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In this second paper, we consider again a set of elastic rods periodically distributed over an elastic plate whose thickness tends here to 0. This work is then devoted to describe the homogenization process for the junction of the rods and a thin plate. We use a technique based on two decompositions of the displacement field in each rod and in the plate. We obtain a priori estimates on each term of the two decompositions which permit to exhibit a few critical cases that distinguish the different possible limit behaviors. Then, we completely investigate one of these critical case which leads to a coupled bending-bending model for the rods and the 2d plate.

Résumé

Dans ce deuxième article, nous reprenons un ensemble de poutres élastiques périodiquement distribuées sur une plaque élastique dont l'épaisseur tend maintenant vers 0. Il s'agit donc de décrire des modèles d'homogénéisation pour la jonction de poutres et d'une plaque mince. Nous utilisons une technique de décomposition du champ de déplacement à la fois dans chaque poutre et dans la plaque. On obtient des estimations a priori sur chacun des termes de ces décompositions qui mettent en particulier en évidence les cas critiques qui séparent les différents modèles limites possibles. Ensuite, nous analysons en détail un de ces cas critiques pour lequel on obtient un modèle de couplage flexion-flexion entre les poutres et la plaque 2d.

Introduction

This work follows paper [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] in which we assumed that a family of rods was placed over a 3d plate Ω -of constant thickness. Here we investigate the case where the thickness of the plate we completely detail the critical case δ ∼ ε 2/3 . An interested reader could easily adapt the analysis to the various cases mentioned above for ε/δ → 0. The situation where ε/δ does not tends to 0, for which the arguments must be modify, will be examined in a forthcoming paper.

The paper is organized as follows. Section 2 is devoted to specify the geometry and the equations of the problem. In Section 3 we give the two decompositions of the displacement field in the rods and in the plate. The a priori estimates on all the terms of the decompositions are established in Section 4 where the scaling of the forces is also specified. In Section 5, the plate is first rescaled and then we introduce the two unfolding operators in the rods and in the plate. We give the weak convergences of the unfold fields in Section 6. Section 7 is devoted to identify the weak limit of the unfold strain and to derive the junction conditions. In Section 8, we derive the equations for the homogenization correctors and we show that these correctors are equal to 0 because ε/δ → 0. Sections 9 and 10 are devoted to obtain the uncoupled "membrane" 2d model on the one hand, and the coupled bending model in the rods and the plate on the other hand. In Section 11, we show the strong concergence of the energy and we deduce a few strong convergences of the principal part of the displacement decomposition. All the results obtained in the paper are summarized in Section 12. At least, Sections 13 and 14 contains a few recalls and some complements on the periodic unfolding operator.

For the study of a scalar monotone problem in a multidomain as in this paper, we refer to [START_REF] Blanchard | Homogenization of Highly Oscillating Boundaries and Reduction of Dimension for a Monotone Problem[END_REF] and [START_REF] Blanchard | Highly Oscillating Boundaries and Reduction of Dimension: the Critical Case[END_REF]. For the study of the linearized elasticity system in the junction of a beam with a plate we refer to [START_REF] Gaudiello | On the Junction of Elastic Plates and Beams[END_REF] and [START_REF] Gaudiello | Junction of Elastic Plates and Beams[END_REF]. For the study of scalar second order and fourth order problems in the junction of a wire with a thin film, we refer to [START_REF] Gaudiello | Asymptotic Analysis of a Class of Minimization Problems in a Thin Multidomain[END_REF], and [START_REF] Gaudiello | Junction in a Thin Multidomain for a Fourth Order Problem[END_REF], respectively. For the study of plates, shells and thin films we refer to [START_REF] Caillerie | Thin Elastic and Periodic Plates[END_REF], [START_REF] Ciarlet | Plates and Junctions in Elastic Multistructures: An Asymptotic Analysis[END_REF], [START_REF] Ciarlet | Theory of Plates[END_REF], [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF], [START_REF] Damlamian | Homogenization Limits of the Equations of Elasticity in Thin Domains[END_REF], [START_REF] Fonseca | 3D-2D Asymptotic Analysis of an Optimal Design Problem for Thin Films[END_REF], [START_REF] Friesecke | A Theorem on Geometric Rigidity and the Derivation of Nonlinear Plate Theory from Three-Dimensional Elasticity[END_REF], [START_REF] Griso | Asymptotic Behavior of Structures Made of Plates[END_REF], [START_REF] Gruais | Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée[END_REF], [START_REF] Dret | Problèmes variationnels dans les multi-domaines: modélisation des jonctions et applications[END_REF], [START_REF] Dret | The Nonlinear Membrane Model as Variational Limit of Nonlinear Three-Dimensional Elasticity[END_REF], [START_REF] Dret | Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results[END_REF] and [START_REF] Paroni | Theory of Linearly Elastic Residually Stressed Plates[END_REF]. About rods, multidomains and homogenization techniques see the references quoted in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF].

Notations and position of the problem

We recall first a few notations on the geometry of the problem.

Let us consider an open bounded domain ω with Lipschitz boundary contained in the (x 1 , x 2 ) coordinate plane. For a real number ε > 0, N ε denotes the following subset of Z 2 :

N ε = (p, q) ∈ Z 2 : εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 ⊂ ω . (2.1) 
Fix L > 0. For each (p, q) ∈ Z 2 , ε > 0 and r > 0, we consider a rod P ε,r pq whose cross section is the disk of center (εp, εq) and radius r, and whose axis is x 3 and with a height equal to L:

D ε,r pq = (x 1 , x 2 ) ∈ R 2 : (x 1 -εp) 2 + (x 2 -εq) 2 < r 2 , (2.2) 
P ε,r pq = (x 1 , x 2 , x 3 ) ∈ R 3 : (x 1 , x 2 ) ∈ D ε,r pq , 0 < x 3 < L .

(2.3)

Then, for r ∈]0, ε 2 [, we denote by Ω + ε,r the set of all the rods defined as above:

Ω + ε,r = (p,q)∈N ε P ε,r pq .

(2.4)

The lower cross sections of all the rods is denoted by ω ε,r : ω ε,r = (p,q)∈Nε D ε,r pq × {0} ⊂ ω.

(2.5)

We have assumed that r ≤ ε 2 , in order to avoid the contact between two different rods. The domain filled by the oscillating part Ω + ε,r (as ε tends to zero) is denoted by Ω + :

Ω + = ω×]0, L[. (2.6) 
Moreover, we set

Ω -= (x 1 , x 2 , x 3 ) ∈ R 3 : (x 1 , x 2 ) ∈ ω, -1 < x 3 < 0 , (2.7 
)

Ω = ω×] -1, L[. (2.8) 
The 3d-plate Ω - δ is defined, for δ > 0, by

Ω - δ = (x 1 , x 2 , x 3 ) ∈ R 3 : (x 1 , x 2 ) ∈ ω, -δ < x 3 < 0 , (2.9) 
and the elastic body under consideration is We consider the standard linear equations of elasticity in Ω ε,r,δ , and the displacement field in Ω ε,r,δ is denoted by u ε,r,δ : Ω ε,r,δ → R 3 .

Ω ε,r,δ = Ω + ε,r ∪ ω ε,r ∪ Ω - δ . ( 2 
The linearized deformation field in Ω ε,r,δ is defined by γ(u ε,r,δ ) = 1 2 Du ε,r,δ + (Du ε,r,δ ) T , (2.11) or equivalently by its components:

γ ij (u ε,r,δ ) = 1 2 ∂ i u ε,r,δ j + ∂ j u ε,r,δ i
, i, j = 1, 2, 3.

(2.12)

The Cauchy stress tensor in Ω ε,r,δ is linked to γ(u ε,r,δ ) through the standard Hooke's law: σ ε,r,δ = λ Tr γ(u ε,r,δ ) I + 2µγ(u ε,r,δ ), (2.13) where λ and µ denotes the Lamé coefficients of the elastic material, and I is the identity 3 × 3 matrix. Indeed (2.13) writes as

σ ε,r,δ ij = λ 3 k=1 γ kk (u ε,r,δ ) δ ij + 2µγ ij (u ε,r,δ ), i, j = 1, 2, 3, (2.14) 
where δ ij = 0 if i = j and δ ij = 1 if i = j.

The equations of equilibrium in Ω ε,r,δ write as

- 3 j=1 ∂ j σ ε,r,δ ij = f ε,r,δ i in Ω ε,r,δ , i = 1, 2, 3, (2.15) 
where f ε,r,δ : Ω ε,r,δ → R 3 denotes the volume applied force.

In order to specify the boundary conditions on ∂Ω ε,r,δ , we will assume that:

• the 3D plate is clamped on its lateral boundary ∂ω×]δ, 0[= Γ δ :

u ε,r,δ = 0 on Γ δ , (2.16) 
• the boundary ∂Ω ε,r,δ \ Γ δ is free:

σ ε,r,δ ν = 0 on ∂Ω ε,r,δ \ Γ δ , (2.17) 
where ν denotes the exterior unit normal to Ω ε,r,δ .

Remark 2.1. (2.17) means that the density of applied surface forces on the boundary ∂Ω ε,r \ Γ δ is zero. This assumption is not necessary to carry on the analysis, but it is a bit natural as far as the fast oscillating boundary ∂Ω + ε,r is concerned. The variational formulation of (2.15)-(2.16)-(2.17) is very standard. If V ε,r,δ denotes the space:

V ε,r,δ = v ∈ H 1 (Ω ε,r,δ ) 3 : v = 0 on Γ δ , (2.18) 
it results that

         u ε,r,δ ∈ V ε,r,δ , Ω ε,r,δ 3 i,j=1 σ ε,r,δ ij γ ij (v)dx = Ω ε,r,δ 3 i=1 f ε,r,δ i v i dx, ∀v ∈ V ε,r,δ .
(2.19)

3 Decomposition of the displacement in Ω ε,r,δ

As explained in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], we will not seek for the dependance on ε, r and δ of the constant in a Korn's type inequality, but we will use the same decomposition of u ε,r,δ in Ω + ε,r as in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]. We drop for a while the indexes ε, r and δ in the notation of u ε,r,δ . Moreover, in order to shorten the notation, we set:

ω ε = (p,q)∈N ε εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 ⊂ ω.
Recall that the decomposition in Ω + ε,r is given by

• if x = (x 1 , x 2 , x 3 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 ×]0, L[, (p, q) ∈ N ε U + (x) = 1 πr 2 D ε,r pq u(y 1 , y 2 , x 3 )dy 1 dy 2 , (3.1) 
R + 1 (x) = 1 I 2 r 4 D ε,r pq (y 2 -εq)u 3 (y 1 , y 2 , x 3 )dy 1 dy 2 , (3.2) 
R + 2 (x) = - 1 I 1 r 4 D ε,r pq (y 1 -εp)u 3 (y 1 , y 2 , x 3 )dy 1 dy 2 , (3.3) 
R + 3 (x) = 1 (I 1 + I 2 )r 4 D ε,r pq [(y 1 -εp)u 2 (y 1 , y 2 , x 3 ) -(y 2 -εq)u 1 (y 1 , y 2 , x 3 )]dy 1 dy 2 , (3.4) 
where

I 1 = 1 r 4 D ε,r pq (x 1 -εp) 2 dx 1 dx 2 = 1 r 4 D ε,r pq (x 2 -εq) 2 dx 1 dx 2 = I 2 = π 4 . • if x = (x 1 , x 2 , x 3 ) ∈ ω \ ω ε ×]0, L[ U + i (x) = R + i (x) = 0 for i = 1, 2, 3.
Let us denote by R + the vectorial field

(R + 1 , R + 2 , R + 3 ) and define u ∈ (H 1 (Ω + ε,r )) 3 by u + (x) = u(x) -U + (x) -R + (x) ∧ ((x 1 -εp)e 1 + (x 2 -εq)e 2 ) for x ∈ P ε,r pq , (3.5) 
where e 1 = (1, 0, 0), e 2 = (0, 1, 0) and e 3 = (0, 0, 1). We now introduce the decomposition of the displacement u in Ω - δ in order to take into account the specific geometry of Ω - δ . Let us define the following quantities:

U - i (x 1 , x 2 ) = 1 δ 0 -δ u i (x 1 , x 2 , x 3 )dx 3 , for i = 1, 2, 3, (3.6) 
           R - 1 (x 1 , x 2 ) = 3 2δ 3 0 -δ x 3 + δ 2 u 2 (x 1 , x 2 , x 3 )dx 3 , R - 2 (x 1 , x 2 ) = - 3 2δ 3 0 -δ x 3 + δ 2 u 1 (x 1 , x 2 , x 3 )dx 3 , (3.7) 
R - 3 (x 1 , x 2 ) = 0, (3.8) u -(x 1 , x 2 , x 3 ) = u(x 1 , x 2 , x 3 ) -U -(x 1 , x 2 ) -R -(x 1 , x 2 ) ∧ x 3 + δ 2 e 3 , (3.9) 
with

U -= U - 1 , U - 2 , U - 3 and R -= R - 1 , R - 2 , 0 . Indeed, due to the definitions of U -and R -, we have 0 -δ u - i (x 1 , x 2 , x 3 )dx 3 = 0 a.e. in ω, for i = 1, 2, 3, (3.10) 0 -δ x 3 + δ 2 u - α (x 1 , x 2 , x 3 )dx 3 = 0 a.e. in ω, for α = 1, 2. (3.11) Moreover since u ∈ V ε,r,δ , then U -∈ (H 1 0 (ω)) 3 , R -∈ (H 1 0 (ω)) 3 and u ∈ (H 1 (Ω - δ )) 3 with u -= 0 on Γ δ .
The elastic energy in Ω - δ is given by

E -(u) = Ω - δ   λ 3 k=1 γ kk (u) 2 + 2µ 3 i,j=1 (γ ij (u)) 2   dx. (3.12)
The following Lemma is established in [START_REF] Griso | Asymptotic Behavior of Structures Made of Plates[END_REF].

Lemma 3.1. There exists a constant c (independent of δ), such that

U - α 2 H 1 (ω) ≤ c δ E -(u) for α = 1, 2, (3.13) 
U - 3 2 H 1 (ω) ≤ c δ 3 E -(u), (3.14) R - α 2 H 1 (ω) ≤ c δ 3 E -(u) for α = 1, 2, (3.15) 
∂U - 3 ∂x 1 + R - 2 2 L 2 (ω) ≤ c δ E -(u), (3.16 
)

∂U - 3 ∂x 2 -R - 1 2 L 2 (ω) ≤ c δ E -(u), (3.17) 
u - i 2 L 2 (Ω - δ ) ≤ cδ 2 E -(u) for i = 1, 2, 3, (3.18) 
Du - i 2 (L 2 (Ω - δ )) 3 ≤ cE -(u) for i = 1, 2, 3. (3.19)
Let us remark that Korn's inequality and the L 2 -estimates on u can be then deduced from (3.6)÷(3.9) and Lemma 3.1 (see [START_REF] Griso | Asymptotic Behavior of Structures Made of Plates[END_REF]),

∂u β ∂x α 2 L 2 (Ω - δ ) + δ 2 ∂u 3 ∂x α 2 L 2 (Ω - δ ) + δ 2 ∂u α ∂x 3 2 L 2 (Ω - δ ) + ∂u 3 ∂x 3 2 L 2 (Ω - δ ) + Du i 2 (L 2 (Ω - δ )) 3 ≤ c δ 2 E -(u) for i = 1, 2, 3, for α = 1, 2, (3.20) 2 α=1 u α 2 L 2 (Ω - δ ) + δ 2 u 3 2 L 2 (Ω - δ ) ≤ cE -(u); (3.21)
but these last estimates are to loose to achieve the analysis. In the following section, we will use Lemma 4.2 (Section 4.4) of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] and Lemma 3.1 of the present paper to derive a priori estimates on u ε,r,δ , and more precisely on its two decompositions in Ω + ε,r and Ω - δ .

A priori estimates

We follow the same strategy as in Section 3 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], and the displacement u ε,r,δ is decomposed using (3.1)÷ (3.5) in Ω + ε,r and in Ω - δ using (3.6)÷(3.9). In order to simplify the notations, we drop the indexes ε, r, δ, in all the considered fields and quantities. Recall that the elastic energy in Ω + ε,r is given by

E + (u) = Ω + ε,r   λ 3 k=1 γ kk (u) 2 + 2µ 3 i,j=1 (γ ij (u)) 2   dx, (4.1) 
while the total elastic energy of u is

E(u) = E + (u) + E -(u). (4.2) 
4.1 Uniform bound on U + and R + in terms of E(u)

We use the same technique as in Section 4.1 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], and we first estimate R + (0) and U + (0) in Step 1, and then U + and R + in Step 2.

Step 1. To obtain sharp estimates on U + (0) and R + (0), we use the decomposition (3.9) of u in ω in the expressions of R + (0) and U + (0), and we first prove the following lemma on the behavior of the various terms entering the decomposition (3.9). Lemma 4.1. There exists a constant c (independent of ε, r and δ), such that 

(p,q)∈Nε 1 r 2 Dpq U - α (x 1 , x 2 )dx 1 dx 2 2 ≤ c r 2 δ E -(u) for α = 1, 2, (4.3) 
(p,q)∈Nε 1 r 2 Dpq U - 3 (x 1 , x 2 )dx 1 dx 2 2 ≤ c r 2 δ 3 E -(u), (4.4) 
(p,q)∈Nε 1 r 2 Dpq R - α (x 1 , x 2 )dx 1 dx 2 2 ≤ c r 2 δ 3 E -(u) for α = 1, 2, (4.5) (p,q)∈Nε 1 r 4 D pq (x 1 -pε)U - α (x 1 , x 2 )dx 1 dx 2 2 ≤ c r 2 δ E -(u), for α = 1, 2, (4.6) (p,q)∈Nε 1 r 4 Dpq (x 1 -pε)U - 3 (x 1 , x 2 )dx 1 dx 2 2 ≤ c r 2 δ 3 E -(u), (4.7) (p,q)∈Nε 1 r 4 Dpq (x 1 -pε)R - α (x 1 , x 2 )dx 1 dx 2 2 ≤ c r 2 δ 3 E -(u) for α = 1, 2, (4.8) (p,q)∈Nε 1 r 2 D pq u - i (x 1 , x 2 , 0)dx 1 dx 2 2 ≤ cδ r 2 E -(u) for i = 1, 2, 3, (4.9) 
(p,q)∈Nε 1 r 4 Dpq (x 1 -pε)u - i (x 1 , x 2 , 0)dx 1 dx 2 2 ≤ cδ r 4 E -(u) for i = 1,
D pq of a function v ∈ L 2 (Ω + ε,r ), it results that Dpq (x 1 -pε) U - α (x 1 , x 2 ) -M Dpq (U - α ) dx 1 , dx 2 = Dpq (x 1 -pε)U - α (x 1 , x 2 )dx 1 , dx 2 .
Then Poincaré-Wirtinger inequality in D pq (see e.g. (4.18) in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]) and Cauchy-Schwarz inequality permit to obtain

(p,q)∈Nε 1 r 4 Dpq (x 1 -pε)U - α (x 1 , x 2 )dx 1 , dx 2 2 ≤ c r 2 U - α 2 H 1 (ω) ,
which in turn gives (4.6) in view of (3.13).

The estimates (4.7) and (4.8) are obtained with the same technique using also (3.14) and (3.15).

At last, remark that (3.18) and (3.19) imply the following bound on the value of u -on ω

u - i 2 L 2 (ω) ≤ cδE -(u),
which then yields (4.9) and (4.10). Then the proof of the lemma is complete.

We turn back to the derivation of bounds on R + (0) and U + (0). We only detail the arguments for R + 1 (0). Recalling the definition (3.2) of R + 1 , we have

R + 1 (x 1 , x 2 , 0) = 1 I 2 r 4 Dpq (y 2 -εq)u 3 (y 1 , y 2 , 0)dy 1 dy 2 .
Inserting the decomposition (3.9) for u 3 (y 1 , y 2 , 0) in the above expression leads to two terms

1 I 2 r 4 Dpq (y 2 -εq)U - 3 (y 1 , y 2 , 0)dy 1 dy 2 . and 1 I 2 r 4 Dpq (y 2 -εq)u - 3 (y 1 , y 2 , 0)dy 1 dy 2 .
which are estimated in Lemma 4.1. Consequently,

R + 1 (•, •, 0) 2 L 2 (ω) = ε 2 (p,q)∈N ε R + 1 (pε, qε, 0) 2 ≤ c ε 2 r 2 1 δ 3 + δ r 2 E -(u).
The analysis is identical for the other components of R + (0) and U + (0), and we obtain, by using Lemma 4.1,

U + α (•, •, 0) 2 L 2 (ω) ≤ c ε 2 r 2 δ E -(u), for α = 1, 2, (4.11) 
U + 3 (•, •, 0) 2 L 2 (ω) ≤ c ε 2 r 2 δ 3 E -(u), (4.12 
) 

R + α (•, •, 0) 2 L 2 (ω) ≤ c ε 2 r 2 1 δ 3 + δ r 2 E -(u), for α = 1, 2, (4.13) 
R + 3 (•, •, 0) 2 L 2 (ω) ≤ c ε 2 r 2 1 δ + δ r 2 E -(u). ( 4 
∂R + i ∂x 3 2 (L 2 (Ω + )) 3 ≤ c ε 2 r 4 E + (u), for i = 1, 2, 3, (4.15 
)

∂U + α ∂x 3 2 L 2 (Ω + ) ≤ c R + β 2 L 2 (Ω + ) + ε 2 r 2 E + (u) , for α, β = 1, 2, and α = β, ∂U + 3 ∂x 3 2 L 2 (Ω + ) ≤ c ε 2 r 2 E + (u), (4.16) 
we finally obtain

U + α 2 L 2 (Ω + ) ≤ c ε 2 r 2 1 r 2 + 1 δ 3 E(u), for α = 1, 2, (4.17) 
U + 3 2 L 2 (Ω + ) ≤ c ε 2 r 2 δ 3 E(u), (4.18) 
R + α 2 L 2 (Ω + ) ≤ c ε 2 r 2 1 r 2 + 1 δ 3 E(u), for α = 1, 2, (4.19) R + 3 2 L 2 (Ω + ) ≤ c ε 2 r 2 1 r 2 + 1 δ E(u). (4.20)
Remark 4.2. Actually, the estimate (4.19) on R + α can be obtained directly, i.e. without using the decomposition (3.9) of the displacement in Ω - δ , through using the same technique as in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] (see step 1 and 2 of Section 4.1) and the estimates (3.20) on u. This is not the case for the bound in (4.20) for R + 3 . If one uses directly the method of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] with the actual estimates (3.20) on u, one obtains

R + 3 2 L 2 (Ω + ) ≤ c ε 2 r 2 1 r 2 δ + 1 δ E(u),
which is worse than (4.20). This means that the estimates of Lemma 3.1 are sharper than (3.20) (which comes directly from Korn's inequality in Ω - δ ).

4.2 Estimates on u ε,r,δ in term of E(u ε,r,δ )

Recall that we have, upon still dropping the index ε, r and δ in U + , R + and u + , (see Section 4.3 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF])

u ε,r,δ α 2 L 2 (Ω + ε,r ) ≤ c r 2 ε 2 U + α 2 L 2 (Ω + ) + r 4 ε 2 R + 3 2 L 2 (Ω + ) + u + α 2 L 2 (Ω + ε,r ) , for α = 1, 2, u ε,r,δ 3 2 L 2 (Ω + ε,r ) ≤ c r 2 ε 2 U + 3 2 L 2 (Ω + ) + r 4 ε 2 R + 1 2 L 2 (Ω + ) + R + 2 2 L 2 (Ω + ) + u + 3 2 L 2 (Ω + ε,r
) . The field u + still satisfies the following estimates (see (4.36) and (4.37) of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] u + 2 (L 2 (Ω + ε,r ))

3 ≤ cr 2 E + (u ε,r,δ ), (4.21) 
and

Du + 2 (L 2 (Ω + ε,r )) 9 ≤ cE + (u ε,r,δ ). (4.22)
Then using (4.17)÷(4.20) yields

u ε,r,δ α 2 L 2 (Ω + ε,r ) ≤ c 1 r 2 + 1 δ 3 E(u ε,r,δ ), for α = 1, 2. (4.23) u ε,r,δ 3 2 L 2 (Ω + ε,r ) ≤ c δ 3 E(u ε,r,δ ). (4.24) 4.3 A priori estimates on u ε,r,δ
We have

E(u ε,r,δ ) ≤ 2 α=1 f + α L 2 (Ω + ε,r ) u ε,r,δ α L 2 (Ω + ε,r ) + f + 3 L 2 (Ω + ε,r ) u ε,r,δ 3 L 2 (Ω + ε,r ) + 2 α=1 f - α L 2 (Ω - δ ) u ε,r,δ α L 2 (Ω - δ ) + f - 3 L 2 (Ω - δ ) u ε,r,δ 3 L 2 (Ω - δ ) .
Inserting estimates (3.21), (4.23) and (4.24) in the above inequality gives

E(u ε,r,δ ) ≤ c 1 r 2 + 1 δ 3 1 2 2 α=1 f + α L 2 (Ω + ε,r ) + 1 δ 3 2 f + 3 L 2 (Ω + ε,r ) + 2 α=1 f - α L 2 (Ω - δ ) + 1 δ f - E(u ε,r,δ ) 1 2 . 
(4.25)

Now the choice of the order of E(u ε,r,δ ) has to be specified in order to fit the orders of the forces f - i and f + i . For a single plate of thickness δ, the energy is usually assumed to be of order δ. We keep the same choice here and then to obtain E(u ε,r,δ ) ≤ cδ, the inequality (4.25) shows that the forces are chosen such that

1 r 2 + 1 δ 3 f + α 2 L 2 (Ω + ε,r ) ≤ cδ, for α = 1, 2, (4.26) 
f + 3 2 L 2 (Ω + ε,r ) ≤ cδ 4 , (4.27) f - α 2 L 2 (Ω - δ ) ≤ cδ, for α = 1, 2, (4.28) f - 3 2 L 2 (Ω - δ ) ≤ cδ 3 . (4.29) 
We are now in a position to state the following lemma which is valid under conditions (4.26)÷(4.29) (see also Lemma 4.2 in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]). Lemma 4.3. If the forces satisfy conditions (4.26)÷(4.29), then there exists a constant c (independent of ε, r and δ), such that

u ε,r,δ α L 2 (Ω + ε,r ) ≤ c δ r 2 + 1 δ 2 1 2
for α = 1, 2, (4.30)

u ε,r,δ 3 L 2 (Ω + ε,r ) ≤ c δ , (4.31) 
γ ij (u ε,r,δ ) L 2 (Ω + ε,r ) ≤ cδ 1 2
for i, j = 1, 2, 3, (4.32)

u ε,r,δ α L 2 (Ω - δ ) ≤ cδ 1 2
for α = 1, 2, (4.33)

u ε,r,δ 3 L 2 (Ω - δ ) ≤ cδ -1 2 , (4.34) γ ij (u ε,r,δ ) L 2 (Ω - δ ) ≤ cδ 1 2
for i, j = 1, 2, 3, (4.35)

U ε,r,δ+ α L 2 (Ω + ) ≤ c εδ 1 2 r 1 r 2 + 1 δ 3 1 2 , for α = 1, 2, (4.36) U ε,r,δ+ 3 L 2 (Ω + ) ≤ c ε rδ , (4.37) R ε,r,δ+ α L 2 (Ω + ) ≤ c εδ 1 2 r 1 r 2 + 1 δ 3 1 2 , for α = 1, 2, (4.38) ≤ c εδ 1 2 r 1 r 2 + 1 δ 1 2 , (4.39) ∂U ε,r,δ+ ∂x 3 -R ε,r,δ+ ∧ e 3 (L 2 (Ω + )) 3 ≤ c εδ 1 2 r , (4.40) u ε,r,δ+ i L 2 (Ω + ε,r ) ≤ crδ 1 2
for i = 1, 2, 3, (4.41)

Du ε,r,δ+ i (L 2 (Ω + ε,r )) 3 ≤ cδ 1 2
for i = 1, 2, 3, (4.42)

u ε,r,δ- i L 2 (Ω - δ ) ≤ cδ 3 2 for i = 1, 2, 3, (4.43) Du ε,r,δ- i (L 2 (Ω - δ )) 3 ≤ cδ 1 2
for i = 1, 2, 3, (4.44)

σ ε,r,δ ij L 2 (Ω + ε,r ) ≤ cδ 1 2
for i, j = 1, 2, 3, (4.45)

σ ε,r,δ ij L 2 (Ω - δ ) ≤ cδ 1 2
for i, j = 1, 2, 3. (4.46)

Until now we have derived the a priori estimates on all the fields in terms of arbitrary parameters ε, r and δ, so that an interested reader may investigate various limit models depending on the respective asymptotic behavior of these parameters.

From now on, we will first restrict the analysis to the case where r = kε (0 < k < 1 2 ); the case r ε ε → 0 can be studied as in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]. Secondly, and as explained in the introduction, we will develop the complete analysis, in what follows, for a critical case where one obtains a standard 2d-model for the plate. Assuming e.g. that r ∼ ε ∼ δ α , this is the case if α > 1 and for such values of α, what differs from a model to another is the limit junction conditions between the rods and the plate (see the concluding remarks in Section 11). In view of estimates (4.30), (4.36) and (4.39), we have decided to completely develop the case where r 2 = k 2 ε 2 = a 2 δ 3 . The techniques developed below can be easily reproduced for others asymptotic behaviors of ε, r and δ, to obtain various limit models.

In order to satisfy (4.26)÷(4.29) with r 2 = a 2 δ 3 , we assume that

f + i = δ 2 F + i | Ω + ε , for i = 1, 2, 3, (4.47) 
f - α (x 1 , x 2 , x 3 ) = F - α x 1 , x 2 , x 3 δ , a.e. in Ω - δ , for α = 1, 2, (4.48) f - 3 (x 1 , x 2 , x 3 ) = δF - 3 x 1 , x 2 , x 3 δ , a.e. in Ω - δ , (4.49) 
where

F + i ∈ L 2 (Ω + ) and F - i ∈ L 2 (Ω -), for i = 1, 2, 3.
Let us explicitly give the a priori estimates which follow from Lemma 4.3 in the case where r 2 = k 2 ε 2 = a 2 δ 3 . Lemma 4.4. If the forces satisfy conditions (4.26)÷(4.29), then there exists a constant c (independent δ), such that

u δ i L 2 (Ω + ε ) ≤ c δ for i = 1, 2, 3, (4.50) γ ij (u δ ) L 2 (Ω + ε ) ≤ cδ 1 2
for i, j = 1, 2, 3, (4.51)

u δ α L 2 (Ω - δ ) ≤ cδ 1 2
for α = 1, 2, (4.52)

u δ 3 L 2 (Ω - δ ) ≤ cδ -1 2 , (4.53) γ ij (u δ ) L 2 (Ω - δ ) ≤ cδ 1 2
for i, j = 1, 2, 3, (4.54)

U δ+ α L 2 (ω;H 1 ((0,L))) ≤ c δ for α = 1, 2, (4.55) 
U δ+ 3 L 2 (Ω + ) ≤ c δ , (4.56 
)

∂U δ+ 3 ∂x 3 L 2 (Ω + ) ≤ cδ 1 2 , (4.57) R δ+ i L 2 (ω;H 1 ((0,L))) ≤ c δ , for i = 1, 2, 3, (4.58) 
∂U δ+ ∂x 3 -R δ+ ∧ e 3 (L 2 (Ω + )) 3 ≤ cδ 1 2 , (4.59) 
u δ+ i L 2 (Ω + ε,r ) ≤ cδ 2 for i = 1, 2, 3, (4.60) 
Du δ+ i (L 2 (Ω + ε,r )) 3 ≤ cδ 1 2
for i = 1, 2, 3, (4.61)

u δ- i L 2 (Ω - δ ) ≤ cδ 3 2 for i = 1, 2, 3, (4.62) Du δ- i (L 2 (Ω - δ )) 3 ≤ cδ 1 2 for i = 1, 2, 3, (4.63) 
σ δ ij L 2 (Ω + ε,r ) ≤ cδ 1 2
for i, j = 1, 2, 3, (4.64)

σ δ ij L 2 (Ω - δ ) ≤ cδ 1 2
for i, j = 1, 2, 3. (4.65)

5 Rescaling of Ω - δ and unfolding operators in Ω + ε and Ω - We denote by D the unit disk of R 2 . We first recall the definition of the unfolding operator T ε given in Section 5 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] which is defined for any

v ∈ L 2 (Ω + ε ) by, for almost (x 1 , x 2 , x 3 ) ∈ Ω + and (X 1 , X 2 ) ∈ D, T ε (v)(x 1 , x 2 , x 3 , X 1 , X 2 ) =              v(pε + r ε X 1 , qε + r ε X 2 , x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (p, q) ∈ N ε , 0, if (x 1 , x 2 ) ∈ ω \ ω ε .
(5.1)

We refer to Lemma 5.1 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] for the properties of this operator. Then, in order to take into account the necessary rescaling on Ω - δ , we introduce the following new operator Π δ defined for any function v ∈ L 2 (Ω - δ ):

Π δ (v)(x 1 , x 2 , X 3 ) = v(x 1 , x 2 , δX 3 ) for (x 1 , x 2 , X 3 ) ∈ Ω -= ω×] -1, 0[. (5.2) Remark that Π δ (v) ∈ L 2 (Ω -). Indeed we have for any v ∈ L 2 (Ω - δ ) and any w ∈ L 2 (Ω - δ ) Ω - Π δ (v)Π δ (w)dx 1 dx 2 dX 3 = 1 δ Ω - δ vwdx 1 dx 2 dx 3 , (5.3 
)

∂Π δ (v) ∂x α = Π δ ∂v ∂x α , for α = 1, 2, (5.4 
)

∂Π δ (v) ∂X 3 = δΠ δ ∂v ∂x 3 . (5.5) 
Thirdly and since we will use a few oscillating test functions in Ω -in Section 6.2, we also introduce the usual unfolding operator in homogenization theory (see [START_REF] Cioranescu | Periodic Unfolding and Homogenization[END_REF] and [START_REF] Damlamian | An Elementary Introduction to Periodic Unfolding[END_REF]). The operator

T ε -is defined on ω×] -1 2 , 1 2 [ 2 ×] -1, 0[, for almost (x 1 , x 2 ) ∈ ω and (X 1 , X 2 , X 3 ) ∈ ] -1 2 , 1 2 [ 2 ×] -1, 0[, by T ε -(v)(x 1 , x 2 , X 1 , X 2 , X 3 ) =        v(pε + εX 1 , qε + εX 2 , X 3 ), if (x 1 , x 2 ) ∈ εp -ε 2 , εp + ε 2 × εq -ε 2 , εq + ε 2 , and (p, q) ∈ N ε , 0 if (x 1 , x 2 ) ∈ ω \ ω ε . (5.6)
The main properties of T ε -that we will use in this paper are recalled in Annex 1 and Annex 2, and we refer to [START_REF] Cioranescu | Periodic Unfolding and Homogenization[END_REF] and [START_REF] Damlamian | An Elementary Introduction to Periodic Unfolding[END_REF] for the proofs and various applications in homogenization.

Estimates and weak convergence of the unfold fields

in Ω + and of the rescaled and unfold fields in Ω - As far as the fields defined in Ω + are concerned, recalling Lemma 5.1 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] and the fact that r 2 = k 2 ε 2 = a 2 δ 3 , we obtain from Lemma 4.4 above Lemma 6.1. If the forces satisfy conditions (4.47)÷(4.49), then there exists a constant c

(independent of δ), such that (recall that ε = a k δ 3 2 ) δ T ε (u δ i ) L 2 (Ω + ×D) ≤ c for i = 1, 2, 3, (6.1) 
T ε (γ ij (u δ )) L 2 (Ω + ×D) ≤ cδ 1 2
for i, j = 1, 2, 3, (6.2)

δ T ε (U δ+ i ) L 2 (Ω + ×D) ≤ c for i = 1, 2, 3, (6.3) 
δ T ε (R δ+ i ) L 2 (Ω + ×D) ≤ c, for i = 1, 2, 3, (6.4) 
T ε (u δ+ i ) L 2 (Ω + ×D) ≤ cδ 2 , for i = 1, 2, 3, (6.5)        ∂ ∂X α T ε (u δ+ ) (L 2 (Ω + ×D)) 3 ≤ cδ 2 , for α = 1, 2, ∂ ∂x 3 T ε (u δ+ ) (L 2 (Ω + ×D)) 3 ≤ cδ 1 2 , (6.6) 
T ε (σ δ ij ) L 2 (Ω + ×D) ≤ cδ 1 2 . for i = 1, 2, 3. (6.7)
As far as the fields defined in Ω -are concerned, Lemma 4.3, Lemma 4.4, the properties (5.3), (5.4) and (5.5) of Π δ and those of T ε -recalled in Annex 1 permit to obtain the following lemma: Lemma 6.2. If the forces satisfy conditions (4.47)÷(4.49), then there exists a constant c

(independent δ), such that (recall that ε = a k δ 3 2 ) Π δ (u δ α ) H 1 (Ω -) ≤ c for α = 1, 2, (6.8) δ Π δ (u δ 3 ) H 1 (Ω -) ≤ c, (6.9) 
Π δ (γ ij (u δ )) L 2 (Ω -) ≤ c for i, j = 1, 2, 3, (6.10) Π δ (σ δ- ij ) L 2 (Ω -) ≤ c, for i, j = 1, 2, 3, (6.11) 
Π δ (u δ- i ) L 2 (Ω -) ≤ cδ, for i = 1, 2, 3, (6.12 
)

for i = 1, 2, 3,              Π δ (Du δ- i ) (L 2 (Ω -)) 3 ≤ c ∂ ∂x α Π δ (u δ- i ) L 2 (Ω -) ≤ c, for α = 1, 2, ∂ ∂X 3 Π δ (u δ- i ) L 2 (Ω -) ≤ cδ, (6.13) 
T ε -(Π δ (γ ij (u δ ))) L 2 (Ω -×Y ) ≤ c, for i, j = 1, 2, 3, (6.14) 
T ε -(Π δ (σ δ ij )) L 2 (Ω -×Y ) ≤ c, for i, j = 1, 2, 3. (6.15)
Indeed, the two last lemmas together with the properties of T ε -recalled in Annex 1 lead to the following weak convergence results: Lemma 6.3. Assume that the forces satisfy conditions (4.47)÷(4.49).

For a subsequence still indexed by δ:

• there exist u 0 i + ∈ L 2 (Ω + × D) and u 0 i + ∈ L 2 (Ω + , H 1 (D)), for i = 1, 2, 3, such that, as δ tends to zero, (recall that ε = a k δ 3 2 ) δT ε (u δ i ) ⇀ u 0 i + weakly in L 2 (Ω + × D), for i = 1, 2, 3, (6.16 
)

1 δ 2 T ε (u δ i + ) ⇀ u 0 i + weakly in L 2 (Ω + , H 1 (D)), for i = 1, 2, 3, (6.17) 
• there exist

U 0 i + ∈ L 2 (ω, H 1 ((0, L))), R 0 i + ∈ L 2 (ω, H 1 ((0, L))), for i = 1, 2, 3, and Z + ∈ (L 2 (Ω + ))
3 such that, as δ tends to zero,

δU δ i + ⇀ U 0 i + , weakly in L 2 ω, H 1 ((0, L)) , for i = 1, 2, 3 (6.18 
)

δR δ i + ⇀ R 0 i + , weakly in L 2 ω, H 1 ((0, L)) , for i = 1, 2, 3, (6.19) δ -1 2 ∂U δ + ∂x 3 -R δ + ∧ e 3 ⇀ Z + , weakly in L 2 (Ω + ) 3 , (6.20) 
• there exist

X + ij ∈ L 2 (Ω + × D) and Σ + ij ∈ L 2 (Ω + × D), for i, j = 1, 2, 3, such that, as δ tends to zero, δ -1 2 T ε (γ ij (u δ )) ⇀ X + ij , weakly in L 2 (Ω + × D), for i, j = 1, 2, 3, (6.21) 
δ -1 2 T ε (σ δ ij ) ⇀ Σ + ij , weakly in L 2 (Ω + × D), for i, j = 1, 2, 3, (6.22) 
Lemma 6.4. Assume that the forces satisfy conditions (4.47)÷(4.49).

For a subsequence still indexed by δ:

• there exist u 0 i -∈ L 2 (Ω -) and u 0 i -∈ L 2 (ω, H 1 ((-1, 0))), for i = 1, 2, 3, such that, as δ tends to zero, Π δ (u δ α ) ⇀ u 0 α -weakly in H 1 (Ω -), for α = 1, 2, (6.23 
)

δΠ δ (u δ 3 ) ⇀ u 0 3 -weakly in H 1 (Ω -), (6.24) 
1 δ Π δ (u δ i -) ⇀ u 0 i -weakly in L 2 (ω, H 1 ((-1, 0))), for i = 1, 2, 3, (6.25) 
• there exist

U 0 i -∈ H 1 0 (ω), R 0 i -∈ H 1 0 (ω), for i = 1, 2, 3, and Z - α ∈ L 2 (ω), for α = 1, 2, such that, as δ tends to zero, U δ- α ⇀ U 0 α -weakly in H 1 (ω), for α = 1, 2, (6.26 
)

δU δ- 3 ⇀ U 0 3 -weakly in H 1 (ω), (6.27) δR δ- α ⇀ R 0 α -weakly in H 1 (ω), for α = 1, 2, (6.28) ∂U δ- 3 ∂x 1 + R δ 2 -⇀ Z - 1 weakly in L 2 (ω), (6.29) ∂x 2 -R δ 1 -⇀ Z - 2 weakly in L 2 (ω), (6.30) • there exist X - ij ∈ L 2 (Ω -) and Σ - ij ∈ L 2 (Ω -), for i, j = 1, 2, 3, such that, as δ tends to zero, Π δ (γ ij (u δ )) ⇀ X - ij weakly in L 2 (Ω -), for i, j = 1, 2, 3, (6.31) Π δ (σ δ ij ) ⇀ Σ - ij weakly in L 2 (Ω -), for i, j = 1, 2, 3. (6.32) • there exist X - ij ∈ L 2 (Ω -× Y ) and Σ - ij ∈ L 2 (Ω -× Y ), for i, j = 1, 2, 3, such that, as δ tends to zero, T ε -(Π δ (γ ij (u δ ))) ⇀ X - ij weakly in L 2 (Ω -× Y ),
for i, j = 1, 2, 3, (6.33)

T ε -(Π δ (σ δ ij )) ⇀ Σ - ij weakly in L 2 (Ω -× Y ),
for i, j = 1, 2, 3. (6.34)

7 Relations between the limit fields

We begin with the limit fields defined in Lemma 6.1 for which the derivations are similar to the ones performed in Section 5.4 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF].

Relations between the limit fields in Ω +

Proceeding exactly as in Section 5.4 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], we deduce from (6.18), (6. [START_REF] Griso | Décomposition des déplacements d'une poutre : simplification d'une problème d'élasticité[END_REF]) and (6.20) that

∂U 0 1 + ∂x 3 = R 0 2 + in Ω + , (7.1) 
∂U 0 2 + ∂x 3 = -R 0 1 + in Ω + . (7.2) Then U 0 α + ∈ L 2 (ω, H 2 ((0, L))
), for α = 1, 2. We also have, still following Section 5.4 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], that

u 0 α + (x 1 , x 2 , x 3 , X 1 , X 2 ) = U 0 α + (x 1 , x 2 , x 3 ), for almost any (x 1 , x 2 , x 3 ) ∈ Ω + , (X 1 , X 2 ) ∈ D, for α = 1, 2. (7.3)
Now using (3.5), (6.16), (6.17), (6.18) and (6.19) first yields

u 0 3 + (x 1 , x 2 , x 3 , X 1 , X 2 ) = U 0 3 + (x 1 , x 2 , x 3 ), for almost any (x 1 , x 2 , x 3 ) ∈ Ω + , (X 1 , X 2 ) ∈ D,
while estimate (4.16) then gives that U 0 3 + does not depend on x 3 , so that

u 0 3 + (x 1 , x 2 , x 3 , X 1 , X 2 ) = U 0 3 + (x 1 , x 2 ), for almost any (x 1 , x 2 , x 3 ) ∈ Ω + , (X 1 , X 2 ) ∈ D. (7.4)
To identify X + αβ , we proceed as in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] and write (note that r = r ε = kε)

r ε T ε (γ αβ (u δ )) = r ε T ε (γ αβ (u δ + )) = Γ αβ T ε (u δ + ) a.e. in Ω + × D, for α, β = 1, 2,
and we recall the definition of Γ αβ (v):

Γ αβ (v) = 1 2 ∂ X β v α + ∂ Xα v β , a.e. in Ω + × D, for α, β = 1, 2.
Multiplying the above equality by 1 δ 2 and using (6.17) and (6.21) yields

aX + αβ = Γ αβ (u 0 + ), a.e. in Ω + × D, for α, β = 1, 2. (7.5)
As far as X + α3 , for α = 1, 2, is concerned, we use (6.17), (6. [START_REF] Griso | Décomposition des déplacements d'une poutre : simplification d'une problème d'élasticité[END_REF]), (6.20) and (6.21) and proceed as in [2]

X + 13 = 1 2 Z + 1 -X 2 a ∂R 0 3 + ∂x 3 + 1 a ∂u 0 3 + ∂X 1 , a.e. in Ω + × D,
or equivalently

X + 13 = 1 2 ∂ ∂X 1 X 1 Z + 1 + 1 a u 0 3 + -X 2 a ∂R 0 3 + ∂x 3 , a.e. in Ω + × D. (7.6) 
Similarly,

X + 23 = 1 2 ∂ ∂X 2 X 2 Z + 2 + 1 a u 0 3 + + X 1 a ∂R 0 3 + ∂x 3 , a.e. in Ω + × D. (7.7)
To obtain the expression of X + 33 , we first introduce the sequence

W δ 3 + of L 2 (ω; H 1 ((0, L)) through W δ 3 + (x 1 , x 2 , x 3 ) = 1 δ 1 2 x 3 0 ∂U δ 3 + ∂x 3 (x 1 , x 2 , ζ)dζ = 1 δ 1 2 (U δ 3 + (x 1 , x 2 , x 3 ) -U δ 3 + (x 1 , x 2 , 0)), (7.8) 
and estimate (4.16) shows that, up to a subsequence

W δ 3 + ⇀ W 0+ 3 weakly in L 2 (ω; H 1 ((0, L))). (7.9) Since δ -1 2 ∂U δ 3 + ∂x 3 = ∂W δ 3 + ∂x 3
, proceeding as in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] leads to

X + 33 = ∂W 0+ 3 ∂x 3 -aX 1 ∂ 2 U 0+ 1 ∂x 2 3 -aX 2 ∂ 2 U 0+ 2 ∂x 2 3 , a.e. in Ω + × D. (7.10)
Once the above expressions of X + ij are obtained, using the constitutive law (0.13) and (6.21), (6.22) lead to

Σ + 11 = 1 a (λ + 2µ)Γ 11 (u 0+ ) + λΓ 22 (u 0+ ) + λ ∂W 0+ 3 ∂x 3 -aX 1 ∂ 2 U 0+ 1 ∂x 2 3 -aX 2 ∂ 2 U 0+ 2 ∂x 2 3 , (7.11) 
Σ + 22 = 1 a (λ + 2µ)Γ 22 (u 0+ ) + λΓ 11 (u 0+ ) + λ ∂W 0+ 3 ∂x 3 -aX 1 ∂ 2 U 0+ 1 ∂x 2 3 -aX 2 ∂ 2 U 0+ 2 ∂x 2 3 , (7.12) 
Σ + 12 = 2 µ a Γ 12 (u 0+ ), (7.13) 
Σ + 13 = µ ∂ ∂X 1 X 1 Z + 1 + 1 a u 0+ 3 -aX 2 ∂R 0+ 3 ∂x 3 , (7.14) 
Σ + 23 = µ ∂ ∂X 2 X 2 Z + 2 + 1 a u 0+ 3 + aX 1 ∂R 0+ 3 ∂x 3 , (7.15) 
Σ + 33 = (λ + 2µ)

∂W 0+ 3 ∂x 3 -aX 1 ∂ 2 U 0+ 1 ∂x 2 3 -aX 2 ∂ 2 U 0+ 2 ∂x 2 3 + λ a Γ 11 (u 0+ ) + Γ 22 (u 0+ ) , (7.16) 
almost everywhere in Ω + × D.

7.2 Relations between the limit fields in Ω -

Limit displacement

In Ω - δ , we have by (3.9)

u δ 1 = U δ 1 -+ x 3 + δ 2 R δ 2 -+ u δ- 1 , so that in Ω - Π δ (u δ 1 ) = U δ 1 -+ X 3 + 1 2 δR δ 2 -+ Π δ (u δ- 1 ).
Passing to the limit as δ tends to 0 in the above equality, using (6.23), (6.26) and (6.28), gives

u 0 1 -= U 0 1 -+ X 3 + 1 2 R 0 2 -. (7.17) 
Proceeding as above for u δ 2 leads to

u 0 2 -= U 0 2 --X 3 + 1 2 R 0 1 -. (7.18)
As far as u δ 3 is concerned, we have in ω - δ (still by (3.9))

u δ 3 = U δ- 3 + u δ 3 -, so that in Ω - Π δ (u δ 3 ) = U δ- 3 + Π δ (u δ 3 -).
Passing to the limit as δ tends to 0 with the help of (6.12), (6.24) and (6.27) leads to

u 0 3 -= U 0 3 -, (7.19) 
and in particular u 0 3 -is independent of X 3 .

Let us now derive a standard relation between R 0 α -and U 0

3

-in ω which leads to a Kirchhoff-Love displacement for u 0 -in Ω -. Indeed (6.27), (6.28) and (6.29) show that

R 0 1 -= ∂U 0 3 - ∂x 2 , (7.20) R 0 2 -= - ∂U 0 3 - ∂x 1 , (7.21) 
and we first deduce that U 0 3 -∈ H 2 0 (ω). Secondly, inserting (7.20) and (7.21) into (7.17) and (7.18) yields in Ω -

u 0 α -= U 0 α --X 3 + 1 2 ∂U 0 3 - ∂x α , for α = 1, 2, (7.22) 
and this means that (u 0 1

-, u 0 2 -, u 0 3 -) is a displacement field of Kirchhoff-Love's type.

Limit of the unfold deformation

In this subsection we derive the relations between the weak limit of the unfold deformation

T ε -(Π δ (γ ij (u δ )))
in Ω -× Y and those of the unfold derivatives of U δ -, R δ -and u δ -. We begin with a lemma which describes the behaviors of U δ -, R δ -and u δ -. Lemma 7.1. Assume the forces satisfy conditions (4.47)÷(4.49). Then there exist

U 0 α , R 0 α , ǔ ∈ L 2 (ω, H 1 per (Y )), for α = 1, 2, u 0 i ∈ L 2 (Ω -, H 1 per (Y )
), for i = 1, 2, 3, such that for a subsequence still indexed by δ

T ε -(U δ α -) → U 0 α -strongly in L 2 (ω × Y ), for α = 1, 2, (7.23) 
T ε - ∂U δ α - ∂x β ⇀ ∂U 0 α - ∂x β + ∂ U 0 α ∂X β weakly in L 2 (ω × Y ), for α, β = 1, 2, (7.24) δT ε -(U δ 3 
-) → U 0 3 -strongly in L 2 (ω × Y ), (7.25) δT ε - ∂U δ 3 - ∂x α ⇀ ∂U 0 3 - ∂x α weakly in L 2 (ω × Y ), for α = 1, 2, (7.26) δT ε -(R δ α -) → R 0 α -strongly in L 2 (ω × Y ), for α = 1, 2, (7.27) δT ε - ∂R δ α - ∂x β ⇀ ∂R 0 α - ∂x β + ∂ R 0 α ∂X β weakly in L 2 (ω × Y ), for α, β = 1, 2, (7.28) T ε - ∂U δ 3 - ∂x 1 + R δ 2 - ⇀ Z - 1 + ∂ ǔ ∂X 1 weakly in L 2 (ω × Y ), (7.29) T ε - ∂U δ 3 - ∂x 2 + R δ 1 - ⇀ Z - 2 + ∂ ǔ ∂X 2
weakly in L 2 (ω × Y ), (7.30)

T ε -(Π δ (u δ i -)) → 0 strongly in L 2 (Ω -× Y ), for i = 1, 2, 3, (7.31) 1 δ T ε -(Π δ (u δ i -)) ⇀ u 0 i -weakly in L 2 (ω × Y, H 1 ((-1, 0))), for i = 1, 2, 3, (7.32) T ε - Π δ ∂u δ i - ∂x α ⇀ ∂ u 0 i ∂X α weakly in L 2 (Ω -× Y ), for i = 1, 2, 3
, and α = 1, 2, (7.33)

T ε - Π δ ∂u δ i - ∂x 3 ⇀ ∂u 0- i ∂X 3 weakly in L 2 (Ω -× Y ), for i = 1, 2, 3, (7.34) 
as δ tends to 0. Moreover the functions u 

0 i satisfy 0 -1 u 0 i dX 3 = 0 -1 X 3 + 1 2 u 0 α dX 3 = 0 a.e
U 0 i , R 0 α ∈ L 2 (ω, H 1 per (Y )
) such that (7.24) and (7.28) are valid and a priori

δT ε - ∂U δ 3 - ∂x α ⇀ ∂U 0 3 - ∂x α + ∂ U 0 3 ∂X α weakly in L 2 (Ω -× Y ), for α = 1, 2. (7.36)
Actually U 0 3 = 0. Indeed we have by (6.29)

δ T ε - ∂U δ- 3 ∂x 1 + T ε -R δ 2 - L 2 (Ω -×Y ) ≤ cδ
and by (7.27) and (7.36)

δ T ε - ∂U δ- 3 ∂x 1 + T ε -R δ 2 - ⇀ ∂U 0- 3 ∂x 1 + ∂ U 0 3 ∂X 1 + R 0 2 -weakly in L 2 (Ω -× Y ).
In view of (7.21), we obtain

∂ U 0 3 ∂X 1 = 0. Similarly, (7.20) leads to ∂ U 0 3 ∂X 2 = 0. Since U 0
3 is defined up to a constant (it is only defined through its gradient with respect to (X 1 , X 2 ); see Lemma A1 of Appendix A), one obtains U 0 3 = 0 and (7.26) is established.

As far as u δ- i is concerned, we have using (6.25)

1 δ T ε -(Π δ u δ i -) L 2 (Ω -×Y ) ≤ c δ Π δ u δ i - L 2 (Ω -) ≤ c (7.37)
so which leads to (7.31). Moreover (see Appendix A)

1 δ ∂ ∂X α T ε -(Π δ u δ i -) L 2 (Ω -×Y ) ≤ ε δ ∂ ∂x α Π δ u δ i - L 2 (Ω -) ≤ cδ 1 2 ,
for i = 1, 2, 3 and α = 1, 2, by (6.13). Then (7.37) shows that the weak limit in

L 2 (Ω -× Y ) of 1 δ T ε -(Π δ u δ i -) is actually independent of (X 1 , X 2 ).
Let us emphasize that this last result strongly uses ε δ → 0. As a consequence of Lemma A1 iv), we deduce that the weak limits of

1 δ T ε -(Π δ u δ i -) and 1 δ Π δ (u δ i -)
are the same and (7.32) is proved.

The existence of u 0 such that (7.33) holds true is a direct consequence of (6.13), (7.31) and Lemma A1 of Appendix A. Since 

T ε - Π δ ∂u δ i - ∂x 3 = 1 δ T ε - ∂ ∂X 3 Π δ u δ i - = 1 δ ∂ ∂X 3 T ε -Π δ u δ i - , the 
u 0 i dX 3 is independent of the local variable (X 1 , X 2 ).
Proceeding identically, starting form (3.11) yields that the function 0 -1 

X 3 + 1 2 u 0 α dX 3 is also independent of (X 1 , X 2 ). Since u 0 i is defined up to a
(X 1 , X 2 ) of a function ǔ ∈ L 2 (ω, H 1 per (Y )), as if (R δ 2 -, R δ 1 -
) was a gradient with respect to the variable (x 1 , x 2 ). Actually, this is a consequence of the H 1 (ω)-estimate on R δ α -and to shorten the proof of the actual lemma, (7.29) and (7.30) is established in Lemma A3 of Appendix B.

We are now in a position to identify the X ij 's which are defined in (6.33). Due to the decomposition (3.9) of u δ

γ αβ (u δ ) = γ αβ (U δ -) + γ αβ (R δ -∧ e 3 ) x 3 + δ 2 + γ αβ (u δ -), (7.38) γ 13 (u δ ) = 1 2 R δ 2 -+ ∂U δ 3 - ∂x 1 + ∂u δ 1 - ∂x 3 + ∂u δ 3 - ∂x 1 , (7.39) 
γ 23 (u δ ) = 1 2 -R δ 1 -+ ∂U δ 3 - ∂x 2 + ∂u δ 2 - ∂x 3 + ∂u δ 3 - ∂x 2 , (7.40) 
γ 33 (u δ ) = ∂u δ 3 - ∂x 3 , (7.41) 
Remark that Π δ (w) = w for any function w which is independent of x 3 . Applying T ε -• Π δ to (7.38)÷(7.41) and passing to the limit as δ tends to 0 with the help of Lemma 7.1 give

X - αβ = γ αβ (U 0 -) + X 3 + 1 2 γ αβ (R 0 -∧ e 3 )+ Γ αβ ( U 0 ) + X 3 + 1 2 Γ αβ ( R 0 ∧ e 3 ) + Γ αβ ( u 0 ), (7.42) 
X - 13 = 1 2 Z - 1 + ∂u 0 1 - ∂X 3 + ∂ ǔ ∂X 1 + ∂ u 0 3 ∂X 1 , (7.43) 
X - 23 = 1 2 Z - 2 + ∂u 0 2 - ∂X 3 + ∂ ǔ ∂X 2 + ∂ u 0 3
∂X 2 , (7.44)

X - 33 = ∂u 0 3 - ∂X 3 . ( 7 
.45)

Limit kinematic conditions

Proceeding again as in Section 5.5 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], we first obtain from (4.11), (6.18) on one hand, and (4.14), (6.19) on the other hand By contrast with [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], here estimates (4.13) and (6.19) does not permit to conclude that the components R 0 α + vanish on ω (and we will see later that this is not the case). We turn now to the continuity condition between U 0 3 + and U 0 3 -on ω and the argument is identical of that used in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]. We consider the function defined by w δ = δu δ 3 in Ω + ε and (6.21) and (6.31), we can repeat the argument used in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] (see again Section 5.5) for u ε 3 , with w δ in place of u ε 3 , in order to obtain U 0

U 0 α + (x 1 , x 2 , 0) = 0, a.e. in ω, for α = 1, 2, ( 7 
w δ = δΠ δ (u δ 3 ) in Ω -. Since T ε (w δ ) is bounded in L 2 (ω × D, H 1 ((-1, L)) by
3

-(x 1 , x 2 ) = U 0 3 + (x 1 , x 2 ) in ω. (7.48)
Now we investigate the more intricate question of the transmission condition on R 0+ α (•, •, 0) on ω. To this end we go back to the definition of R δ+ α (see (3.2) and (3.3)) and use the continuity of the trace of u δ on ω to write

R δ+ 1 (x 1 , x 2 , 0) = 1 I 2 r 4 Dpq (x 2 -εq)u δ 3 (x 1 , x 2 , 0)dx 1 dx 2 , if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (p, q) ∈ N ε , R δ+ 1 (x 1 , x 2 , 0) = 0, if (x 1 , x 2 ) ∈ ω \ ω ε . (7.49)
Then we use the decomposition of u δ 3 given in (3.9) which leads to

δR δ+ 1 (x 1 , x 2 , 0) = T δ 1 + T δ 2 , (7.50) 
where T δ 1 and T δ 2 are the functions which are constant and equal to

T δ 1 = δ I 2 r 4 Dpq (x 2 -εq)U δ 3 -(x 1 , x 2 )dx 1 dx 2 , T δ 2 = δ I 2 r 4 Dpq (x 2 -εq)u δ 3 -(x 1 , x 2 , 0)dx 1 dx 2 , on each cell εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (p, q) ∈ N ε , and T δ 1 = T δ 2 = 0 if (x 1 , x 2 ) ∈ ω \ ω ε .
In view of (4.62) and (4.63) and since r 2 = k 2 ε 2 = a 2 δ 3 , we have

T δ 2 2 L 2 (ω) ≤ cδ, so that T δ 2 → 0 strongly in L 2 (

ω). As far as T δ

1 is concerned, we write

T δ 1 = δ I 2 r D X 2 U δ 3 -(pε + rX 1 , qε + rX 2 )dX 1 dX 2 .
According to (6.27)÷(6.30) the sequence {δU δ- 3 } is actually compact in H 1 (ω) and converges to U 0 3 -. We appeal now to Lemma A2 (ii) of Appendix A to claim that

T δ 1 → ∂U 0 3 - ∂x 2 strongly in L 2 (ω), (7.51) 
as δ → 0. Then passing to the limit in (7.50), and with an identical proof for R δ+ 2 , we obtain in view of (6.19), (7.1), (7.2), (7.51), Let us remark that, since ε ∼ δ 3 2 , the ratios between the order of the estimates on T ε (σ δ ), T ε (u δ+ ) and T ε (R δ+ 3 ) are exactly the same as in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]. Using the expressions (7.11)÷(7.16) of Σ + ij and repeating exactly the argument developed in Subsections 6.1 and 6.2 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] permit to obtain u 0+ 3 = R 0+ 3 = 0 and

R 0 1 + = - ∂U 0 2 + ∂x 3 = ∂U 0 3 - ∂x 2 in ω, (7.52) R 0 2 + = ∂U 0 1 + ∂x 3 = - ∂U 0 3 - ∂x 1 in ω, ( 7 
u 0 1 + = ν -aX 1 ∂W 0+ 3 ∂x 3 + a 2 X 2 1 -X 2 2 2 ∂ 2 U 0+ 1 ∂x 2 3 + a 2 X 1 X 2 ∂ 2 U 0+ 2 ∂x 2 3 , u 0 2 + = ν -aX 2 ∂W 0+ 3 ∂x 3 + a 2 X 1 X 2 ∂ 2 U 0+ 1 ∂x 2 3 + a 2 X 2 2 -X 2 1 2 ∂ 2 U 0+ 2 ∂x 2 3 
,

where ν = λ 2(λ + µ)
is the Poisson coefficient of the material.

As a consequence, we obtain

Σ + 11 = Σ + 22 = Σ + 12 = Σ + 13 = Σ + 23 = 0, a.e. in Ω + × D, (8.1) 
Σ + 33 = E ∂W 0+ 3 ∂x 3 -aX 1 ∂ 2 U 0+ 1 ∂x 2 3 -aX 2 ∂ 2 U 0+ 2 ∂x 2 3 , a.e. in Ω + × D, (8.2) 
where E = µ(3λ + 2µ) λ + µ is the Young modulus of the elastic material.

Determination of W 0+ 3

We recall the definition (7.8) of W δ 3 + so that W δ 3 + (x 1 , x 2 , 0) = 0 and then by (7.9)

W 0+ 3 (x 1 , x 2 , 0) = 0 a.e. in ω. (8.3)
In order to show that W 0+ 3 = 0 in Ω + , we repeat the analysis of Section 6.3 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] with W 0+

3 in place of U 0 3 and for a test function v = (0, 0, v 3 ) with v 3 ∈ C ∞ 0 (ω×]0, L]). We obtain 2

Ω + ×D Σ + 13 γ 13 (v)dx 1 dx 2 dx 3 dX 1 dX 2 + 2 Ω + ×D Σ + 23 γ 23 (v)dx 1 dx 2 dx 3 dX 1 dX 2 + Ω + ×D Σ + 33 γ 33 (v)dx 1 dx 2 dx 3 dX 1 dX 2 =lim ε→0 Ω + ×D T ε (f + 3 )T ε (v 3 )dx 1 dx 2 dx 3 dX 1 dX 2 .
In view of the assumption (4.47), we have

T ε (f + 3 ) = δ 2 T ε (F + 3
) and then, using (8.1)

Ω + ×D Σ + 33 γ 33 (v)dx 1 dx 2 dx 3 dX 1 dX 2 = 0.
Appealing now the expression (8.2) of Σ + 33 shows that W 0+ 3 ∈ L 2 (ω, H 1 (0, L)) is a solution of the problem (see again Section 6.3 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF])

∂ 2 W 0+ 3 ∂x 2 3 = 0 in Ω + , ∂W 0+ 3 ∂x 3 = 0 on ω × {L},
which together with the boundary condition (8.3) yields

W 0+ 3 = 0 in Ω + . (8.4)
8.3 Determination of U 0 , R 0 , ǔ and u 0

In this subsection, we prove that u 0 = R 0 = ǔ = u 0 = 0. Let us emphasize that this result is not only the consequence of the homogeneous character of the plate Ω -, it is also strongly linked to the fact that ε δ tends to 0. This means that even for a homogeneous material plate Ω -, if ε δ does not tends to 0 (for example if δ = ε) then the periodic character of the rods above the plate can induce microscopic effects on the limit model in Ω -. This phenomenon has already investigated in [START_REF] Blanchard | Highly Oscillating Boundaries and Reduction of Dimension: the Critical Case[END_REF] for a conduction problem. We will examine the case δ = ε for the elastic problem in a forthcoming paper.

In order to focus on the microscopic behavior of σ δ ij in Ω - δ , we choose in (2.19) the following test function

v i (x 1 , x 2 , x 3 ) = εϕ(x 1 , x 2 )ψ x 3 δ χ i x 1 -pε ε , x 2 -qε ε , (8.5) 
where ϕ ∈ C ∞ 0 (ω), ψ ∈ C ∞ 0 ((-1, 0)) and χ i ∈ H 1 per (Y ). Remark that, since ϕ and ψ are smooth and χ i is periodic, we have v i ∈ V ε , (V ε is defined in (2.18) with r 2 = k 2 ε 2 = a 2 δ 3 ), and also v i = 0 in Ω + ε .

Transforming

Ω - δ 3 i,j=1 σ δ ij γ ij (v) by application of T ε -• Π δ (see (5.
3) and Appendix A), we obtain (for ε small enough such that suppϕ ⊂ ω ε )

δ

Ω -×Y T ε -Π δ (σ δ ij ) T ε -(Π δ (γ ij (v))) dx 1 dx 2 dX 3 dX 1 dX 2 = δ 2 α=1 Ω -×Y T ε -F - α T ε -(Π δ v α ) dx 1 dx 2 dX 3 dX 1 dX 2 + δ 2 Ω -×Y T ε -F - 3 T ε -(Π δ v 3 ) dx 1 dx 2 dX 3 dX 1 dX 2 .
(8.6)

To pass to the limit as ε tends to 0 and δ to 0 in (8.6), we first notice that

T ε -(Π δ v i ) = ε T ε -ϕ (x 1 , x 2 , X 1 , X 2 )ψ(X 3 )χ i (X 1 , X 2 ), for i=1,2,3 so that T ε -(Π δ v i ) → 0 strongly in L 2 (Ω -× Y ), for i=1,2 ,3, (8.7) 
as δ tends to zero. Moreover,

T ε -F - i → F - i strongly in L 2 (Ω -× Y ), for i=1, 2,3. (8.8) 
Then, using the rules (5.4), (5.5) and Appendix A to commute the spatial derivatives with the operators T ε -and Π δ ,

T ε -(Π δ γ αβ (v)) = εψ T ε -(ϕ) 1 ε Γ αβ (χ) - 1 2 T ε - ∂ϕ ∂x α χ β + T ε - ∂ϕ ∂x β χ α (δ αβ -1)+ T ε - ∂ϕ ∂x α χ β δ αβ , (8.9) 
T ε -(Π δ γ α3 (v)) = ε 2 1 δ ψ ′ T ε -(ϕ)χ α + T ε - ∂ϕ ∂x α χ 3 ψ + ψϕ 1 ε ∂χ 3 ∂X α , (8.10) 
T ε -(Π δ γ 33 (v)) = ε δ ψ ′ T ε -(ϕ)χ 3 . (8.11)
Appealing now to the strong convergence of T ε -(ϕ) and of T ε -∂ϕ ∂x α for α = 1, 2, in L 2 (ω × Y ), and using the fact that ε δ → 0, we obtain

T ε -(Π δ γ αβ (v)) → ψϕΓ αβ (χ) strongly in L 2 (Ω -× Y ), (8.12 
)

T ε -(Π δ γ α3 (v)) → 1 2 ψϕ ∂χ 3 ∂X α strongly in L 2 (Ω -× Y ), (8.13) T ε -(Π δ γ 33 (v)) → 0 strongly in L 2 (Ω -× Y ), (8.14) 
as δ tends to 0. At last, the constitutive law (2.13) together with the convergence (6.33) and (6.34) lead to show that the contribution of the macroscopic fields U 0 -, R 0 -and u 0 -vanish in (8.16) because χ is periodic with respect to the variables (X 1 , X 2 ) (recall that ϕ(x 1 , x 2 ), ψ(X 3 )) and the plate is homogeneous.

Σ - ij = λ 3 k=1 X - kk δ ij + 2µX - ij for i, j = 1,
Recall that equation (8.16) is valid for any function ϕ ∈ C ∞ 0 (ω) and any function ψ ∈ C ∞ 0 ((-1, 0)) (and any χ ∈ (H 1 per (Y )) 3 ). Then it is true for any, say, ϕ ∈ C(ω) (which is standard for a local problem) but also for any ψ ∈ C([-1, 0]) which is a consequence of (8.14) that itself comes from the fact that ε δ → 0 (see (8.11)). This means that the local problem (8.16) is independent of the periodic asymptotic behavior of the rods on the surface x 3 = 0 as soon as ε δ → 0. This will lead to the nullity of the local fields U 0 , R 0 and u 0 as shown below.

We localize (8.16) with respect to (x 1 , x 2 ) ∈ ω. Then we first choose χ 3 = 0 and define the displacement

u 1 (x 1 , x 2 , X 3 , X 1 , X 2 ) = U 0 1 (x 1 , x 2 , X 1 , X 2 ) + X 3 + 1 2 R 0 2 (x 1 , x 2 , X 1 , X 2 ) + u 0 1 (x 1 , x 2 , X 3 , X 1 , X 2 ), u 2 (x 1 , x 2 , X 3 , X 1 , X 2 ) = U 0 2 (x 1 , x 2 , X 1 , X 2 ) -X 3 + 1 2 R 0 1 (x 1 , x 2 , X 1 , X 2 ) + u 0 1 (x 1 , x 2 , X 3 , X 1 , X 2 )
and we obtain 

u α dX 1 dX 2 = 0 for α = 1, 2.
For almost X 3 ∈] -1, 0[, Problem (8.17) is then an elastic 2d-problem with periodic boundary conditions on ∂Y and with no applied forces. As a consequence of a standard result, we obtain u α = 0, α = 1, 2. Now because of (7.35),

U 0 α = 0 -1 u α dX 3 = 0, R 0 1 = - 1 12 0 -1 X 3 + 1 2 u 2 dX 3 = 0, (8.18) R 0 2 = 1 12 0 -1 X 3 + 1 2 u 1 dX 3 = 0,
and then, u 0 α = 0. It remains to show that u 0 3 = 0. To this end, we choose χ α = 0, α = 1, 2, in (8.16) and this gives As a conclusion of this subsection, since U 0 = R 0 = u 0 = ǔ = 0, the weak limits X - ij and Σ - ij on one hand and X ij and Σ ij on the other hand are the same and in particular

0 -1 Y µ ∂ ∂X 1 (ǔ + u 0 3 ) ∂χ 3 ∂X 1 + ∂ ∂X 2 (ǔ + u 0 3 ) ∂χ 3 ∂X 2 ψ(X 3 )dX 1 dX 2 dX 3 = 0 (8.
Σ - αβ = Σ - αβ = λ 2 z=1 γ zz (U 0 -) + X 3 + 1 2 γ zz (R 0 -∧ e 3 ) + ∂u 0 3 - ∂X 3 δ αβ + 2µ γ αβ (U 0 -) + X 3 + 1 2 γ αβ (R 0 -∧ e 3 ) + Γ αβ (u 0 ) , for α = 1, 2, (8.20) Σ - α3 = Σ - α3 = µ Z - α + ∂u 0 α - ∂X 3 , for α = 1, 2. (8.21) Σ - 33 = Σ - 33 = λ 2 z=1 γ zz (U 0 -) + X 3 + 1 2 γ zz (R 0 -∧ e 3 ) + ∂u 0 3 - ∂X 3 + 2µ ∂u 0
Remark 8.1. Although this is not the goal of the present paper, let us briefly explain how the analysis developed above can permit to handle the case where the elastic coefficients λ 1 , µ 1 in the rods are different from the plate ones λ 2 , µ 2 and for the physical case where the rods Ω + ε are clamped into the plate. This means that each rod would have a length equal to δ + L so that the elastic coefficients in the plate would be λ(

x 1 , x 2 ) = λ 1 χ D ε pq (x 1 , x 2 ) + λ 2 (1 -χ D ε pq (x 1 , x 2 )), µ(x 1 , x 2 ) = µ 1 χ D ε pq (x 1 , x 2 ) + µ 2 (1 -χ D ε pq (x 1 , x 2 )) if (x 1 , x 2 ) ∈ ω ε and λ(x 1 , x 2 ) = λ 2 , µ(x 1 , x 2 ) = µ 2 if (x 1 , x 2 ) ∈ ω \ ω ε .
Then the right hand side of (8.16) is not zero and it involves the macroscopic fields U 0-, R 0-and u 0 -. It results two right hand sides with the same dependence in the two uncoupled problems (8.17) and (8.19). Using the relations (8.18) and the properties of ǔ and u 0 3 , each field U 0 α , R 0 α , u 0 α , ǔ and u 0 3 can be expressed in terms of U 0-, R 0-and u 0 -. Inserting this dependence into (7.42)÷(7.45), one obtains a constitutive law between U 0-, R 0-, u 0 -and Σ which takes into account the homogenization process in the plate Ω -. With this new constitutive law, the analysis that follows can be achieved with the same tools (as far as homogenization of plate models are concerned the reader is referred to [START_REF] Damlamian | Homogenization Limits of the Equations of Elasticity in Thin Domains[END_REF]).

Determination of u

0 -and Z - 1 , Z - 2 .
We prove that Z - α = u 0 α -= 0 for α = 1, 2 and we give the expression of u 0- 3 as a function of U 0 -.

We start with (2.19) and plug the test function

v α (x 1 , x 2 , x 3 ) = δϕ α (x 1 , x 2 )ψ x 3 δ for α = 1, 2, v 3 (x 1 , x 2 , x 3 ) = 0,
where ϕ α ∈ C ∞ 0 (ω) for α = 1, 2 and ψ ∈ C ∞ ([-1, 0]) and ψ(0) = 0. Then we transform the integrals on Ω - δ through application of Π δ (the last function is identically 0 on Ω + ε ), it gives after passing to the limit as δ → 0 (using (8.21))

2 α=1 Ω - ϕ α Z - α + ∂u 0 α - ∂X 3 ψ ′ dx 1 dx 2 dX 3 = 0.
Since the ϕ α 's are arbitrary in C ∞ 0 (ω) and Z - α ∈ L 2 (ω), we obtain Z - α X 3 + u 0 α -= 0 for a.e. (x 1 , x 2 , X 3 ) ∈ Ω -and α = 1, 2.

Using now the kinematic conditions (7.54) and (7.55) on u 0 α -, it is easy to deduce that

u 0 α -= Z - α = 0.
In order to derive u 0- 3 , we use, as test function in (2. [START_REF] Griso | Décomposition des déplacements d'une poutre : simplification d'une problème d'élasticité[END_REF])

v α (x 1 , x 2 , x 3 ) = 0, v 3 (x 1 , x 2 , x 3 ) = δϕ(x 1 , x 2 )ψ x 3 δ , where ϕ ∈ C ∞ 0 (ω), ψ ∈ C ∞ ([-1, 0]
) and ψ(0) = 0. Proceeding as above now leads to (using (8.22))

Ω - ϕ λ 2 α=1 ∂U 0 α - ∂x α + X 3 + 1 2 ∂R 0 2 - ∂x 1 -X 3 + 1 2 ∂R 0 1 - ∂x 2 ψ ′ + (λ + 2µ) ∂u 0 3 - ∂X 3 ψ ′ = 0
According to (7.20) and (7.21) and to the kinematic conditions (7.54) and (7.55) on u 0- 3 , the solution of the above problem is given by (see [START_REF] Griso | Asymptotic Behavior of Structures Made of Plates[END_REF])

u 0 3 -= λ λ + 2µ -X 3 + 1 2 ∂U 0 1 - ∂x 1 + ∂U 0 2 - ∂x 2 + (X 3 + 1 2 ) 2 2 - 1 24 ∆U 0 3 -. (8.23)
As a conclusion of this subsection we have, through inserting (8.23) into (8.20)÷(8.22) and in (7.42)÷(7.45)

Σ - 11 = Σ - 11 = E 1 -ν 2 ∂U 0 1 - ∂x 1 -X 3 + 1 2 ∂ 2 U 0 3 - ∂x 2 1 + ν ∂U 0 2 - ∂x 2 -X 3 + 1 2 ∂ 2 U 0 3 - ∂x 2 2 , (8.24) Σ - 22 = Σ - 22 = E 1 -ν 2 ∂U 0 2 - ∂x 2 -X 3 + 1 2 ∂ 2 U 0 3 - ∂x 2 2 + ν ∂U 0 1 - ∂x 1 -X 3 + 1 2 ∂ 2 U 0 3 - ∂x 2 1 , (8.25) 
Σ

- 12 = Σ - 12 = µ ∂U 0 1 - ∂x 2 + ∂U 0 2 - ∂x 1 -2 X 3 + 1 2 ∂ 2 U 0 3 - ∂x 1 ∂x 2 , (8.26) 
Σ - 13 = Σ - 23 = Σ - 33 = Σ - 13 = Σ - 23 = Σ - 33 = 0. (8.27) X - αβ = X - αβ = γ αβ (U 0 -) -X 3 + 1 2 ∂ 2 U 0 3 - ∂x α ∂x β , (8.28) X - α3 = 0 for α = 1, 2 (8.29) X - 33 = X - 33 = λ λ + 2µ - ∂U 0 1 - ∂x 1 + ∂U 0 2 - ∂x 2 + X 3 + 1 2 ∆U 0 3 -. (8.30) 
The two next sections are devoted to derive the PDE's of the limit problem.

9 The uncoupled "membrane" model in Ω -.

For a single plate Ω -= ω×] -1, 0[, the very standard method to obtain the "membrane" equation in ω consists in choosing in the variational formulation a test function of the type v α (x 1 , x 2 ), α = 1, 2 and v 3 = 0 with v i smooth enough and v α = 0 on ∂ω. It results a deformation field such that γ i3 (v) = 0 in Ω - δ , for i = 1, 2, 3. For the present problem under investigation, this simple choice of the test function in (2.19) indeed involves a contribution of the part Ω + ε of the domain. But the requested type of test functions in Ω + ε in order to obtain rods models is not compatible with the structure of the field v α (x 1 , x 2 ), v 3 = 0 (see [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]). This means that we have to choose a test function in (2.19) which does not depend on x 3 and which vanishes in Ω + ε . Then it has to depend on the "microscopic" variables x 1pε ε ,

x 2qε ε , i.e. it exhibits oscillations with respect to x 1 , x 2 . As a consequence we will have to deal with an oscillating test function of (x 1 , x 2 ) in ω. This is the very reason why we introduce the unfold periodic fields of γ ij (u δ ) and σ δ ij in Ω - δ , even if Ω - δ is homogeneous. We are now in a position to construct an adequate test function in (2.19). Let us consider a function Φ ∈ H 1 0 (Y ) such that Φ = 1 in D k (here

D k = D(0, k)). Let V α be in C ∞ 0 (ω) for α = 1, 2. We define then the functions in Ω ε v ε α (x 1 , x 2 ) = Φ x 1 -pε ε , x 2 -qε ε V α (pε, qε)+ 1 -Φ x 1 -pε ε , x 2 -qε ε V α (x 1 , x 2 ), for α = 1, 2, for (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (p, q) ∈ N ε . (9.1) 
Remark that v ε α is well defined for ε small enough such that supp(v α ) ⊂ ω ε . Indeed

v ε = (v ε 1 , v ε 2 , 0) ∈ V ε (see (2.18
)) and it is then an admissible test function in (2.19). Moreover, since Φ = 1 in D k and v ε 3 = 0, we have firstly

γ ij (v ε ) = 0 a.e. in Ω + ε , for i, j = 1, 2, 3, (9.2) 
and secondly, in Ω -

δ γ αβ (v ε )(x 1 , x 2 ) = 1 -Φ x 1 -pε ε , x 2 -qε ε γ αβ (V )(x 1 , x 2 )+ 1 2ε (V α (pε, qε) -V α (x 1 , x 2 )) ∂Φ ∂X β x 1 -pε ε , x 2 -qε ε + (V β (pε, qε) -V β (x 1 , x 2 )) ∂Φ ∂X α x 1 -pε ε , x 2 -qε ε for α, β = 1, 2, for (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (p, q) ∈ N ε . (9.3) γ i3 (v ε ) = 0 a.e. in Ω - δ for i = 1, 2 , 3. (9.4) 
Defining the piecewise constant function Ṽ ε α by (see Section 5.5 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF])

     Ṽ ε α (x 1 , x 2 ) = V α (pε, qε) if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , Ṽ ε α (x 1 , x 2 ) = 0 otherwise, (9.5) 
and applying

T ε -• Π δ to (9.3) give T ε -Π δ (γ αβ (v ε )) = (1 -Φ (X 1 , X 2 )) T ε -Π δ γ αβ (V ) + 1 2ε Ṽ ε α -T ε -(Π δ V α ) ∂Φ ∂X β + Ṽ ε β -T ε -(Π δ V β ) ∂Φ ∂X α a.e. in Ω -× Y, (9.6) 
while (9.4) gives

T ε -Π δ (γ i3 (v ε )) = 0 a.e. in Ω -× Y. (9.7) Now since γ ij (v ε ) = 0 in Ω + ε , starting with (2.19) with v = v ε gives (as soon as supp(v ε α ) ⊂ ω ε , for α = 1, 2), i.e. 3 i,j=1 Ω -×Y T ε -Π δ (σ δ ij ) T ε -Π δ (γ ij (v ε )) dx 1 dx 2 dx 3 dX 1 dX 2 = 2 α=1 Ω -×Y T ε -F - α T ε -Π δ v ε α dx 1 dx 2 dx 3 dX 1 dX 2 . (9.8) 
In order to pass to the limit as ε tends to zero (and δ tends to zero) in (9.8), first remark that (see again Section 5.5 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF])

T ε -Π δ (v ε α ) = Φ Ṽ ε α + (1 -Φ)T ε -(V α ) a.e. in Ω -× Y,
so that applying Lemma A1 of Appendix A ( and since e.g.

Ṽ ε α → V α strongly in L ∞ (Ω -×Y )), T ε -Π δ (v ε α ) → V α strongly in L 2 (Ω -× Y ), for α = 1, 2,
as ε tends to zero. We obtain from (9.8)

lim ε→0 2 α,β=1 Ω -×Y T ε -Π δ (σ δ αβ ) T ε -(Π δ (γ αβ (v ε ))) dx 1 dx 2 dx 3 dX 1 dX 2 = 2 α=1 Ω -×Y F - α V α dx 1 dx 2 dx 3 dX 1 dX 2 . (9.9) 
To compute the limit in (9.9), we first use the smooth character of γ αβ (V ) to obtain

T ε -Π δ (γ αβ (V )) → γ αβ (V ) strongly in L 2 (Ω -× Y ), for α = 1, 2, (9.10) 
as ε tends to zero. Then we appeal to a result established in Lemma A1 (iii) of Appendix A, namely

1 ε [ Ṽ ε α -T ε -Π δ V α ) ] → - ∂V α ∂x 1 X 1 - ∂V α ∂x 2 X 2 strongly in L 2 (Ω -× Y ), for α = 1, 2, (9.11) 
as ε → 0. In view of (6.34), (8.15), (9.4)÷(9.7), (9.10) and (9.11), the equality (9.9) implies that

2 α,β=1 Ω -×Y Σ - αβ (1 -Φ)γ αβ (V ) - 1 2 ∂V α ∂x 1 X 1 + ∂V α ∂x 2 X 2 ∂Φ ∂X β - 1 2 ∂V β ∂x 1 X 1 + ∂V β ∂x 2 X 2 ∂Φ ∂X α dx 1 dx 2 dX 1 dX 2 = 2 α=1 Ω - F α V α dx 1 dx 2 , (9.12) 
for any

V α ∈ C ∞ 0 (ω), α = 1, 2 , and any Φ ∈ H 1 0 (Y ) such that Φ = 1 in D k . Now, remark that for Φ ∈ H 1 0 (Y ) Y ∂Φ ∂X α X γ dX 1 dX 2 = -δ αγ Y ΦdX 1 dX 2 for α, γ = 1, 2.
Then, we have for α, β = 1, 2,

2 γ=1 ∂V α ∂x γ Y X γ ∂Φ ∂X β dX 1 dX 2 = - ∂V α ∂x β Y ΦdX 1 dX 2 and 2 γ=1 ∂V β ∂x γ Y X γ ∂Φ ∂X α dX 1 dX 2 = - ∂V β ∂x α Y ΦdX 1 dX 2 .
It follows that, from (9.12) and because Σ -

αβ does not depend on (X 1 , X 2 ) (see (8.24)÷(8.26)) 2 α,β=1 Ω - Σ - αβ γ αβ (V ) Y (1 -Φ)dX 1 dX 2 + γ αβ (V ) Y ΦdX 1 dX 2 dx 1 dx 2 = 2 α=1 Ω - F α V α dx 1 dx 2 ,
or equivalently

2 α,β=1 Ω - Σ - αβ γ αβ (V )dx 1 dx 2 = 2 α=1 Ω - F α V α dx 1 dx 2 , (9.13) 
for any V α ∈ C ∞ 0 (ω), α = 1, 2. In view of the expressions (8.24)÷(8.26) of Σ αβ = Σ - αβ , the variational problem (9.13) (indeed by density, one can take V α ∈ H 1 0 (ω), for α = 1, 2) is the standard "membrane" problem for (U 0 1

-, U 0 2 -) ∈ H 1 0 (ω), which reads as E 1 -ν 2 ω (1 -ν) 2 α,β=1 γ αβ (U 0 -)γ αβ (V ) + ν 2 δ=1 γ δδ (U 0 -) 2 δ=1 γ δδ (V ) dx 1 dx 2 = ω 0 -1 F - α dX 3 V α dx 1 dx 2 , (9.14) 
for any

V = (V 1 , V 2 ) ∈ (H 1 0 (ω)) 2 .
10 The coupled model for the bending in the rods and in the plate.

In view of the transmission conditions (7.52) and (7.53) on ω between (U 0 1 + , U 0 2 + ) (which describes the bending in the rods) and U 0 3 -(which describes the bending in the plate), we have to built a test function in Ω ε in such a way that these two behaviors are coupled after passing to the limit as ε tends to 0. Then, loosely speaking, this test function must be a displacement of Bernoulli-Navier's type in Ω + ε (see e.g. Section 6.2 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]) and a displacement of Kirchhoff-love's type in Ω - δ . As a consequence and as in the previous section, this leads to deal with oscillating functions in Ω - δ . Recall that we denote by Φ a function in

H 1 0 (Y ) such that Φ = 1 in D k .
Let us consider φ and V 3 in C ∞ 0 (ω) and z 1 , z 2 ∈ C ∞ 0 ((0, L]). We construct a test field

v ε = (v ε 1 , v ε 2 , v ε 3 ) ∈ V ε as follows.
In Ω + ε , we set for (x 1 , x 2 ) ∈ D ε pq ((p, q) ∈ N ε ) and

x 3 ∈ [0, L] v ε α (x 1 , x 2 , x 3 ) = 1 δ ϕ(εp, εq)z α (x 3 ) - ∂V 3 ∂x α (εp, εq) x 3 + δ 2 , (10.1) 
v ε 3 (x 1 , x 2 , x 3 ) = 1 δ V 3 (εp, εq) -(x 1 -εp) ϕ(εp, εq)z ′ 1 (x 3 ) - ∂V 3 ∂x 1 (εp, εq) - (x 2 -εq) ϕ(εp, εq)z ′ 2 (x 3 ) - ∂V 3 ∂x 2 (εp, εq) , (10.2) 
Remark again that v ε i is well defined in Ω + ε for ε small enough, since ϕ and V 3 have compact support in ω.

In Ω - δ , we set

v ε α (x 1 , x 2 , x 3 ) = 1 δ x 3 + δ 2 Φ x 1 -εp ε , x 2 -εq ε - ∂V 3 ∂x α (εp, εq) + 1 -Φ x 1 -εp ε , x 2 -εq ε - ∂V 3 ∂x α (x 1 , x 2 ) for α = 1, 2, (10.3) 
v ε 3 (x 1 , x 2 , x 3 ) = 1 δ Φ x 1 -εp ε , x 2 -εq ε V 3 (εp, εq) + (x 1 -εp) ∂V 3 ∂x 1 (εp, εq)+ +(x 2 -εq) ∂V 3 ∂x 2 (εp, εq) + 1 -Φ x 1 -εp ε , x 2 -εq ε V 3 (x 1 , x 2 ) , (10.4) 
for (

x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 ((p, q) ∈ N ε ) and x 3 ∈] -δ, 0[ (remark again that v ε i is well defined in Ω - δ since V 3 has a compact support).
Let us first note that the two expressions of v ε i given by (10.1), (10.2) (for x 3 ≥ 0) and (10.3), (10.4) (for x 3 ≤ 0) match at

x 3 = 0 because Φ = 1 in D k and z α ∈ C ∞ 0 ((0, L]) (z 1 (0) = z 2 (0) = z ′ 1 (0) = z ′ 2 ( 
0) = 0) Proceeding as in Section 6.2 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], we have since ϕ, z 1 , z 2 and V 3 are smooth

δT ε (v ε α ) → ϕz α -x 3 ∂V 3 ∂x α strongly in L 2 (Ω + × D), for α = 1, 2, (10.5 
)

δT ε (v ε 3 ) → V 3 strongly in L 2 (Ω + × D), (10.6) 
and

T ε -(Π δ (v ε α )) → -X 3 + 1 2 ∂V 3 ∂x α strongly in L 2 (Ω -× Y ), for α = 1, 2, (10.7 
)

δT ε -(Π δ (v ε 3 )) → V 3 strongly in L 2 (Ω -× Y ), (10.8) 
as ε tends to 0 (or as δ tends to 0). We now derive the deformations γ ij (v ε ) separately in Ω + ε and Ω - δ . Firstly, an easy calculation shows that γ ij (v ε ) = 0 in Ω + ε for(i, j) = (3, 3), (10.9) and

γ 33 (v ε ) = - 1 δ (x 1 -εp)ϕ(εp, εq)z ′′ 1 (x 3 ) + (x 2 -εq)ϕ(εp, εq)z ′′ 2 (x 3 ) in Ω + ε . (10.10)
Secondly in Ω - δ , we have

γ αα (v ε ) = 1 δ x 3 + δ 2 1 ε ∂Φ ∂X α x 1 -εp ε , x 2 -εq ε ∂V 3 ∂x α (x 1 , x 2 ) - ∂V 3 ∂x α (εp, εq) -1 -Φ x 1 -εp ε , x 2 -εq ε ∂ 2 V 3 ∂x 2 α (x 1 , x 2 ) for α = 1, 2, (10.11) 
γ 12 (v ε ) = 1 δ x 3 + δ 2 1 2ε ∂Φ ∂X 1 x 1 -εp ε , x 2 -εq ε ∂V 3 ∂x 2 (x 1 , x 2 ) - ∂V 3 ∂x 2 (εp, εq) + 1 2ε ∂Φ ∂X 2 x 1 -εp ε , x 2 -εq ε ∂V 3 ∂x 1 (x 1 , x 2 ) - ∂V 3 ∂x 1 (εp, εq) - 1 -Φ x 1 -εp ε , x 2 -εq ε ∂ 2 V 3 ∂x 1 ∂x 2 (x 1 , x 2 ) , (10.12 
)

γ α3 (v ε ) = 1 2εδ ∂Φ ∂X α x 1 -εp ε , x 2 -εq ε V 3 (εp, εq) -V 3 (x 1 , x 2 ) +(x 1 -εp) ∂V 3 ∂x 1 (εp, εq) + (x 2 -εq) ∂V 3 ∂x 2 (εp, εq) for α = 1, 2, (10.13) 
γ 33 (v ε ) = 0. (10.14)
Remark that, since V 3 ∈ C ∞ 0 (ω), the relation (10.13) shows that

γ α3 (v ε ) L ∞ (ω) ≤ c ε δ for α = 1, 2. (10.15)
where c is a constant independent of ε.

Then we apply T ε to the relations (10.9) and (10.10) (as in Section 6.2 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF]) and using the notation φε for the analog of (9.5) (with ϕ in place of V α ), it gives T ε (γ ij (v ε )) = 0 for (i, j) = (3, 3), (10.16)

T ε (γ 33 (v ε )) = - r δ X 1 ϕ ε z ′′ 1 (x 3 ) + X 2 ϕ ε z ′′ 2 (x 3 ) . (10.17)
Due to r 2 = a 2 δ 3 and to the convergence of the function φε to ϕ e.g. in L ∞ (ω), we deduce that

δ -1 2 T ε (γ 33 (v ε )) → -a X 1 ϕz ′′ 1 + X 2 ϕz ′′ 2 strongly in L 2 (Ω + × D), (10.18) 
as ε tends to zero. Now applying T ε -• ⋄ δ to (10.11)÷(10.13), as in the previous section, leads to

T ε -Π δ (γ αβ (v ε )) = X 3 + 1 2 1 2ε ∂Φ ∂X α T ε - ∂V 3 ∂x β - ∂V 3 ∂x β ε + 1 2ε ∂Φ ∂X β T ε - ∂V 3 ∂x α - ∂V 3 ∂x α ε -(1 -Φ) T ε - ∂ 2 V 3 ∂x α ∂x β for α, β = 1, 2. (10.19) 
Using the smooth character of V 3 and the results of Lemma A1 (iii) of Appendix A (as in the previous section) permit to obtain

T ε -Π δ (γ αβ (v ε )) → X 3 + 1 2 1 2 ∂Φ ∂X α 2 γ=1 ∂ 2 V 3 ∂x γ ∂x β X γ + 1 2 ∂Φ ∂X β 2 γ=1 ∂ 2 V 3 ∂x γ ∂x α X γ -(1 -Φ) ∂ 2 V 3 ∂x α ∂x β strongly in L 2 (Ω -× Y ), for α, β = 1, 2.
(10.20) Note also that the estimates (10.15) indeed imply that

T ε -Π δ (γ α3 (v ε )) → 0 strongly in L 2 (Ω -× Y ), for α = 1, 2.
(10.21) as ε tends to 0. In order to obtain the limit problem as δ tends to 0, we choose v = v ε in (2.19) and we transform the integral over Ω + ε through application of T ε + and the integral over Ω - δ through application of T ε -• Π δ . We obtain, using the assumptions (4.47)÷(4.49) on the forces,

k 2 3 i,j=1 Ω + ×D T ε (σ δ ij )T ε (γ ij (v ε ))dx 1 dx 2 dx 3 dX 1 dX 2 +δ 3 i,j=1 Ω -×Y T ε -• Π δ (σ δ ij ) T ε -• Π δ (γ ij (v ε ))dx 1 dx 2 dX 3 dX 1 dX 2 = δ 2 k 2 3 i=1 Ω + ×D T ε (F + i )T ε (v ε )dx 1 dx 2 dx 3 dX 1 dX 2 +δ 2 α=1 Ω -×Y T ε -(F - α )T ε -(Π δ (v ε α ))dx 1 dx 2 dX 3 dX 1 dX 2 +δ 2 Ω -×Y T ε -(F - 3 )T ε -(Π δ (v ε 3 ))dx 1 dx 2 dX 3 dX 1 dX 2 .
(10. [START_REF] Gruais | Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée[END_REF] In what follows, we pass to the limit in the relation (10.22) divided by δ. We first have, in view of (10.4)÷(10.8)

lim δ→0 δk 2 3 i=1 Ω + ×D T ε (F + i )T ε (v ε )dx 1 dx 2 dx 3 dX 1 dX 2 + 2 α=1 Ω -×Y T ε -(F - α )T ε -(Π δ (v ε α ))dx 1 dx 2 dX 3 dX 1 dX 2 +δ Ω -×Y T ε -(F - 3 )T ε -(Π δ (v ε 3 ))dx 1 dx 2 dX 3 dX 1 dX 2 = k 2 Ω + ×D 2 α=1 F + α ϕz α -x 3 ∂V 3 ∂x α + F + 3 V 3 dx 1 dx 2 dx 3 dX 1 dX 2 + Ω -×Y - 2 α=1 F - α X 3 + 1 2 ∂V 3 ∂x α + F - 3 V 3 dx 1 dx 2 dX 3 dX 1 dX 2 (10.23)
Secondly, to pass to the limit as δ tends to zero in the left-hand side of (10.22) (divided by δ), we use (6.22), (10.16) and (10.18) for the integral over Ω + × D and (8.15), (10.14), (10.20)÷(10.21) for the integral over Ω -× Y , it gives

lim δ→0 k 2 δ 3 i,j=1 Ω + ×D T ε (σ δ ij )T ε (γ ij (v ε ))dx 1 dx 2 dx 3 dX 1 dX 2 + 3 i,j=1 Ω -×Y T ε -• Π δ (σ δ ij ) T ε -• Π δ (γ ij (v ε ))dx 1 dx 2 dX 3 dX 1 dX 2 = -k 2 a Ω + ×D Σ + 33 [X 1 ϕz ′′ 1 + X 2 ϕz ′′ 2 ]dx 1 dx 2 dx 3 dX 1 dX 2 + Ω -×Y 2 α,β=1 X 3 + 1 2 Σ - αβ 1 2 ∂Φ ∂X α 2 γ=1 ∂ 2 V 3 ∂x γ ∂x β X γ + 1 2 ∂Φ ∂X β 2 γ=1 ∂ 2 V 3 ∂x γ ∂x α X γ -(1 -Φ) ∂ 2 V 3 ∂x α ∂x β dx 1 dx 2 dX 3 dX 1 dX 2 .
(10.24)

Repeating exactly the argument which allowed to pass from (9.11) to (9.13) in the previous section (i.e. integrating by parts the contribution of ∂Φ ∂X α in the above equation) and using (10.23) and ( 10.24) lead to

-k 2 a Ω + ×D Σ + 33 [X 1 ϕz ′′ 1 + X 2 ϕz ′′ 2 ]dx 1 dx 2 dx 3 dX 1 dX 2 - Ω -×Y X 3 + 1 2 Σ - αβ ∂ 2 V 3 ∂x α ∂x β dx 1 dx 2 dX 3 dX 1 dX 2 = k 2 Ω + ×D 2 α=1 F + α ϕz α -x 3 ∂V 3 ∂x α + F + 3 V 3 dx 1 dx 2 dx 3 dX 1 dX 2 + Ω -×Y - 2 α=1 F - α X 3 + 1 2 ∂V 3 ∂x α + F - 3 V 3 dx 1 dx 2 dX 3 dX 1 dX 2 (10.25) 
We first choose z 1 = z 2 = 0 in (10.25). Using the expression (8.24)÷(8.26) of Σ - αβ this 40 gives the usual weak formulation of the plate problem for the displacement U 0

3 - E 12(1 -ν) ω (1 -ν 2 ) 2 α,β=1 ∂ 2 U 0 3 - ∂x α ∂x β ∂ 2 V 3 ∂x α ∂x β + ν∆U 0 3 -∆V 3 dx 1 dx 2 = k 2 π ω - 2 α=1 L 0 x 3 F + α dx 3 ∂V 3 ∂x α + L 0 F + 3 dx 3 V 3 dx 1 dx 2 + ω - 2 α=1 0 -1 X 3 + 1 2 F - α dX 3 ∂V 3 ∂x α + 0 -1 F - 3 dX 3 V 3 dx 1 dx 2 , (10.26) 
for any V 3 in C ∞ 0 (ω) and then by density for any V 3 in H 2 0 (ω). Indeed (10.26) leads to he usual operator ∆ 2 in the PDE for U 0 3 -(but remark that the forces F + i in the rods induce a bending in the plate):

E 12(1 -ν 2 ) ∆ 2 U 0 3 -= k 2 π L 0 F + 3 dx 3 + 2 α=1 L 0 x 3 ∂F + α ∂x α dx 3 + 0 -1 F - 3 dX 3 + 2 α=1 0 -1 X 3 + 1 2 ∂F - α ∂x α dX 3 , (10.27) 
which has a unique solution U 0

3

-∈ H 2 0 (ω). In order to obtain the rods equations in Ω + , we choose now V 3 = 0 in (10.25) and the expression (8.2) of Σ + 33 leads to

a 2 E Ω + ×D ϕ X 1 ∂ 2 U 0 1 + ∂x 2 3 + X 2 ∂ 2 U 0 2 + ∂x 2 3 (X 1 z ′′ 1 + X 2 z ′′ 2 )dx 1 dx 2 dx 3 dX 1 dX 2 = 2 α=1 Ω + ×D ϕF + α z α dx 1 dx 2 dx 3 dX 1 dX 2 .
(10.28)

Since z 1 , z 2 are arbitrary in C ∞ 0 (]0, L]), (10.28) gives the same equations for (U 0 1

+ , U 0 2 + ) as in [2] :            a 2 EI α ∂ 4 U 0 α + ∂x 4 3 = πF + α in Ω + , for α = 1, 2, ∂ 2 U 0 α + ∂x 2 3 (x 1 , x 2 , L) = ∂ 3 U 0 α + ∂x 3 3 (x 1 , x 2 , L) = 0 a.e. in ω, for α = 1, 2.
(10.29)

The bending problem (10.29) in the rods is coupled with the bending U 0 3 -in the plate through the transmission conditions (7.52) and (7.53) for x 3 = 0. Since U 0 α + (x 1 , x 2 , 0) = 0 for α = 1, 2 (due to (7.46)), the functions U 0 α + are uniquely determined in L 2 (ω, H 2 ((0, L))).

11 Convergence of the energies.

We take v = u δ in (2.19) (recall that u δ denotes u ε,r,δ for r 2 = k 2 ε 2 = a 2 δ 3 ) to obtain the energy identity:

E(u δ ) = Ω + ε ∪Ω - δ 3 i,j=1 σ δ ij γ ij (u δ )dx 1 dx 2 dx 3 = Ω + ε ∪Ω - δ 3 i=1 f δ i u δ i dx 1 dx 2 dx 3 . (11.1)
Due to the properties of T ε and Π δ and the assumption on the forces (4.47)÷(4.49), we have

k 2 Ω + ×D 3 i,j=1 T ε (σ δ ij )T ε (γ ij (u δ ))dx 1 dx 2 dx 3 dX 1 dX 2 +δ Ω - 3 i,j=1 Π δ (σ δ ij )Π δ (γ ij (u δ ))dx 1 dx 2 dX 3 dX 1 dX 2 = δ 2 k 2 Ω + ×D 3 i=1 F + i T ε (u δ i )dx 1 dx 2 dx 3 dX 1 dX 2 + δ Ω - 2 α=1 F - α Π δ (u δ α )dx 1 dx 2 dX 3 +δ 2 Ω - F - 3 Π δ (u δ 3 )dx 1 dx 2 dX 3 . (11.2) 
Dividing (11.2) by δ and using the weak convergences (6.16), (6.23) and (6.25), we obtain

lim δ→0 k 2 δ Ω + ×D 3 i,j=1 T ε (σ δ ij )T ε (γ ij (u δ ))dx 1 dx 2 dx 3 dX 1 dX 2 + Ω - 3 i,j=1 Π δ (σ δ ij )Π δ (γ ij (u δ ))dx 1 dx 2 dX 3 = k 2 Ω + ×D 3 i=1 F + i u 0 i + dx 1 dx 2 dx 3 dX 1 dX 2 + Ω - 3 i=1 F - i u 0 i -dx 1 dx 2 dX 3 = A.
(11.3) With the help of (7.3), (7.4), (7.19), (7.22) and (7.48) we have

A = k 2 π Ω + 2 α=1 F + α U 0 α + dx 1 dx 2 dx 3 + k 2 π ω L 0 F + 3 dx 3 U 0 3 -dx 1 dx 2 + ω 3 i=1 0 -1 F - i dX 3 U 0 i -dx 1 dx 2 - ω 0 -1 X 3 + 1 2 F - α dX 3 ∂U 0 3 - ∂x α . (11.4) Now, using (w 1 , w 2 ) = U 0 1 + + x 3 ∂U 0 3 - ∂x 1 , U 0 2 + + x 3 ∂U 0 3 - ∂x 2 
as a test function in problem (10.29), we obtain since (w 1 , w 2 ) satisfies the boundary conditions w 1 = w 2 = 0 and ∂w 1 ∂x 3 = ∂w 2 ∂x 3 = 0 due to (7.52)÷(7.53) leads to

a 2 E Ω + 2 α=1 I α ∂ 2 U 0 α + ∂x 2 3 2 dx 1 dx 2 dx 3 = Ω + 2 α=1 F + α U 0 α + dx 1 dx 2 dx 3 + ω 2 α=1 L 0 x 3 F + α dx 3 ∂U 0 3 - ∂x α dx 1 dx 2 .
E 12(1 -ν 2 ) ω (1 -ν) 2 α,β=1 ∂ 2 U 0 3 - ∂x α ∂x β 2 + ν ∆U 0 3 -2 dx 1 dx 2 = -k 2 π 2 α=1 ω L 0 x 3 F + α dx 3 ∂U 0 3 - ∂x α dx 1 dx 2 + k 2 π ω L 0 F + 3 dx 3 U 0 3 -dx 1 dx 2 - 2 α=1 ω 0 -1 X 3 + 1 2 F - α dX 3 ∂U 0 3 - ∂x α dx 1 dx 2 + ω 0 -1 F - 3 dX 3 U 0 3 -dx 1 dx 2 (11.6) and E 1 -ν 2 ω (1 -ν) 2 α,β=1 γ αβ (U 0 -)γ αβ (U 0 -) + ν 2 δ=1 γ δδ (U 0 -) 2 dx 1 dx 2 = ω 2 α=1 0 -1 F - α dX 3 U 0 α -dx 1 dx 2 , (11.7) 
Inserting (11.5)÷(11.7) into (11.4) yields

A = E 1 -ν 2 ω (1 -ν) 2 α,β=1 γ αβ (U 0 -)γ αβ (U 0 -) + ν 2 δ=1 γ δδ (U 0 -) 2 dx 1 dx 2 +k 2 a 2 E Ω + 2 α=1 I α ∂ 2 U 0 α + ∂x 2 3 dx 1 dx 2 dx 3 + E 12(1 -ν 2 ) ω (1 -ν) 2 α,β=1 ∂ 2 U 0 3 - ∂x α ∂x β 2 + ν ∆U 0 3 -2 dx 1 dx 2 .
(11.8)

Proceeding exactly as in [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] (Section 8), we first have

Ω + ×D 3 i,j=1 Σ + ij X + ij dx 1 dx 2 dx 3 dX 1 dX 2 = a 2 E Ω + 2 α=1 I α ∂ 2 U 0 α + ∂x 2 3 2 dx 1 dx 2 dx 3 . (11.9) 
As far as the plate contribution is concerned in (11.8), an easy calculation shows that (using the expressions (8.28), (8.29), (8.30) of the X -'s and those (8.24)÷(8.27) of the Σ -'s)

E 1 -ν 2 ω (1 -ν) 2 α,β=1 γ αβ (U 0 -)γ αβ (U 0 -) + ν 2 δ=1 γ δδ (U 0 -) 2 dx 1 dx 2 + E 12(1 -ν 2 ) ω (1 -ν) 2 α,β=1 ∂ 2 U 0 3 - ∂x α ∂x β 2 + ν ∆U 0 3 -2 dx 1 dx 2 = Ω - 3 i,j=1 Σ - ij X - ij dx 1 dx 2 dX 3 .
(11.10)

Finally, (11.3), (11.8), (11.9) and (11.10) permit to conclude that

lim δ→0 k 2 δ Ω + ×D 3 i,j=1 T ε (σ δ ij )T ε (γ ij (u δ ))dx 1 dx 2 dx 3 dX 1 dX 2 + Ω - 3 i,j=1 Π δ (σ δ ij )Π δ (γ ij (u δ ))dx 1 dx 2 dX 3 = k 2 Ω + ×D 3 i,j=1 Σ + ij X + ij dx 1 dx 2 dx 3 dX 1 dX 2 + Ω - 3 i,j=1 Σ - ij X - ij dx 1 dx 2 dX 3 . (11.11) 
In view of the weak convergences (6.21), (6.22), (6.33), (6.34), the strict convexity of the elastic energy implies that the weak convergences mentioned above are strongly in L 2 . From this fact, we deduce exactly as in Section 8 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] that

δU δ i + → U 0 i + strongly in L 2 (ω; H 1 ((0, L))) for i = 1, 2, 3 (11.12) 
and also (using the result in [START_REF] Griso | Asymptotic Behavior of Structures Made of Plates[END_REF] for the displacement field in the plate)

   U δ α -→ U 0 α -strongly in H 1 0 (ω) for α = 1, 2, δU δ 3 -→ U 0 3 -strongly in H 1 0 (ω).
(11.13)

The strong convergence of the stress fields Π

δ (σ δ ij ) in (L 2 (Ω -)) 3×3 imply that Π δ (u δ α ) → u 0 - α strongly in H 1 (Ω -) for α = 1, 2, (11.14) 
δΠ δ (u δ 3 ) → u 0 - 3 strongly in H 1 (Ω -), (11.15) (see e.g. [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF] and [START_REF] Griso | Asymptotic Behavior of Structures Made of Plates[END_REF]).

12 Summarize

Let ε be a sequence of positive real numbers which tends to 0 and set r = kε and δ = r a 2 3

(0 < k < 1 2 , 0 < a). Denote by (u δ , σ δ ) the solution of Problem (2.19) on Ω + ε ∪ Ω - δ = Ω ε,δ . The field u δ is decomposed as follows:

-in Ω + ε , we use the decomposition given in (3.5) (see also Section 3 of [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF])

u δ+ (x 1 , x 2 , x 3 ) = u δ (x 1 , x 2 , x 3 ) -U δ+ (x 1 , x 2 , x 3 ) -R δ+ (x 1 , x 2 , x 3 ) ∧ ((x 1εp)e 1 + (x 2εq)e 2 ).

-in Ω - δ , we use the decomposition given in Section 1 of the present paper

u δ-(x 1 , x 2 , x 3 ) = u δ (x 1 , x 2 , x 3 ) -U δ -(x 1 , x 2 ) -R δ -(x 1 , x 2 ) ∧ x 3 + δ 2 e 3 .
In order to state the convergence theorem below on (u δ , σ δ ) as δ tends to 0 (or ε tends to 0), we introduce the limit problem for any (F + 1 , F + 2 ) ∈ (L 2 (Ω + )) 2 and any (F - 1 , F - 2 , F - 3 ) ∈ (L 2 (Ω -)) 3 :

• "membrane" problem in the plate: let U 0 -= (U 0 1 -, U 0 2 -) ∈ (H 1 0 (ω)) 2 be the unique solution of

- E 1 -ν 2 2 α=1 ∂ ∂x α (1 -ν)γ αβ (U 0 -) + νγ αα (U 0 -)δ αβ = 0 -1 F - β dX 3 in ω.
• coupled bending problems in the rods and in the plate: let (U 0 According to the previous sections, we have proved the following theorem:

where

Σ - 11 = E 1 -ν 2 ∂U 0 1 - ∂x 1 -X 3 + 1 2 ∂ 2 U 0 3 - ∂x 2 1 + ν ∂U 0 2 - ∂x 2 -X 3 + 1 2 ∂ 2 U 0 3 - ∂x 2 2 , Σ - 22 = E 1 -ν 2 ∂U 0 2 - ∂x 2 -X 3 + 1 2 ∂ 2 U 0 3 - ∂x 2 2 + ν ∂U 0 1 - ∂x 1 -X 3 + 1 2 ∂ 2 U 0 3 - ∂x 2 1 , Σ - 12 = µ ∂U 0 1 - ∂x 2 + ∂U 0 2 - ∂x 1 -2 X 3 + 1 2 ∂ 2 U 0 3 - ∂x 1 ∂x 2 , Σ - 13 = Σ - 23 = Σ - 33 = 0.
13 Appendix A

In this section we recall some properties of the periodic unfolding operator T ε . Let ω be a bounded domain in Usually we do not have the integration formula ω φ = 1 |Y | ω×Y T ε (φ). We have the following estimate of the difference between the left hand side and the right hand side:

ω φ - 1 |Y | ω×Y T ε (φ) ≤ ||φ|| L 1 (ω\ωε) ,
where

ω ε = int ξ∈Ξε ε(ξ + Y ) , Ξ ε = ξ ∈ Z N | ε(ξ + Y ) ⊂ ω .
Notice that the distance between ω ε and the boundary of ω is less than √ N ε. If ω ′ is an open set strongly included in ω and if φ vanish over ω \ ω ′ then the integration formula is exact with ε sufficiently small. Obviously, for any φ, ψ ∈ L 2 (ω), we have T ε (φψ) = T ε (φ) T ε (ψ).

Let O ⊂ R q be an open set of parameters. In the same way, for any φ ∈ L 1 (ω × O) we define the unfold function T ε (φ) by 

∇ z T ε (φ) = T ε (∇ z φ), ||∇ z T ε (φ)|| [L 2 (ω×Y ×O)] q ≤ ||∇ z φ|| [L 2 (ω×O)] q .
For any function φ ∈ L 2 (ω), we define the local average M ε Y : L 2 (ω) -→ L 2 (ω), by

M ε Y (φ)(x) = 1 |Y | Y
T ε (φ)(x, y)dy, x ∈ ω.

For any function φ ∈ C(ω), we define φ ε ∈ L ∞ (ω), by

φ ε (x) =      φ x ε
, for a.e. x ∈ ω ε , 0, for a.e. x ∈ ω \ ω ε .

The result mentioned in the following lemma can found in [START_REF] Cioranescu | Periodic Unfolding and Homogenization[END_REF] and [START_REF] Damlamian | An Elementary Introduction to Periodic Unfolding[END_REF]. (ii) For any φ belonging to H 1 (ω), we have

1 ε T ε (φ) -M ε Y (φ) -→ y • ∇φ strongly in L 2 (ω × Y ).
(iii) For any φ belonging to C 1 0 (ω), we have

1 ε T ε (φ) -φ ε -→ y • ∇φ strongly in L ∞ (ω × Y ).
(iv) Let φ ε ) ε>0 be a sequence of functions uniformly bounded in L 2 (ω). (v) Let φ ε ) ε>0 be a sequence of functions uniformly bounded in H 1 (ω). There exists φ ∈ H 1 (ω) and φ ∈ L 2 (ω; H 1 per (Y )) such that, up to a subsequence we have            φ ε ⇀ φ weakly in H 1 (ω),

T ε (φ ε ) -→ φ strongly in L 2 (ω × Y ), T ε (∇φ ε ) ⇀ ∇ x φ + ∇ y φ weakly in [L 2 (ω × Y )] N .
If we choose φ such that Y φ(., y)dy = 0 then we have

1 ε T ε (φ ε ) -M ε Y (φ ε ) ⇀ y • ∇ x φ + φ, weakly in L 2 (ω × Y ).
(vi) Let φ ε ) ε>0 be a sequence of functions in H 1 (ω) such that

||φ ε || L 2 (ω) + ε||∇φ ε || (L 2 (ω)) N ≤ C.
There exists φ ∈ L 2 (ω; H 1 per (Y )) such that, up to a subsequence we have (ii) Let φ ε ) ε>0 be a sequence of functions in H 1 (ω) such that φ ε -→ φ strongly in H 1 (ω).

              

Figure 1 :

 1 Figure 1: Elastic multistructure with highly oscillating boundary

  convergence (7.32) implies (7.34). To show that u 0 i satisfy (7.35), we recall the kinematic conditions (3.10) and (3.11) on u δ -. Then we have e.g. by (3.10), T ε -

3 - 3 --

 33 function of X 3 , we obtain(7.35). It remains to show(7.29) and (7.30) which are not direct consequences of Lemma A1 of Appendix A and of the a priori estimates on U δ and R δ α -. Loosely speaking (7.29) and(7.30) show that the oscillations of the fields ∂U δ (α = β) can be asymptotically described by the gradient with respect to the local variable

3 +

 3 (x 1 , x 2 , 0) = 0, a.e. in ω.(7.47) 

-- 8 . 1

 81 .53) which are the kinematic transmission between the flexion in the rods and in the plate.To end this subsection, let us notice that the kinematic conditions (3.10) and (3.11) on u δ i -together with the definition (6.25) of u 0 dX 3 = 0 a.e. in ω, for i = 1, 2dX 3 = 0 a.e. in ω, for α = 1, 2.(7.55)8 Determination of the fields u 0+ , R 0+ 3 , u 0 , R 0 , ǔ and u 0 Determination of u 0+ and R 0+ 3

3 ∈(ǔ + u 0 3 )

 33 [START_REF] Griso | Décomposition des déplacements d'une poutre : simplification d'une problème d'élasticité[END_REF] for any χ 3 ∈ H 1 per (Y ) and for almost any (x 1 , x 2 ) ∈ ω. Since ǔ + u 0 L 2 (Ω -, H 1 per (Y )) and Y dX 1 dX 2 = 0, we obtain ǔ + u 0 3 = 0 for a.e. (x 1 , x 2 ) ∈ ω and a.e. X 3 ∈] -1, 0[ which in turn implies that ǔ = 0 and u 0 3 = 0 because of (7.35).

3 -∈ H 2 0 1 -, U 0 2 -

 3212 (ω) as test function in(10.26) and (U 0 ) as test function in(9.14) 

1 + , U 0 2 + 3 -∈ H 2 0U 0 α + ∂x 4 3 =U 0 3 -= k 2 α dX 3 together with the boundary and transmission conditions: U 0 α+ (x 1 , x 2 , 3 (x 1 1

 12323323012311 ) ∈ L 2 (ω, H 2 ((0, L)))2 and U 0 (ω) be the unique solution of the problem:a 2 EI α ∂ 4 πF + α in Ω + , for α = 1, 2. E 12(1ν 2 )∆ 2 0) = 0 a.e. in ω, for α = 1, 2, , x 2 , L) = 0 a.e. in ω, for α = 1, 2, , x 2 ) = 0 a.e. in ω, for α = 1, 2.

  R N with Lipschitz boundary. We denoteY =] -1/2, 1/2[ N the unit cell in R N . For almost every z in R N there exists a unique element [z] in Z N such that z -[z] = {z} belongs to Y .Let us now recall the definition of the periodic unfolding operator T ε . For any function φ in L 1 (ω) we define T ε (φ) byT ε (φ)(x, y) ⊂ ω,for a.e. (x, y) ∈ ω × Y. The function T ε (φ) belongs to L 1 (ω × Y ) and verifies ||T ε (φ)|| L 1 (ω×Y ) ≤ ||φ|| L 1 (ω) .

T

  ε (φ)(x, y, z) ⊂ ω, for a.e. (x, y, z) ∈ ω × Y × O. This function belongs to L 1 (ω × Y × O). Of course if φ ∈ L 2 (ω; H 1 (O)), we have T ε (φ) ∈ L 2 (ω × Y ; H 1 (O)) and moreover

Lemma A1 :

 A1 (i) For any φ belonging to L 2 (ω), we have   T ε (φ) -→ φ strongly in L 2 (ω × Y ), M ε Y (φ) -→ φ strongly in L 2 (ω).

  There exists φ ∈ L 2 (ω × Y ) such that, up to a subsequence we have       φ ε ⇀ φ weakly in L 2 (ω), φ = 1 |Y | Y φ(., y)dy, T ε (φ ε ) ⇀ φ weakly in L 2 (ω × Y ).

  φ ε ⇀ φ weakly in L 2 (ω), φ = 1 |Y | Y φ(., y)dy, T ε (φ ε ) ⇀ φ weakly in L 2 (ω × Y ), εT ε (∇φ ε ) ⇀ ∇ y φ weakly in [L 2 (ω × Y )] N .Let i be in {1, . . . , N } and let B be the ball included in Y with center O and radius r < 1/2.For any function φ ∈ L 2 (ω), we define the local momentum M ε i,B : L 2 (ω) -→ L 2 (ω), byM ε i,B (φ)(x) = 1 εI i B y i T ε (φ)(x, y)dy, x ∈ ω, where I i = B y 2 i dy.Lemma A2 : (i) Let φ ε ) ε>0 be a sequence of functions in H 1 (ω) such thatφ ε ⇀ φ weakly in H 1 (ω), T ε (∇φ ε ) ⇀ ∇ x φ + ∇ y φ weakly in [L 2 (ω × Y )] N ,where φ ∈ L 2 (ω; H 1 per (Y )) and verifies Y φ(., y)dy = 0. Then we have M ε i,B (φ ε ) y i φ(•, y)dy weakly in L 2 (ω × Y ).

  + 2µΓ αβ ( u) Γ αβ (χ)ψ(X 3 )dX 1 dX 2 dX 3 = 0 a.e. in ω,

	2	0		2	
	α,β=1	-1 Y	λ	k=1	Γ kk ( u) I (8.17)
	for any (χ 1 , χ 2 ) ∈ (H 1 per (Y )) 2 . Remark that u α ∈ L 2 (Ω -, H 1 per (Y )) and that one can always
	assume that			
		Y			

L 2 (Ω - δ )

Theorem 12.1. Under the assumptions (4.47)÷(4.49) on the applied forces f ε i , the sequence (u δ , σ δ ) satisfies the following convergences:

+ strongly in L 2 (Ω + × D), for i = 1, 2, 3,

+ strongly in L 2 (ω, H 1 ((0, L))), for i = 1, 2, 3, δ -1 2 T ε (γ ij (u δ )) → X + ij strongly in L 2 (Ω + × D), for i, j = 1, 2, 3, where

3 , X + 12 = X + 13 = X + 23 = 0,

.

We also have

We have

Proof : First we prove (i). For any φ ∈ H 1 (ω) we have

We apply the Poincar-Wirtinger inequality and we deduce that

The constant is independent of ε. Hence the sequence

We pass to the limit and due to Lemma A1 (i) and (iv) we obtain

Now we prove (ii). We have φ = 0 and then

For any function ψ ∈ C 1 (ω) the sequence M ε i,B (ψ) ε>0 converges strongly in L 2 (ω) to

Let φ n n∈N be a sequence of functions belonging to C 1 (ω) such that

We have

With these inequalities and the strong convergences of the sequences φ ε ε>0 and φ n ε>0 we immediately deduce the strong convergence in L 2 (ω) of the sequence M ε i,B (φ ε ) ε>0 .

14 Appendix B

In this section we prove Lemma A3. We use the notation of the previous section. Throughout this appendix the constants appearing in the estimates are independent from δ. Let ω be a bounded domain in R 2 with lipschitz boundary and let γ be a part of ∂ω with positive measure. We set

≤ C, which implies that

Let U δ be the solution of the variational problem

The function U δ belong to H 1 γ (ω) ∩ H 2 loc (ω) and it verifies the following estimates :

(3)

where ρ is defined by

We put

The function u δ belongs to H 1 γ (ω) and thanks to ( 1) and ( 2) we have ( 4)

The functions r δ 1 and r δ 2 belong to L 2 (ω) ∩ H 1 loc (ω) and due to (1), ( 2), ( 3) and ( 4) they verify the estimates ( 5)

There exists u ∈ H 1 γ (ω) and r 1 , r 2 , Z 1 , Z 2 ∈ L 2 (ω) such that, up to subsequences we have the following weak convergences

Due to the definition of u δ , r δ 1 and r δ 2 we have ( 6)

Then we obtain ( 7)

Let us consider two sequences ε and δ of positive real numbers which converge to 0 with

Lemma A3 : There exists u ∈ L 2 (ω; H 1 per (Y )) such that, up to subsequences we have the following weak convergences :

Proof :

) such that, up to subsequences, we have the following weak convergences (α ∈ {1, 2}):

Then we have the weak convergences

and due to (8)

where r α is the weak limit in L 2 (ω) of the sequence (r δ α ) δ>0 . There results that r α = r α in L 2 (ω × Y ). We transform the equalities ( 6) by unfolding and we pass to the limit. Due to [START_REF] Ciarlet | A Justification of the Two-Dimensional Linear Plate Model[END_REF] the convergences (9) are proved.