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Static Output-Feedback .77, Control of a Class of Stochastic Hybrid
Systems with Wiener Process

Samir Aberkane, Jean Christophe Ponsart and Dominique Sauter

Abstract—This paper deals with static output feedback represents system components failures and the second ran-
Hoo COﬂtI’O|_Of continu_ous time Active Fault Tolerant Control dom process represents the FDI process used to reconfigure
gg;;enrgZn‘{"'tnhoig/'ea”f?"gggp'?:rgn:gvevrs‘frgﬁnszyPb)a:‘;‘g cs);atfr;e the control law. This model was proposed by Srichander and
synthesis of ellipsoidal sets of controllers, intréduced in [18], Walker _[?3]' Necessary and sufficient conditions for stochas-
[19]. It is also shown that the obtained results can easily be tic stability of AFTCSMP were developed for a single com-
applied to the problematic of mode-independent static output ponent failure (actuator failures). The problem of stochastic
feedback 7%, control of another class of stochastic hybrid stability of AFTCSMP in the presence of noise, parameter
systems known as Markovian Jump Linear Systems. Results ncartainties, detection errors, detection delays and actuator
are formulated as matrix inequalities one of which is nonlinear. . . . . .

A numerical algorithm based on nonconvex optimization is Saturat'o_n limits has also been 'm_/eSt'gated in [15], [16].
provided and its running is illustrated on classical examples Another issue related to the synthesis of fault tolerant control
from literature. laws was also addressed by [20], [21]. The probleny4s
and robustsZ, control was treated in [20], [21] for both
. INTRODUCTION continuous and discret time AFTCSMP. The authors showed
. . . at the state feedback control problem can be solved in terms

As _performance reqL_urement_s increase in advanced teq the solutions of a set of coupled Riccati inequalities. The
nologlcal systems, their associated control syste.ms are tlﬁ/'namic/sta'[ic output feedback counterpart was treated by
coming more and more complex.. At the same time, cony), [2], [3] in a convex programming framework. Indeed, the
plicated systems COU"?' have various consequences in Wthors provide an LMI characterization of dynamical/static
event Of. component failures. Therefore, it is very |mportan6utput feedback compensators that stochastically stabilize
to consider the safety and fault tolerance of such syste bustly stabilize) the AFTCSMP and ensur#, (robust
at the design stage. For these safety-critical systems, Fal L) constraints. In addition, it is important to mention
Tolerant Control Systems (FTCS) have been developed Rat the design problem in the framework of AFTCSMP
meet these essential objectives. FTCS have been a sub(jjf%ams an open and challenging problematic. This is due,

of great practical importance, which has aitracted a lot articulary, to the fact that the controller only depends on

interest fqr the last three decades. A bibliographical reviey, . -p, process. Generally speaking, there lacks tractable
on reconfigurable fault tolerant control systems can be fou

sign methods for this stochastic FTC problem. Indeed, in

in [.25]' 1, [2], [16], [20], [21], the authors make the assumption that
Active fault tolerant control systems are feedback contr e controller must access both failures and FDI processes.

systems that reconfigure the cont.rol law in reql time b‘_"‘S owever, this assumption is too restrictive to be applicable
on th_e response from an automatic f_ault dete_ctlon and '_deﬁ'f practical FTC systems. In this note, the assumption on the
tification (FDI) scheme. The dynamic beha_wour of ACtIVeavailability of failure processes, for the synthesis purposes,
Fault Tolerant Control Systems (AFTCS) is governed bYs stressed

stochastic differential equations and can be viewed aS @ the other hand. one of the most challenging open prob-
generall< hy.b”d System.[23]. A major class of hybrid SYSteMB s in control theory is the synthesis of fixed-order or static
IS I\/:ar_ ovian Jump _Lmea(rj Sy;,temsb (MHJLS)' (;n MJL_S’ _aoutput feedback controllers that meet desired performances
SIngle Jump process Is use to escr e the ran 'om variatios specifications [24]. Among all variations of this problem,
affecting the system parameters. This process is represenfed 1\ ote is concerned with the problem of static output
by a finite state Markov chain and is called the plant regim?eedback% control of continuous time AFTCSMP with
mode. The theory qf stability, optlr_’nallcontrol ands/ He state-dependent noise. This problematic is addressed under a
control, as We," as important appllcanons of su'ch Systeme,y framework, based on the synthesis of ellipsoidal sets
can be found in several papers in the current literature, f%r]c controllers, introduced in [18], [19]. The problematic

ins:jancle i_nh[5], [61, (71, [921’ [10|]' [11]]; h[lg].’ d[14]. dresulting from the fact that the controller only depends on
To deal with AFTCS, another class of hybrid systems was dgqe pp process is shown to be naturally dealt with in this

fined, dznoted as AFTCSMZ l? thijs_ clhas? of hyb:jid SYSteMEpntext. It is also shown that the obtained results can easily
two random processes are defined: the first random procggs applied to the problematic of mode-independent static

) N S output feedback#, control of MJLS. Results are formulated
The authors are with Universit Henri Poinca#, Nancy 1, CRAN . . L . .
— CNRS UMR 7039, BP 239, F-54506 Vandceuds-Nancy Cedex &S Matrix inequalities one of which is nonlinear. A numerical
samir.aberkane@cran.uhp-nancy.fr algorithm based on nonconvex optimization is provided and



its running is illustrated on classical examples from literatureApplying the controllergs to the AFTCSMP¢, we obtain
This paper is organized as follows: Section 2 describes thie following closed loop system:

dynamical model of the system with appropriately defined

random processes. A brief summary of basic stochastic —[dxt)=AE(®).n(t),y
terms, results and definitions are given in Section 3. Secp, : 3 WIE (), n ()X
tion 4 addresses the internal stochastic stabilization of the v = sz(t)+ D2 (& (t
AFTCSMP. Sections 5 considers th#, control problem 2t =Ca(n(®), 9O
for the output feedback. In Section 6, a numerical algorithiynere

based on nonconvex optimization is provided and its running

(©)

R™ " is the set ofn-by-n real matrices anf" is the subset of
symmetric matrices iflR"*". A’ is the transpose of the matrix
A. The notationX > Y (X >, respectively), wherX andY
are symmetric matrices, means théat Y is positive semi-
definite (positive definite, respectivelyl);and 0 are identity
and zero matrices of appropriate dimensions, respectively; The FDI and the Failure Processes

&{-} denotes the expectation operator with respect to some
t) andy(t) being homogeneous Markov processes

2 E(t
probability measureP; L7[0,») stands for the space of with t) nite state spaces, we can define the transition proba-
square-integrable vector functions over the interi@ab);  pility of the plant components failure process as [16], [23]:
|| - || refers to either the Euclidean vector norm or the matrix

norm, which is the operator norm induced by the standard pij (At) = 77; At + 0(At) (i#])
vector norm;|| - || stands for the norm in.2[0,c); while pi(At) =1— 3 miAt+o(At)  (i=j)
| - [ls, denotes the norm ih?((Q,.7,P),[0,0)); (Q,.#,P) 7

is a probability space. The tgansmon probability of the actuator failure process is
given by:

is illustrated on classical examples from literature. Finally, a { (0, nM),p(1)  EEM),nM), () } _
conclusion is given in Section 7. Gin(®),9®) - DiE(1),n 1), ¥(v)
Notations. The notations in this paper are quite standard. { A(ét)) E(E(tg”(t)) }
1
+

Il. DYNAMICAL MODEL OF THEAFTCSMPWITH

WIENER PROCESS Pui (At) = viaAt +0(At) (k#1)
prk(At) =1— kél vt +o(At)  (k=1)

The dynamical model of the AFTCSMP with Wiener Pro-
cess, defined in the fundamental probability spdee#,P), where 17; is the plant components failure rate, ang is

is described by the following differential equations: the actuator failure rate.
Given that £ = k and n =1, the conditional transition
dx(t) = A(& (1) X(t)dt+B(n (t))u(y(t), w(t),t)dt probability of the FDI procesq/(t) is
¢ FE(E (), n(®)w(t)dt+ 517y Wi (&(t), n(t))x(t)dai () o
") V(t) = Cox(t) + Da2(&(t), n(t))w(t) ply (At) = )\k'At+o(At) (i #v)
z(t) = Cax(t) + Da(n (1) u(y(t), Y(t),1) pkl(At) = z/\k'At—s—o(At) (i=v)

wherex(t) € R" is the system statey(y(t), ¢ (t),t) e R" is

the system inputy(t) € RY is the system measured output, Here, A ,V represents the transition rate franto v for the
Z(t) € RP is the controlled outputw(t) € R™ is the sys- Markov processgj(t) conditioned orf =k Zandn =1eS
tem external disturbancé,(t), n(t) and g(t) represent the For notational simplicity, we will denote(& (t)) = e; when
plant component failure process, the actuator failure proce$§ét) =1€Z, o(n(t)) =e; whenn(t) =jeS o(£(t),n(t)) =

and the FDI process, respectiveBtt), n(t) and y(t) are ®ij» Whené(t) =ieZ,n(t) = j € Sande({(t)) = ex when
separable and mesurable Markov processes with finite stabét) = k € R. We also denotes(t) = e and the initial
spaceZ = {1,2,....z}, S={1,2,...,s} andR= {1,2,...,r}, conditionse(to) = eo.

respectivelym(t) = [m(t). .. m,(t)]' is av—dimensional stan-

dard Wiener process on a given probability spe@e.#,P), 1. DEEINITIONS

that is assumed to be independent of the Markov processes.

The matriceA(& (1)), B(n(t)), E(&(t),n(t)), D2(&(1),n(t)), Without loss of generality, we assume that the equilibrium
D1(n(t)) andW,(&(t),n(t)) are properly dimensioned ma- point, x = 0, is the solution at which stability properties
trices which depend on random parameters. are examined. Under the assumption that the systgm (
In AFTCS, we consider that the control law is only a functiorcoupled with §s) satisfies the global Lispchitz condition,

of the mesurable FDI procegs(t). Therefore, we introduce the solutionx determines a family of unique continuous

a static output feedback compensatgg) (of the form: stochastic processes, one for each choice of the random

variable xg. The joint process{x,é&:,nt, s} is a Markov
¢s: {U(t) =2 (PO)y) (2) process.



A. Stochastic Stability B. Matrix Ellipsoids

System (3) is said to be Through this note, a particular set of matrices is used.
(i) stochastically stable (SS) if there exists a finite positivBue to the notations and by extension of the notiorR8f
constantK (xo, &0, Mo, Yo) such that the following holds ellipsoids, these sets are referred to as matrix ellipsoids of
for any initial conditions(xo, &, No, Yo): R(M*P),
o ) Definition 1 [18], [19]: Given three matriceX € S9, Y €
‘p{/o I | dt} <K%, o, 0. Yo) @) Rer andZ e S, the {X,Y,Z}-ellipsoid of R™*4 is the set

(i) internally exponentially stable in the mean square sensdf matrices.z” satisfying the following matrix inequalities:
(IESS) if it is exponentially stable in the mean square , X Y I
sense forw; = 0, i.e. for any &p,no, Yo and some z=0 [1 & }{ * 7 } { A } =0 (10)
y(&o,No, Wo), there exists two numbes> 0 and b >
0 such that when||xo|| < y(&o,No, o), the following
inequality holdsvt > tg for all solution of (3) with initial
conditionxg:

& {|1xI?} < bl|xo||* exp[—a(t — to)] 5)
The following theorem gives a sufficient condition for in- This definition shows that matrix ellipsoids are special cases

ternal exponential stability in the mean square sense for ti§é matrix sets defined by quadratic matrix inequality. Some
system @) coupled with @s). properties of these sets are

Theorem 1: The solutionx = 0 of the systen{¢) coupled i) A matrix ellipsoid is a convex set;

with (¢s) is internally exponentially stable in the mean squareii) the {X,Y,Z}-ellipsoid is nonempty iff the radiusR(>

By definition, %o = —Z~1Y’ is the center of the ellipsoid
andR= %y Z.%—X is the radius. Inequalities (8) can also
be written as

Z>0 (K —H) LK —Hp) <R 11)

for t > to if there exists a Lyapunov functidh(x, &, N, Yx,t) 0) is positive semi definite. This property can also be
such that expressed as
Kallx|I? < 9 (%, &, Nt dh.t) < Kalxi 2 (6) X <YZ Y 12)

and

28 (. E . th.t) < —Kallx |2 @ | IV: STOCHASTIC STABILIZATION -
for some positive constant;, K, and K, where & is In th_|s section, we shall addres_s the_ proble_m of finding
the weak infinitesimal operator of the joint Markov processll static compensatoréps), as defined in section 2, such
Xtﬁggergég[ry};'condition for internal exponential stability in th that the systen(¢) coupled with (¢) becomes internally
mean square for the system)(coupled with () is given %)fponentlally stochastlgglly stable in the mean square. To
b¥1 theorem 2. _ this end, we use proposition 1 to get the following necessary
Theorem 2: If the solutionx = 0 of the systenf¢) coupled and sufficient conditions for the internal exponential stability

with (¢s) is internally exponentially stable in the mean;
square, then for any given quadratic positive definite functiofft '€ mean square of the system (3). _ ,
W(x., &, i, Yr,t) in the variablesx which is bounded and Proposition 3: System (3) is internally exponentially stabil-
continuousvt > 1o, V& € Z, Vrr € Sand Vi € R, there exists isable in the mean square by static output-feedback if and
a quadratic positive definite functiofl (x, & i, Yt,t) in X only if there exist matrices?;jx = 2, >0, Xk € §9, Yy €
Buch WAL/ B 0 OS] o a0 that simlaneously saisty the folowing
arguments as in [16], [23] for their proposed stochastieM! constraints
Lyapunov functions, so they are not shown in this paper to Zx>0 P >0 13)
avold repetition. o N
Proposition 1: A necessary and sufficient condition for /
internal exponential stability in the mean square of thé¢ I 0 } { Ok ik H I 0 }
system (3) is that there exist symmetric positive-definite A Bi A

<

matricesZjjx, i € Z, j € Sandk € R such that: G 01 X Yy C 0
" . v 0 I * g 0 I
A Ziik + PikAi + Y Wiy ZigcWiij + 5 Tih Pk 14)
=1 hez
+%le P+ ZRA;(J'V%V —Jx<0  (® and the nonlinear inequalities constraints
I3 Ve 1t
' . Xk < YiZ 1Y (15)
VieZ, j e Sandk € R, where _ .
~ VieZz, jeSandk e R, where
Aij = A +B;4Co ) .
Proof: The proof of this proposition is easily deduced from Oijk :I;Wﬁj ZijWiij :;“fhf%ikﬂe Vit Zik
theorems 1 and 2. + 3 Al (16)
Proposition 2: If the system (3) is internally exponentially v; K

stable in the mean square sense, then it is stochastically

stable. Let {Zijk, Xk, Yk, Zx} be a solution, then the nonempty
Proof: The proof of this proposition follows the same lines{Xy, Yy, Z}-ellipsoids are sets of stabilizing gains.

as for the proof of proposition 4 in [3]. Proof: The proof of this proposition is given in [4].



Remark 2: The results developed above can be easily appliagherey., > 0 is a prescribed level of disturbance attenuation
to the mode-independenstatic output feedback stochasticto be achieved. To this end, we need the auxiliary result given
stabilization of MJLS. Indeed, let us consider the followingyy the following proposition.

closed loop dynamical model Proposition 4: If there exist symmetric positive-definite
dx(t) = Al@)x()dt-+ El@wi)dt+ 5, Wi (@)x(t)dea 0 matrices Zwijk, i € Z, j € Sandk € R such that
e 2 { V(1) = Co(@)X(t) + Da(@)w(t) Yiik  ChyDaijk + PuiikEijk
2(t) = Cu(@)x(t) + Da(@)wi) - { A T } = Pt <0 @4
17
where where
A@) E(@ ]_[ A@) E@ . v
[ Ci(@) Di(@) } - [ Ci(q) 0 } Yik = Ajjk Pesijk + Pk Aijk +|;W|ij<@wijkwnj
B , S~ - ij
+[ Dl((qg) ]Ji/[ Co(@) Da(a) ] +Cljkcljk+hérfhymhjk+le Vil Pailk +V€ A Pesijy

The processp represents a continuous time discret statey; - 7 jeSandkeR

Markov process with values in a finite set = {1,...h}  then the system (3) is stochastically stable and satisfies
with transition probability rate matribxe = [®@]; j_1 . h. In

this case, the transition probability for the jump process, 20 e =(9@{/w2£0t2wtdt}l/2 el o5
can be defined as: g 0

Dij (At) = Dyt +o(At) (K j) (1g) Proof: See [3]. N .
Using the previous proposition, the followingZZ, control
with 5 ®jj = —®; = ;. result can be stated.

in'? Proposition 5: If there exist matricesZjx = ygoijk >0,
Then, the following corollary can be stated Xk € §Y, Yy € R¥" andZy € S' that simultaneously satisfy
Corollary 1: System (17) is internally exponentially stabil-the following LMI constraints
isable in the mean square by static output-feedback If and Ze>0 Pu >0 (26)

only if there exist matrices?; = 2/ >0, X e S4, Y € R
and Z € S' that simultaneously satisfy the following LMI

. Ok Puij -1 0
constraints My | g Tk }Mm <M'2{ 0 I }Mz
i jk 00
Z>0 >0 (19)
sy | Sk Yy (27)
, 31 % 7y 3
I 0 o I 0
A B 2 A B and the nonlinear inequalities constraints
Ci 0][X Y][Cy O 1
< |: 0 I :| |: « 7 :| |: 0 I Xk < YkZy ~Yy (28)

(200 viez, jeSandkeR, where

and the nonlinear inequalities constraints I o o0 } Mz:[ Cor O Duy

X <YZY (21) o 1 o0 |
. Ma—| G D2 O
Vi e H, where 551 o o 1
o — ini PWy + ;mivyv 22 then the{Xy, Y, Zy}-ellipsoids are sets of stabilizing gains
=1 Ve such that
Let {£#,X,Y,Z} be a solution, then the nonempty - 1/2
{X,Y,Z}-ellipsoid is a set of stabilizing gains. 12 ng:g{/o 4“‘”‘“} <o [[Wli2 (29)
V. THE 4, CONTROL PROBLEM Proof: The proof of this proposition follows the same
Let us consider the system (3) with arguments as for the proof of proposition 3.

2) = 2 (t) = Cuogx(t) + Desn (1 (1)) UY(H), W(E).) Remqu 3: As for t.he internal stoghastic stabilization prob-
® TR lematic, themode-independenstatic output feedbacks,

Z,(t) stands for the controlled output related.#4, perfor- control of MILS can be solved in the same way as for

mance. In this section, we deal with the design of controlleBFTCSMP. This result is illustrated by corollary 2.

that stochastically stabilize the closed-loop system and gudtorollary 2: If there exist matrices?Z.j = Z.; >0, X €

antee the disturbance rejection, with a certain lgget> 0. S9 Y € R and Z € S" that simultaneously satisfy the

Mathematically, we are concerned with the characterizatidiellowing LMI constraints

of compensatorgs that stochastically stabilize the system

\ > Z>0 Pwi>0 (30)

(3) and guarantee the following for all € L<[0, »):
O Pu -1 0 X Y

o 1/2 Mlli |: ! . Oool :| My < MIZi |: } My +M,3i |: 7 :l Mg;

2o =6 { [ 2t} < W @3 - o W R o



and the nonlinear inequalities constraints

X <Yz Yy (32)
Vi € H, where
| I 0 O | Coti O Dot
M1|—|: A. Ei Bi :|7 IM[ZI—|: 0 I 0 3
| G Dy O
M —[ 0 0 1 }

coo

1 0 0
0 1 0
0 0 0

0
1
0

0
0
1

} |

This model is adapted from [17]. It represents the lateral-

directional dynamics of McDonnell F-4C Phantom flying at
Mach 0.6 at an altitude @&5000ft. The states;, i=1,...,5
denote the lateral velocity (ft per second), the roll rate (radian

then the{X,Y,Z}-ellipsoid is a set of stabilizing gains suchper second), yaw rate (radian per second), roll angle (radian)

that

o 1/2
2 [lgy= f{ / zwtzwtdt} < Yo l[W]l2 (33)

VI. COMPUTATIONAL ISSUES ANDEXAMPLES
A. A Cone Complementary Algorithm

and yaw angle (radian), respectively. The control inputs

up, U andus correspond to the left aileron, the right aileron

and the rudder surface displacement, respectively.

For illustration purposes, we will consider two faulty modes:
i) Mode 2. A 50% power loss on the left aileron;

The numerical examples are solved using a first ordeti) Mode 3: Right aileron outage.
iterative algorithm. It is based on a cone complementaryrom above, we have th&= {1.2,3}, where themode 1

technique [12], that allows to concentrate the non conve{>§

constraint in the criterion of some optimisation problem.

presents the nominal case. The failure process is assumed
have Markovian transition characteristics. The FDI process
is also Markovian with three statés= {1,2, 3}.

Lemma 1: The problem (26)-(28) is feasible if and only if The actuator failure rates are assumed to be:

zero is the global optimum of the optimisation problem

min  tr(TS)
st (26), (27)
% X Yy
Xk <X = >0
k<Xk Fk 7 |2 (34)
Ty > 1 (%_|:=71k N >0
* T

where

S=diag{.7,...,. %}, T=dag(%,..., 5}

Proof: The proof of this Lemma follows the same argument
as in [19]. With the constraint$j > 0 and.% > 0, we have
thatT > 0 andS > 0 which induce the following implications

tr(TS) =0=>TS=0= %% =0, VkeR (35)

Therefore, after some manipulations, one gets

Xk = — Ty L Ty = — T (= Tl Yy = YiZi 1Y

Thus the nonlinear constraints is satisfied
Xk < Xk = YiZ 1Yk

The converse implication is proved takir, — YZ 1Y,
and % such that%.% =0, Vke R.

A detailed description of the implementation of this algo
rithm is given in [4].

B. Numerical Examples

a) Fault Tolerant Control ]

In this section, the proposed#, static output feedback
control of AFTCSMP is illustrated using a flight control
example. Consider the nominal system with

96783 16022
1 Wy =01xI,

0

~0.0565
~0.0601
9.218x 1073
0

29072
—0.7979
—0.0179

—175610
—0.2996
—0.1339

0
A=

:

0 0
0 0
0 0 0
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1
0
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0.1
0

0
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0
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2.3491
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—2.3491
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20092
Q7703
—1.3575
0
0

0
0

0

0 01

Q0010
—0.002
00010

00010
Q0010
—0.002

—0.002
0.0010
0.0010

ol |

The FDI conditional transition rates are:

o[ F R[F F B
[AF,-]:[ }

For the above AFTCSMP, several numerical experiments
are performed using the cone complementary algorithm.
These tests are realised for various specifications othe

Q01
Q01
-101

100
100
-0.02

-101
0.01
0.01

100
-0.02
100

001
001
-1.01

-0.02
1.00
1.00

-101

0.01
0.01

001
—-1.01
001

001
-101
001

w3 =

gerformance ¥%). Here are presented some cases described

in Table 1, whereiter is the number of the algorithms
iterations, time is the computation time (LMIs solved
with LMI toolbox, Matlab 6.5.1),Tr( TS) is the value of

the optimisation criteria tracel(Sx) at the step when the
algorithm stopped, and#yg, k = 1,2,3 are the controllers

obtained as the centers of the stabilising ellipsoids.

b) Mode-Independent Control of MJLS

We applied the proposed static output feedbatk control

to a VTOL helicopter model adapted from [10]. The dynam-
ics can be written as

dx =A(@x(t)dt+B(@)u(ye, t)dt - Ewdt+ Wix dag
Wt = Cox + Dawg
Zoot = Coo1% + Doz U(Vt,t)

bwherecn indicates the airspeed. The parameters are given
y

} JWq =0.14I,

—0.0366
0.0482
0.1002

0

00271
-101

ago(@)
0

||

G=[0 0 0 1]D,=[ 01 o1 ]Acmlz[g ;

00188

00024

—0.707
1

—0.4555
—4.0208

Alg) = aga(@)
0

0.0468

0.0457

0.0437
0.0218

0
00099
00011

0

04422

bp1(¢)

“B52
0

01761
—7.5922
449
0

Blar) =

0

0
1 0

]
SEE

The behavior ofp is modelled as a Markov chain with three
different states, corresponding to airspeed4 26 (hominal
value), 60, 170, Knots. The values of parametessy, ags,
andbg, are shown in Table 2. The transition matrix is given



TABLE |

NUMERICAL EXPERIMENTS

test 3 iter time  (s) Tr( TS) Ao 30 30
1 20 3 28.9060 615.7093 —0.7589 09560 06559 —0.7007 11969 06718 —1.2359 —0.1512 06826
2 10 3 28.8750 810.2702 —0.7694 10038 06897 —0.7056 12640 07075 —1.2744 —0.1605 07129
3 5 3 28.0620 4.1924e+003 —0.7843 11103 07451 —0.7187 13857 07645 —1.3583 —0.1397 07706
4 1 10 126.6410 1.4087e+006 fails fails fails
TABLE I ) .
P [4] S. Aberkane, J.C. Ponsart, M. Rodrigues and D. Sauter, Ellipsoidal
ARAMETERS Output-Feedback Sets for Multi-Objective Control of a Class of
_ Stochastic Hybrid Systems with State-Dependent N@sémitted
Airspeed (Knots) asp E bo1 2006.
135 03681 14200 35446 [5] E. K. Boukas, Static Output Feedback Control for Stochastic Hybrid
60 00664 01198 09775 Systems: LMI ApproachAutomatica Vol.42, pp.183-188, 2006.
170 05047 25460 51120 [6] E. K. Boukas, Stabilization of Stochastic Nonlinear Hybrid Systems,
Int. J. Innovative Computing, Information and Conirdbl.1, No.1,
pp.131-141, 2005.
[7] E. K. Boukas, Exponential stabilizability of stochastic systems with
by Markovian jumping parameterdutomatica Vol.35, pp.1437-1441,
—0.0907 00671 00236 1999. . . . .
==| 00671 -00671 0 [8] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix
0.0236 0 —0.0236

As for the previous example, several numerical experimentégl
are performed using the cone complementary algorithm.
These tests are realised for various specifications owthe [10]
performance ¥.). Here are presented some cases described
in Table 3, wherexj is the controller obtained as the center
of the stabilising ellipsoid. [11]

TABLE Il
NUMERICAL EXPERIMENTS

[12]

test 3 iter  tme (s)  Tr( TS) 3

1 10 3 2.2810 15.2404 0.4321 —0.4037 [13]
2 5 3 1.8750 3.6171 0.2692 —0.3942

3 1 3 4.1250 0.2235 0.2465 —0.3116

4 0.5 11 10.9060 751.6071 fails

[14]

VII. CONCLUSION [15]

In this paper, the static output feedback:, control
of continuous time AFTCSMP was considered within g
new framework. This last one is based on the synthesis
of ellipsoidal sets of controllers and was introduced b§'17]
[18], [19]. The problematic resulting from the fact that the
controller only depends on the FDI process is shown t@s8]
be naturally dealt with in this context. It was also showrhg]
that the obtained results could easily be applied to thé
problem of mode-independent static output feedbagk
control of Markovian Jump Linear Systems. The numericd?f®!
resolution of the obtained results was done using a cone
complementary algorithm and its running was illustrated of21]
classical examples from literature.
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