u−k|, Fx(u) = sgn(u−k)(fx(u)−
fx(k)), one can repeat the Kruzkov classical theorem in order to obtain
a ”localized” L1 contraction property. By patching together (finitely
many) coordinate patches we obtain a global estimate of the form

‖v(t) − u(t)‖L1(Mn;dVg) ≤ C‖v0 − u0‖L1(Mn;dVg), t ∈ [0, T ], (4.15)

where C > 0 depends on T (and Mn). This is sufficient to imply unique-
ness of the entropy solution u(t), hence the convergence of the whole
family uǫ. At this point we can invoke the parabolic estimate (4.5)
and conclude that C = 1, thus establishing the L1 contraction prop-
erty (4.10). All the other estimates now follow from Theorem 4.2 and
Lemma 4.3. �

5. The well-posedness theory

Theorem 4.4 assumes that the initial data has bounded variation and
provides the existence of (locally BV) entropy solutions constructed by
vanishing diffusion. In the present section, we obtain a generalization to
L∞ initial data and also establish the uniqueness of the entropy solution
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in this larger class. We emphasize that the class of L∞ solutions is
completely natural for geometry-compatible conservation laws, since
the L∞ estimate is independent of the geometry while the BV estimate
(4.9), in general, depends upon it.

Our generalization of Kruzkov’s theory to manifolds is as follows.

Theorem 5.1. (Well-posedness theory in L∞ for geometry-compatible
conservation laws.) Let f = fx(ū) be a geometry-compatible flux on
a compact, oriented, Riemannian manifold (Mn, g). Given any ini-
tial data u0 ∈ L∞(Mn) there exists a unique entropy solution u ∈
L∞(R+ × Mn) to the initial value problem (3.4)-(3.7) in the sense of
Definition 3.3. Moreover, for each 1 ≤ p ≤ ∞ the solution satisfies

‖u(t)‖Lp(Mn;dVg) ≤ ‖u0‖Lp(Mn;dVg), t ∈ R+, (5.1)

and, given any two entropy solutions u, v associated with some initial
data u0, v0, respectively,

‖v(t) − u(t)‖L1(Mn;dVg) ≤ ‖v0 − u0‖L1(Mn;dVg), t ∈ R+. (5.2)

Furthermore, we will see in the proof that the following inequality
holds in the sense of distributions

∂t|v − u| + divg
(
sgn(u− v) (fx(v) − fx(u))

)
≤ 0. (5.3)

Following DiPerna [3] we introduce the (larger) class of entropy
measure-valued solutions and, in fact, establish a much stronger version
of Theorem 5.1. As observed in [3], Kruzkov’s arguments take a simpler
form in the measure-valued setting. We consider measure-valued maps

ν = νt,x, that is, weakly measurable mappings (t, x) ∈ R+ ×Mn 7→ νt,x
taking their values in the space of probability measures on R with
support included in a fixed compact interval of R. The action of the
measure ν on a function U will be denoted by

〈
νt,x, U

〉
:=

∫

R

U(ū) dνt,x(ū).

The weak measurability property means that the map
〈
νt,x, U

〉
is mea-

surable in (t, x) for each U .

Definition 5.2. Let f = fx(ū) be a geometry-compatible flux on a Rie-
mannian manifold (Mn, g). Given any initial condition u0 ∈ L∞(Mn),
a measure-valued map (t, x) ∈ Mn × R+ 7→ νt,x is called an entropy
measure-valued solution to the initial value problem (3.4)-(3.7) if, for
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every convex entropy/entropy flux pair (U, Fx) (see (3.11)),
∫∫

R+×Mn

(〈
νt,x, U

〉
∂tθ(t, x) + gx

(〈
νt,x, Fx

〉
, gradg θ(t, x)

))
dVg(x)dt

+

∫

Mn

U(u0(x)) θ(0, x) dVg(x) ≥ 0,

(5.4)
for every smooth function θ = θ(t, x) ≥ 0 compactly supported in
[0,+∞) × Mn.

We will now prove that:

Theorem 5.3. (The well-posedness theory in the measure-valued class
for geometry-compatible conservation laws.) Let f = fx(ū) be a geo-
metry-compatible flux on a compact, oriented, Riemannian manifold
(Mn, g). Let u0 be in L∞(Mn) and ν be an entropy measure-valued
solution (in the sense of Definition 5.2) to the initial value problem
(3.4)-(3.7). Then, for almost every (t, x), the measure νt,x is a Dirac
mass, i.e. of the form

νt,x = δu(t,x),

where the function u ∈ L∞(R+ × Mn) is the unique entropy solution
to the problem (3.4)-(3.7) in the sense of Definition 3.4. Moreover,
the solution satisfies the properties (5.1)–(5.3), and the initial data is
assumed in the strong sense

lim sup
t→0+

∫

Mn

|u(t, x) − u0(x)| dVg(x) = 0. (5.5)

We have already shown in Section 4 that, provided the initial data
have bounded variation, entropy solutions can be constructed via van-
ishing diffusion. The proof relies on the compactness the inclusion of
BV into L1. Thanks to Theorem 5.3, we can now provide an alter-
native, more general proof which is valid for L∞ initial data. In view
of the uniform L∞ estimate (i.e., the maximum principle which only
requires the initial data to be in L∞), vanishing diffusion approxima-
tions uǫ generate a measure-valued solution ν. Moreover, ν can be
easily checked to satisfy all of the entropy inequalities and, in turn,
Theorem 5.1 follows from Theorem 5.3.

Finally, we also have the following generalization of Theorem 4.4.

Corollary 5.4. The convergence result of the vanishing diffusion ap-
proximations in Theorem 4.4 remains valid if the initial data u0 is
solely in L∞(Mn). All estimates therein, except for the total variation
estimate, still hold.
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In the course of proving Theorem 5.3, we will need some a priori reg-
ularity of measure-valued solutions, especially the fact that the initial
data u0 is automatically assumed in a strong sense.

Lemma 5.5. Let ν = νt,x be an entropy measure-valued solution of
(3.4)-(3.7), where it is assumed that u0 ∈ L∞(Mn) and the supports of
the measures νt,x are all included in a fixed common interval. Then:

(a) For every convex function U = U(u) and every smooth function
θ = θ(x), the function

t 7→

∫

Mn

〈
νt,x, U

〉
θ dVg(x) (5.6)

has locally bounded total variation and admits a trace as t→ 0+.
(b) For every function U = U(u, x), which is convex in u, measurable

in x, and such that |U(u, x)| ≤ c |u| + |Ũ(x)| with Ũ ∈ L1(Mn; dVg)
and c ≥ 0,

lim sup
t→0+

∫

Mn

〈
νt,x, U(., x)

〉
dVg(x) ≤

∫

Mn

U(u0(x), x) dVg(x). (5.7)

(c) In particular, ν assumes its initial data u0 in the following strong
sense:

lim sup
t→0+

∫

Mn

∫

R

|ū− u0(x)| dνt,x(ū) dVg(x) = 0. (5.8)

Proof of Lemma 5.5. Using in the weak formulation (5.4) a function
θ(t, x) = θ1(x) θ2(t), compactly supported in [0,∞) × Mn and having
θ1, θ2 ≥ 0, we obtain

∫ ∞

0

dθ2

dt

∫

Mn

〈
ν, U

〉
θ1 dVg(x)dt+ θ2(0)

∫

Mn

U(u0) θ1 dVg(x)

≥ −

∫ ∞

0

θ2

∫

Mn

gx
(
gradg θ1,

〈
ν, Fx

〉)
dVg(x)dt

≥ −C1

∫ ∞

0

θ2 dt,

for some constant C1 > 0 depending on θ1 (and the common support
of νt,x). Thus the function

V1(t) := −C1 t+

∫

Mn

〈
νt,x, U

〉
θ1 dVg(x)

satisfies the inequality

−

∫ ∞

0

V1(t)
dθ2

dt
dt ≤ θ2(0)

∫

Mn

U(u0) θ1 dVg(x). (5.9)
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Using a test-function θ2 ≥ 0 compactly supported in (0,∞), we find

−

∫ ∞

0

V1(t)
dθ2

dt
dt ≤ 0.

That is, the function V1(t) is decreasing and, therefore, has locally
bounded total variation. Since it is uniformly bounded, V1(t) has a
limit as t→ 0+. This proves (a).

To establish the item (b), we fix a time t0 > 0 and consider the
sequence of continuous functions

θǫ2(t) =





1, t ∈ [0, t0],

(t0 + ǫ− t)/ǫ, t ∈ [t0, t0 + ǫ],

0, t ≥ t0 + ǫ.

Relying on the property (a) above, we see that

−

∫ ∞

0

V1(t)
dθǫ2
dt

dt→ V1(t0+).

Since θǫ2(0) = 1 and t0 is arbitrary, (5.9) yields

V1(t0) = −C1 t0 +

∫

Mn

〈
νt0,x, U

〉
θ1 dVg(x) ≤

∫

Mn

U(u0) θ1 dVg(x)

for all t0 > 0 and, in particular, for all θ1 = θ1(x) ≥ 0

lim
t→0+

∫

Mn

〈
νt,x, U

〉
θ1 dVg(x) ≤

∫

Mn

U(u0) θ1 dVg(x). (5.10)

Note that the left-hand limit exists, in view of (a).
Next, consider the set of all linear, convex and finite combinations

of the form ∑

j

αj θ1,j(x)Uj(u),

where αj ≥ 0,
∑

j αj = 1, the functions Uj are smooth and convex in u

and the functions θ1,j(x) ≥ 0 are smooth and compactly support, with
moreover

|Uj(u) θ1,j(x)| ≤ c |u| + |Ũj(x)|

with c ≥ 0 and Ũj ∈ L1(Mn; dVg). This set is dense (for the uniform
topology in u and the L1 topology in x) in the set of all functions
U = U(u, x) that are convex in u and measurable in x and satisfy

|U(u, x)| ≤ c |u| + |Ũ(x)|

for some c > 0 and Ũ ∈ L1(Mn; dVg). Therefore, by density, (b) follows
from (5.9).

Finally, (c) follows from (b) by choosing U(u, x) = |u− u0(x)|. �
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Proof of Theorem 5.3. In all of the following arguments, the inequali-
ties should be understood in the sense of distributions. All steps can
be justified rigorously by introducing test-functions in the usual way.
Restricting attention in (5.4) to functions θ with compact support, we
deduce that

∂t
〈
ν, U

〉
+ divg

〈
ν, F

〉
≤ 0 (5.11)

and so, after introducing the Kruzkov’s entropies

Ũ(ū, v̄) = |v̄ − ū|, F̃ (ū, v̄) =
(
f(v̄) − f(ū)

)
sgn(v̄ − ū),

we obtain

∂t
〈
ν, Ũ(·, v̄)

〉
+ divg

〈
ν, F̃ (·, v̄)

〉
≤ 0, v̄ ∈ R. (5.12)

Let µ be another entropy measure-valued solution to (3.4). We are
going to combine (5.12) together with a similar statement for µ, that
is,

∂t
〈
µ, Ũ(ū, ·)

〉
+ divg

〈
µ, F̃ (ū, ·)

〉
≤ 0, ū ∈ R. (5.13)

Introducing the tensor product ν⊗µ = νt,x⊗µt,x with, for instance,

〈
νt,x ⊗ µt,x, Ũ

〉
:=

∫∫

R2

Ũ(ū, v̄) dνt,x(ū)dµt,x(v̄),

we can write (in the sense of distributions)

∂t
〈
ν ⊗ µ, Ũ

〉
+ divg

〈
ν ⊗ µ, F̃

〉

=
〈
ν, ∂t

〈
µ, Ũ

〉
+ divg

〈
µ, F̃

〉〉
+

〈
µ, ∂t

〈
ν, Ũ

〉
+ divg

〈
ν, F̃

〉〉

and we deduce from (5.12) and (5.13) that, in the sense of distributions

∂t
〈
ν ⊗ µ, Ũ

〉
+ divg

〈
ν ⊗ µ, F̃

〉
≤ 0. (5.14)

Next, integrating (5.14) over the manifold Mn we find that, for all
0 ≤ t′ ≤ t,

∫

Mn

〈
νt,x ⊗ µt,x, Ũ

〉
dVg(x) ≤

∫

Mn

〈
νt′,x ⊗ µt′,x, Ũ

〉
dVg(x). (5.15)

Letting t′ → 0 in (5.15) and using that the two measure-valued solu-
tions assume the same (Dirac-mass) initial data δu0(x) at the time t = 0
in the strong sense established in Lemma 5.5, we find

∫

Mn

〈
νt,x ⊗ µt,x, Ũ

〉
dVg(x) = 0, t ∈ R+.

Therefore,
〈
νt,x ⊗ µt,x, Ũ

〉
vanishes for almost every (t, x), which is

equivalent to saying that νt,x and µt,x coincide with the same Dirac
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mass, say δu(t,x) for some value u(t, x). Since ν and µ are both en-
tropy measure-valued solutions, the function u = u(t, x) is an entropy
solution of the problem (3.4)-(3.7) in the sense of Definition 3.3.

We establish some additional properties of the entropy solution u, as
follows. Taking U(u) := |u|p in (5.11) and integrating over the manifold
Mn yields

d

dt

∫

Mn

U(u(t, x)) dVg(x) =
d

dt

∫

Mn

〈
νt,x, U

〉
dVg(x) ≤ 0,

which leads to (5.1). Using (5.15) with two distinct solutions νt,x =
δu(t,x) and µt,x = δv(t,x) gives the L1 contraction property (5.3). This
completes the proof of Theorem 5.3. �

6. General conservation laws and balance laws

L1 semi-group of entropy solutions on manifolds. Consider first
the case of a conservation law posed on the one-dimensional torus T 1 =
[0, 1]

∂tu+
1

k
∂x(k f(u)) = 0, u = u(t, x) ∈ R, t ∈ R+, x ∈ [0, 1], (6.1)

where k = k(x) is a given, positive function and f : R → R is a convex
function. In [10], a suitable generalization of Lax’s explicit formula [7]
was introduced for (6.1). When k is not a constant, the characteristics
of (6.1) are not straight lines but curves s 7→ X(s) = X(s; y) (s ≥ 0,
y ∈ R), given by

∂sX(s) = ∂uf(u(s,X(s))), X(0) = y.

It was observed that along a characteristic the function v = v(s; y) :=
u(s,X(s; y)) is such that the “weighted flux” k(X) f(v) is constant. By
introducing suitable left- and right-inverses of the function f , say f−1

±

and then solving the equation k(X) f(v) = c, it follows that the whole
family of all characteristic curves is described by

∂sX(s) = (∂uf ◦ f−1
± )

( c

k(X)

)
, X(0) = y. (6.2)

The following result was derived from a detailled analysis of this
family of curves:

Theorem 6.1. (See [8, 10].) The periodic, entropy solutions with
bounded variation to the conservation law (6.1) are given by a gen-
eralization of Lax’s explicit formula via a minimization problem along
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the curves (6.2). Moreover, any two solutions u, v satisfy the L1 con-
traction property

‖v(t) − u(t)‖L1(0,1) ≤ ‖v(t′) − u(t′)‖L1(0,1), 0 ≤ t′ ≤ t.

In view of the discussion in the previous sections, this result may
seem surprising since the geometry-compatibility condition is not satis-
fied here (except in the trivial case where k is a constant). Theorem 6.1
motivates us to extend now our theory on Riemannian manifolds to
general conservation laws that need not be geometry-compatible.

From now on we consider a general conservation law (3.4) associated
with an arbitrary flux fx. First of all, we stress that the notion of
entropy pair (U, Fx) should still be defined by the same conditions
(3.11) as in the geometry-compatible case, but now we no longer have
(3.12). Instead, an entropy solution should be characterized by the
entropy inequalities

∂tU(u) + divg
(
F (u)

)
− (divg F )(u) ≤ 0 (6.3)

in the sense of distributions, for every entropy pair (U, Fx). The term
(divg F )(ū) is defined by applying the divergence operator to the vector
field x→ Fx(ū), for every fixed ū.

Theorem 6.2. Let f = fx(ū) be an arbitrary (not necessarily geometry-
compatible) flux on a Riemannian manifold (Mn, g), satisfying the lin-
ear growth condition (for some constant C0 > 0)

|fx(ū)|g ≤ C0 (1 + |ū|), ū ∈ R, x ∈ Mn. (6.4)

Then there exists a unique contractive, semi-group of entropy solutions

u0 ∈ L1(Mn) 7→ u(t) := Stu0 ∈ L1(Mn)

to the initial value problem (3.4)-(3.7).

The condition (6.4) is required for the flux term (3.4) to be an in-
tegrable function on Mn. Note that no uniform Lp estimate is now
available, not even in the L1 norm, since the trivial function u ≡ 0
need not be a solution of the conservation law. The L1 norm of a so-
lution is finite for each time t, but generally grows as t increases. This
result shows that the contraction property is more fundamental than all
of the other stability properties derived earlier for geometry-compatible
conservation laws.

For general conservation laws, the stationary solutions ũ, determined
by

divg
(
fx(ũ(x))

)
= 0, x ∈ Mn,

represent possible asymptotic states of time-dependent solutions.
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Proof. The semi-group is constructed first over functions with bounded
variation and then extended by density to the whole of L1. To this end,
we re-visit the proof of Theorem 5.3, and check that the key inequality
(5.14), needed in the derivation of the L1 contraction property, remains
true regardless of the geometry-compatibility property. Note in passing
that the stronger statement (5.11) is no longer valid under the present
assumptions, and was precisely needed to ensure the stability in all Lp

spaces, which is no longer true here.
It thus remains to establish (5.14) for solutions u, v of (3.4) with

bounded variation. We rely on standard regularity results (Federer
[4], Volpert [12]) for such functions: pointwise values u±, v± can be
defined almost everywhere with respect to the Hausdorff measure Hn

on R+×Mn. These pointwise values coincide at points of approximate
continuity. We compute the entropy dissipation measure

µ := ∂tŨ(u, v) + divg
(
F̃ (u, v)

)
,

and distinguish between the set Cu,v of points of approximate conti-
nuity for both u and v, and the set Su,v of points where u has an
approximate jump and v is approximately continuous, or vice-versa.
The Hn-Hausdorff measure of the set Nu,v := R+ × Mn \ Cu,v ∪ Su,v is
zero. Using standard calculus for BV functions we can write

µ|Cu,v
:= sgn(u− v)

(
∂tu− ∂tv

)
+ sgn(u− v)

(
divg (f(u)) − divg (f(v))

)

= 0.

On the other hand, if B ⊂ Su,v is a Borel subset consisting of points
where (for instance) v is approximately continuous then

µ(B)

:=

∫

B

(
nt |u+ − v| + gx

(
nx, sgn(u+ − v) (fx(u+) − fx(v))

)

− nt |u− − v| − gx

(
nx, sgn(u− − v) (fx(u−) − fx(v))

))
dHn(t, x),

where n = (nt(t, x), nx(t, x) ∈ R × TxM
n is the propagation speed

vector associated with the discontinuity in u. Now, by relying on the
entropy inequalities, µ

{
(t, x)} can easily be checked to be non-positive.

In turn, the measure µ is also non-positive on Su,v and, in turn, on the
whole of R+ × Mn. The argument is complete. �

General balance laws. It is not difficult to generalize the well-posed-
ness theory to the balance law

∂tu+ divg
(
f(u, ·)

)
= h(u, ·),
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where f = fx(ū, t) is a family of vector fields depending (smoothly)
on the time variable t and on the parameter ū, and h = h(ū, t, x) is
a smooth function. Our previous results should be modified to take
into account the dependence of f in t and the effect of the source-term
h. For instance, for L∞ initial data, the Lp estimate (5.1) should be
replaced with

‖u(t)‖Lp(Mn;dVg) ≤ Cp(T ) ‖u(t′)‖Lp(Mn;dVg) + C ′(T ), 0 ≤ t′ ≤ t ≤ T,

where the constant Cp(T ) ≥ 1 in general depends on T and C ′(T ) also
depends upon g. Similarly, the contraction property should be replaced
by

‖v(t) − u(t)‖L1(Mn;dVg) ≤ C0(T ) ‖v0 − u0‖L1(Mn;dVg), t ∈ R+.

for some constant C0(T ). We omit the details.

7. Conservation laws on Lorentzian manifolds

Globally hyperbolic Lorentzian manifold. Motivated by the math-
ematical developments in general relativity, we now extend our theory
to Lorentzian manifolds.

Let (Mn+1, g) be a time-oriented, (n + 1)-dimensional Lorentzian
manifold, g being a pseudo-Riemannian metric tensor on Mn+1 with
signature (−,+, . . . ,+). Recall that tangent vectors X on a Lorentzian
manifold can be separated into time-like vectors (g(X,X) < 0), null
vectors (g(X,X) = 0), and space-like vectors (g(X,X) > 0). A vector
field is said to be time-like, null, or space-like if the corresponding
property hold at every point. The null cone separates time-like vectors
into future-oriented and past-oriented ones; it is assumed here that the
manifold is time-oriented, i.e. a consistent orientation can be chosen
throughout the manifold.

Let ∇ be the Levi-Cevita connection associated with the Lorentzian
metric g so that, in particular, ∇g = 0. The divergence divg operator is
defined in a standard way which is formally similar to the Riemannian
case.

Definition 7.1. A flux on the manifold Mn+1 is a vector field x 7→
fx(ū) ∈ TxM

n+1, depending on a parameter ū ∈ R. The conservation
law on (Mn+1, g) associated with f is

divg
(
f(u)

)
= 0, u : Mn+1 → R. (7.1)

It is said to be geometry compatible if f satisfies the condition

divg fx(ū) = 0, ū ∈ R, x ∈ Mn+1. (7.2)
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Furthermore, f is said to be a time-like flux if

gx
(
∂ufx(ū), ∂ufx(ū)

)
< 0, x ∈ Mn+1, ū ∈ R. (7.3)

Note that our terminology here differs from the one in the Riemann-
ian case, where the conservative variable was singled out.

We are interested in the initial-value problem associated with (7.1).
We fix a space-like hypersurface H0 ⊂ Mn+1 and a measurable and
bounded function u0 defined on H0. Then, we search for a function
u = u(x) ∈ L∞(Mn+1) satisfying (7.1) in the distributional sense and
such that the (weak) trace of u on H0 coincides with u0:

u|H0 = u0. (7.4)

It is natural to require that the vectors ∂ufx(ū), which determine the
propagation of waves in solutions of (7.1), are time-like and future-
oriented.

We assume that the manifold Mn+1 is globally hyperbolic, in the
sense that there exists a foliation of Mn+1 by space-like, compact, ori-
ented hypersurfaces Ht (t ∈ R):

Mn+1 =
⋃

t∈R

Ht.

Any hypersurface Ht0 is referred to as a Cauchy surface in Mn+1, while
the family Ht (t ∈ R) is called an admissible foliation associated with

Ht0 . The future of the given hypersurface will be denoted by

Mn+1
+ :=

⋃

t≥0

Ht.

Finally we denote by nt the future-oriented, normal vector field to each
Ht, and by gt the induced metric. Finally, along Ht, we denote by X t

the normal component of a vector field X, thus X t := g(X,nt).

Definition 7.2. A flux F = Fx(ū) is called a convex entropy flux asso-
ciated with the conservation law (7.1) if there exists a convex function
U : R → R such that

Fx(ū) =

∫ ū

0

∂uU(u′) ∂ufx(u
′) du′, x ∈ Mn+1, ū ∈ R.

A measurable and bounded function u = u(x) is called an entropy so-
lution of the geometry-compatible conservation law (7.1)-(7.2) if the
following entropy inequality

∫

M
n+1
+

g(F (u), gradg θ) dVg +

∫

H0

g0(F (u0), n0) θH0 dVg0 ≥ 0. (7.5)
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for all convex entropy flux F = Fx(ū) and all smooth functions θ ≥ 0
compactly supported in Mn+1

+ .

In particular, in (7.5) the inequality

divg
(
F (u)

)
≤ 0

holds in the distributional sense.

Theorem 7.3. Consider a geometry-compatible conservation law (7.1)-
(7.2) posed on a globally hyperbolic Lorentzian manifold Mn+1. Let H0

be a Cauchy surface in Mn+1, and u0 : H0 → R be a measurable and
bounded function. Then, the initial-value problem (7.1)-(7.4) admits
a unique entropy solution u = u(x) ∈ L∞(Mn+1). For every admis-
sible foliation Ht, the trace uHt

exists and belong to L1(Ht), and the
functions

‖F t(uHt
‖L1(Ht),

are non-increasing in time, for any convex entropy flux F . Moreover,
given any two entropy solutions u, v, the function

‖f t(uHt
) − f t(v|Ht

)‖L1(Ht) (7.6)

is non-increasing in time.

We emphasize that, in the Lorentzian case, no time-translation prop-
erty is available in general, contrary to the Riemannian case. Hence,
no time-regularity is implied by the L1 contraction property.

As the proof is very similar to the one in the Riemannian case, we
will content with sketching the proof. Introduce a local chart

x = (xα) = (t, xj), g := gαβ dx
αdxβ,

where by convention greek indices describe 0, 1, . . . , n and latin indices
describe 1, . . . , n. By setting f =: (fαx (ū)) and using local coordinates,
the conservation law (7.1) reads

∂α
(
|gx|

1/2 fαx (u(x))
)

= 0, (7.7)

where |g| := det(gαβ). Thanks to the assumption on f , for all smooth

solutions (7.7) takes the equivalent form

gx((∂ufx)(u(x)), gradg u(x)
)

:=
(
∂uf

α
x

)
(u(x)) (∂αu)(x) = 0. (7.8)

In other words, setting x = (t, x) and f = (f t, f j),
(
∂uf

t
x

)
(u(t, x)) ∂tu(t, x) +

(
∂uf

j
x

)
(u(t, x)) (∂ju)(t, x) = 0,

in which, since ∂uf is future-oriented and time-like, the coefficient in
front of the time-derivative is positive

∂uf
0
x(ū) > 0, ū ∈ R, x ∈ Mn+1.
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To proceed with the construction of the entropy solutions, we add a
vanishing diffusion term, as follows:

divg
(
f(uǫ)

)
= ǫ∆gu

ǫ, (7.9)

where ∆g is the Laplace operator on the leaves Ht of the foliation, that
is in coordinates(

∂uf
0
x

)
(uǫ(t, x)) ∂tu

ǫ(t, x) +
(
∂uf

j
x

)
(uǫ(t, x)) (∂ju

ǫ)(t, x)

= ǫ gij(t, x)
(
∂i∂ju

ǫ − Γkij ∂ku
ǫ
)
(t, x).

(7.10)

In view of (7.10), we see that all of the estimates follow similarly as
in the Riemannian case. For instance, multiplying (7.10) by a convex
function U , the entropy inequality now takes the form

∂t(F
0
x (uǫ(t, x)) + ∂j(F

j
x(u

ǫ(t, x))

= ∂uU(u(t, x))
(
∂uf

0
x

)
(uǫ(t, x)) ∂tu

ǫ(t, x)

+ ∂uU(u(t, x))
(
∂uf

j
x

)
(uǫ(t, x)) (∂ju

ǫ)(t, x)

= ǫ ∂uU(u(t, x)) gij(t, x)
(
∂i∂ju

ǫ − Γkij ∂ku
ǫ
)
(t, x)

= ǫ∆gU(uǫ) − ǫ ∂2
uU(uǫ) gjk ∂ju

ǫ∂ku
ǫ.

(7.11)

The metric g induced on the space-like leaves Ht is positive-definite
and, therefore, the latter term above if non-positive and we conclude
that, given a geometry compatible flux f and for every convex entropy
flux F

divg
(
F (uǫ)

)
= ∂t(F

0
x (uǫ(t, x)) + ∂j(F

j
x(u

ǫ(t, x)) ≤ ǫ∆gU(uǫ).

Note that the regularization (7.9) does depend on the specific folia-
tion under consideration. However, by the contraction property (7.6)
the limiting solution is unique and independent of the chosen regular-
ization mechanism.

Schwarzschild spacetime. In the context of general relativity, the
Schwarschild metric represents a spherically symmetric empty space-
time surrounding a black hole with mass m and is one of the most im-
portant example of Lorentzian metrics. The outer communication re-
gion of the Schwarzschild spacetime is a 1+3-Lorentzian manifold with
boundary, described in the so-called Schwarschild coordinates (t, r, ω)
by

g = −
(
1 −

2m

r

)
dt2 +

(
1 −

2m

r

)−1
dr2 + r2 dω2,

with t > 0 and r > 2m, while ω describes the 2-sphere. There is
an apparent (but not a physical) singularity in the metric coefficients
at r = 2m, which corresponds to the horizon of the spacetime. This
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spacetime is spherically symmetric, that is invariant under the group
of rotations operating on the space-like 2-spheres given by keeping t
and r constant. The part r2dω2 of the metric is the canonical metric
on the 2-spheres of symmetry. The spacetime under consideration is
static, since the vector field ∂t is a time-like Killing vector. Moreover,
this metric is asymptotic to the flat metric when r → ∞. Theorem 7.3
extends to the exterior of the Schwarzschild spacetime, by observing
that along the boundary r = 2m the characteristics of the hyperbolic
equation are outgoing.
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