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A discrete-time Sliding Window Observer
for Markovian Switching System

Abdelfettah Hocine, Mohammed Chadli, Didier Maquin andéJBagot

Abstract— In this paper, a fault detection method is developed set of models can be used to describe the overall behaviour
for switching dynamic systems. These systems are represented of the process. For this purpose, the multiple model strategy
by several linear models, each of them being associated to a\which is often used is exploited in the GPB1 approach. In

particular operating mode. To finding the system operating . . ) .
mode the proposed method is based on mode probabilities the topic of state estimation, the GPB have a wide range

and on a new structure of discrete-time observer with a Of applications mainly in tracking targets [1],[2]. In the
sliding window measurements. This observer results from a last few years, the multiple model approach has found a
combination of a Finite Memory Observer (FMO) and a wide spectrum of application, including state estimation
Luenberger Observer. The stability condition of the observer is [1], [2], [3], [6], control [7] and modeling [5]. In general

formulated in terms of linear matrix inequalities (LMI) using . . . .
a quadratic Lyapunov function. a parallel bank of filters is used where each filter is based

The method also uses a priori knowledge information aboutthe ©On @ local model representing a particular behaviour of
mode transition probabilities represented by a Markov chain. the actual process. The evaluation of the residuals between
The proposed algorithm is of supervised nature where the faults  filter outputs and observed process outputs allows one to
to be detected are a priori indexed and modelled. In this work, - gagign fault detectors. The GPB method is based mainly on
the method is applied for the fault detection of a linear system the Kal filt d d babiliti In thi K th
characterized by a model of normal operating mode and several € amgn |.er and mode pro a. '_' 1es. _n IS work, the
fault models. A comparison with the Generalized Pseudo- Kalman filter is replaced by a Sliding Window Observer
Bayesian method shows the validity and some advantages of (SWO).
the suggested method.
N : . . ) In the scientific literature, the issue of state estimation
Index Terms— State estimation, diagnosis, Markovian switch- fd . t dd d by diff t kind
ing system, multiple model, Lyapunov function, LMI, sliding of dynamic Systems was addresse y difierent kinds
observer. of methods. Among them, those based on the whole
process history (i.e. infinite memory) such as classical
|. INTRODUCTION Luenberger observer can be mentioned. This type of
observer is sensitive to modeling errors and it is well

o ) . . Rnown that they sometimes cause a divergence phenomenon
and more sophisticated; that is due to the combined fa the observer tends to accumulate the errors along the

that systems are naturally complex but also because it e, Moreover, the infinite memory property inflicts

often desired to manage all things affecting the system. ThEJSbserver insensitivity to recent measurements because it

motivates researches on reliability, availability and securit)f.endS to rely more on the process history than current

In this field, FDI (Fault Detection and Isolation) has been . : S
measurements [9]. By construction, it has an inertia (low

developed over the two last decades [8], [4]'. A .Commors‘ensitivity to the recent measurements) which, depending
way to FDI is often based on the state estimation of

3f the application nature, is not always suitable. To
process which also produces an estimation of the procsﬁf PP ' Y

As an evidence, control of systems is becoming mor,

; : . ercome this drawback, another class of observers using
output. In general a simple comparison of estimated al

hite number of delayed input/output measurements on

measured outputs is used to design a set of residuals t%a inite time window was also defined. These observers

are sensitive to faults. Thus, state estimation is a key point

of FDI. Generalized Pseudo-Bayesian first order approac e denoted using various terms such as finite-memory,
(GPB1) [2] is a powerful tool to track the l:)ehawiourrecedmg—horlzon or sliding-window estimation [15], [16]

and [11]. Finite memory estimation is often accomplished

ﬁ,\;gmggoﬂf tgfept)ecﬁtfs tf}lsclsétsercl;nalzc; bcilszfr:c(:grir;;dugtlzcording to the minimization of a least-squares criterion
) q Y: P ee among others, [13] and [14]). Unfortunately, finite

one or several models for normal operating conditions an "
P 9 emory observers are often too sensitive to the output

by another set of models describing the different Situationr%easurement noise [10]. In order to take advantages of

of misfunctionning affecting sensors and actuators (that a e h type of observers, this paper proposes a new observer

the consequence of damage of process components). Tsf?ucture combining the Luenberger observer with infinite
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development of a finite memory observer is recalled. In 0 0

section 1ll, a new structure of a sliding window observer CcG 0
is proposed. The asymptotic stability of the proposed Gm
observer is studied through a quadratic Lyapunov function.

The satisfaction of LMI conditions ([12]) guarantees the : :
boundness of the state estimation error. In section V, we CA™2G CA™3G
apply the proposed observer to the state estimation o
an academic example to illustrate the feasibility of th
approach and to compare the results with those obtain L Lo T o —
using FMO and Luenberger observers. Based on an SW ut;{jr;?:(tj’tc?gk mwéngtz)gign.the criteriod = (Jk— k)" (%= ¥k)
section VI presents a method allowing to detect the changing ' '
regime within the switching systems framework. Finally, R« = ay, — BUx (8)
an illustrative example is given to show the validity and
some advantages of the suggested method compared wihere
the Generalized Pseudo-Bayesian method.

=| caG CG ()

Eet Vk = LmXk + BmUk, and the state estimatg_r, at the
ERjomentkm, can be obtained easily using the least square
e

a=(TLm) 'L B=(LTLm) LB (9)

The term(LLLm)*l exists only ifLy, is of full rank column.

Notations- Throughout the paper, the following notationsypstitutingy, (3) in (8) allows to obtain the state estimation
is used: X" denotes the transpose of the matrk, error:

X > 0(X > 0) means thaiX is symmetric positive definite & = Rk — Xk = AV -+ YW (10)
(semidefinite) matrix andAmin(X) (Amax(X)) denotes the
smallest (largest) eigenvalue ¥t with y = (L%Lm)*1 L} Gm.

From (8) and (10), it is also possible to express the state

Il. A FINITE MEMORY OBSERVER vector:

L = ayx— Bl — aV — YW, 11
A FMO uses the measurements of a finite time interval X Y= Pk k= Vik (1D
only. Let us consider the following invariant discrete timelt can be shown easily that the state estimation error 10 has

system: zero mean and constant variance; the observer is therefore
Xkr1 = A + Buy + Gwi 1 unbiased for centered noises in state and measurements.
Vi = CXic -+ Vi () The size of the horizon of observation is a parameter that

can be adjusted to control the dynamics of the finite memory

wherex, € R" is the state vector at time Ac R™" is the  gpserver (8). It will be chosen according to system (1) and
state matrixpy € RP is the input vectoB € R"™*P is the input g the level of measurement noise.

gain matrix,G € R" is the noise gain matrixC € R¥" is
the output gain matrixy, € R% andwy € R are respectively, I11. SLIDING WINDOW OBSERVER STRUCTURE
the state and measurement noises yand RY is the output
of the system.
In the noise-free case, the system is described by:
Y1 = A+ Bu o X1 =T(AY11 — BUki1 — OV — YWki1) (12)
Ve = Cx +(1— 1) (A + Bu +wy)

Considering the equations (1) and (11), the expression of
the system state can be also expressed as follows:

On the time horizon[k7k+ m— ]_L where the observation WhereT is a weighting scalar between the instantaneous state
window is of sizem, the output evolution of the system isand the state computed on the horizon of size

given by : For this system, the following observer structure is proposed:
Yk = LmXk + Bl + GmW + Vi (3) fi1 = T(AYyr 1 — Bl 1)
with the following definitions : + (1= 1) (A% + Buk — K(Jk — Y«)) 13)
- T Vi, = CX
4= [ ZI ZL»l te ZIerfl ] , Z€ {yu U,VV,V} (4) Yk X
AT T mT 1T whereK is the observer gain to be computed.
Lm = [ c €A ... (€AY ] ©) To study the performances of this observer structure, we use
0 0 the dynamics of estimation errex = Xx — X« which is given
by:
CB 0 — = _
B — 5 &1 = Aec+ (1— T)KVk + Ta Vi1 + TyWir1 — (1— T)Wi
m= | CAB CB (6) (14)
: : D with
CA™2B CA™3B ... CB A= (1-1)(A—KC) (15)




The estimation error can be rewritten as follows: Then

=Ag+F 16 “Tor T o2x _

St = AGHFO B9 Va(e0 < o (ATPALATP?A) e+ F I ow A (P 1)

where (28)
Tk = [Vic, Vi 1, Wi, Wiy ] T (17) Therefore, if there exist® >0, Q> 0 such that
is the vector of noise and APATAPA-P<-Q
then
F=[1-17)K,t0,(T1-1)G,T 18 —
[{t=r)K7a,(r= 16, 1] B9 AW < —elsQaa + I8 PAmax (P+1)

is the concatenation of the distribution matrices. < —Amin (Q) ||&dl1? + IF 12115kl PAmex (P + 1)

The design of the observer requires the computatiot of (29)

and 1. For that, the following lemma is needed to proof ou@NdAVi(e(k)) <0 if |lex[| > r. To solve the nonlinear matrix
inequality (22), the following sufficient LMI condition in the

main result. variablesP > 0, Q > 0 andX is proposed:
Lemma: let M andN matrices with suitable dimensions. The (1-1)2(P-Q) (PA—XC)T (PA—XC)T
following property holds [12]: Eﬁ—ig g (I) >0 (30)

MIN+N"M<M"TM+NTN (19) , o
The gain observer is given g = P~1X.
The proof of the following proposition is based on the It is worthwhile to notice that this observer synthesis

analysis of the quadratic Lyapunov function: guarantees the convergence of the estimation error to a
bounded interval defined by (23). This convergence depends
Vi(e) = & Pex (20) on the existence of the matric® Q andK, that verify the
_ o LMI (30) for a givenrt.
and its variation: The choice of the parametar is very important because
AVi(8) :eLlPeKH—e{Pa( 1) it directly influences the observer performances. For this

reason, we propose in the following section, a method for
Proposition: Suppose that there exists a gain matixtwo the determination of the parameter
positive definite matrice$® > 0 and Q > 0, and a given
positive scalarr, satisfying the following matrix inequality: IV. DiscussiON
Q-P+(1- r)Z(Af KC)T P(A—KC) . As described in the pre\{ious sectiqn the estimation error
) T (22) is bounded byr (23). Obviously the improvement of the
+(1-1)7(A-KC) P7(A-KC) <0 performance is based on the minimization of the bound of
then the observer (13) has a bounded estimation error, il8€ estimation error. Therefore, the aim is to minimize

there exists a positive constant the norm ofF which depends on parameterand gainK
computed by solving linear matrix inequality (30) which
2= F 1] O |12 Amex(P+1)/Amin(Q) (23) depends directly of. Then we are faced with a nonlinear

minimization problem.

TSUCh.thatAV'.‘(Q‘) <0 for [l&d| > r, wherel denotes the One possible strategy is to minimize numerically the norm
identity matrix. ) , . of F with regard to the parameter. For this purpose,
Proof: Let us consider the quadratic Lyapunov functionyq npy | ap function fminbnd has been used. This latter
(20), we obtain: implements a Golden Section Search method [17] coupled
with a parabolic interpolation. This optimization procedure

- finds the minimum of a function of one variable within a
Vi1 (&) = &P fixed interval.
wid wd =l (24)
=g A PAg+2¢ A PFg,+0F' PFg,

the above lemma allows us to write

V. EXAMPLE
2¢[A' PR, < [ A' PPAa+TL FTFG, (25) In this section an academic example is introduced to
substituting (25) in (24), we obtain: illustrate and to compare the obtained results issued from
SWO, FMO and Luenberger observers. This comparison is
Vici(e) < e <KTPK+KTPZK) e+ O FTFg, done using a criteriofEy Which is the sum, over a given
(26)  horizon, of the quadratic estimation error.

+OgFTPFg,

=~
Il

N
_ T
— o (A'PA+ATP?A) e+ GfFT (P+1)Fg,  (27) Ev= 2 & (31)

=
Il



Fig. 1. ||F|| norm evolution according to parameter Fig. 2. First state estimation errors

' — swo
i - - LBO
- FMO

Consider the following discrete-time system :
085 O 0.18 0.1
1= o o8 [%T| 18 |[%T| o1 |V
1 0 1
wherevy € [—0.1; 0.1] andw € [-0.2; 0.2] are white Gaus-

sian noises with zero-means. o
In order to design the parameter || F || is minimized

through the intervaf € [0;1], as it is proposed below. This Fig. 3. Second state estimation errors
minimization procedure leads (section V) to the following
results.
7=0.6285 process governed by an a priori known Markov transition
matrix I given by:
P_103 502 498
o 498 501 P11 -+ Prr
n=|: -~ (32)
50.1 499
Q: I: 499 50 :| prl pl’l’
where pjj is the mode transition probability from the model
. . k i ith
‘_ 0881 —0.0722 M; fjo Ithe mo.deIMJ,_wcda!(note/.lj the probability that thg
=1 _00282 17004 model is active at timé.

The evolution of|| F || is shown in figure 1, where the A. Development of the method
window length ism= 7. Consider thej'" model described by:

M; {&H = A+ B+ Gjwi (33)

The figures 2 and 3 show the evolution of the estimation Yk = CiX+W

errors for the three kinds of observer. It allows us to establish L ) . , ,
a comparison of the first and the second vector components! "€ State estimation of this model is carried out using the
of the state estimation errors, computed by the different WO described in section 1l to give the following equations:
observers. It is worth to remark that the proposed observer )Aﬁj<—m+1 = Tj(0t Vi1 — BiUk-mi1)

provides a good estimation when compared with FMO R R

and Luenberger observers by examining the correspondingy (1= Ti) (Aj%k-m+BjUc-m—Kj(Yk-m—Yk-m)) ~ (34)
error criterion, (EQVC = 5.18), OMF (E{M© = 10.39) and

G —C i
Luenberger E{E° = 10.22). Yhem =S %em
where the matricesj, Bj are built using the definitions (9)
VI. SWO FOR SWITCHING SYSTEMS after replacing matrice$, B andC by matricesA;, Bj and

i related to thej'" model. As before, for thg'" model, t;

. . . C
In this secnon,'we consu.jer a system representgd byié designed using optimization procedure (section IV) and
set of modelsM;,i = 1,...,r; each model representing aKj is deduced from (30).

particular behaviour of the system. The objective is to dete he state estimate at the final tineof the observation
at each moment, the active model and simultaneously indow is obtained by integrating the system (2):

estimate the state of the system. The transitions from a model ) )
to another one are assumed to be described by a Markovian ) = A’J-“*lii‘(meJrTj,mUk,mH (35)



Tim=[ (A"2B)T (A™3B)T .. B" 0]" (36) B. Fault models
An actuator fault can be modelled by "modifying” an
ppropriate column of the control input matrik Thus, a
ault on theit" actuator is described by writing the following
P equation:
=3 Kkl (37) Xier1 = Axc+ (B+ AB;) Uy + Wy
=1

The state estimatey "of the switching system is then
computed as a weighted sum of the states of the “loca
models:

. N whereAB; is a matrix with the same dimension Bf all of
Following the work of Bar-Shalom [2], the probability thatits columns are null except th€ which characterizes the
model j is in effect at timek is computed in the following fault on theit" actuator.

way:
“d = P{M;(K)|Yi_ms1} (38) On a same way, a sensor fault is described by:
Define yi_m, the observation vector carried out on the Yk = (C+AGC) X+ Wi
horizon [k —m,k—1J; we have: whereAC; is a matrix with the same dimension ©f; all of
= T T its columns are null except thd' which characterizes the
Ye-m+1 = [ Yi-m Yk } (39) fault on theith sensor.
Equation (38) can then be written as: C. An application example
ud = P{M; (K)|Ji_m, Yk} (40) For the application of the suggested method, we consider

a model of normal operatin@\;, B1,C1), a model of actuator
Using the Bayes formula, this probability can be transfault (A2,B2,C;) and a model of sensor fault®\s,Bs,Cs),
formed into: with the various matrices defined by:

j P [Yk|M; (K), Jic—m] P{M; (K) [$ic-m} _[ 045 0 | . _
ul = ! | (41) A= ,i=1...3
K STt PIKIMI(K), Si-m] P{M (K) [fik—m} 0 04
In order to alleviate the notations, let us introduce: B, — [ 0.1815 17902 }T CL = é 0 }
* ) 1 )
Li(K) = PIYIMI(K). S (42) ; L o
o o . ) Bo=|[ 1.1815 17902 | ,CZ:{ },
which is a pseudo likelihood function that can be easily 01
computed with the assumption of a normal measurement T 15 0
noise distribution. Bs=[ 01815 17902] ,C3= { 0 15 ] :

Using the total probability theorem, the activation probability
of the modelj at time k, according to the active model at Using the optimization procedure described in section 4 for
the timek— 1 can be written as: each operating model, we obtain

. 1, =0.2025 12 = 0.2025 13 =0.3025
P{M; (9l m} =

r Ky — [ 05337 —0.0340 |
ZP{Mi(k”Mi(k—1)a)7k—m}P{Mi(k_1)|)~/k—m} (43) 17| —00840 04249 |

i= -

_ Kk, | 05337 —0.0340

To obtain a recurrence on the computation of thje we 2= | —0.0840 04249 |

define the following approximation: ) 13406 08184 1
~ - i 3= .

P{Mi(k—1)|[%k-m} ~ P{Mi(K— 1) [Vi_m} = M1 (44) | —1.1535 -0.6226 |

That means that the information diven by the observa- To test the method, the following scenario was established:
S ' ion giv Y S Ve}nitially the system normally operates, then at time 100, an

tion vectqr Yk-m defined on the horizorik — m,k_— 1 is ctuator fault occurs, at time 500, the system returns to the
not very important and can be neglected (which depends

. . . 7 normal operating mode and, at time 800, sensor faults are
obviously on the selected horizon). In this case, Cons'de”qﬁtroduced

equations (41) to (44) and noticing that, by definition, '

P{M;(k)|Mi(k — 1),%i—m} = pij, the following recurrence on
the probability that the system operates according to tk[ﬁ
model j at the momenk can be established:

The results are presented at the figures 4, 5 and 6 where
e changes of mode clearly appear; the mode probabilities
of the corresponding models, in their respective operation
LK)y, pijud_l doma_ins, quptuate around one and thus a detection of the
=— - J. (45) fault is carried out. Clearly, the results of the suggested
Y- Li(K) Siza Pit by method are better than those of GPB1 method. This fact can

m
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method. In the second part, the proposed observer is applied
within the framework of Markovian switching systems
for which the switching event between models must be
detected. Comparison of the obtained results with those of
GPB approach was carried out on a computer simulation
example. The use of the proposed SWO, based on two
kinds of observer methods, in contrast to the GPB method
which uses Kalman filter, gives better results, especially in
the presence of noises on state system and modeling errors.
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Fig. 4. Activation probability of model 1
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Fig. 5. Activation probability of model 2
[7

(8]
be explained by the sensitivity of GPBL1 to the noise affectin
the system state and measurement (the signal to noise ra%lcl
in the example is equal to 10%). This allows us to conclude
that the use of SWO, for fault detection in switching systemg10!
is less sensitive to noise than traditional GPB methods.

VIL. -
In this work, a structure of a Sliding Window observery;,
(SWO) is proposed to handle the FDI issue. The SWO is
based on a combination of the Finite Memory Observet3l
(FMO) and the Luenberger Observer. In the first part, thﬁ4]
synthesis conditions of the proposed SWO is addressed
under LMI formulation using a quadratic Lyapunov function.
The obtained conditions guarantee the convergence of tHe!
SWO for a given interval of state estimation error. The
weighting parametert is obtained from optimization
procedure based on the Golden Section Search minimizatiE)lr?]
(17]

CONCLUSION
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Fig. 6. Activation probability of model 3
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