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Static Output-FeedbackH∞ Control of a Class of Stochastic Hybrid
Systems with Wiener Process

Samir Aberkane, Jean Christophe Ponsart and Dominique Sauter

Abstract— This paper deals with static output feedback
H∞ control of continuous time Active Fault Tolerant Control
Systems with Markovian Parameters (AFTCSMP) and state-
dependent noise. It adopts a new framework, based on the
synthesis of ellipsoidal sets of controllers, introduced in [18],
[19]. It is also shown that the obtained results can easily be
applied to the problematic of mode-independent static output
feedback H∞ control of another class of stochastic hybrid
systems known as Markovian Jump Linear Systems. Results
are formulated as matrix inequalities one of which is nonlinear.
A numerical algorithm based on nonconvex optimization is
provided and its running is illustrated on classical examples
from literature.

I. I NTRODUCTION

As performance requirements increase in advanced tech-
nological systems, their associated control systems are be-
coming more and more complex. At the same time, com-
plicated systems could have various consequences in the
event of component failures. Therefore, it is very important
to consider the safety and fault tolerance of such systems
at the design stage. For these safety-critical systems, Fault
Tolerant Control Systems (FTCS) have been developed to
meet these essential objectives. FTCS have been a subject
of great practical importance, which has attracted a lot of
interest for the last three decades. A bibliographical review
on reconfigurable fault tolerant control systems can be found
in [25].
Active fault tolerant control systems are feedback control
systems that reconfigure the control law in real time based
on the response from an automatic fault detection and iden-
tification (FDI) scheme. The dynamic behaviour of Active
Fault Tolerant Control Systems (AFTCS) is governed by
stochastic differential equations and can be viewed as a
general hybrid system [23]. A major class of hybrid systems
is Markovian Jump Linear Systems (MJLS). In MJLS, a
single jump process is used to describe the random variations
affecting the system parameters. This process is represented
by a finite state Markov chain and is called the plant regime
mode. The theory of stability, optimal control andH2/H∞
control, as well as important applications of such systems,
can be found in several papers in the current literature, for
instance in [5], [6], [7], [9], [10], [11], [13], [14].
To deal with AFTCS, another class of hybrid systems was de-
fined, denoted as AFTCSMP. In this class of hybrid systems,
two random processes are defined: the first random process
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represents system components failures and the second ran-
dom process represents the FDI process used to reconfigure
the control law. This model was proposed by Srichander and
Walker [23]. Necessary and sufficient conditions for stochas-
tic stability of AFTCSMP were developed for a single com-
ponent failure (actuator failures). The problem of stochastic
stability of AFTCSMP in the presence of noise, parameter
uncertainties, detection errors, detection delays and actuator
saturation limits has also been investigated in [15], [16].
Another issue related to the synthesis of fault tolerant control
laws was also addressed by [20], [21]. The problem ofH∞
and robustH∞ control was treated in [20], [21] for both
continuous and discret time AFTCSMP. The authors showed
that the state feedback control problem can be solved in terms
of the solutions of a set of coupled Riccati inequalities. The
dynamic/static output feedback counterpart was treated by
[1], [2], [3] in a convex programming framework. Indeed, the
authors provide an LMI characterization of dynamical/static
output feedback compensators that stochastically stabilize
(robustly stabilize) the AFTCSMP and ensuresH∞ (robust
H∞) constraints. In addition, it is important to mention
that the design problem in the framework of AFTCSMP
remains an open and challenging problematic. This is due,
particulary, to the fact that the controller only depends on
the FDI process. Generally speaking, there lacks tractable
design methods for this stochastic FTC problem. Indeed, in
[1], [2], [16], [20], [21], the authors make the assumption that
the controller must access both failures and FDI processes.
However, this assumption is too restrictive to be applicable
in practical FTC systems. In this note, the assumption on the
availability of failure processes, for the synthesis purposes,
is stressed.
On the other hand, one of the most challenging open prob-
lems in control theory is the synthesis of fixed-order or static
output feedback controllers that meet desired performances
and specifications [24]. Among all variations of this problem,
this note is concerned with the problem of static output
feedbackH∞ control of continuous time AFTCSMP with
state-dependent noise. This problematic is addressed under a
new framework, based on the synthesis of ellipsoidal sets
of controllers, introduced in [18], [19]. The problematic
resulting from the fact that the controller only depends on
the FDI process is shown to be naturally dealt with in this
context. It is also shown that the obtained results can easily
be applied to the problematic of mode-independent static
output feedbackH∞ control of MJLS. Results are formulated
as matrix inequalities one of which is nonlinear. A numerical
algorithm based on nonconvex optimization is provided and



its running is illustrated on classical examples from literature.
This paper is organized as follows: Section 2 describes the
dynamical model of the system with appropriately defined
random processes. A brief summary of basic stochastic
terms, results and definitions are given in Section 3. Sec-
tion 4 addresses the internal stochastic stabilization of the
AFTCSMP. Sections 5 considers theH∞ control problem
for the output feedback. In Section 6, a numerical algorithm
based on nonconvex optimization is provided and its running
is illustrated on classical examples from literature. Finally, a
conclusion is given in Section 7.
Notations. The notations in this paper are quite standard.
Rm×n is the set ofm-by-n real matrices andSn is the subset of
symmetric matrices inRn×n. A′ is the transpose of the matrix
A. The notationX ≥Y (X >Y, respectively), whereX andY
are symmetric matrices, means thatX−Y is positive semi-
definite (positive definite, respectively);I and0 are identity
and zero matrices of appropriate dimensions, respectively;
E {·} denotes the expectation operator with respect to some
probability measureP; L2[0,∞) stands for the space of
square-integrable vector functions over the interval[0,∞);
‖ · ‖ refers to either the Euclidean vector norm or the matrix
norm, which is the operator norm induced by the standard
vector norm;‖ · ‖2 stands for the norm inL2[0,∞); while
‖ · ‖E2 denotes the norm inL2((Ω,F ,P), [0,∞)); (Ω,F ,P)
is a probability space.

II. DYNAMICAL MODEL OF THEAFTCSMPWITH

WIENER PROCESS

The dynamical model of the AFTCSMP with Wiener Pro-
cess, defined in the fundamental probability space(Ω,F ,P),
is described by the following differential equations:

ϕ :





dx(t)=A(ξ (t))x(t)dt+B(η(t))u(y(t),ψ(t), t)dt
+E(ξ (t),η(t))w(t)dt+∑v

l=1Wl (ξ (t),η(t))x(t)dϖl (t)
y(t) = C2x(t)+D2(ξ (t),η(t))w(t)
z(t) = C1x(t)+D1(η(t))u(y(t),ψ(t), t)

(1)

wherex(t) ∈ Rn is the system state,u(y(t),ψ(t), t) ∈ Rr is
the system input,y(t) ∈ Rq is the system measured output,
z(t) ∈ Rp is the controlled output,w(t) ∈ Rm is the sys-
tem external disturbance,ξ (t), η(t) and ψ(t) represent the
plant component failure process, the actuator failure process
and the FDI process, respectively.ξ (t), η(t) and ψ(t) are
separable and mesurable Markov processes with finite state
spacesZ = {1,2, ...,z}, S= {1,2, ...,s} andR= {1,2, ..., r},
respectively.ϖ(t) = [ϖ1(t) . . .ϖv(t)]

′ is av-dimensional stan-
dard Wiener process on a given probability space(Ω,F ,P),
that is assumed to be independent of the Markov processes.
The matricesA(ξ (t)), B(η(t)), E(ξ (t),η(t)), D2(ξ (t),η(t)),
D1(η(t)) andWl (ξ (t),η(t)) are properly dimensioned ma-
trices which depend on random parameters.
In AFTCS, we consider that the control law is only a function
of the mesurable FDI processψ(t). Therefore, we introduce
a static output feedback compensator (ϕs) of the form:

ϕs :
{

u(t) = K (ψ(t))y(t) (2)

Applying the controllerϕs to the AFTCSMPϕ, we obtain
the following closed loop system:

ϕcl :





dx(t) = Ā(ξ (t),η(t),ψ(t))x(t)dt+ Ē(ξ (t),η(t),ψ(t))w(t)dt
+∑v

l=1Wl (ξ (t),η(t))x(t)dϖl (t)
y(t) = C2x(t)+D2(ξ (t),η(t))w(t)
z(t) = C̄1(η(t),ψ(t))x(t)+ D̄1(ξ (t),η(t),ψ(t))w(t)

(3)

where
[

Ā(ξ (t),η(t),ψ(t)) Ē(ξ (t),η(t),ψ(t))
C̄1(η(t),ψ(t)) D̄1(ξ (t),η(t),ψ(t))

]
=

[
A(ξ (t)) E(ξ (t),η(t))

C1 0

]

+
[

B(η(t))
D1(η(t))

]
K (ψ(t))

[
C2 D2(ξ (t),η(t))

]

A. The FDI and the Failure Processes

ξ (t), η(t) andψ(t) being homogeneous Markov processes
with finite state spaces, we can define the transition proba-
bility of the plant components failure process as [16], [23]:





pi j (∆t) = πi j ∆t +o(∆t) (i 6= j)
pii (∆t) = 1− ∑

i 6= j
πi j ∆t +o(∆t) (i = j)

The transition probability of the actuator failure process is
given by:





pkl(∆t) = νkl∆t +o(∆t) (k 6= l)
pkk(∆t) = 1− ∑

k6=l
νkl∆t +o(∆t) (k = l)

where πi j is the plant components failure rate, andνkl is
the actuator failure rate.
Given that ξ = k and η = l , the conditional transition
probability of the FDI processψ(t) is:





pkl
iv(∆t) = λ kl

iv ∆t +o(∆t) (i 6= v)
pkl

ii (∆t) = 1− ∑
i 6=v

λ kl
iv ∆t +o(∆t) (i = v)

Here, λ kl
iv represents the transition rate fromi to v for the

Markov processψ(t) conditioned onξ = k∈Z andη = l ∈S.
For notational simplicity, we will denote•(ξ (t)) = •i when
ξ (t) = i ∈Z, •(η(t)) = • j whenη(t) = j ∈S, •(ξ (t),η(t)) =
•i j , whenξ (t) = i ∈ Z,η(t) = j ∈ S and•(ψ(t)) = •k when
ψ(t) = k ∈ R. We also denote•(t) = •t and the initial
conditions•(t0) = •0.

III. D EFINITIONS

Without loss of generality, we assume that the equilibrium
point, x = 0, is the solution at which stability properties
are examined. Under the assumption that the system (ϕ)
coupled with (ϕs) satisfies the global Lispchitz condition,
the solutionxt determines a family of unique continuous
stochastic processes, one for each choice of the random
variable x0. The joint process{xt ,ξt ,ηt ,ψt} is a Markov
process.



A. Stochastic Stability

System (3) is said to be
(i) stochastically stable (SS) if there exists a finite positive

constantK(x0,ξ0,η0,ψ0) such that the following holds
for any initial conditions(x0,ξ0,η0,ψ0):

E

{∫ ∞

0
‖ xt ‖2 dt

}
≤ K(x0,ξ0,η0,ψ0) (4)

(ii) internally exponentially stable in the mean square sense
(IESS) if it is exponentially stable in the mean square
sense forwt = 0, i.e. for any ξ0,η0,ψ0 and some
γ(ξ0,η0,ψ0), there exists two numbersa > 0 and b >
0 such that when‖x0‖ ≤ γ(ξ0,η0,ψ0), the following
inequality holds∀t ≥ t0 for all solution of (3) with initial
conditionx0:

E
{‖xt‖2}≤ b‖x0‖2 exp[−a(t− t0)] (5)

The following theorem gives a sufficient condition for in-
ternal exponential stability in the mean square sense for the
system (ϕ) coupled with (ϕs).
Theorem 1: The solutionx = 0 of the system(ϕ) coupled
with (ϕs) is internally exponentially stable in the mean square
for t ≥ t0 if there exists a Lyapunov functionϑ(xt ,ξt ,ηt ,ψt , t)
such that

K1‖xt‖2 ≤ ϑ(xt ,ξt ,ηt ,ψt , t)≤ K2‖xt‖2 (6)

and
L ϑ(xt ,ξt ,ηt ,ψt , t)≤−K3‖xt‖2 (7)

for some positive constantsK1, K2 and K3, where L is
the weak infinitesimal operator of the joint Markov process
{xt ,ξt ,ηt ,ψt}.
A necessary condition for internal exponential stability in the
mean square for the system (ϕ) coupled with (ϕs) is given
by theorem 2.
Theorem 2: If the solutionx = 0 of the system(ϕ) coupled
with (ϕs) is internally exponentially stable in the mean
square, then for any given quadratic positive definite function
W(xt ,ξt ,ηt ,ψt , t) in the variablesx which is bounded and
continuous∀t ≥ t0, ∀ξt ∈Z, ∀ηt ∈Sand∀ψt ∈R, there exists
a quadratic positive definite functionϑ(xt ,ξt ,ηt ,ψt , t) in x
such thatL ϑ(xt ,ξt ,ηt ,ψt , t) =−W(xt ,ξt ,ηt ,ψt , t).
Remark 1: The proofs of these theorems follow the same
arguments as in [16], [23] for their proposed stochastic
Lyapunov functions, so they are not shown in this paper to
avoid repetition.
Proposition 1: A necessary and sufficient condition for
internal exponential stability in the mean square of the
system (3) is that there exist symmetric positive-definite
matricesPi jk , i ∈ Z, j ∈ S andk∈ R such that:

Ã′i jkPi jk +Pi jk Ãi jk +
v

∑
l=1

W′
li j Pi jkWli j + ∑

h∈Z

πihPh jk

+ ∑
l∈S

ν jl Pilk + ∑
v∈R

λ i j
kvPi jv = iג jk < 0 (8)

∀i ∈ Z, j ∈ S andk∈ R, where

Ãi jk = Ai +B jKkC2 (9)

Proof: The proof of this proposition is easily deduced from
theorems 1 and 2.
Proposition 2: If the system (3) is internally exponentially
stable in the mean square sense, then it is stochastically
stable.
Proof: The proof of this proposition follows the same lines
as for the proof of proposition 4 in [3].

B. Matrix Ellipsoids

Through this note, a particular set of matrices is used.
Due to the notations and by extension of the notion ofRn

ellipsoids, these sets are referred to as matrix ellipsoids of
R(m×p).
Definition 1 [18], [19]: Given three matricesX ∈ Sq, Y ∈
Rq×r andZ ∈ Sr , the {X,Y,Z}-ellipsoid ofRr×q is the set
of matricesK satisfying the following matrix inequalities:

Z> 0
[
I K ′ ][

X Y
? Z

][
I

K

]
≤ 0 (10)

By definition, K0 = −Z−1Y′ is the center of the ellipsoid
andR= K ′

0ZK0−X is the radius. Inequalities (8) can also
be written as

Z> 0 (K −K0)′Z(K −K0)≤ R (11)

This definition shows that matrix ellipsoids are special cases
of matrix sets defined by quadratic matrix inequality. Some
properties of these sets are

i) A matrix ellipsoid is a convex set;
ii) the {X,Y,Z}-ellipsoid is nonempty iff the radius (R≥

0) is positive semi definite. This property can also be
expressed as

X≤ YZ−1Y′ (12)

IV. STOCHASTIC STABILIZATION

In this section, we shall address the problem of finding
all static compensators(ϕs), as defined in section 2, such
that the system(ϕ) coupled with(ϕs) becomes internally
exponentially stochastically stable in the mean square. To
this end, we use proposition 1 to get the following necessary
and sufficient conditions for the internal exponential stability
in the mean square of the system (3).
Proposition 3: System (3) is internally exponentially stabil-
isable in the mean square by static output-feedback if and
only if there exist matricesPi jk = P ′

i jk > 0, Xk ∈ Sq, Yk ∈
Rq×r andZk ∈ Sr that simultaneously satisfy the following
LMI constraints

Zk > 0 Pi jk > 0 (13)

[
I 0
Ai B j

]′ [ Θi jk Pi jk
Pi jk 0

][
I 0
Ai B j

]

<

[
C2 0
0 I

]′ [ Xk Yk
? Zk

][
C2 0
0 I

]

(14)

and the nonlinear inequalities constraints

Xk ≤ YkZ−1
k Y

′
k (15)

∀i ∈ Z, j ∈ S andk∈ R, where

Θi jk =
v

∑
l=1

W′
li j Pi jkWli j + ∑

h∈Z

πihPh jk + ∑
l∈S

ν jl Pilk

+ ∑
v∈R

λ i j
kvPi jv (16)

Let {Pi jk ,Xk,Yk,Zk} be a solution, then the nonempty
{Xk,Yk,Zk}-ellipsoids are sets of stabilizing gains.
Proof: The proof of this proposition is given in [4].



Remark 2: The results developed above can be easily applied
to the mode-independentstatic output feedback stochastic
stabilization of MJLS. Indeed, let us consider the following
closed loop dynamical model

ϕcl :





dx(t) = Ā(φt)x(t)dt+ Ē(φt)w(t)dt+∑v
l=1Wl (φt)x(t)dϖl (t)

y(t) = C2(φt)x(t)+D2(φt)w(t)
z(t) = C̄1(φt)x(t)+ D̄1(φt)w(t)

(17)
where

[
Ā(φt) Ē(φt)
C̄1(φt) D̄1(φt)

]
=

[
A(φt) E(φt)
C1(φt) 0

]

+
[

B(φt)
D1(φt)

]
K

[
C2(φt) D2(φt)

]

The processφt represents a continuous time discret state
Markov process with values in a finite setH = {1, ...,h}
with transition probability rate matrixΞ = [Φ]i, j=1,...,h. In
this case, the transition probability for the jump process,φt ,
can be defined as:

pk j(∆t) = Φk j∆t +◦(∆t) (k 6= j) (18)

with ∑
j∈H
j 6=i

Φi j =−Φii = Φi .

Then, the following corollary can be stated
Corollary 1: System (17) is internally exponentially stabil-
isable in the mean square by static output-feedback If and
only if there exist matricesPi = P ′

i > 0, X ∈ Sq, Y ∈Rq×r

and Z ∈ Sr that simultaneously satisfy the following LMI
constraints

Z> 0 Pi > 0 (19)

[
I 0
Ai Bi

]′ [ Θi Pi
Pi 0

][
I 0
Ai Bi

]

<

[
C2i 0
0 I

]′ [ X Y
? Z

][
C2i 0
0 I

]

(20)

and the nonlinear inequalities constraints

X≤ YZ−1Y′ (21)

∀i ∈ H, where

Θi =
v

∑
l=1

W′
li PiWli + ∑

v∈H
ΦivPv (22)

Let {Pi ,X,Y,Z} be a solution, then the nonempty
{X,Y,Z}-ellipsoid is a set of stabilizing gains.

V. THE H∞ CONTROL PROBLEM

Let us consider the system (3) with

z(t) = z∞(t) = C∞1x(t)+D∞1(η(t))u(y(t),ψ(t), t)

z∞(t) stands for the controlled output related toH∞ perfor-
mance. In this section, we deal with the design of controllers
that stochastically stabilize the closed-loop system and guar-
antee the disturbance rejection, with a certain levelγ∞ > 0.
Mathematically, we are concerned with the characterization
of compensatorsϕs that stochastically stabilize the system
(3) and guarantee the following for allw∈ L2[0,∞):

‖ z∞ ‖E2= E

{∫ ∞

0
z′∞tz∞tdt

}1/2

< γ∞ ‖ w ‖2 (23)

whereγ∞ > 0 is a prescribed level of disturbance attenuation
to be achieved. To this end, we need the auxiliary result given
by the following proposition.
Proposition 4: If there exist symmetric positive-definite
matricesP∞i jk , i ∈ Z, j ∈ S andk∈ R such that

[
ϒi jk C̄′1 jkD̄1i jk +P∞i jk Ēi jk

? D̄′1i jk D̄1i jk − γ2
∞I

]
= Φi jk < 0 (24)

where

ϒi jk = Ã′i jkP∞i jk +P∞i jk Ãi jk +
v

∑
l=1

W′
li j P∞i jkWli j

+C̄′1 jkC̄1 jk + ∑
h∈Z

πihP∞h jk + ∑
l∈S

ν jl P∞ilk + ∑
v∈R

λ i j
kvP∞i jv

∀i ∈ Z, j ∈ S andk∈ R.
then the system (3) is stochastically stable and satisfies

‖ z∞ ‖E2= E

{∫ ∞

0
z′∞tz∞tdt

}1/2

< γ∞ ‖ w ‖2 (25)

Proof: See [3].
Using the previous proposition, the followingH∞ control
result can be stated.
Proposition 5: If there exist matricesP∞i jk = P ′

∞i jk > 0,
Xk ∈ Sq, Yk ∈ Rq×r andZk ∈ Sr that simultaneously satisfy
the following LMI constraints

Zk > 0 P∞i jk > 0 (26)

M′
1i j

[
Θi jk P∞i jk

P∞i jk 0

]
M1i j <M′

2

[ −I 0
0 γ2

∞I

]
M2

+M′
3

[
Xk Yk
? Zk

]
M3 (27)

and the nonlinear inequalities constraints

Xk ≤ YkZ−1
k Y

′
k (28)

∀i ∈ Z, j ∈ S andk∈ R, where

M1i j =
[
I 0 0
Ai Ei j B j

]
, M2 =

[
C∞1 0 D∞1

0 I 0

]
,

M3 =
[

C2 D2 0
0 0 I

]
.

then the{Xk,Yk,Zk}-ellipsoids are sets of stabilizing gains
such that

‖ z∞ ‖E2= E

{∫ ∞

0
z′∞tz∞tdt

}1/2

< γ∞ ‖ w ‖2 (29)

Proof: The proof of this proposition follows the same
arguments as for the proof of proposition 3.
Remark 3: As for the internal stochastic stabilization prob-
lematic, themode-independentstatic output feedbackH∞
control of MJLS can be solved in the same way as for
AFTCSMP. This result is illustrated by corollary 2.
Corollary 2: If there exist matricesP∞i = P ′

∞i > 0, X ∈
Sq, Y ∈ Rq×r and Z ∈ Sr that simultaneously satisfy the
following LMI constraints

Z> 0 P∞i > 0 (30)

M′
1i

[
Θi P∞i

P∞i 0

]
M1i <M′

2i

[ −I 0
0 γ2

∞I

]
M2i +M′

3i

[
X Y
? Z

]
M3i

(31)



and the nonlinear inequalities constraints

X≤ YZ−1Y′ (32)

∀i ∈ H, where

M1i =
[
I 0 0
Ai Ei Bi

]
, M2i =

[
C∞1i 0 D∞1i

0 I 0

]
,

M3i =
[

C2i D2i 0
0 0 I

]
.

then the{X,Y,Z}-ellipsoid is a set of stabilizing gains such
that

‖ z∞ ‖E2= E

{∫ ∞

0
z′∞tz∞tdt

}1/2

< γ∞ ‖ w ‖2 (33)

VI. COMPUTATIONAL ISSUES ANDEXAMPLES

A. A Cone Complementary Algorithm

The numerical examples are solved using a first order
iterative algorithm. It is based on a cone complementary
technique [12], that allows to concentrate the non convex
constraint in the criterion of some optimisation problem.
Lemma 1: The problem (26)-(28) is feasible if and only if
zero is the global optimum of the optimisation problem





min tr(TS)
s.t. (26), (27)

Xk ≤ X̂k Sk =

[
X̂k Yk

? Zk

]
≥ 0

T1k ≥ I Tk =

[
T1k T2k

? T3k

]
≥ 0

(34)

where
S= diag{S1, . . . ,Sr}, T= diag{T1, . . . ,Tr}

Proof: The proof of this Lemma follows the same arguments
as in [19]. With the constraintsTk≥ 0 andSk≥ 0, we have
thatT≥ 0 andS≥ 0 which induce the following implications

tr(TS) = 0⇒ TS= 0⇒TkSk = 0, ∀k∈ R (35)

Therefore, after some manipulations, one gets

X̂k =−T −1
1k T2kY′k =−T −1

1k (−T1kYkZ−1
k )Y′k = YkZ−1

k Y
′
k

Thus the nonlinear constraints is satisfied

Xk ≤ X̂k = YkZ−1
k Y

′
k

The converse implication is proved takinĝXk = YkZ−1
k Y

′
k

andTk such thatTkSk = 0, ∀k∈ R.
A detailed description of the implementation of this algo-
rithm is given in [4].

B. Numerical Examples
a) Fault Tolerant Control
In this section, the proposedH∞ static output feedback
control of AFTCSMP is illustrated using a flight control
example. Consider the nominal system with

A =




−0.0565 29.072 −175.610 9.6783 1.6022
−0.0601 −0.7979 −0.2996 0 0

9.218×10−3 −0.0179 −0.1339 0 0
0 1 0 0 0
0 0 1 0 0




,

B =




−0.1339 0.1339 2.0092
2.3491 −2.3491 0.7703
0.0444 −0.0444 −1.3575

0 0 0
0 0 0




, E =




1 0
0 0.5

0.1 0.1
0.1 0
0 0.1




, W1 = 0.1× I,

C2 =
[

0 0 0 0 1
]
,C∞1 =




0 1 0 0 0
0 0 1 0 0
0 0 0 0 0


 ,

C2 =
[

0.1 0.1
]
, D∞1 =




1 0 0
0 1 0
0 0 1


 .

This model is adapted from [17]. It represents the lateral-
directional dynamics of McDonnell F-4C Phantom flying at
Mach 0.6 at an altitude of35000ft. The statesxi , i = 1, . . . ,5
denote the lateral velocity (ft per second), the roll rate (radian
per second), yaw rate (radian per second), roll angle (radian)
and yaw angle (radian), respectively. The control inputs
u1, u2 andu3 correspond to the left aileron, the right aileron
and the rudder surface displacement, respectively.
For illustration purposes, we will consider two faulty modes:

i) Mode 2: A 50% power loss on the left aileron;
ii) Mode 3: Right aileron outage.

From above, we have thatS= {1,2,3}, where themode 1
represents the nominal case. The failure process is assumed
to have Markovian transition characteristics. The FDI process
is also Markovian with three statesR= {1,2,3}.
The actuator failure rates are assumed to be:

[πi j ] =




−0.002 0.0010 0.0010
0.0010 −0.002 0.0010
0.0010 0.0010 −0.002




The FDI conditional transition rates are:

[λ1
i j ] =




−0.02 0.01 0.01
1.00 −1.01 0.01
1.00 0.01 −1.01


 , [λ2

i j ] =




−1.01 1.00 0.01
0.01 −0.02 0.01
0.01 1.00 −1.01


 ,

[λ3
i j ] =




−1.01 0.01 1.00
0.01 −1.01 1.00
0.01 0.01 −0.02


 .

For the above AFTCSMP, several numerical experiments
are performed using the cone complementary algorithm.
These tests are realised for various specifications on theH∞
performance (γ∞). Here are presented some cases described
in Table 1, whereiter is the number of the algorithms
iterations, time is the computation time (LMIs solved
with LMI toolbox, Matlab 6.5.1),Tr( TS) is the value of
the optimisation criteria trace (TkSk) at the step when the
algorithm stopped, andKk0, k = 1,2,3 are the controllers
obtained as the centers of the stabilising ellipsoids.
b) Mode-Independent Control of MJLS
We applied the proposed static output feedbackH∞ control
to a VTOL helicopter model adapted from [10]. The dynam-
ics can be written as





dxt =A(φt)x(t)dt+B(φt)u(yt , t)dt+Ewtdt+W1xtdϖt

yt = C2xt +D2wt

z∞t = C∞1xt +D∞1u(yt , t)

whereφt indicates the airspeed. The parameters are given
by

A(φt ) =




−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 a32(φt ) −0.707 a34(φt )

0 0 1 0


 ,

B(φt ) =




0.4422 0.1761
b21(φt ) −7.5922
−5.52 4.49

0 0


 , E =




0.0468 0
0.0457 0.0099
0.0437 0.0011
−0.0218 0


 ,W1 = 0.1∗ I,

C2 =
[

0 0 0 1
]
, D2 =

[
0.1 0.1

]
, C∞1 =

[
0 1 0 0
0 0 1 0

]
,

D∞1 =
[

1 0
0 1

]
.

The behavior ofφt is modelled as a Markov chain with three
different states, corresponding to airspeeds of135 (nominal
value), 60, 170, Knots. The values of parametersa32, a34,
andb32 are shown in Table 2. The transition matrix is given



TABLE I

NUMERICAL EXPERIMENTS

test γ2∞ iter time (s) Tr( TS) K ′
10 K ′

20 K ′
30

1 20 3 28.9060 615.7093
[ −0.7589 0.9560 0.6559

] [ −0.7007 1.1969 0.6718
] [ −1.2359 −0.1512 0.6826

]
2 10 3 28.8750 810.2702

[ −0.7694 1.0038 0.6897
] [ −0.7056 1.2640 0.7075

] [ −1.2744 −0.1605 0.7129
]

3 5 3 28.0620 4.1924e+003
[ −0.7843 1.1103 0.7451

] [ −0.7187 1.3857 0.7645
] [ −1.3583 −0.1397 0.7706

]
4 1 10 126.6410 1.4087e+006 fails fails fails

TABLE II

PARAMETERS

Airspeed (Knots) a32 a34 b21
135 0.3681 1.4200 3.5446
60 0.0664 0.1198 0.9775
170 0.5047 2.5460 5.1120

by

Ξ =




−0.0907 0.0671 0.0236
0.0671 −0.0671 0
0.0236 0 −0.0236




As for the previous example, several numerical experiments
are performed using the cone complementary algorithm.
These tests are realised for various specifications on theH∞
performance (γ∞). Here are presented some cases described
in Table 3, whereK0 is the controller obtained as the center
of the stabilising ellipsoid.

TABLE III

NUMERICAL EXPERIMENTS

test γ2∞ iter time (s) Tr( TS) K ′
0

1 10 3 2.2810 15.2404
[

0.4321 −0.4037
]

2 5 3 1.8750 3.6171
[

0.2692 −0.3942
]

3 1 3 4.1250 0.2235
[

0.2465 −0.3116
]

4 0.5 11 10.9060 751.6071 fails

VII. C ONCLUSION

In this paper, the static output feedbackH∞ control
of continuous time AFTCSMP was considered within a
new framework. This last one is based on the synthesis
of ellipsoidal sets of controllers and was introduced by
[18], [19]. The problematic resulting from the fact that the
controller only depends on the FDI process is shown to
be naturally dealt with in this context. It was also shown
that the obtained results could easily be applied to the
problem of mode-independent static output feedbackH∞
control of Markovian Jump Linear Systems. The numerical
resolution of the obtained results was done using a cone
complementary algorithm and its running was illustrated on
classical examples from literature.
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