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F-54506 Vandœuvre-lès-Nancy Cedex
Tel.: +33 3 83 68 44 74, Fax: +33 3 83 68 44 61
e-mail: samir.aberkane@cran.uhp-nancy.fr

Abstract: In this paper, static output feedback stochastic stabilization and distur-
bance attenuation issues for a class of discrete-time Networked Control Systems
(NCSs) subject to random failures and random delays are addressed. The different
random processes are modeled as Markovian chains, and the resulting closed-loop
system belongs to the class of discrete-time Markovian Jump Linear Systems (MJLS).
Results are formulated as matrix inequalities. A numerical algorithm based on non-
convex optimization is provided and its running is illustrated on a classical example
from literature.
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1. INTRODUCTION

Networked control systems (NCSs) are feedback
control loops closed through a real time network.
That is, in NCSs, communication networks
are used to exchange informations and control
signals (reference input, plant output, control
input,. . .etc.) between control system components
(sensors, controllers, actuators,. . .etc). The main
advantages of NCSs are low cost, reduced weight,
simple installation and maintenance, and high
reliability. As a result, NCSs have great potential
in application in complex advanced technological
systems such as manufacturing plants, vehicles,
aircrafts, spacecrafts . . .etc (Walsh et al., 2002). At
the same time, these complex systems could have
various consequences in the event of component
failures. Therefore, it is very important to consider
the safety and fault tolerance of such systems at
the design stage. For these safety-critical systems,

Fault Tolerant Control Systems (FTCS) have
been developed to meet these essential objectives.
FTCS have been a subject of great practical
importance, which has attracted a lot of interest
for the last three decades. A bibliographical review
on reconfigurable fault tolerant control systems can
be found in (Zhang and Jiang, 2003).
Despite the advantages and potentials,
communication networks in control loops make
the analysis and design of NCSs complicated. One
main issue is the network induced delays, which
occur when sensors, actuators, and controllers
exchange data across the network. The delays
may be constant, time-varying, and in most cases,
random. It is known that the occurrence of delay
degrades the stability and control performances
of closed-loop control systems. In (Nilsson et
al., 1998), the stability analysis and control design
of NCSs were studied when the network-induced
delay at each sampling instant is random and less



than one sampling time. In (Zhang et al., 2001), the
stability of NCSs was analyzed by a hybrid system
approach when the induced delay is deterministic
(constant or time-varying) and the controller gain
is constant; and in (Lin et al., 2003), a switched
system approach was used to study the stability of
NCSs. In (Yu et al., 2004), the maximum of the
network-induced delay preserving the closed-loop
stability for a given plant and controller was
considered. In (Xie and Wang, 2004), the network-
induced delay is assumed to be time-varying and
less than one sampling time. It is noticed that in
all of the aforementioned papers, the plant is in the
continuous-time domain. For the discrete-time case,
in (Krtolica et al., 1992) and (Xiao et al., 2000),
the network-induced random delays were modeled
as Markov chains such that the closed-loop system
is a jump linear system with one mode. The class of
linear systems with Markovian jumping parameters
has attracted increasing attention in the recent
literature. Markovian jump systems are those
having transition between models determined by
a Markov chain. It is very appropriate to model
plants whose structures are subject to random
abrupt changes due to component failures or
repairs, sudden environmental changes, abrupt
variations of the operating point of a nonlinear
plant, changing subsystem interconnections,
and so on. The theory of stability, optimal
control and H2/H∞ control, as well as important
applications of such systems, can be found in several
papers in the current literature, for instance in
(Boukas, 2006; Boukas, 2005; Boukas, 1999; Costa
et al., 1999; de Farias et al., 2000; de Souza and
Fragoso, 1993; Dragan and Morozan, 2002; Dragan
et al., 2004; Ji and Chizeck, 1990; Ji and
Chizeck, 1992) for continuous-time case, and
(Costa et al., 2005) for the discrete-time case.
Fault tolerant control issues were also considered
in the same framework, for instance in (Aberkane
et al., 2005; Aberkane et al., 2006b; Aberkane
et al., 2006a; Mahmoud et al., 2003; Shi and
Boukas, 1997; Shi et al., 2003; Srichander and
Walker, 1993).
On the other hand, one of the most challenging
open problems in control theory is the synthesis
of fixed-order or static output feedback controllers
that meet desired performances and specifications
(Syrmos et al., 1997). Among all variations of
this problem, this note is concerned with the
problem of static output feedback stochastic
stabilization and disturbance attenuation (H∞

control) issues for a class of discrete-time NCSs
subject to random failures, random delays and/or
packet loss. Results are formulated as matrix
inequalities with an equality constraint of the
form PX = I. A numerical algorithm based on
nonconvex optimization is provided and its running
is illustrated on a classical example from literature.

This paper is organized as follows: Section 2
describes the dynamical model of the system
with appropriately defined random processes. A
brief summary of basic stochastic terms, results
and definitions are given in Section 3. Section
4 addresses the stochastic stabilization and H∞

control problematic. In Section 5, a numerical
algorithm based on nonconvex optimization is
provided and its running is illustrated on a classical
example from literature. Finally, a conclusion is
given in Section 6.

Notations. The notations in this paper are quite
standard. Rm×n is the set of m-by-n real matrices.
A′ is the transpose of the matrix A. The notation
X ≥ Y (X > Y , respectively), where X and Y
are symmetric matrices, means that X − Y is pos-
itive semi-definite (positive definite, respectively);
I and 0 are identity and zero matrices of appro-
priate dimensions, respectively; E{·} denotes the
expectation operator with respect to some proba-
bility measure P ; L2[0,∞) stands for the space of
square-summable vector functions over the interval
[0,∞); ‖ · ‖ refers to either the Euclidean vector
norm or the matrix norm, which is the operator
norm induced by the standard vector norm; ‖ · ‖2

stands for the norm in L2[0,∞); while ‖ · ‖E2

denotes the norm in L2((Ω,F , P ), [0,∞)); (Ω,F , P )
is a probability space. In block matrices, ⋆ indicates

symmetric terms:

[
A B
B′ C

]

=

[
A ⋆
B′ C

]

=

[
A B
⋆ C

]

.

2. SYSTEM MODELING

Consider the following class of dynamical systems in
a given fixed complete probability space (Ω,F , P ):

ϕ :







xk+1 = A(ηk)xk + Bu(ηk)u(yk, k) + Bw(ηk)wk

yk = Cyxk

zk = Cz(ηk)xk + Dz(ηk)u(yk, k)

(1)
where xk ∈ Rn is the system state, u(yk, k) ∈ Rr is
the system input, yk ∈ Rq is the system measured
output, wk is the system external disturbance which
belongs to L2[0,∞), zk is the controlled output
which belongs to L2((Ω,F , P ), [0,∞)) and {ηk, k ≥
0} denotes the state of the random process describ-
ing the failures. It is assumed that ηk is a measurable
discrete-time Markov process taking values on a
finite set i = {1, . . . , ν}. For the failure process ηk,
the known one-step transition probability from state
i to state l, i, l ∈ i is given by αil, i.e.

αil = Prob{ηk+1 = l | ηk = i} (2)

It is also assumed that there are random but
bounded delays from the sensor to the controller
(Figure–1). The mode-dependent switching static
output feedback control law is
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Figure 1. Control over networks: the general case

ϕs :
{

u(yk, rsk, k) = K(rsk)yk = K(rsk)Cyxk−rsk

(3)
where {rsk} is a bounded random integer sequence
with 0 ≤ rsk ≤ ds < ∞, and ds is the finite delay
bound.
Remark 1 We can use a mode-dependent switching
controller if we know the delay steps on-line, and
this is the case if we use time-stamped data in the
network communication. However, it is important
to note that the theoretical results developed in
this work remain correct for the case of mode-
independent control.
If we augment the state variable

x̃k = [x′
k x′

k−1 . . . x′
k−ds

]′

where x̃k ∈ R(ds+1)n, then the closed-loop system is






x̃k+1 =
(
Ã(ηk) + B̃u(ηk)K(rsk)C̃y(rsk)

)
x̃k + B̃w(ηk)wk

yk = C̃y(rsk)x̃k

zk =
(
C̃z(ηk) + Dz(ηk)K(rsk)C̃y(rsk)

)
x̃k

(4)

where

Ã(ηk) =










A(ηk) 0 . . . 0 0

I 0 . . . 0 0

0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0










, B̃u(ηk) =










Bu(ηk)
0

0
...
0










,

B̃w(ηk) =










Bw(ηk)
0

0
...
0










.

C̃y(rsk) =
[
0 . . . 0 Cy 0 . . . 0

]

C̃z(ηk) =
[
Cz(ηk) . . . 0 0 0 . . . 0

]

and C̃y(rsk) has all elements being zero except for
the (rsk + 1)th block being the matrice Cy.
One of the difficulties with this approach is how
to model the rsk sequence. One way is to model
the transitions of the random delays rsk as a finite

state Markov process (Krtolica et al., 1992; Xiao et
al., 2000; Zhang et al., 2005). In this case we have

Prob{rsk+1 = j | rsk = i} = pij (5)

where 0 ≤ i, j ≤ ds. This model is quite general,
communication package loss in the network can
be included naturally as explained below (Xiao et
al., 2000). The assumption here is that the controller
will always use the most recent data. Thus, if
we have yk−rsk

at step k, but there is no new
information coming at step k + 1 (data could be
lost or there is a longer delay), then we at least
have yk−rsk

available for feedback. So, in our model
of the system in Figure 1, the delay rsk can increase
at most by 1 each step, and we constrain

Prob{rsk+1 > rsk + 1} = 0

However, the delay rsk can decrease as many steps
as possible. Decrement of rsk models communica-
tion package loss in the network, or disregarding old
data if we have newer data coming at the same time.
Hence the structured transition probability matrix
is

Ps =











p00 p01 0 0 . . . 0
p10 p11 p12 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...
... p(ds−1)ds

pds0 pds1 pds2 pds3 . . . pdsds











(6)

where

0 ≤ pij ≤ 1 and

ds∑

j=0

pij = 1 (7)

because each row represents the transition probabil-
ities from a fixed state to all the states. The diagonal
elements are the probabilities of data coming in
sequence with equal delays. The elements above the
diagonal are the probabilities of encountering longer
delays, and the elements below the diagonal indicate
package loss or disregarding old data.

3. BASIC DEFINITIONS AND RESULTS

In this section, we will first give some basic defini-
tions related to stochastic stability notions and then
we will summarize some results about stochastic sta-
bilizability of the discrete-time NCS subject to ran-
dom failures and delays. Without loss of generality,
we assume that the equilibrium point, x = 0, is the
solution at which stability properties are examined.
We introduce the following stability and stabilizabil-
ity definitions for discrete-time jump linear system.
Definition 1. The system (1) with uk ≡ 0, wk ≡ 0,
is said to be stochastically stable, if for every initial
state (x0, rs0, η0), the following holds:

E
{

∞∑

k=0

‖ xk(x0, rs0, η0) ‖2| x0, rs0, η0

}

< ∞ (8)



Definition 2. We say that system (1) (with w(k) ≡
0) is stochastically stabilizable, if for every initial
state (x̃0, rs0, η0), there exists a linear static output
feedback control law ϕs such that the closed loop
system (4) is stochastically stable.
The following proposition gives a necessary and
sufficient condition for the mean square stability of
system (4).
Proposition 1. The following statements are
equivalent:

i) System (4) is stochastically stabilizable by ϕs;
ii) The matrix inequalities

Ā′
ijP̄ijĀij − Pij < 0, ∀i ∈ i, j ∈ S. (9)

are feasible for some matrices Kj and Pij > 0.
where

Āij = Ãi+B̃iKjC̃yj ; P̄ij =

ds∑

v=1

pjv

ν∑

m=1

αimPmv

iii) For any given Q = (Q11, . . . ,Qij , . . . ,Qνds
)

with Qij > 0, there exist a unique
P = (P11, . . . ,Pij , . . . ,Pνds

) with Pij > 0 sat-
isfying the following coupled Lyapunov equa-
tions

Ā′
ijP̄ijĀij − Pij + Qij = 0 ∀i ∈ i, j ∈ S.

(10)

¤

Proof. The proof of this Proposition follows the
same lines as for the proof of stability results in
(Costa et al., 2005; Zhang et al., 2003), except here
we consider two Makovian processes, while in the
aforementioned references, the authors consider a
single Markov process. ¥

We conclude this section by introducing the follow-
ing Lemma that will be used in the derivation of the
main results of this note.
Lemma 1. The following statements are equivalent

i) There exists a symmetric definite positive ma-
trix P such that

A′f(P)A − P < 0

where f(P) > 0 is a matrix function of P.
ii) There exists a symmetric definite positive ma-

trix P and a matrix G such that
[
−P A′G′

⋆ −G − G′ + f(P)

]

< 0

¨

Proof. The proof of this lemma follows the same
arguments as for the proof of Theorem 1 in
(de Oliveira et al., 1999). ¥

4. MAIN RESULTS

4.1 Stochastic Stabilization

In this section, we shall address the problem of
finding all static compensators (ϕs), as defined in

section 2, such that the closed loop system (ϕcl)
becomes stochastically stable. To this end, we use
Proposition 1 to get the following necessary and
sufficient conditions for the stochastic stabilizability
of the system (4).
Proposition 2. System (4) is stochastically stabi-
lized by ϕs iff there exists matrices Kj , matrices Ḡij

and symmetric matrices Pij > 0, Xij > 0 satisfying
the following coupled matrix inequalities





−Pij Ā′
ij 0

⋆ −Ḡij − Ḡ′
ij ḠijRij

⋆ ⋆ −X̄



 < 0 (11)

under the constraints

PijXij = I (12)

where






X̄ = diag{k1, k2, . . . , kν};
k1 = [X11,X12, . . . ,X1ds

];
...

kν = [Xν1,Xν2, . . . ,Xνds
];

Rij = [Γ1ij ,Γ2ij , . . . ,Γνij ];

Γ1ij =
[√

αi1pj1,
√

αi1pj2, . . . ,
√

αi1pjds

]
;

...

Γνij =
[√

αiνpj1,
√

αiνpj2, . . . ,
√

αiνpjds

]
;

Then, if (11)-(12) are feasible, the stabilizing output
feedback control law is given by

ujk = Kjyk

¤

Proof. Let us consider the matrix inequalities given
by (9). The use of Lemma 1 with f(Pij) = P̄ij yields

[
−Pij Ā′

ijG′
ij

⋆ −G′
ij − Gij + P̄ij

]

< 0 (13)

Notice that from (13), Gij is nonsingular. Let us
define Ḡij = G−1

ij , then by the congruence transfor-
mation [

I 0

0 Ḡij

]

and with a Schur complement operation with re-
spect to the term ḠijP̄ij Ḡ′

ij , the inequality (13) in
turn becomes





−Pij Ā′
ij 0

⋆ −Ḡij − Ḡ′
ij ḠijRij

⋆ ⋆ −X̄



 < 0 (14)

then, the proof is complete. ¥

4.2 The H∞ Control Problem

In this section, we deal with the design of controllers
that stochastically stabilize the closed-loop system
and guarantee the disturbance rejection, with a
certain level γ∞ > 0. This problematic is addressed
under a nonconvex optimization framework.



In order to put the H∞ control problem in a
stochastic setting, we bring to bear the space
L2((Ω,F , P ), [0,∞)) of F-measurable processes, zk,
for which

‖ z ‖E2
= E

{
∞∑

k=0

z′kzk

}1/2

< ∞

The stochastic H∞ control problem can be stated
as follows:

For a given level on the H∞ norm, γ∞, find
stabilizing static output feedback gains Kj such
that

E
{

∞∑

k=0

z′kzk

}

< γ2
∞

∞∑

k=0

w′
kwk (15)

i.e.
‖ z∞ ‖E2

< γ∞ ‖ w ‖2

In this situation, the closed loop system (4) is
said to have an H∞ performance level γ∞ over
[0,∞).

Before introducing our result on H∞ control for this
class of stochastic hybrid systems, let us consider the
following proposition which is obtained as a special
case of the bounded real lemma of discrete time
Markovian jump linear systems (Zhang et al., 2003).
Proposition 3. The system (4) is stochastically
stable and ‖ ϕcl ‖∞< γ∞ if and only if there
exist matrices Kj and symmetric matrices Pij > 0
satisfying the following coupled matrix inequalities
[

Ā′
ijP̄ijĀij − Pij + C̄′

zijC̄zij Ā′
ijP̄ijB̃wi

⋆ −(γ2
∞I − B̃′

wiP̄ijB̃wi)

]

< 0

(16)

where
C̄zij = C̃zi + DziKjC̃yj

¤

Now, we are in position to give the result on the
solvability of the H∞ static output feedback control
problem. Indeed, Proposition 4 gives a NLMI (Non-
linear Matrix Inequalities) characterization of static
output feedback compensators (ϕs) that stochasti-
cally stabilize the closed loop system (4) and ensures
(15).
Proposition 4. System (4) is stochastically sta-
bilized by ϕs and ‖ ϕcl ‖∞< γ∞ iff there exists
matrices Kj , matrices Ḡij and symmetric matrices
Pij > 0, Xij > 0 satisfying the following coupled
matrix inequalities








−

[

I

0

]

Pij

[
I 0

]
−

[

0 0

0 γ2
∞I

] [

C̄′
zij

0

] [
Ā′

ij

B̃′
wi

]

⋆ −I 0

⋆ ⋆ −Ḡij − Ḡ′
ij

⋆ ⋆ ⋆

0

0

ḠijRij

−X̄







< 0

(17)

under the constraints

PijXij = I (18)

If (17)-(18) are feasible, the stabilizing output feed-
back control law that guarantees an H∞ perfor-
mance level γ∞ is given by

ujk = Kjyk

¤
Proof. The matrix inequalities (16) can be equiva-
lently written as follows
[

Ā′
ij

B̃′
wi

]

P̄ij

[
Āij B̃wi

]

−

{[

I

0

]

Pij

[
I 0

]
+

[

0 0

0 γ2
∞I

]

−

[

C̄′
zij

0

]
[

C̄zij 0

]
}

︸ ︷︷ ︸

Lij

< 0

(19)

The use of Lemma 1 with f(Pij) = P̄ij yields



−Lij

[
Ā′

ij

B̃′
wi

]

G′
ij

⋆ −G′
ij − Gij + P̄ij



 < 0 (20)

then by the congruence transformation
[

I 0

0 Ḡij

]

and with a Schur complement property, we obtain
(17). Hence, the proof is complete. ¥

5. COMPUTATIONAL ISSUES AND EXAMPLE

5.1 A Cone Complementary Algorithm

The necessary and sufficient conditions derived in
Proposition 2 and Proposition 4 are formulated as
LMI feasibility problem under equality constraints
of the form PijXij = I. The numerical example is
solved using a first order iterative algorithm. It is
based on a cone complementary (CCL) technique
(Ghaoui et al., 1997), that allows to concentrate
the non convex constraint in the criterion of some
optimisation problem.
For P = (P11, . . . ,Pij , . . . ,Pνds

), G =
(G11, . . . ,Gij , . . . ,Gνds

), K = (K1, . . . ,Kj , . . . ,Kds
)

and X = (X11, . . . ,Xij , . . . ,Xνds
), define two convex

sets by a set of LMIs as

Cs
(P,G,K,X) , {(P,G,K,X) : LMIs(11),Pij > 0,Xij > 0, }

and

CH∞

(P,G,K,X)
, {(P,G,K,X) : LMIs(17),Pij > 0,Xij > 0, }

It can be seen from Proposition 4 (resp. Proposition
2) that the H∞ control problem (resp. stochastic
stabilization) of the system (4) is solved iff there
exist P = (P11, . . . ,Pij , . . . ,Pνds

),
G = (G11, . . . ,Gij , . . . ,Gνds

), K =
(K1, . . . ,Kj , . . . ,Kds

) and X =
(X11, . . . ,Xij , . . . ,Xνds

) such that

(P,G,K,X) ∈ CH∞

(P,G,K,X),PijXij = I,∀i ∈ i, j ∈ S

(21)



(resp.

(P,G,K,X) ∈ Cs
(P,G,K,X),PijXij = I,∀i ∈ i, j ∈ S)

(22)
is feasible.
The CCL algorithm is based on the fact that for any
matrices X > 0 and P > 0 (X ,P ∈ Rn×n), if the
LMI [

X I

⋆ P

]

≥ 0 (23)

is feasible, then tr(PX ) ≥ n, and tr(PX ) = n if
and only if PX = I. Hence a feasible solution of
(21) (resp. (22)) can be obtained from the solution
of the following nonconvex optimization problem

min
(P,G,K,X)∈C

H∞

(P,G,K,X)

{

tr(XP) :

[
Xij I

I Pij

]

≥ 0

}

(24)
(resp.

min
(P,G,K,X)∈Cs

(P,G,K,X)

{

tr(XP) :

[
Xij I

I Pij

]

≥ 0

}

)

(25)
where

X = diag{X11, . . . ,Xij , . . . ,Xνds
}

P = diag{P11, . . . ,Pij , . . . ,Pνds
}

We may see that if the optimal solution of (24) (resp.
(25)) satisfies

tr(XP) = ν × (ds + 1)2 × n (26)

then (21) (resp. (22)) is feasible. Hence, the H∞ con-
trol problem (resp. stochastic stabilization) of the
system (4) is now changed to a problem of finding
a global solution of the minimization problem (24)
(resp. (25)). This is however, still a difficult issue
since the objective function is nonconvexe. The CCL
algorithm can find the global solutions of problems
like (24) (resp. (25)) most of the time (de Oliveira
and Geromel, 1997).
CCL Algorithm: For a given γ∞ > 0

i) Feasibility. h = 0: start from a point
(P0,G0,K0,X0) ∈ CH∞

(P,G,K,X);

ii) set Vh = Ph and Wh = Xh. Define the linear
function

fh(P,X) = tr(VhX + WhP) (27)

iii) find (Ph+1, Xh+1) solving the following convex
programming

min
(P,G,K,X)∈C

H∞

(P,G,K,X)

{

fh(P,X) :

[
Xij I

I Pij

]

≥ 0

}

(28)
iv) if fh converges, then exit. Otherwise, set h =

h + 1 and go to step ii).

The first step of the algorithm and every step ii) are
simple LMI problems. There are many algorithms
for these problems, especially, interior-point meth-
ods.

5.2 Numerical example

In this section, the proposed static output feedback
H∞ control of the NCS subject to random failures
is illustrated using a VTOL helicopter model (Jiang
and Chowdhury, 2005). The sampling time is Ts =
0.01s, and the random sensor delay exists in rs ∈
{0, 1}, and its transition probability matrix is given
by

[pij ] =

[
0.9 0.1
0.9 0.1

]

Consider the nominal system with

A =






0.9996 0.00027 0.0001646 −0.004557

0.0004794 0.99 −0.0001761 −0.04001
0.0009995 0.005004 0.9931 0.02527

5.002e − 006 2.509e − 005 0.009965 1




 ,

Bu =






0.004423 0.001754
0.05087 −0.07554

−0.05488 0.04455
−0.0002749 0.0002233




 , Bw =






0.1 0
0 0

0 0

0 0.1




 ;

Cy =

[

1 0 0 0
0 1 0 0

]

; Cz =
[

0 1 0 0
]
; Dz =

[
1 0

]
.

The state vector xk ∈ R4 is composed by the
following:

x1: longitudinal velocity;
x2: vertical velocity;
x3: rate of pitch;
x4: pitch angle.

and the components of command vector are:

u1: general cyclic command;
u2: longitudinal cyclic command.

For illustration purposes, we will consider the fol-
lowing faulty modes:

i) Mode 2: A total loss of the actuator 2;
ii) Mode 3: A total loss of the actuator 2 and a

50% power loss on the first actuator.

From above, we have that S = {1, 2, 3}, where the
mode 1 represents the nominal case. The failure
process is assumed to have Markovian transition
characteristics.
The actuator failure transition probability matrix is
assumed to be:

[αij ] =





0.90 0.05 0.05
0 0.95 0.05
0 0 1





For the above NCS, and using the CCL algorithm
with γ2

∞ = 10, we obtain the following controllers:

K1 =

[

0.0006 −1.5287

−0.1081 4.6208

]

, K2 =

[

−0.0045 −1.0311

0.0200 −0.9393

]

.

The state trajectories of the closed loop system
resulting from the discretized model and the ob-
tained controller are shown in Figure 2. These tra-
jectories represent a single sample path simulation
corresponding to a realization of the failure process



ηk and the random delay process rsk. Figure 3
represents the evolution of the controlled outputs
zk. It can be seen that the closed-loop system is
stochastically stable and that the disturbance at-
tenuation is achieved.
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Figure 2. States of the closed loop system: single
sample path simulation
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Figure 3. Evolution of the controlled output: single
sample path simulation

6. CONCLUSION

In this paper, static output feedback stochastic sta-
bilization and disturbance attenuation issues for a
class of discrete-time Networked control systems
(NCSs) subject to random failures and random de-
lays was addressed under the discrete-time Marko-
vian Jump Linear Systems framework. Results are
formulated as matrix inequalities, one of which is
nonlinear. The numerical resolution of the obtained
results was done using a cone complementary algo-
rithm. The effectiveness of the developed method
was illustrated on a classical example from litera-
ture.
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