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A discrete-time Sliding Window Observer
for Markovian Switching System

Abdelfettah Hocine, Mohammed Chadli, Didier Maquin and José Ragot

Abstract— In this paper, a fault detection method is developed
for switching dynamic systems. These systems are represented
by several linear models, each of them being associated to a
particular operating mode. To finding the system operating
mode the proposed method is based on mode probabilities
and on a new structure of discrete-time observer with a
sliding window measurements. This observer results from a
combination of a Finite Memory Observer (FMO) and a
Luenberger Observer. The stability condition of the observer is
formulated in terms of linear matrix inequalities (LMI) using
a quadratic Lyapunov function.
The method also uses a priori knowledge information about the
mode transition probabilities represented by a Markov chain.
The proposed algorithm is of supervised nature where the faults
to be detected are a priori indexed and modelled. In this work,
the method is applied for the fault detection of a linear system
characterized by a model of normal operating mode and several
fault models. A comparison with the Generalized Pseudo-
Bayesian method shows the validity and some advantages of
the suggested method.

Index Terms— State estimation, diagnosis, Markovian switch-
ing system, multiple model, Lyapunov function, LMI, sliding
observer.

I. I NTRODUCTION

As an evidence, control of systems is becoming more
and more sophisticated; that is due to the combined fact
that systems are naturally complex but also because it is
often desired to manage all things affecting the system. This
motivates researches on reliability, availability and security.
In this field, FDI (Fault Detection and Isolation) has been
developed over the two last decades [8], [4]. A common
way to FDI is often based on the state estimation of a
process which also produces an estimation of the process
output. In general a simple comparison of estimated and
measured outputs is used to design a set of residuals that
are sensitive to faults. Thus, state estimation is a key point
of FDI. Generalized Pseudo-Bayesian first order approach
(GPB1) [2] is a powerful tool to track the behaviour
evolution of the process; this latter is also based on residual
information. Frequently, process can be characterized by
one or several models for normal operating conditions and
by another set of models describing the different situations
of misfunctionning affecting sensors and actuators (that are
the consequence of damage of process components). This
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set of models can be used to describe the overall behaviour
of the process. For this purpose, the multiple model strategy
which is often used is exploited in the GPB1 approach. In
the topic of state estimation, the GPB have a wide range
of applications mainly in tracking targets [1],[2]. In the
last few years, the multiple model approach has found a
wide spectrum of application, including state estimation
[1], [2], [3], [6], control [7] and modeling [5]. In general,
a parallel bank of filters is used where each filter is based
on a local model representing a particular behaviour of
the actual process. The evaluation of the residuals between
filter outputs and observed process outputs allows one to
design fault detectors. The GPB method is based mainly on
the Kalman filter and mode probabilities. In this work, the
Kalman filter is replaced by a Sliding Window Observer
(SWO).

In the scientific literature, the issue of state estimation
of dynamic systems was addressed by different kinds
of methods. Among them, those based on the whole
process history (i.e. infinite memory) such as classical
Luenberger observer can be mentioned. This type of
observer is sensitive to modeling errors and it is well
known that they sometimes cause a divergence phenomenon
as the observer tends to accumulate the errors along the
time. Moreover, the infinite memory property inflicts
observer insensitivity to recent measurements because it
tends to rely more on the process history than current
measurements [9]. By construction, it has an inertia (low
sensitivity to the recent measurements) which, depending
of the application nature, is not always suitable. To
overcome this drawback, another class of observers using
finite number of delayed input/output measurements on
a finite time window was also defined. These observers
are denoted using various terms such as finite-memory,
receding-horizon or sliding-window estimation [15], [16]
and [11]. Finite memory estimation is often accomplished
according to the minimization of a least-squares criterion
(see among others, [13] and [14]). Unfortunately, finite
memory observers are often too sensitive to the output
measurement noise [10]. In order to take advantages of
both type of observers, this paper proposes a new observer
structure combining the Luenberger observer with infinite
memory and a Finite Memory observer throughout a simple
weighting scheme and introduce this weighted observer in
the framework of switching system estimation and diagnosis.

This paper is organized as follows. In section II, the



development of a finite memory observer is recalled. In
section III, a new structure of a sliding window observer
is proposed. The asymptotic stability of the proposed
observer is studied through a quadratic Lyapunov function.
The satisfaction of LMI conditions ([12]) guarantees the
boundness of the state estimation error. In section V, we
apply the proposed observer to the state estimation of
an academic example to illustrate the feasibility of the
approach and to compare the results with those obtained
using FMO and Luenberger observers. Based on an SWO,
section VI presents a method allowing to detect the changing
regime within the switching systems framework. Finally,
an illustrative example is given to show the validity and
some advantages of the suggested method compared with
the Generalized Pseudo-Bayesian method.

Notations- Throughout the paper, the following notation
is used: XT denotes the transpose of the matrixX ,
X > 0(X ≥ 0) means thatX is symmetric positive definite
(semidefinite) matrix andλmin(X) (λmax(X)) denotes the
smallest (largest) eigenvalue ofX .

II. A F INITE MEMORY OBSERVER

A FMO uses the measurements of a finite time interval
only. Let us consider the following invariant discrete time
system:

{

xk+1 = Axk +Buk +Gwk

yk = Cxk + vk
(1)

wherexk ∈ R
n is the state vector at timek, A ∈ R

n×n is the
state matrix,uk ∈R

p is the input vector,B∈R
n×p is the input

gain matrix,G ∈ R
h is the noise gain matrix,C ∈ R

q×n is
the output gain matrix,vk ∈R

q andwk ∈R
h are respectively,

the state and measurement noises andyk ∈ R
q is the output

of the system.
In the noise-free case, the system is described by:

{

xk+1 = Axk +Buk

yk = Cxk
(2)

On the time horizon[k,k + m− 1], where the observation
window is of sizem, the output evolution of the system is
given by :

yk = Lmxk +Bmuk +Gmwk + vk (3)

with the following definitions :

zk =
[

zT
k zT

k+1 . . . zT
k+m−1

]T
, z ∈ {y,u,w,v} (4)

Lm =
[

CT (CA)T . . . (CAm)T ]T
(5)

Bm =



















0 0 . . . . . . 0

CB 0
...

... 0

CAB CB
.. .

. . .
...

...
...

.. .
. . . 0

CAm−2B CAm−3B . . . CB 0



















(6)

Gm =



















0 0 . . . . . . 0

CG 0
...

... 0

CAG CG
. ..

. . .
...

...
...

. ..
. . . 0

CAm−2G CAm−3G . . . CG 0



















(7)

Let ỹk = Lmx̂k + Bmūk, and the state estimate ˆxk−m at the
momentk−m, can be obtained easily using the least square
method, by minimizing the criterionJk = (ỹk − ȳk)

T (ỹk − ȳk)
subject toxk. We obtain:

x̂k = α yk −βuk (8)

where

α =
(

LT
mLm

)−1
LT

m, β =
(

LT
mLm

)−1
LT

mBm (9)

The term
(

LT
mLm

)−1
exists only ifLm is of full rank column.

Substitutingyk (3) in (8) allows to obtain the state estimation
error:

ek = x̂k − xk = α vk +γwk (10)

with γ =
(

LT
mLm

)−1
LT

mGm.
From (8) and (10), it is also possible to express the state
vector:

xk = α yk −βuk −α vk −γwk (11)

It can be shown easily that the state estimation error 10 has
zero mean and constant variance; the observer is therefore
unbiased for centered noises in state and measurements.
The size of the horizon of observation is a parameter that
can be adjusted to control the dynamics of the finite memory
observer (8). It will be chosen according to system (1) and
to the level of measurement noise.

III. SLIDING WINDOW OBSERVER STRUCTURE

Considering the equations (1) and (11), the expression of
the system state can be also expressed as follows:

xk+1 =τ (α yk+1−βuk+1−α vk+1−γwk+1)

+(1− τ )(Axk +Buk +wk)
(12)

whereτ is a weighting scalar between the instantaneous state
and the state computed on the horizon of sizem.
For this system, the following observer structure is proposed:











x̂k+1 = τ (α yk+1−βuk+1)

+(1− τ )(Ax̂k +Buk −K(ŷk − yk))

ŷk = Cx̂k

(13)

whereK is the observer gain to be computed.
To study the performances of this observer structure, we use
the dynamics of estimation errorek = x̂k −xk which is given
by:

ek+1 = Aek +(1− τ )Kvk + τα vk+1 + τγwk+1− (1− τ )wk

(14)
with

A = (1− τ )(A−KC) (15)



The estimation error can be rewritten as follows:

ek+1 = Aek +Fgk (16)

where
gk = [vk,vk+1,wk,wk+1]

T (17)

is the vector of noise and

F = [(1− τ )K,τα ,(τ −1)G,τγ] (18)

is the concatenation of the distribution matrices.
The design of the observer requires the computation ofK
andτ . For that, the following lemma is needed to proof our
main result.

Lemma: let M andN matrices with suitable dimensions. The
following property holds [12]:

MT N +NT M ≤ MT M +NT N (19)

The proof of the following proposition is based on the
analysis of the quadratic Lyapunov function:

Vk(ek) = eT
k Pek (20)

and its variation:

∆Vk(ek) = eT
k+1Pek+1− eT

k Pek (21)

Proposition: Suppose that there exists a gain matrixK, two
positive definite matricesP > 0 and Q > 0, and a given
positive scalarτ , satisfying the following matrix inequality:

Q−P+(1− τ )2 (A−KC)T P(A−KC)

+(1− τ )2 (A−KC)T P2 (A−KC) < 0
(22)

then the observer (13) has a bounded estimation error, i.e.
there exists a positive constant

r2 = ‖ F ‖2‖ gk ‖
2 λmax(P+ I)/λmin(Q) (23)

such that∆Vk(ek) < 0 for ‖ek‖ > r, where I denotes the
identity matrix.
Proof : Let us consider the quadratic Lyapunov function
(20), we obtain:

Vk+1(ek) = eT
k+1Pek+1

= eT
k A

T
PAek +2eT

k A
T

PFgk +gT
k FT PFgk

(24)

the above lemma allows us to write

2eT
k A

T
PFgk ≤ eT

k A
T

PPAek +gT
k FT Fgk (25)

substituting (25) in (24), we obtain:

Vk+1(ek) ≤ eT
k

(

A
T

PA+A
T

P2A
)

ek +gT
k FT Fgk

+gT
k FT PFgk

(26)

= eT
k

(

A
T

PA+A
T

P2A
)

ek +gT
k FT (P+ I)Fgk (27)

Then

Vk+1(ek) ≤ eT
k

(

A
T

PA+A
T

P2A
)

ek +‖F‖2‖gk‖
2λmax (P+ I)

(28)
Therefore, if there existsP > 0, Q > 0 such that

A
T

PA+A
T

P2A−P < −Q
then

∆Vk(ek) ≤−eT
k+1Qek+1 +‖F‖2‖gk‖

2λmax (P+ I)

≤−λmin (Q)‖ek‖
2 +‖F‖2‖gk‖

2λmax (P+ I)
(29)

and∆Vk(e(k)) < 0 if ‖ek‖ ≥ r. To solve the nonlinear matrix
inequality (22), the following sufficient LMI condition in the
variablesP > 0, Q > 0 andX is proposed:





(1− τ )−2(P−Q) (PA−XC)T (PA−XC)T

PA−XC P 0
PA−XC 0 I



 > 0 (30)

The gain observer is given byK = P−1X .
It is worthwhile to notice that this observer synthesis

guarantees the convergence of the estimation error to a
bounded interval defined by (23). This convergence depends
on the existence of the matricesP, Q andK, that verify the
LMI (30) for a given τ .
The choice of the parameterτ is very important because
it directly influences the observer performances. For this
reason, we propose in the following section, a method for
the determination of the parameterτ .

IV. D ISCUSSION

As described in the previous section the estimation error
is bounded byr (23). Obviously the improvement of the
performance is based on the minimization of the bound of
the estimation errorr. Therefore, the aim is to minimize
the norm ofF which depends on parameterr and gainK
computed by solving linear matrix inequality (30) which
depends directly ofτ . Then we are faced with a nonlinear
minimization problem.
One possible strategy is to minimize numerically the norm
of F with regard to the parameterτ . For this purpose,
the matlab function fminbnd has been used. This latter
implements a Golden Section Search method [17] coupled
with a parabolic interpolation. This optimization procedure
finds the minimum of a function of one variable within a
fixed interval.

V. EXAMPLE

In this section an academic example is introduced to
illustrate and to compare the obtained results issued from
SWO, FMO and Luenberger observers. This comparison is
done using a criterionEN which is the sum, over a given
horizon, of the quadratic estimation error.

EN =
k=N

∑
k=1

eT
k ek (31)



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Fig. 1. ‖F‖ norm evolution according toτ parameter

Consider the following discrete-time system :

xk+1 =

[

0.85 0
0 0.8

]

xk +

[

0.18
1.8

]

uk +

[

0.1
0.1

]

wk

yk =

[

1 0
0 0.5

]

xk +

[

1
1

]

vk

wherevk ∈ [−0.1; 0.1] andwk ∈ [−0.2; 0.2] are white Gaus-
sian noises with zero-means.
In order to design the parameterτ , ‖ F ‖ is minimized
through the intervalτ ∈ [0;1], as it is proposed below. This
minimization procedure leads (section IV) to the following
results.

τ = 0.6285

P = 10−3

[

50.2 49.8
49.8 50.1

]

Q =

[

50.1 49.9
49.9 50

]

K =

[

0.881 −0.0722
−0.0282 1.7004

]

The evolution of‖ F ‖ is shown in figure 1, where the
window length ism = 7.

The figures 2 and 3 show the evolution of the estimation
errors for the three kinds of observer. It allows us to establish
a comparison of the first and the second vector components
of the state estimation errors, computed by the different
observers. It is worth to remark that the proposed observer
provides a good estimation when compared with FMO
and Luenberger observers by examining the corresponding
error criterion,(ESWO

N = 5.18), OMF (EFMO
N = 10.39) and

Luenberger(ELBO
N = 10.22).

VI. SWO FOR SWITCHING SYSTEMS

In this section, we consider a system represented by a
set of modelsMi, i = 1, . . . ,r; each model representing a
particular behaviour of the system. The objective is to detect,
at each moment, the active model and simultaneously to
estimate the state of the system. The transitions from a model
to another one are assumed to be described by a Markovian
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Fig. 2. First state estimation errors

0 5 10 15 20 25 30 35 40 45 50
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
SWO
LBO
FMO

Fig. 3. Second state estimation errors

process governed by an a priori known Markov transition
matrix Π given by:

Π =







p11 · · · p1r
...

. ..
...

pr1 · · · prr






(32)

wherepi j is the mode transition probability from the model
Mi to the modelM j; we noteµk

j the probability that thejth

model is active at timek.

A. Development of the method

Consider thejth model described by:

M j :

{

xk+1 = A jxk +B juk +G jwk

yk = C jxk + vk
(33)

The state estimation of this model is carried out using the
SWO described in section III to give the following equations:















x̂ j
k−m+1 = τ j(α jyk−m+1−β juk−m+1)

+(1− τ j)(A j x̂k−m +B juk−m −K j(ŷk−m − yk−m))

ŷk−m = C j x̂
j
k−m

(34)

where the matricesα j, β j are built using the definitions (9)
after replacing matricesA, B andC by matricesA j, B j and
C j related to thejth model. As before, for thejth model,τ j

is designed using optimization procedure (section IV) and
K j is deduced from (30).
The state estimate at the final timek of the observation
window is obtained by integrating the system (2):

x̂ j
k = Am−1

j x̂ j
k−m+1 +Tj,muk−m+1 (35)



Tj,m =
[

(Am−2B)T (Am−3B)T . . . BT 0
]T

(36)

The state estimate ˆxk of the switching system is then
computed as a weighted sum of the states of the “local”
models:

x̂k =
r

∑
j=1

x̂ j
kµ j

k (37)

Following the work of Bar-Shalom [2], the probability that
model j is in effect at timek is computed in the following
way:

µ j
k = P{M j(k)|yk−m+1} (38)

Define ỹk−m, the observation vector carried out on the
horizon [k−m,k−1]; we have:

yk−m+1 =
[

ỹT
k−m yT

k

]

(39)

Equation (38) can then be written as:

µ j
k = P{M j(k)|ỹk−m,yk} (40)

Using the Bayes formula, this probability can be trans-
formed into:

µ j
k =

p [yk|M j(k), ỹk−m]P{M j(k)|ỹk−m}

∑r
l=1 p [yk|Ml(k), ỹk−m]P{Ml(k)|ỹk−m}

(41)

In order to alleviate the notations, let us introduce:

Li(k) = p [yk|Mi(k), ỹk−m] (42)

which is a pseudo likelihood function that can be easily
computed with the assumption of a normal measurement
noise distribution.
Using the total probability theorem, the activation probability
of the model j at time k, according to the active model at
the timek−1 can be written as:

P{M j(k)|ỹk−m} =
r

∑
i=1

P{M j(k)|Mi(k−1), ỹk−m}P{Mi(k−1)|ỹk−m} (43)

To obtain a recurrence on the computation of theµ j
k , we

define the following approximation:

P{Mi(k−1)|ỹk−m} ≈ P{Mi(k−1)|yk−m} = µ i
k−1 (44)

That means that the information given by the observa-
tion vector yk−m defined on the horizon[k − m,k − 1] is
not very important and can be neglected (which depends
obviously on the selected horizon). In this case, considering
equations (41) to (44) and noticing that, by definition,
P{M j(k)|Mi(k−1), ỹk−m} = pi j, the following recurrence on
the probability that the system operates according to the
model j at the momentk can be established:

µ j
k =

L j(k)∑r
i=1 pi jµ j

k−1

∑r
l=1 Ll(k)∑r

i=1 pilµ
j

k−1

(45)

B. Fault models

An actuator fault can be modelled by ”modifying” an
appropriate column of the control input matrixB. Thus, a
fault on theith actuator is described by writing the following
equation:

xk+1 = Axk +(B+∆Bi)uk +wk

where∆Bi is a matrix with the same dimension ofB; all of
its columns are null except theith which characterizes the
fault on theith actuator.

On a same way, a sensor fault is described by:

yk = (C +∆Ci)xk + vk

where∆Ci is a matrix with the same dimension ofC ; all of
its columns are null except theith which characterizes the
fault on theith sensor.

C. An application example

For the application of the suggested method, we consider
a model of normal operating(A1,B1,C1), a model of actuator
fault (A2,B2,C2) and a model of sensor faults(A3,B3,C3),
with the various matrices defined by:

Ai =

[

0.45 0
0 0.4

]

, i = 1. . .3

B1 =
[

0.1815 1.7902
]T

, C1 =

[

1 0
0 1

]

,

B2 =
[

1.1815 1.7902
]T

, C2 =

[

1 0
0 1

]

,

B3 =
[

0.1815 1.7902
]T

, C3 =

[

1.5 0
0 1.5

]

.

Using the optimization procedure described in section 4 for
each operating model, we obtain

τ1 = 0.2025, τ2 = 0.2025, τ3 = 0.3025.

K1 =

[

0.5337 −0.0340
−0.0840 0.4249

]

.

K2 =

[

0.5337 −0.0340
−0.0840 0.4249

]

.

K3 =

[

1.3406 0.8184
−1.1535 −0.6226

]

.

To test the method, the following scenario was established:
initially the system normally operates, then at time 100, an
actuator fault occurs, at time 500, the system returns to the
normal operating mode and, at time 800, sensor faults are
introduced.

The results are presented at the figures 4, 5 and 6 where
the changes of mode clearly appear; the mode probabilities
of the corresponding models, in their respective operation
domains, fluctuate around one and thus a detection of the
fault is carried out. Clearly, the results of the suggested
method are better than those of GPB1 method. This fact can
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be explained by the sensitivity of GPB1 to the noise affecting
the system state and measurement (the signal to noise ratio
in the example is equal to 10%). This allows us to conclude
that the use of SWO, for fault detection in switching systems,
is less sensitive to noise than traditional GPB methods.

VII. CONCLUSION

In this work, a structure of a Sliding Window observer
(SWO) is proposed to handle the FDI issue. The SWO is
based on a combination of the Finite Memory Observer
(FMO) and the Luenberger Observer. In the first part, the
synthesis conditions of the proposed SWO is addressed
under LMI formulation using a quadratic Lyapunov function.
The obtained conditions guarantee the convergence of the
SWO for a given interval of state estimation error. The
weighting parameterτ is obtained from optimization
procedure based on the Golden Section Search minimization
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Fig. 6. Activation probability of model 3

method. In the second part, the proposed observer is applied
within the framework of Markovian switching systems
for which the switching event between models must be
detected. Comparison of the obtained results with those of
GPB approach was carried out on a computer simulation
example. The use of the proposed SWO, based on two
kinds of observer methods, in contrast to the GPB method
which uses Kalman filter, gives better results, especially in
the presence of noises on state system and modeling errors.
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