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Decompositions of displacements of thin structures

G. GRISO

Abstract. In this study we present first the main theorem of the unfolding method in linearized elasticity. Then we prove that

every displacement of a thin structure (curved rod or shell) is the sum of an elementary displacement and a warping. Thanks to the

previous theorem we obtain sharp estimates of the displacements of this decomposition.

Résumé. Dans cette étude on présente d’abord le théorème fondamental de la méthode de l’éclatement en élasticité linéaire. On

montre ensuite que tout déplacement d’une structure mince (poutre courbe ou coque) se décompose en la somme d’un déplacement

élémentaire et d’un gauchissement. Grâce au théorème fondamental on obtient les estimations des déplacements de cette décomposition.

KEY WORDS: linear elasticity, beams, curved rods, plates, shells, junctions, unfolding method.

I. Introduction

Two mathematical methods have been developed to study thin structures. The first one is the formal

asymptotic method in which we determine the first term of the asymptotic expansion and then justify the

result by an error estimate (see books by J. Sanchez-Hubert and E. Sanchez-Palencia [22] (rods) and Ph.

Destuynder [6] (plates)). The second one is the more recent variational asymptotic method in which, for

the first time, linearized elasticity of rods, plates or shells has been studied without any geometrical or

mechanical a priori hypotheses. This method is presented in works by L. Trabucho and J. M. Viano [24]

(rods) and P.G. Ciarlet [4,5] (plates and shells). Our paper is dedicated to a new method in elasticity : the

unfolding method in linearized elasticity. The unfolding method offers new tools to study the asymptotic

behavior (see [10,11,14,15]) and the homogenization (see [12]) of structures formed by a large numbers of

rods, plates or shells. These tools consist essentially in new decompositions of the displacements of a thin

structure and in estimates of the elements of these decompositions. These decompositions make it quite

easy to obtain the Korn inequality in a thin domain as well as the asymptotic behavior of the strain tensor

of a sequence of displacements. The limits are expressed in terms of formal displacements of the reference

structure (see [10,11,12, 13, 14,15]).

Our paper is organised into three parts. Section II is dedicated to Theorem 1.3. This theorem is the

main result of the unfolding method in linearized elasticity (see [10,11,13]). It is a generalization of Lemma

3.1 in [10]. We choose a domain O in Rn included in a ball of radius less than R and star-shaped with respect

to a ball of radius R1. Theorem 1.3 gives estimates of the distances for different norms between an element

belonging to W 1,p(O; Rn), 1 < p < ∞, and the space of rigid body displacements. The constants appearing

in these estimates depend on n, p and on the two parameters R and R1 which caracterize the geometry

of the open set. To do so, we prove that a displacement u in W 1,p(O; Rn) is written u = v + w where v

is defined thanks to Newtonian potentials and where w is a harmonic displacement. A rigid displacement

r which approximates u is obtained with the mean value of u and the mean value of the skew-symmetric

part of ∇w. The estimates of u − r are due to the Poincaré-Wirtinger inequality for functions belonging

to W 1,p
loc (O) (Proposition 1.2). In fact in Theorem 1.3 we give an upper bound of the distance between the

gradient of u and the space of the skew-symmetric matrices with the help of the strain tensor norm of u.

This theorem can be compare with a result obtained by G. Friesecke, R. D. James and S. Müller which

stands out in nonlinear elasticity. In [9] these authors have proved that the distance between the gradient of
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a function φ ∈ H1(O; Rn) and SO(n) is estimate by the L2 norm of dist
(
∇φ, SO(n)

)
and a constant which

depends only of the open set O.

The Korn inequality in an open bounded set star-shaped with respect to a ball is an immediate conse-

quence of Theorem 1.3. We also deduce from this theorem Korn’s inequality in an open bounded set with

lipschitzian boundary.

Several proofs (see [5,7,20]) of Korn’s inequality refer to a lemma of J.-L. Lions [7,20], yet this lemma

does not give the dependence of the constant in this inequality with respect to the open set. New proofs

of this inequality for displacements in H1(O;Rn) are given in [2,10,17]. In these articles we explicitly find

the dependence of the constant in Korn’s inequality with respect to the open set O. We also find in [19]

a proof of Korn’s inequality for displacements belonging to W 1,p(Ω;Rn) where Ω is an open bounded set

with lipschitzian boundary. But in this paper the authors do not give the dependence of the constant with

respect to the open set.

Section III is dedicated to the decompositions of the displacements of a curved rod. The curved rod

has a length of L and a thickness of order δ. We define the class of elementary displacements of the curved

rod (Definition 2). These displacements are the generalization of the Bernoulli-Navier displacements (see

[10]). Then, to any displacement u of the curved rod we associate an elementary displacement Ue and a

warping u, u = Ue + u (Definition 3). Theorem 2.1 gives sharp estimates with respect to δ and the strain

energy of u for this kind of displacements. In order to study structures made of rods we give, Lemma 2.2,

an extension of u at each of its extremities and, Proposition 2.3, a second decomposition of u in the sum

of an elementary displacement and a residual one such that this new elementary displacement is equal to a

rigid body displacement in a neighborhood of the extremities of the curved rod (see also [18]). Of course all

results of this section are true for straight rods.

Section IV is dedicated to the decompositions of the displacements of a shell. The shell has a thickness

of 2δ. As in the previous section we define the class of elementary displacements of the shell (Definition

6). These displacements are the generalization of the Kirchhoff-Love displacements (see [11]). Then, to

any displacement u of a shell we associate an elementary displacement Ue and a warping u, u = Ue + u

(Definition 7). Theorem 3.1 gives sharp estimates with respect to δ and the strain energy of u for this

kind of displacements. Our first decomposition of a displacement is the simplest and the most natural. In

this decomposition the normal component of the rotation is null. In order to obtain the Korn inequality

more easily and to study structures made of several plates or shells we introduce a new decomposition of

displacement u into the sum of an elementary displacement and a residual one. In this decomposition the

normal component of the rotation vector will not be null any longer (Definition 8) and the estimates of this

new decomposition (Theorem 3.3) are simpler than those of Theorem 3.1. To do so we must give, Lemma

3.2, an extension of u in a neighborhood of thickness 2δ of the lateral boundary of the shell. Of course all

results of this section are true for plates.

The last section is dedicated to two geometrical lemmas and to the proof of Lemma 3.2.

As a rule, the Greek indices α and β take values in {1, 2} and the Latin indices i, j, k, l and q take

values in {1, . . . , n}.

II. The fundamental theorem of the unfolding method in linerized elasticity

1. Poincaré-Wirtinger’s inequality in an open bounded set star-shaped with respect to a ball

In this section O denotes an open bounded subset of Rn included in a ball of radius R and star-shaped

with respect to the ball B(O; R1). The following lemma and proposition are the generalizations of the

Lemma 2.6 and Proposition 2.5 in [10].
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For any 1 ≤ p ≤ ∞ and any bounded open set Ω de R
n we denote

W 1,p
ρ (Ω) =

{
φ ∈ Lp(Ω) | ρ∇φ ∈ [Lp(Ω)]n

}

where ρ(x) is the distance between x and the boundary of Ω.

Lemma 1.1 . For any φ belonging to W 1,p
ρ (O), 1 ≤ p < ∞, we have

(1.1) ||φ||p
Lp(O)

≤ 2n+3ppp
{ R

R1

}n+p−1{
||φ||p

Lp(B(O;R1))
+ ||ρ∇φ||p

[Lp(O)]n

}

Proof . Let θ be a mapping belonging to C∞(R+; [0, 1]) and such that

θ(t) = 0 if 0 ≤ t ≤
R1

2
θ(t) = 1 if R1 ≤ t |θ′(t)| ≤

4

R1
∀t ∈ R

+.

We recall that for any ψ ∈ W 1,p(0, a), a > 0, such that ψ(0) = 0, we have the Hardy’s inequality

∫ a

0

|ψ(x)|pdx ≤ pp

∫ a

0

(a − x)p|ψ′(x)|pdx

Let φ be in C∞(O). We consider the segment joining the origin O to an arbitrary point P belonging to the

boundary of O. We apply the Hardy inequality to the restriction θ(r)φ(x) on this segment. We obtain

(1.2)

∫ ||P ||2

0

|θ(r)φ(x)|pdr ≤ pp

∫ ||P ||2

0

∣∣r − ||P ||2
∣∣p

∣∣∣∂(θφ)

∂r

∣∣∣
p

dr

where r = ||x||2 (euclidian norm of x). The open set O is star-shaped with respect to the ball B(O; R1). So

we have

(1.3)
∣∣r − ||P ||2

∣∣ = ||x − P ||2 ≤
R

R1
ρ(x) and

∣∣r − ||P ||2
∣∣ ≤ R

From the inequalities (1.2) and (1.3) we deduce

(1.4)

∫ ||P ||2

R1

|φ(x)|pdr ≤
(2pR)p

Rp
1

∫ ||P ||2

R1
2

|ρ(x)∇φ(x)|pdr +
(8pR)p

Rp
1

∫ R1

R1
2

|φ(x)|pdr

We multiply the above inequality by
{R1

2

}n−1

. Then, in the right hand side we replace this quantity by

rn−1 and in the left hand side we replace it by
( r

R

R1

2

)n−1

. Finally we integrate on all rays (that is to say

on the unit sphere of R
n) to obtain

∫

O\B(O;R1)

|φ(x)|pdx ≤ 2n+3p−1pp
{ R

R1

}n+p−1{
||ρ∇φ||p[Lp(O)]n + ||φ||pLp(B(O;R1))

}

To the above inequality we add ||φ||p
Lp(B(O;R1))

. We have proved (1.1) for any function φ belonging to C∞(O).

The space C∞(O) is dense in W 1,p(O) then we obtain (1.1) for any φ ∈ W 1,p(O).

Now we take φ in W 1,p
ρ (O). Let Oε be the range of O in the homothety of center O and ratio 1− ε, ε ∈]0, 1[.

The restriction of φ to Oε belongs to W 1,p(Oε), hence

||φ||pLp(Oε) ≤ 2n+3ppp
{ R

R1

}n+p−1{
||ρε∇φ|p[Lp(Oε)]n

+ ||φ||pLp(B(O;(1−ε)R1))

}
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where ρε(x) is the distance from x to the boundary of Oε. We have ρε(x) ≤ ρ(x). Then (1.1) follows for any

φ ∈ W 1,p
ρ (O) by passing to limit as ε → 0 and thanks to the Beppo-Levi’s Theorem.

We denote MΩ(φ) the mean value of φ in Ω,

MΩ(φ) =
1

|Ω|

∫

Ω

φ φ ∈ L1(Ω), |Ω| = measure(Ω)

Proposition 1.2 . (Poincaré-Wirtinger’s inequality.) For any function φ belonging to W 1,p
ρ (O), 1 ≤ p < ∞,

we have

(1.5) ||φ −MO(φ)||Lp(O) ≤ p 2n+4+n/p
{ R

R1

} n+p−1
p

||ρ∇φ||[Lp(O)]n

Proof . Let φ be in W 1,p
ρ (O). We apply the Poincaré-Wirtinger inequality to the restriction of φ to the

ball B(O;R1/2) (see [8] chapter 7)

||φ −MB(O;R1/2)(φ)||pLp(B(O;R1/2)) ≤ 2(n−1)pRp
1

∫

B(O;R1/2)

|∇φ(x)|pdx

The distance from a point in B(O; R1/2) and the boundary of O is more than R1/2, hence

||φ −MB(O;R1/2)(φ)||p
Lp(B(O;R1/2))

≤ 2np

∫

B(O;R1/2)

|ρ(x)∇φ(x)|pdx ≤ 2np||ρ∇φ|p
[Lp(O)]n

We apply Lemma 1.1 to function φ −MB(O;R1/2)(φ) and we use the above inequality. We obtain

||φ −MB(O;R1/2)(φ)||pLp(O) ≤ 2np+n+3ppp
{ R

R1

}n+p−1

||ρ∇φ|p[Lp(O)]n

We integrate φ − MB(O;R1/2)(φ) on the open set O. We deduce an estimate of MO(φ) − MB(O;R1/2)(φ).

Then, thanks to the above inequality we obtain the Poincaré-Wirtinger inequality for any function belonging

to W 1,p
ρ (O).

2. Distances between a displacement and the set of the rigid body displacements

Let Ω be an open set in R
n. We denote (1 < p < ∞)

|u|D,Ω,p = ||∇u||[Lp(Ω)]n2 , |u|E,Ω,p = ||(∇u)S ||[Lp(Ω)]n2 ,

Dp(u, Ω) = ||∇u||p
[Lp(Ω)]n2 , Ep(u, Ω) = ||(∇u)S ||

p

[Lp(Ω)]n2 ,
u ∈ W 1,p(Ω; R

n).

where (∇u)S is the symmetric part of the gradient of u or strain tensor. The elements of this matrix are

γij(u) =
1

2

{ ∂ui

∂xj
+

∂uj

∂xi

}

We recall that a rigid body displacement r is a function from Rn into itself such that there exist a ∈ Rn

and a linear mapping φ whose matrix is skew-symmetric,

r(x) = a + φ(x) x ∈ R
n.
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Theorem 1.3 . Let u be a displacement belonging to W 1,p(O; Rn), 1 < p < ∞. There exists a rigid body

displacement r such that

(1.6) |u − r|D,O,p ≤ C
{ R

R1

} n+p−1
p

|u|E,O,p ||u− r||Lp(O;Rn) ≤ CR
{ R

R1

}n+p−1
p

|u|E,O,p.

The constants depend on n and p.

Proof . In every estimate of this proof the constants depend only on n and p.

We recall (see [8] chapter 9) that the Newtonian potential F of function f belonging to Lp(O), 1 < p < ∞,

belongs to W 2,p(O) and verifies

∆F = f in Lp(O),

∫

O

n∑

i,j=1

∣∣∣ ∂2F

∂xi∂xj

∣∣∣
p

≤ C||f ||pLp(O).

Let u be a displacement in W 1,p(O;Rn). We denote vij , (i, j) ∈ {1, . . . , n}2, the Newtonian potential of

γij(u). We define the displacement v by

v = (v1, . . . , vn) where vk =

n∑

l=1

{
2

∂

∂xl
vkl −

∂

∂xk
vll

}
k ∈ {1, . . . , n}.

This displacement belongs to W 1,p(O; Rn) and verifies |v|E,O,p ≤ C|v|D,O,p ≤ C|u|EO,p. Now we consider

the displacement w = u − v. It belongs to W 1,p(O; Rn). From the estimate of |v|E,O,p we deduce that

|w|E,O,p ≤ C|u|E,O,p. We have

∆vk =

n∑

l=1

{
2

∂

∂xl
γkl(u) −

∂

∂xk
γll(u)

}
= ∆uk in D′(O)

We recall the following classical result about the harmonic functions :

Let Ω be a bounded domain in Rn with lipschitzian boundary. Any harmonic function u belonging to Lp(Ω),

1 ≤ p ≤ ∞, belongs to W 1,p
ρ (Ω) and verifies the classical inequality

||ρ∇u||[Lp(Ω)]n ≤ 4n||u||Lp(Ω)

The components of displacement w are harmonic functions in O and we have

∂2wk

∂xl∂xq
=

∂

∂xl
γkq(w) +

∂

∂xq
γkl(w) −

∂

∂xk
γlq(w) and ∆γij(w) = 0 in O.

We apply the above estimate to the harmonic functions γij(w). We obtain

(1.7)

n∑

i,j=1

∥∥∥ρ
∂2w

∂xi∂xj

∥∥∥
Lp(O

≤ C

n∑

i,j=1

||ρ∇γij(w)||[Lp(O)]n ≤ C|w|E,O,p ≤ C |u|E,O,p.

Let A be the skew-symmetric part of matrix MB(O;R1)(∇w). The matrix MB(O;R1)(∇w) −A is the mean

value in the ball B(O;R1) of the symmetric part of the matrix ∇w. We get

(1.8) |MB(O;R1)(∇w) −A| ≤ CR
−n

p

1 |w|E,O,p ≤ CR
−n

p

1 |u|E,O,p
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The estimate of |v|D,O,p, the Poincaré-Wirtinger inequality (1.5) and inequalities (1.7) and (1.8) give us

(1.9)





||∇u−A||[Lp(O;Rn)]n ≤ ||∇v||[Lp(O;Rn)]n + ||∇w −MB(O;R1)(∇w)||[Lp(O;Rn)]n

+ |MB(O;R1)(∇w) −A||O|
1
p ≤ C

{ R

R1

}n−1
p

+1

|u|E,O,p

Now, let r be the rigid body displacement defined by r(x) = MB(O;R1)(u) +Ax. Thanks to (1.9) and a last

use of the Poincaré-Wirtinger inequality applied to the restriction of function u− r to the ball B(O; R1) we

obtain an upperbound of ||u− r||Lp(O;Rn).

Corollary 1 . (Korn’s inequality in a bounded domain star-shaped with respect to a ball.) Let u be a

displacement in W 1,p(O; Rn), 1 < p < ∞. we have

|u|D,O,p ≤ C
{ R

R1

} 2n+2p−1
p

{ 1

R1
||u||Lp(O;Rn) + |u|E,O,p

}

The constant depends on n and p.

Proof . Let u be in W 1,p(O; Rn). Theorem 1.3 gives a rigid body displacement r verifying estimates (1.6).

We have

||r||Lp(B(O;R1);Rn) ≤ ||r||Lp(O;Rn) ≤ ||u||Lp(O;Rn) + ||u− r||Lp(O;Rn) ≤ ||u||Lp(O;Rn) + CR
{ R

R1

} n+p−1
p

|u|E,O,p

Besides we get

|u|D,O,p ≤ |u − r|D,O,p + |r|D,O,p and |r|D,O,p ≤
C

R1

{ R

R1

}n
p

||r||Lp(B(O;R1);Rn)

From the above inequalities and (1.6) we deduce the estimate of |u|D,O,p.

Corollary 2 . (Korn’s inequality.) Let Ω be a bounded domain in Rn with lipschitzian boundary. For any

displacement u in W 1,p(Ω;Rn), 1 < p < ∞, we have

|u|D,Ω,p ≤ C
{
||u||Lp(Ω;Rn) + |u|E,Ω,p

}

The constant depends on n, p and Ω.

Proof . Any bounded domain in R
n with lipschitzian boundary is the union of a finite sequence of open

sets star-shaped with respect to a ball. The estimate of |u|D,Ω,p is a consequence of the previous corollary

of Theorem 1.3.

III. Decompositions of the displacements of a curved rod

1. Notation

Let ζ be a curve in the euclidian space R
3 parametrized by its arc length. The current point of the

curve is denoted M(s3) where s3 is the arc length.

We suppose that the mapping s3 −→ M(s3) belongs to C2(0, L; R3) and that it is injective. We have

dM

ds3
= T, ‖T‖2 = 1,

where ‖ · ‖2 is the euclidian norm in R
3.
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Let N1 be a function belonging to C1(0, L; R3) and such that

∀s3 ∈ [0, L], ‖N1(s3)‖2 = 1 and T(s3) · N1(s3) = 0.

We put

N2 = T ∧N1.

In the sequel, ω denotes a bounded domain in R2 with lipschitzian boundary (while obviously, ω denotes

the closure of ω). We choose the origin O of coordinates at the center of gravity of ω and we choose as

coordinates axes (O; e1) and (O; e2) the principal axes of inertia of ω. The cross-section ωδ of the rod is

obtained by transforming ω with a dilatation of ratio δ > 0.

Introduce now the mapping Φ : R2 × [0, L] −→ R3 defined by

Φ : (s1, s2, s3) 7−→ M(s3) + s1N1(s3) + s2N2(s3)

There exists δ0 in ]0, L/3] depending only on ζ, such that the restriction of Φ to the compact set ωδ0 × [0, L]

is a C1− diffeomorphism of that set onto its range. We can also choose δ0 such that

∀s ∈ Ωδ0 ,
1

2
≤ |||∇Φ(s)|||2 ≤

3

2

where |||A|||2 is the spectral norm of the matrix A.

Definition 1 . The curved rod Pδ is defined as follows :

Pδ = Φ
(
Ωδ

)
, for δ ∈]0, δ0], Ωδ = ωδ×]0, L[.

The cross-section of the curved rod is isometric to ωδ. The point M(s3) is the center of gravity and the

axes of direction N1(s3) and N2(s3) are the principal axes of inertia of the cross-section of the curved rod.

Notation (i). Reference domains and running points. We denote x the running point of Pδ . The running

point of the cylinder Ωδ is s.

(ii). Displacements. For any displacement u ∈ L1(Pδ ; R
3), we write u instead of u ◦ Φ.

2. First decomposition of displacements of a curved rod.

Definition 2 . We call elementary displacement of a rod, any element v of the space L1(Ωδ; R
3) that is

written in the form

v(s) = V(s3) + A(s3) ∧
(
s1N1(s3) + s2N2(s3)

)
, for a. e. s ∈ Ωδ,

where V and A are functions in L1(0, L; R3).

The first component V of v is the displacement of the center line. The second component A, gives us

an information about the relative displacement of the cross-section {M(s3)} × ωδ of the rod, that is to say,

rotations whose axis are directed along the vector A(s3).

To any displacement u of the rod we associate an elementary displacement defined as follows :

Definition 3 . The elementary displacement Ue, associated to u ∈ L1(Pδ; R
3), is given by

(2.1) Ue(., s1, s2) = U + R ∧
(
s1N1 + s2N2

)
, (s1, s2) ∈ ωδ,

7



where

(2.2)





U =
1

δ2|ω|

∫

ωδ

u(s1, s2, .) ds1ds2,

R · T =
1

(I1 + I2)δ4

∫

ωδ

[(
s1N1 + s2N2

)
∧ u(s1, s2, .)

]
· T ds1ds2,

R · Nα =
1

Iαδ4

∫

ωδ

[(
s1N1 + s2N2

)
∧ u(s1, s2, .)

]
· Nα ds1ds2, Iα =

∫

ω

s2
αds1ds2.

We write

(2.3) u = Ue + u

This displacement u is the warping.

The next theorem plays a fundamental role in the study of curved rods with the unfolding method. It

provides sharp estimates of the components of the elementary displacement Ue and of the warping u in terms

of δ and of the strain energy of u.

Theorem 2.1 . Let u ∈ W 1,p(Pδ ;R
3), 1 < p < ∞, and u = Ue + u the decomposition of u given by

(2.1)–(2.3). There exists δ1 ∈]0, δ0] which depends only on ω and on the middle line of the rod such that for

any δ ≤ δ1 the following estimates hold :

(2.4)





|u|D,Pδ,p ≤ C |u|E,Pδ ,p, ‖u‖Lp(ωδ ;R3) ≤ C δ|u|E,Pδ ,p,

δ
∥∥∥ dR

ds3

∥∥∥
Lp(0,L;R3)

+
∥∥∥ dU

ds3
−R ∧T

∥∥∥
Lp(0,L;R3)

≤
C

δ2/p
|u|E,Pδ ,p.

The constants are independent of δ.

Proof . Let N be an integer belonging to
[2L

3δ
,
L

δ

]
, and set αk = k

L

N
, k ∈ {0, . . . ,N}.

We have δ ≤
L

N
≤

3

2
δ. The reference cross-section has a diameter less than 2R. We choose R such that 1 ≤ R.

Then the domain Ωδ,k =]αk, αk+1[×ωδ has a diameter less than 3Rδ. The mapping s3 7−→ (T,N1,N2)

belongs to C1([0, L; (R3)3). Hence there exists C0 > 0 which does not depend on δ such that

∀(s, s̃) ∈ Ωδ,k × Ωδ,k, |||∇Φ(s) −∇Φ(s̃)|||2 ≤ C0δ

In the sequel we will work with portions of the rod Pδ denoted Pδ,k

Pδ,k = Φ
(
ωδ×]αk, αk+1[

)
k ∈ {0, . . . , N − 1}.

• First Case . We suppose that the reference cross-section is star-shaped with respect to a disc of radius

R1, 0 < R1 ≤ 1/2. The domain Ωδ,k is star-shaped with respect to a ball of radius R1δ. We take δ such that

δ ≤ inf
{ 1

2.32C0

( R1

4(3R)

)3

, δ0

}
.

So we have

C0δ ≤
( R1

4(3R)

)3

inf
s∈Ωδ

{
|||∇Φ(s)|||32|||

(
∇Φ(s)

)−1
|||22

}

Thanks to the corollary of Lemmas 4.1 and 4.2 (see Section V) the domain Pδ,k has a diameter less than

9Rδ and it is star-shaped with respect to a ball of radius R1δ/8.
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From Theorem 1.3 there exist rigid body displacements rk such that

Dp(u− rk,Pδ,k) ≤ CEp(u,Pδ,k), ‖u− rk‖
p
Lp(Pδ,k;R3) ≤ CδpEp(u,Pδ,k),

where the constants do not depend on k and δ.

• Second Case . The cross-section is a bounded domain in R2 with lipschitzian boundary. There exists

a finite sequence of open sets ω(1), . . . , ω(K) such that

ω =
⋃

1≤l≤K

ω(l), ωδ =
⋃

1≤l≤K

ω
(l)
δ ,

and such that every ω(l) is star-shaped with respect to a disc of radius R1, 0 < R1 ≤ 1/2. Moreover, the

open set ω is connected, then there exists R2 ∈]0, R1] such that if ω(r) ∩ ω(s) 6= ∅ then this intersection

contains a disc of radius R2.

The domain Ω
(l)
δ,k = ω

(l)
δ ×]αk, αk+1[ is star-shaped with respect to a ball of radius R1δ. As in the first

case, there exist rigid body displacements r
(l)
k such that

Dp(u− r
(l)
k ,P(l)

δ,k) ≤ CEp(u,P(l)
δ,k), ‖u − r

(l)
k ‖p

Lp(P(l)
δ,k

;R3)
≤ CδpEp(u,P(l)

δ,k), P(l)
δ,k = Φ(Ω

(l)
δ,k).

If ω(r)∩ω(s) 6= ∅ the portion P
(r)
δ,k ∩P

(s)
δ,k contains a ball of radius R2δ/8. This allows us to compare the rigid

body displacements r
(r)
k and r

(s)
k . Eventually we define rk as the mean value of r

(l)
k . We obtain

(2.5) Dp(u− rk,Pδ,k) ≤ CEp(u,Pδ,k), ‖u− rk‖
p
Lp(Pδ,k;R3) ≤ CδpEp(u,Pδ,k),

The constants do not depend on k and δ. They depend only on ω and on the middle line of the rod.

Now we go on as in Theorem 3.3 in [10]. Recall that the displacements rk are of the form

rk(x) = Ak + Bk ∧ x, x ∈ Pδ,k , Ak, Bk ∈ R
3.

Taking the mean value over the cross-sections of the curved rod, and using definition (2.2) of U and R, we

deduce the inequalities

(2.6)
1

δp

∥∥U −Ak − Bk ∧ M
∥∥p

Lp(αk,αk+1;R3)
+

∥∥R− Bk

∥∥p

Lp(αk,αk+1;R3)
≤

C

δ2
Ep(u,Pδ,k).

Consequently ‖u − Ue‖Lp(Ωδ;R3) ≤ Cδ|u|E,Pδ,p, where C depends only on the center line of the rod.

Note now that both functions U and R belong to W 1,p(0, L;R3). We compute the derivatives of the

displacement u to get

∂u

∂sα
= ∇xuNα,

∂u

∂s3
= ∇xu

[
T + s1

dN1

ds3
+ s2

dN2

ds3

]
.

Taking the restrictions of these derivatives to Ωδ,k = ωδ×]αk, αk+1[, from (2.5) we obtain

∥∥∥ ∂u

∂sα
− Bk ∧Nα

∥∥∥
p

Lp(Ωδ,k;R3)
+

∥∥∥ ∂u

∂s3
− Bk ∧

[
T + s1

dN1

ds3
+ s2

dN2

ds3

]∥∥∥
p

Lp(Ωδ,k;R3)
≤ C Ep(u,Pδ,k).
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Then, from (2.6) and by eliminating Bk we get

∥∥∥ ∂u

∂sα
−R ∧Nα

∥∥∥
Lp(Ωδ;R3)

+
∥∥∥ ∂u

∂s3
−R ∧

[
T + s1

dN1

ds3
+ s2

dN2

ds3

]∥∥∥
Lp(Ωδ ;R3)

≤ C |u|E,Pδ,p.

By taking the mean value of
∂u

∂s3
−R∧

[
T + s1

dN1

ds3
+ s2

dN2

ds3

]
over the cross-section of the rod we obtain

∥∥∥ dU

ds3
−R∧ T

∥∥∥
Lp(0,L;R3)

≤
C

δ2/p
|u|E,Pδ ,p.

We now estimate the Lp norm of
dR

ds3
. To begin with, let us introduce the function

V (s3) =
1

δ4

∫

ωδ

(
s1N1(s3) + s2N2(s3)

)
∧ u(s) ds1ds2.

We derive V with respect to s3

dV

ds3
=

1

δ4

∫

ωδ

[(
s1N1 + s2N2

)
∧

∂u

∂s3
(s) +

(
s1

dN1

ds3
+ s2

dN2

ds3

)
∧ u(s)

]
ds1ds2.

We replace
∂u

∂s3
by R ∧

[
T + s1

dN1

ds3
+ s2

dN2

ds3

]
and u by Ue. We obtain (summation on α)

∥∥∥ dV

ds3
+ Iα

(
R · Nα

)dNα

ds3
+ Iα

(
R ·

dNα

ds3

)
Nα

∥∥∥
Lp(0,L;R3)

≤
C

δ1+2/p
|u|E,Pδ ,p.

The derivatives of the functions T, N1 and N2 are

dT

ds3
= a1N1 + a2N2

dN1

ds3
= −a1T + bN2

dN2

ds3
= −a2T− bN1

where aα and b are continuous functions defined on [0, L]. Hence (no summation on α)

∥∥∥ dV

ds3
· T − a1I1

(
R · N1

)
− a2I2

(
R · N2

)∥∥∥
Lp(0,L)

≤
C

δ1+2/p
|u|E,Pδ ,p

∥∥∥ dV

ds3
· Nα − aαIα

(
R · T

)
+ b(I1 − I2)

(
R ·N3−α

)∥∥∥
Lp(0,L)

≤
C

δ1+2/p
|u|E,Pδ ,p.

Using the definition of R and V , one can write (summation on α) (I1 + I2)R = V +
Iα

I3−α
(V · Nα)Nα and

so (summation on α)

(I1 + I2)
dR

ds3
=

dV

ds3
+

Iα

I3−α

[
(
dV

ds3
· Nα)Nα + (V ·

dNα

ds3
)Nα + (V · Nα)

dNα

ds3

]
.

We deduce that (no summation on α)

(I1 + I2)
dR

ds3
· T =

dV

ds3
· T −

a1I1

I2
(V · N1) −

a2I2

I1
(V · N2)

I3−α
dR

ds3
·Nα =

dV

ds3
· Nα −

aαIα

I1 + I2
(V · T) +

b(I1 − I2)

Iα
(V · N3−α)
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Hence δ
∥∥∥dR

ds3

∥∥∥
Lp(0,L;R3)

≤
C

δ2/p
|u|E,Pδ ,p. Now, observe that

∂

∂sα

(
u −Ue

)
=

∂u

∂sα
−R ∧Nα,

∂

∂s3

(
u − Ue

)
=

∂u

∂s3
−

dU

ds3
−R∧

[
s1

dN1

ds3
+ s2

dN2

ds3

]
−

dR

ds3
∧

(
s1N1 + s2N2

)
,

=
∂u

∂s3
−R ∧

[
T + s1

dN1

ds3
+ s2

dN2

ds3

]
−

( dU

ds3
−R ∧T

)
−

dR

ds3
∧

(
s1N1 + s2N2

)
.

From these expressions and taking into account the above inequalities, we finally obtain the estimate of

gradient u.

Remarks . i) We have

|Ue|E,Pδ ,p ≤ |Ue + u|E,Pδ,p + |u|E,Pδ ,p ≤ |u|E,Pδ,p + |u|D,Pδ,p ≤ C |u|E,Pδ ,p

By an easy computation we can see that this estimate of |Ue|E,Pδ ,p is equivalent to

δ
∥∥∥dR

ds3

∥∥∥
Lp(0,L;R3)

+
∥∥∥ dU

ds3
−R ∧T

∥∥∥
Lp(0,L;R3)

≤
C

δ2/p
|u|E,Pδ,p.

ii) If the rod is clamped at one of these extremities, {0} × ωδ for example, we have R(0) = U(0) = 0.

Corollary of Theorem 2.1 . (Korn’s inequality). We suppose that the rod is clamped at one of these

extremities, then we have

|u|D,Pδ ,p + ||u||Lp(Pδ ;R3) ≤
C

δ
|u|E,Pδ,p

The constant does not depend on δ.

Proof . This is an immediate consequence of (2.4).

3. Second decomposition of displacements of a curved rod.

In this paragraph we suppose that the reference cross-section ω is of diameter 2R and that it is star-

shaped with respect to a disc centered in the origin and of radius R1, R1 ≤ 1/2 and R ≥ 1.

Now we suppose that the mapping Φ introduced in the previous subsection is defined on [−l, L+ l]×ωδ0 ,

l > 0, and it is a C1− diffeomorphism of that set onto its range and verifies

∀s ∈ [−l, L + l] × ωδ0 ,
1

2
≤ |||∇Φ(s)|||2 ≤

3

2

Lemma 2.2 . Let ρ be a strictly positive real and u a displacement belonging to W 1,p(Pδ; R
3), 1 < p < ∞.

There exists an extension P (u) of u to the curved rod

P
′

δ = Φ(] − ρδ,L + ρδ[×ωδ) (δ ≤ l/ρ)

such that

P (u) ∈ W 1,p(P
′

δ ; R
3) P (u)|Pδ

= u |P (u)|E,P
′

δ
,p ≤ C|u|E,Pδ,p.

The constant does not depend on δ.
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Proof . The domain ]− ρδ, (2 + ρ)δ[×ωδ has a diameter less than 2(R + 1 + ρ)δ and it is star-shaped with

respect to a ball of radius R1δ. We put

P0,ρδ = Φ(]0, (2 + ρ)δ[×ωδ) P
′

0,ρδ = Φ(] − ρδ, 0[×ωδ).

From Theorem 1.3, there exists a rigid body displacement r such that

Dp(u− r,P0,ρδ) ≤ CEp(u,P0,ρδ), ‖u− r‖p
Lp(P0,ρδ ;R3) ≤ CδpEp(u,P0,ρδ),

where the constants do not depend on δ. Now we consider the restriction of (u − r) ◦ Φ to the domain

]0, (2 + ρ)δ[×ωδ. By a reflexion with respect to the plane s3 = 0 we obtain an extension of (u − r) ◦ Φ on

the open set ] − ρδ, 0[×ωδ . Hence an extension v of u− r on the portion P
′

0,ρδ of the curved rod. We define

P (u) by P (u) = v + r. We do the same with the other extremity of the curved rod.

From now on any displacement belonging to W 1,p(Pδ; R
3) is extended to a displacement belonging to

W 1,p(P
′

δ ;R
3). We denote again u this extension.

We denote B1 the ball centered at O and of radius R1/16. We put

|B1| =

∫

B1

dx M1 =

∫

B1

||x||22dx

Notice that for all s3 ∈ [0, L] the ball centered in M(s3) and of radius R1/16 is included in P
′

δ.

To any displacement u of the curved rod we associate a new elementary displacement defined as follows :

Definition 4 . The elementary displacement U ′
e, associated to u ∈ L1(P

′

δ ;R
3), is given by

(2.7) U
′

e(s) = U
′

(s3) + R
′

(s3) ∧
(
s2N1(s3) + s1N2(s3)

)
, for a. e. s ∈] − ρδ,L + ρδ[×ωδ,

where

(2.8)





U
′

(s3) =
1

|B1|

∫

B1

u
(
M(s3) + δx

)
dx,

R
′

(s3) =
3

2M1δ

∫

B1

x ∧ u
(
M(s3) + δx

)
dx,





s3 ∈ [0, L],

U
′

(s3) = U
′

(0) + R
′

(0) ∧
(
M(s3) −M(0)

)
s3 ∈] − ρδ, 0],

U
′

(s3) = U
′

(L) + R
′

(L) ∧
(
M(s3) − M(L)

)
s3 ∈ [L, L + ρδ[,

R
′

(s3) = R
′

(0) s3 ∈] − ρδ, 0], R
′

(s3) = R
′

(L) s3 ∈ [L, L + ρδ[.

We write

(2.9) u = U
′

e + u
′

The elementary displacement U
′

e is a rigid body displacement in the additional parts of the curved rod.

Proposition 2.3 . Let u ∈ W 1,p(Pδ ; R
3), 1 < p < ∞, and u = U

′

e +u
′

the decomposition of the extension

of u given by (2.7)–(2.9). There exists δ
′

1 ∈]0, δ0] which depends only on ω, ρ and on the middle line of the

rod such that for any δ ≤ δ
′

1 the following estimates hold :

(2.10)





|u
′

|D,P
′

δ
,p ≤ C |u|E,Pδ ,p, ‖u

′

‖Lp(P
′

δ
;R3) ≤ C δ|u|E,Pδ,p,

δ
∥∥∥dR

′

ds3

∥∥∥
Lp(0,L;R3)

+
∥∥∥dU

′

ds3
−R

′

∧T
∥∥∥

Lp(0,L;R3)
≤

C

δ2/p
|u|E,Pδ ,p.
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The constants are independent of δ.

Proof . Let N and (αk)0≤k≤N be the integer and the sequence introduced in Theorem 2.1. We put

α−1 = −ρδ αN+1 = L + ρδ

We denote P
′

δ,k the rod portions

P
′

δ,0 = Φ
(
ωδ×]−ρδ, 2δ[

)
P

′

δ,k = Φ
(
ωδ×](k−1)δ, (k+2)δ[

)
1 ≤ k ≤ N−1, P

′

δ,N = Φ
(
ωδ×]L−δ,L+ρδ[

)

From Theorem 1.3 there exist rigid body displacements rk, 0 ≤ k ≤ N , such that

Dp(u − rk,P
′

δ,k) ≤ CEp(u,P
′

δ,k),

‖u − rk‖
p

Lp(P
′

δ,k
;R3)

≤ CδpEp(u,P
′

δ,k),
rk(x) = Ak + Bk ∧ x, x ∈ P

′

δ,k, Ak, Bk ∈ R
3.

Now we go on as in proof of Theorem 2.1. Using definition (2.8) of U
′

and R
′

we obtain (s3 ∈ [0, L])

∣∣U ′

(s3) − Ak − Bk ∧ M(s3)
∣∣p ≤

1

|B1|

∫

B1

|(u − rk)
(
M(s3) + δx

)
|p dx ≤

1

δ3|B1|

∫

P
′

δ,k

|(u − rk)(x)|p dx

∣∣R′

(s3) − Bk

∣∣p ≤
C

δp

∫

B1

|(u − rkl)
(
M(s3) + δx

)
|p dx ≤

C

δp+3

∫

P
′

δ,k

|(u− rk)(x)|p dx

The constant depends only on p. We also have for s3 ∈ [−ρδ, 0] and for s3 ∈ [L,L + ρδ] (k = 0 or N)

∣∣U ′

(s3) − Ak −Bk ∧ M(s3)
∣∣p + δp

∣∣R′

(s3) − Bk

∣∣p ≤
C

δ3

∫

P
′

δ,k

|(u − rk)(x)|p dx.

We integrate on [αk, αk+1], −1 ≤ k ≤ N . We obtain

1

δp

∥∥U ′

−Ak − Bk ∧ M
∥∥p

Lp(αk,αk+1;R3)
+

∥∥R′

− Bk

∥∥p

Lp(αk,αk+1;R3)
≤

C

δ2
Ep(u,P

′

δ,k).

Consequently ‖u − U
′

e‖Lp(P
′

δ
;R3) ≤ Cδ|u|E,Pδ ,p, where C depends on the middle line of the rod and on p.

Both functions U
′

and R
′

belong to W 1,p(−ρδ,L + ρδ;R3). We compute the derivatives of U
′

and R
′

.

First notice that

dR
′

ds3
=

dU
′

ds3
−R

′

∧T = 0 on ] − ρδ, 0[∪]L, L + ρδ[.

We obtain (s3 ∈ [0, L])

dU
′

ds3
(s3) =

1

|B1|

∫

B1

∇xu
(
M(s3) + δx

)
T dx,

dR
′

ds3
(s3) =

3

2M1δ

∫

B1

x ∧∇xu
(
M(s3) + δx

)
T dx.

Hence
∣∣∣dU

′

ds3
(s3) − Bk ∧ T(s3)

∣∣∣
p

+
∣∣∣δ dR

′

ds3
(s3)

∣∣∣
p

≤
C

δ3

∫

P
′

δ,k

|∇x(u− rk)(x)|p dx.

By integrating over [αk, αk+1] we get

∥∥∥dU
′

ds3
− Bk ∧T

∥∥∥
p

Lp(αk,αk+1;R3)
+ δp

∥∥∥dR
′

ds3

∥∥∥
p

Lp(αk,αk+1;R3)
≤

C

δ2
Ep(u,P

′

δ,k),
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and then we obtain

∥∥∥dU
′

ds3
−R

′

∧T
∥∥∥

Lp(0,L;R3)
+ δ

∥∥∥dR
′

ds3

∥∥∥
Lp(0,L;R3)

≤
C

δ2/p
|u|E,P

′

δ
,p.

Now we compute the derivatives of u
′

(s ∈ P
′

δ,k)

∂u
′

∂sα
=

∂u

∂sα
−R

′

∧Nα =
[
∇xuNα − Bk ∧Nα

]
−

[
R

′

− Bk

]
∧Nα

∂u
′

∂s3
=

∂u

∂s3
−

dU
′

ds3
−

dR
′

ds3
∧

(
s1N1 + s2N2) −R

′

∧
(
s1

dN1

ds3
+ s2

dN2

ds3

)

=
[
∇xu

(
T + s1

dN1

ds3
+ s2

dN2

ds3

)
− Bk ∧

(
T + s1

dN1

ds3
+ s2

dN2

ds3

)]
−

[dU
′

ds3
− Bk ∧T

]

−
dR

′

ds3
∧

(
s1N1 + s2N2) −

(
R

′

− Bk

)
∧

(
s1

dN1

ds3
+ s2

dN2

ds3

)

Eventually |u
′

|D,P
′

δ
,p ≤ C |u|E,Pδ ,p.

Now we modify the elementary displacement U
′

e in order to obtain a new elementary displacement which

is rigid in the neighborhood of the extremities of the curved rod.

Let m be an even function m belonging to C∞(R; [0, 1]), which satisfies

m(t) = 0 ∀t ∈ [0, ρ], m(t) = 1 ∀t ∈ [ρ + 1, +∞[, |m
′

(t)| ≤ 2 ∀t ∈ R.

The new elementary displacement U
′′

e is defined by

(2.11)





U
′′

(s3) =m
(s3

δ

)
m

(s3 − L

δ

)
U

′

(s3) +
(
1 − m

(s3

δ

))[
U

′

(0) + R
′

(0) ∧
(
M(s3) −M(0)

)]

+
(
1 −m

(s3 − L

δ

))[
U

′

(L) + R
′

(L) ∧
(
M(s3) − M(L)

)]

R
′′

(s3) =m
(s3

δ

)
m

(s3 − L

δ

)
R

′

(s3) +
(
1 − m

(s3

δ

))
R

′

(0) +
(
1 − m

(s3 − L

δ

))
R

′

(L)

U
′′

e (s) =U
′′

(s3) + R
′′

(s3) ∧
(
s1N1(s3) + s2N2(s3)

)
s ∈] − ρδ,L + ρδ[×ωδ

We have

U
′′

e = U
′

e in Φ
(
](ρ + 1)δ, L − (ρ + 1)δ[×ωδ

)

and U
′′

e is a rigid body displacement in the portions Φ
(
] − ρδ, ρδ[×ωδ

)
and Φ

(
]L − ρδ,L + ρδ[×ωδ

)
.

We write

(2.12) u = U
′′

e + u
′′

.

Proposition 2.4 . Let u ∈ W 1,p(Pδ ;R
3), 1 < p < ∞, and u = U

′′

e + u
′′

the decomposition of the

extension of u given by (2.11)-(2.12). There exists δ
′′

1 ∈]0, δ0] wich depends only on ω, ρ and on the middle

line of the rod such that for any δ ≤ δ
′′

1 the following estimates hold :

(2.13)





|u
′′

|D,P
′

δ
,p ≤ C |u|E,Pδ,p, ‖u

′′

‖Lp(P
′

δ
;R3) ≤ C δ|u|E,Pδ ,p,

δ
∥∥∥dR

′′

ds3

∥∥∥
Lp(0,L;R3)

+
∥∥∥dU

′′

ds3
−R

′′

∧T
∥∥∥

Lp(0,L;R3)
≤

C

δ2/p
|u|E,Pδ ,p.

14



The constants are independent of δ.

Proof . We easily verify that

||R
′′

−R
′

||Lp(0,L;R3) + δ
∥∥∥dR

′′

ds3
−

dR
′

ds3

∥∥∥
Lp(0,L;R3)

≤
C

δ2/p
|u|E,Pδ ,p

1

δ
||U

′′

− U
′

||Lp(0,L;R3) +
∥∥∥dU

′′

ds3
−

dU
′

ds3

∥∥∥
Lp(0,L;R3)

≤
C

δ2/p
|u|E,Pδ ,p

The constants depend on ρ. Hence we deduce

|U
′′

e − U
′

e|D,P
′

δ
,p ≤ C|u|E,Pδ,p ||U

′′

e − U
′

e||Lp(P
′

δ
;R”) ≤ Cδ|u|E,Pδ ,p.

Then from (2.10) we obtain the estimates (2.13).

IV. Decompositions of the displacements of a shell

1. Notation

Let ω be a bounded domain in R2 with lipschitzian boundary. We give us an injective mapping φ from

ω into R
3 of class C2 and we denote S the surface φ(ω). We suppose that the two vectors

∂φ

∂sα
(ŝ) are linearly

independent at each point ŝ ∈ ω.

We denote

T1 =
∂φ

∂s1
, T2 =

∂φ

∂s2
, N =

T1 ∧ T2∥∥T1 ∧T2

∥∥
2

.

Vectors T1 and T2 are tangential vectors to the surface S and vector N is a unit normal vector to this

surface.

Now we consider the mapping Φ : ω × R −→ R
3

s = (s1, s2, s3) 7−→ φ(s1, s2) + s3N(s1, s2)

There exists δ0 > 0 depending only on S, such that the restriction of Φ to the compact set Ωδ0 =

ω × [−δ0, δ0] is a C1− diffeomorphism of that set onto its range. We also choose δ0 such that there exist

constants c0 > 0 and c1 ≥ c0 verifying

∀s ∈ Ωδ0 , c0 ≤ |||∇Φ(s)|||2 ≤ c1

These constants depend only on φ.

Definition 5 . The shell Qδ is defined as follows :

Qδ = Φ(Ωδ) for δ ∈]0, δ0], Ωδ = ω×] − δ, δ[.

The mid-surface of the shell is S. The lateral boundary of the shell is Γδ = Φ(∂ω×] − δ, δ[).

Notation (i). Reference domains and running points. We denote x the running point of Qδ . The running

point of the domain Ωδ is s.

(ii). Displacements. For any displacement u ∈ L1(Qδ ;R
3), we write u instead of u ◦ Φ.
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2. First decomposition of displacements of a shell.

Definition 6 . We call elementary displacement of a shell, any element v of L1(Ωδ; R
3) that is written

in the form

v(s) = V(ŝ) + s3A(ŝ) ∧N(ŝ), s = (s1, s2, s3) = (ŝ, s3) ∈ Ωδ ,

where V and A are functions in L1(ω; R3).

The first component V of v is the displacement of the middle surface. The second component A, gives

us an information about the relative displacement of the fibers {M(ŝ)}×] − δ, δ[ of the shell, that is to say,

rotations whose axis are directed along the vector A(ŝ).

To any displacement u of the rod we associate an elementary displacement defined as follows:

Definition 7 . The elementary displacement Ue, associated to u ∈ L1(Qδ ; R
3), is given by

(3.1) Ue(., s3) = U + s3R ∧N, s3 ∈] − δ, δ[,

where

(3.2) U =
1

2δ

∫ δ

−δ

u(., s3) ds3, R =
3

2δ3

∫ δ

−δ

s3N(.) ∧ u(., s3)ds3.

We write

(3.3) u = Ue + u

This displacement u is the warping.

The next theorem plays a fundamental role in the studies of plates and shells with the unfolding method. It

provides sharp estimates of displacements Ue and u in terms of δ and of the strain energy of u.

Theorem 3.1. Let u ∈ W 1,p(Qδ ;R
3), 1 < p < ∞, and Ue be the elementary displacement defined by

(3.1)–(3.3). There exists δ1 ∈]0, δ0] which depends only on the middle surface of the shell such that for any

δ ≤ δ1 the following estimates hold :

(3.4) |Ue|E,Qδ ,p + |u|D,Qδ ,p ≤ C |u|E,Qδ ,p, ‖u‖Lp(Qδ;R3) ≤ C δ|u|E,Qδ ,p.

The constants are independent of δ.

Proof .

Step 1 . We prove that there exist R ≥ 1 depending only on ∂ω and a family of open sets
(
ωδ,k

)
k∈Nδ

verifying

ω =
⋃

k∈Nδ

ωδ,k

and such that every open set of this family has a diameter less than Rδ and is star-shaped with respect to

a disc of radius δ/2 and moreover such that any point of ω belongs to a finite number (independent of δ) of

sets ωδ,k.

The boundary of ω is lipschitzian. Hence there exist constants C < B < A and M strictly positive,

a finite number K of local coordinate systems (s1r, s2r) in (Or;e1r,e2r) and mappings fr : [0, A] −→ R,
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Lipschitz continuous with ratio M , 1 ≤ r ≤ K, such that





∂ω =

K⋃

r=1

{
(s1r, s2r) | s2r = fr(s1r), s1r ∈]B/2, A −B/2[

}
,

{
ŝ ∈ ω |dist(ŝ, ∂ω) < C

}
⊂

K⋃

r=1

{
(s1r, s2r) | fr(s1r) − B < s2r < fr(x1r), s1r ∈]0, A[

}
⊂ ω,

ωC \ ω ⊂
K⋃

r=1

{
(s1r, s2r) | fr(s1r) < s2r < fr(s1r) + B, s1r ∈]0, A[

}
⊂ R

2 \ ω.

Through the use of easy geometrical arguments we show that if δ ≤ inf{C/2, B/4(M + 1)}, we have

{
ŝ ∈ ω | dist(ŝ, ∂ω) < 2δ

}
⊂

K⋃

r=1

{
(s1r, s2r) | fr(s1r) − 2δ(1 + M) < s2r < fr(s1r), s1r ∈]0, A[

}
.

We suppose also that δ ≤ inf{A/6, B/(6M + 2)}. Let N be an integer belonging to
[2

3

A

2δ
,

A

2δ

]
, and set

αk = k
A

2N
, k ∈ {0, . . . , 2N}. We have N greater than 3 and δ ≤

A

2N
≤

3

2
δ. For any k ∈ {0, . . . ,N − 1} the

domains

B
(r)
δ,k =

{
(s1r, s2r) | fr(s1) − 2δ(3M + 1) < s2r < fr(s1r), s1r ∈]α2k, α2(k+1)[

}

are star-shaped with respect to the disc centered at (α2k+1, fr(α2k+1) − (3M + 1)δ) and of radius δ/2 and

they have a diameter less than (8M + 5)δ = Rδ.

Now we complete the family of sets B
(r)
δ,k , r ∈ {1, . . . ,K} and k ∈ {0, . . . ,N − 1}, by taking all domains

]kδ, (k + 1)δ[×]lδ, (l + 1)δ[, (k, l) ∈ Z
2

included in ω. We denote
(
ωδ,k

)
k∈Nδ

the family of all these sets.

Step 2 .

The open set Ωδ,k = ωδ,k×]− δ, δ[ has a diameter less than 2Rδ and is star-shaped with respect to a ball

centered on ω and of radius δ/2 (here R1 = 1/2). The mapping ŝ 7−→ (T1,T2,N) belongs to C1(ω; (R3)3).

Hence, there exists C0 > 0 which does not depend on δ such that

∀s ∈ Ωδ,k, ∀s̃ ∈ Ωδ,k, |||∇Φ(s) −∇Φ(s̃)|||2 ≤ C0δ

In the sequel we will work with the portions Qδ,k = Φ(Ωδ,k), k ∈ Nδ , of the shell.

Now we take δ such that

δ ≤ inf
{ c3

0

C0c
2
1

( 1/2

4(2R)

)3

, δ0

}

Then we have

C0δ ≤
( 1/2

4(2R)

)3
inf

s∈Ωδ

{
|||∇Φ(s)|||32|||

(
∇Φ(s)

)−1
|||22

}

Thanks to corollary of Lemmas 4.1 and 4.2 (see Annexes) the domain Qδ,k has a diameter less than 6Rδ

and is star-shaped with respect to a ball of radius δ/16.
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From Theorem 1.3 there exist rigid body displacements rk such that

(3.5) Dp(u− rk,Qδ,k) ≤ CEp(u,Qδ,k), ‖u − rk‖
p
Lp(Qδ,k;R3) ≤ CδpEp(u,Qδ,k),

where the constants do not depend on k and δ.

Now we go on as in Theorem 2.1. Recall that the displacements rk are of the form

rk(x) = Ak + Bk ∧ x, x ∈ Qδ,k, Ak, Bk ∈ R
3.

Taking the mean value on the fibers of the shell, and using definition (3.2) of U and R, we deduce the

inequalities

(3.6)





∥∥U −Ak − Bk ∧ φ
∥∥p

Lp(ωδ,k;R3)
≤ Cδp−1Ep(u,Qδ,k),

∥∥R∧ N −Bk ∧N
∥∥p

Lp(ωδ,k;R3)
≤

C

δ
Ep(u,Qδ,k),

where the constants are independent of k and δ. Consequently ‖u − Ue‖Lp(Ωδ ;R3) ≤ Cδ|u|E,Qδ ,p, where C

depends only on the middle surface of the shell and on p.

Note now that both functions U and R belong to W 1,p(ω;R3). We compute the derivatives of the

displacement u to get

∂u

∂s1
= ∇xu

(
T1 + s3

∂N

∂s1

)
,

∂u

∂s2
= ∇xu

(
T2 + s3

∂N

∂s2

)
,

∂u

∂s3
= ∇xuN.

Taking the restrictions of these derivatives to Ωδ,k, from (3.5) we have the estimates

∥∥∥ ∂u

∂sα
−Bk ∧

(
Tα + s3

∂N

∂sα

)∥∥∥
p

Lp(Ωδ,k;R3)
+

∥∥∥ ∂u

∂s3
− Bk ∧N

∥∥∥
p

Lp(Ωδ,k;R3)
≤ C Ep(u,Qδ,k).

By taking the mean value of
∂u

∂sα
− Bk ∧

(
Tα + s3

∂N

∂sα

)
on the fibers we get

(3.7)
∥∥∥ ∂U

∂sα
− Bk ∧Tα

∥∥∥
p

Lp(ωδ,k;R3)
≤

C

δ
Ep(u, Ωδ,k).

We now estimate the Lp norm of the derivatives of R∧ N with respect to sα

R ∧N =
3

2δ3

∫ δ

−δ

s3

[
u(., s3) −

(
u(., s3) · N

)
N

]
ds3

∂

∂sα

(
R ∧N

)
=

3

2δ3

∫ δ

−δ

s3

[ ∂u

∂sα
(., s3) −

( ∂u

∂sα
(., s3) · N

)
N −

(
u(., s3) ·

∂N

∂sα

)
N−

(
u(., s3) · N

) ∂N

∂sα

]
ds3

Then we replace
∂u

∂sα
by Bk ∧

(
Tα + s3

∂N

∂sα

)
and u by Ak + Bk ∧ (φ + s3N). We obtain

(3.8)
∥∥∥ ∂

∂sα

(
R ∧N

)
− Bk ∧

∂N

∂sα

∥∥∥
p

Lp(ωδ,k;R3)
≤

C

δp+1
Ep(u,Ωδ,k).

From the above inequalities and from (3.6) we get
∥∥∥ ∂u

∂si

∥∥∥
p

Lp(ωδ,k;R3)
≤ C Ep(u, Ωδ,k), hence with a change of

variables |u|D,Qδ ,p ≤ C |u|E,Qδ,p. Eventually observe that

|Ue|E,Qδ ,p ≤ |Ue + u|E,Qδ ,p + |u|E,Qδ ,p ≤ |u|E,Qδ ,p + |u|D,Qδ,p ≤ C |u|E,Qδ,p
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where the constant does not depend on δ.

Remark . Thanks to (3.7) and (3.6) it follows by eliminating Bk

(3.9)
∥∥∥ ∂U

∂sα
· Tβ +

∂U

∂sβ
· Tα

∥∥∥
Lp(ω)

+
∥∥∥ ∂U

∂sα
· N +

(
R ∧N

)
· Tα

∥∥∥
Lp(ω)

≤
C

δ1/p
|u|E,Qδ ,p.

Now from (3.7) and (3.8) we obtain by eliminating Bk

(3.10)
∥∥∥ ∂

∂sα

(
R ∧N

)
· Tβ +

∂U

∂sβ
·

∂N

∂sα

∥∥∥
Lp(ω)

≤
C

δ1+1/p
|u|E,Qδ ,p.

The constants do not depend on δ. The inequality |Ue|E,Qδ ,p ≤ C |u|E,Qδ ,p is equivalent to the above

estimates (3.9) and (3.10) (see [6] for the expressions of the covariant components of the strain tensor).

3. Second decomposition of displacements of a shell.

For any η > 0 we denote ωη the open set

ωη =
{
(s1, s2) ∈ R

2 | dist
(
(s1, s2), ω

)
< η

}

In this paragraph we suppose that the mapping Φ introduced in the previous subsection is defined on

ωl × [−δ0, δ0], l > 0, and it is a C1− diffeomorphism of that set onto its range and allways verifies

∀s ∈ ωl × [−δ0, δ0], c0 ≤ |||∇Φ(s)|||2 ≤ c1

Lemma 3.2 . Let u be a displacement in W 1,p(Qδ; R
3), 1 < p < ∞. There exists an extension P (u) of u to

the shell

Q
′

δ = Φ(ω2δ×] − δ, δ[)

such that

P (u) ∈ W 1,p(Q
′

δ; R
3) P (u)|Qδ

= u |P (u)|E,Q
′

δ
,p ≤ C|u|E,Qδ ,p.

The constant does not depend of δ and of u.

Proof . See Section V.

From now on any displacement belonging to W 1,p(Qδ ;R
3) is extended to a displacement belonging to

W 1,p(Q
′

δ; R
3). Again we denote u this extension.

Let B be the ball centered at the origin and of radius 1/16. We put

|B| =

∫

B

dx M =

∫

B

||x||22dx

To any displacement u of the shell we associate a new elementary displacement defined as follows :

Definition 8 . The elementary displacement U
′

e, associated to u ∈ L1(Q
′

δ ; R
3), is given by

(3.11) U
′

e(., s3) = U
′

+ s3R
′

∧N, s3 ∈] − δ, δ[,

where

(3.12) U
′

(ŝ) =
1

|B|

∫

B

u
(
φ(ŝ) + δx

)
dx, R

′

(ŝ) =
3

2Mδ

∫

B

x ∧ u
(
φ(ŝ) + δx

)
dx ŝ ∈ ω.
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We write

(3.13) u = U
′

e + u
′

Theorem 3.3 . Let u ∈ W 1,p(Qδ ; R
3), 1 < p < ∞, and u = U

′

e + u
′

be the decomposition of u given by

(3.11)–(3.13). There exists δ
′

1 ∈]0, δ0] which depends only on the middle surface of the shell such that for

any δ ≤ δ
′

1 the following estimates hold :

(3.14)





|u
′

|D,Qδ ,p ≤ C |u|E,Qδ ,p, ‖u
′

‖Lp(Qδ;R3) ≤ C δ|u|E,Qδ ,p,
∥∥∥∂U

′

∂sα
−R

′

∧Tα

∥∥∥
Lp(ω;R3)

+ δ
∥∥∥∂R

′

∂sα

∥∥∥
Lp(ω;R3)

≤
C

δ1/p
|u|E,Qδ ,p.

The constants are independent of δ.

Proof . Let Nδ be the set of every (k, l) ∈ Z2 such that the open set

ω
′

δ,kl =](k − 1/3)δ, (k + 4/3)δ[×](l − 1/3)δ, (l + 4/3)δ[

is included in ω2δ. We put

ωδ,kl =]kδ, (k + 1)δ[×]lδ, (l + 1)δ[

We have

ω ⊂
⋃

(k,l)∈Nδ

ωδ,kl

The open set Ω
′

δ,kl = ω
′

δ,kl×] − δ, δ[ has a diameter less than 4δ and it is star-shaped with respect

to the ball centered at the point
(
(k + 1/2)δ, (l + 1/2)δ

)
belonging to ω and of radius δ/2. The mapping

ŝ 7−→ (T1,T2,N) belongs to C1(ω2δ0 ; (R
3)3). There exists C

′

0 > 0 which does not depend on δ such that

∀(s, s̃) ∈ Ω
′

δ,kl × Ω
′

δ,kl, |||∇Φ(s) −∇Φ(s̃)|||2 ≤ C0δ

In the sequel we will work with the portions Q
′

δ,kl = Φ(Ω
′

δ,kl), (k, l) ∈ Nδ, of the shell.

Now we take δ such that

δ ≤
c3
0

C
′

0c
2
1

(1/2

4.4

)3

then we have

C
′

0δ ≤
(1/2

4.4

)3

inf
s∈Ωδ

{
|||∇Φ(s)|||32|||

(
∇Φ(s)

)−1
|||22

}

Thanks to corollary of Lemmas 4.1 and 4.2 (see Section V) the domain Qδ,k has a diameter less than 12δ

and it is star-shaped with respect to a ball of radius δ/16.

From Theorem 1.3 there exist rigid body displacements rkl such that

(3.15) Dp(u − rkl,Q
′

δ,kl) ≤ CEp(u,Q
′

δ,kl), ‖u− rkl‖
p

Lp(Q
′

δ,kl
;R3)

≤ CδpEp(u,Q
′

δ,kl),

where the constants do not depend on k, l and δ.

Now we go on as in Theorem 3.1. Recall that the displacements rkl are of the form

rkl(x) = Akl + Bkl ∧ x, x ∈ Q
′

δ,kl, Akl, Bkl ∈ R
3.
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Using definition (3.11) of U
′

and R
′

we obtain

∣∣U ′

(ŝ) −Akl − Bkl ∧ φ(ŝ)
∣∣p ≤

1

|B|

∫

B

|(u− rkl)
(
φ(ŝ) + δx

)
|p dx ≤

1

δ3|B|

∫

Q
′

δ,kl

|(u− rkl)(x)|p dx

∣∣R′

(ŝ) − Bkl

∣∣p ≤
C

δp

∫

B

|(u − rkl)
(
φ(ŝ) + δx

)
|p dx ≤

C

δp+3

∫

Q
′

δ,kl

|(u − rkl)(x)|p dx

The constant depends only on p. We integrate on ωδ,kl. Thanks to (3.15) we obtain

(3.16)
∥∥U ′

−Akl − Bkl ∧ φ
∥∥p

Lp(ωδ,kl;R3)
≤ Cδp−1Ep(u,Q

′

δ,kl),
∥∥R′

− Bkl

∥∥p

Lp(ωδ,kl;R3)
≤

C

δ
Ep(u,Q

′

δ,kl).

Consequently ‖u−U
′

e‖Lp(Ωδ ;R3) ≤ Cδ|u|E,Q
′

δ
,p, where C depends only on the middle surface of the shell and

on p. Both functions U
′

and R
′

belong to W 1,p(ω; R3). We compute the derivatives of U
′

and R
′

to get

∂U
′

∂sα
(ŝ) =

1

|B|

∫

B

∇xu
(
φ(ŝ) + δx

)
Tα dx,

∂R
′

∂sα
(ŝ) =

3

2Mδ

∫

B

x ∧ ∇xu
(
φ(ŝ) + δx

)
Tα dx

Hence
∣∣∣∂U

′

∂sα
(ŝ) − Bk ∧ Tα

∣∣∣
p

+ δp
∣∣∣∂R

′

∂sα
(ŝ)

∣∣∣
p

≤
C

δ3

∫

Q
′

δ,kl

|∇x(u − rkl)(x)|p dx

By integrating over ωδ,kl we obtain

(3.17)
∥∥∥∂U

′

∂sα
− Bk ∧Tα

∥∥∥
p

Lp(ωδ,kl;R3)
+ δp

∥∥∥∂R
′

∂sα

∥∥∥
p

Lp(ωδ,kl;R3)
≤

C

δ
Ep(u,Q

′

δ,kl).

Thanks to (3.16) we get

∥∥∥∂U
′

∂sα
−R

′

∧Tα

∥∥∥
Lp(ω;R3)

+ δ
∥∥∥∂R

′

∂sα

∥∥∥
Lp(ω;R3)

≤
C

δ1/p
|u|E,Q

′

δ
,p.

Now we estimate |u
′

|D,Qδ ,p. We have

∂u
′

∂s3
=

∂u

∂s3
−R

′

∧N =
[
∇xuN − Bkl ∧N

]
−

[
R

′

− Bkl

]
∧N

∂u
′

∂sα
=

∂u

∂sα
−

∂U
′

∂sα
− s3

∂R
′

∂sα
∧N − s3R

′

∧
∂N

∂sα
=

[
∇xu

(
Tα + s3

∂N

∂sα

)
− Bkl ∧

(
Tα + s3

∂N

∂sα

)]

−
[∂U

′

∂sα
− Bkl ∧ Tα

]
− s3

∂R
′

∂sα
∧N − s3

(
R

′

− Bkl

)
∧

∂N

∂sα

Thanks to (3.15), (3.16) and (3.17) we obtain
∥∥∥∂u

′

∂si

∥∥∥
p

Lp(Ωδ,kl;R3)
≤ CEp(u,Q

′

δ,kl), and eventually |u
′

|D,Qδ ,p ≤

C |u|E,Q
′

δ
,p.

Now we compare the elementary displacements Ue and U
′

e.

Corollary 1 . We have

|Ue − U
′

e|D,Qδ ,p ≤ C |u|E,Qδ ,p, ‖Ue − U
′

e‖Lp(Qδ;R3) ≤ C δ|u|E,Qδ ,p

21



Moreover





||U
′

− U||Lp(ω;R3) ≤ C δ1−1/p|u|E,Qδ ,p, ||R
′

∧ N −R ∧N||Lp(ω;R3) ≤ Cδ−1/p |u|E,Qδ,p

∥∥∥∂U
′

∂sα
−

∂U

∂sα

∥∥∥
Lp(ω;R3)

≤ C δ−1/p|u|E,Qδ,p,
∥∥∥ ∂

∂sα

(
R ∧N

)
−

∂

∂sα

(
R ∧ N

)∥∥∥ ≤ Cδ−1/p |u|E,Qδ,p

The constants do not depend on δ.

Proof . These estimates are immediate consequences of (3.4) and (3.14).

Let γ0 be a part of ∂ω of measure non null and Γ0δ = Φ(γ0×]− δ, δ[). If the displacement u is null over

Γ0δ then we have U = R = 0 on γ0. From (3.4) and Poincaré’s inequality we deduce

(3.18) ||U
′

||Lp(γ0;R3) + δ||R
′

||Lp(γ0;R3) ≤ Cδ1−2/p |u|E,Qδ ,p.

Corollary 2 . (Korn’s inequality). We suppose that the shell is fixed over Γ0δ. Then we have

|u|D,Qδ,p + ||u||Lp(Qδ ;R3) ≤
C

δ
|u|E,Qδ ,p

The constant does not depend on δ.

Proof . This is an immediate consequence of (3.14) and (3.18).

V. Appendix

We denote

• ||x||2 the euclidian norm of x,

• |||A|||2 the spectral norm of the matrix A,

• B(a ; r) the ball centered at a and of radius r,

• I3 the unit matrix.

Lemma 4.1 : Let U be an open set included in B(O ; R), star-shaped with respect to the ball B(O ; R1) and

Φ the linear transformation

Φ(x) = Ax + b where A is an invertible matrix and where b ∈ R
3.

The open set V = Φ(U) is included in the ball B(b ; |||A|||2R) and it is star-shaped with respect to the ball

B(b ; R1/|||A−1|||2).

Proof . The open set V is star-shaped with respect to the points of the set Φ
(
B(O ; R1)

)
. This set is

included in the ball B(b ; R1/|||A
−1|||2).

Lemma 4.2 : Let U be an open set included in B(O ; R), star-shaped with respect to the ball B(O ; R1) and

Φ a C1 diffeomorphism from U onto V = Φ
(
U

)
verifying

Φ(O) = O and ∀x ∈ U |||∇Φ(x) − I3|||2 ≤
(R1

4R

)3

The open set V = Φ(U) is included in the ball B(O ; 2R) and is star-shaped with respect to the ball

B(O ; R1/4).

Proof . We put c =
(R1

4R

)3

. For any (x, y) ∈ U × U such that [x, y] ∈ U we have

(4.1) ||Φ(x) − Φ(y) − (x − y)||2 ≤ c||x − y||2 =⇒ ||Φ(x) − x||2 ≤ c||x||2
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The open set V is included in the ball B(O ; 2R) since ||Φ(x)||2 ≤ 2||x||2.

Now we prove that the open set V is star-shaped with respect to any point of the ball B(O ; R1/4).

Let A be a point in the ball B(O ; R1/3). We prove by contradiction that the open segment joining Φ(A) to

any point on the boundary of V is included in V .

Let y
′

be a point on the boundary of V . There exists y ∈ ∂U such that y
′

= Φ(y). We put A
′

= Φ(A). If

the segment [A
′

, y
′

[ contains a point z
′

= Φ(z) on the boundary of V then

z ∈ ∂U and z
′

= λA
′

+ (1 − λ)y
′

λ ∈]0, 1[.

From the second inequality in (4.1) we deduce that

||A
′

− A||2 = ||Φ(A) − A||2 ≤ c||A||2 ≤ cR1/3

||y
′

− y||2 = ||Φ(y) − y||2 ≤ c||y||2 ≤ cR

}
=⇒ ||z

′

−
(
λA + (1 − λ)y

)
||2 ≤ cR

Besides we get

||z −
(
λA + (1 − λ)y

)
||2 = ||

[
z − Φ(z)

]
+

[
z

′

−
(
λA + (1 − λ)y

)]
||2 ≤ c||z||2 + cR ≤ 2cR ≤

R1

32

Hence z belongs to the coloured cylinder (see Figure 1). In Figure 2 we consider the plan containing A, y

and z. The point z belongs to the exterior of the convex hull of the set B(A ; R1/3) ∪ {y} (this convex hull

minus {y} is included in U) and in the same way y is outside the convex hull of the set B(A ; R1/3) ∪ {z}.

Then we have ||y − z||2 ≤
||y −A||2

10
and α ≤ ẑyA ≤ π − α.

y

R1/3
A

BC

||y-A||2/10

R1/32

y z

R1/3
A

β

α

x

Figure 1. Figure 2.
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The open set U is star-shaped with respect to every point in the ball centered at A and of radius R1/3.

Moreover
2R1

3
≤ ||y − A||2 ≤ R +

R1

3
≤

4R

3
and ||z − A||2 ≤ R +

R1

3
≤

4R

3
. Then we have

R1

3

3

4R
≤ sin(α) ≤

1

2
and

R1

3

3

4R
≤ sin(β)

Let x be the common point to the two coloured lines. We have

||y − x||2 ≤
||y − z||2
sin(2α)

≤
8R

3R1
||y − z||2 ||x − z||2 ≤

||y − z||2
sin(2α)

≤
8R

3R1
||y − z||2

since sin(2α) ≥
3R1

8R
. The segments [y, x] and [x, z] are included in U so, from the inequalities (4.1) we

obtain

||
(
Φ(y) − Φ(A)

)
∧
(
Φ(y) − Φ(z) − (y − z)

)
||2 ≤ ||Φ(y) − Φ(A)||2||Φ(y) − Φ(z) − (y − z)||2

≤ (1 + c)
4R

3
||Φ(y) − Φ(z) − (y − z)||2

≤ (1 + c)
4R

3
||
(
Φ(y) −Φ(x) − (y − x)

)
+

(
Φ(x) − Φ(z) − (x− z)

)
||2

≤ (1 + c)
4R

3
c
{
||y − x||2 + ||x − z||2

}
≤ c(1 + c)

64

9

R2

R1
||y − z||2

The points y
′

= Φ(y), z
′

= Φ(z) and A
′

= Φ(A) are on the same line, hence

||
(
Φ(y) − Φ(A

)
∧

(
Φ(y) −Φ(z) − (y − z)

)
||2 = ||

(
Φ(y) −Φ(A)

)
∧

(
y − z

)
||2

= ||
(
y − A + [Φ(y) − Φ(A) − (y − A)]

)
∧

(
y − z

)
||2

≥ ||(y − A) ∧
(
y − z

)
||2 − c

4R

3
||y − z||2

We recall that ||y − A||2 ≥
2R1

3
and

R1

4R
≤ sin(α) ≤ sin(ẑyA). That gives

R2
1

6R
||y−z||2 ≤

R1

4R
||y−z||2||y−A||2 ≤ ||(y−A)∧

(
y−z

)
||2 ≤ c

4R

3

[
(1+c)

16R

3R1
+1

]
||y−z||2 =⇒ c ≥

R3
1

60R3

which is a contradiction. The open set V is star-shaped with respect to the point Φ(A).

The ball B(O ; R1/4) is included in the range by Φ of the ball B(O ; R1/3) since for every x
′

∈ V we have

1

1 + c
||x

′

||2 ≤ ||Φ−1(x
′

)||2 ≤
1

1 − c
||x

′

||2

Corollary of Lemmas 4.1 and 4.2 . Let U be an open set included in the ball B(O ; R), star-shaped with

respect to the ball B(O ; R1) and Φ a C1 diffeomorphism from U onto V = Φ
(
U

)
verifying

∀x ∈ U |||∇Φ(x) −∇Φ(O)|||2 ≤
(R1

4R

)3

|||∇Φ(O)|||32|||
(
∇Φ(O)

)−1
|||22

The open set V = Φ(U) is included in a ball of radius 2|||∇Φ(O)|||2R and is star-shaped with respect to a

ball of radius R1/
(
4|||

(
∇Φ(O)

)−1
|||2

)
.
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Proof . We consider the mapping

Ψ0(x) = Φ(O) + ∇Φ(O)x x ∈ U

The open set W = Ψ0(U) is included in the ball B(Φ(O) ; R
′

) (R
′

= |||∇Φ(O)|||2R) and it is star-shaped with

respect to the ball B(Φ(O) ; R
′

1) (R
′

1 = R1/|||
(
∇Φ(O)

)−1
|||2). Now let Ψ1 be the mapping Ψ1 = Φ ◦ Ψ−1

0 .

This map is a C1 diffeomorphism from W onto V . We have Ψ1

(
Φ(O)

)
= Φ(O) and Ψ

′

1

(
Φ(O)

)
= I3. Moreover

∀y ∈ W |||Ψ
′

1(y) − I3|||2 ≤ |||∇Φ
(
Ψ−1

1 (y)
)
−∇Φ(O)|||2|||

(
∇Φ(O)

)−1
|||2

≤ |||∇Φ
(
Ψ−1

1 (y)
)
−∇Φ(O)|||2|||

(
∇Φ(O)

)−1
|||2 =

( R
′

1

4R
′

)3

The open set V is included in a ball of radius R
′

and it is star-shaped with respect to a ball of radius R
′

1/4.

Proof of Lemma 3.2 .

We use again the mappings introduced in Step 1 of Theorem 3.1. Through the use of easy geometrical

arguments we show that if δ ≤ inf{C/2, B/4(M + 1)}, we have

ω2δ \ ω ⊂
K⋃

r=1

{
(s1r, s2r) | fr(s1r) < s2r < fr(s1r) + 2δ(M + 1), s1r ∈]0, A[

}
,

{
ŝ ∈ ω | dist(ŝ, ∂ω) < 2δ

}
⊂

K⋃

r=1

{
(s1r, s2r) | fr(s1r) − 2δ(M + 1) < s2r < fr(s1r), s1r ∈]0, A[

}
.

Now we extend the displacement u ∈ W 1,p(Qδ; R
3) near the portion of the boundary given by the

mapping fr. We begin with r = 1. Without being detrimental to the general case we can suppose that

(O1;e11, e21) = (O; e1, e2). In order to simplify the notation we replace f1 by f .

We suppose also that δ ≤ inf{A/12, B/(18M+2)}. Let N be an odd integer belonging to
[2

3

A

2δ
,

A

2δ

]
. We

set αk = k
A

2N
, k ∈ {0, . . . , 2N}. We have N greater than 3 and δ ≤

A

2N
≤

3

2
δ. For any k ∈ {0, . . . , N − 1}

the domains

Bδ,k =
{
(s1, s2) | f(s1) − 2δ(9M + 1) < s2 < f(s1), s1 ∈]α2k, α2(k+1)[

}
×] − δ, δ[

B
′

δ,k =
{
(s1, s2) | f(s1) − 2δ(9M + 1) < s2 < f(s1) + 2δ(9M + 1), s1 ∈]α2k, α2(k+1)[

}
×]− δ, δ[

are star-shaped with respect to the ball of center (α2k+1, f(α2k+1) + δ(9M + 1),0) and of radius δ/2 and

they have a diameter less than δ(42M + 9). We put

k ∈
{

0, . . . ,
N − 3

2

}





Cδ,k = interior
(
Bδ,2k ∪ Bδ,2k+1 ∪ Bδ,2k+2

)

C
′

δ,k = interior
(
B

′

δ,2k ∪ B
′

δ,2k+1 ∪ B
′

δ,2k+2

)

C
′′

δ,k = interior
(
B

′

δ,2k ∪ Bδ,2k+1 ∪ B
′

δ,2k+2

)

The open sets Cδ,k and C
′

δ,k are star-shaped with respect to the ball of center (α4k+3, f(α4k+3)−δ(9M +1), 0)
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and of radius δ/2 and they have a diameter less than (42M + 15)δ = Rδ.

lines of slope 

+M and -M  

Figure 3. The domain Cδ,k ∩ {s3 = 0}

There exists C0 > 0 which does not depend on δ such that

∀(s, s̃) ∈ C
′

δ,k × C
′

δ,k, |||∇Φ(s) −∇Φ(s̃)|||2 ≤ C0δ

In the sequel we will work with the portions Bδ,k = Φ(Bδ,k), B
′

δ,k = Φ(B
′

δ,k) and C
′

δ,k = Φ(C
′

δ,k) of the shell.

Now we take δ such that

δ ≤ inf
{ c3

0

C0c
2
1

(1/2

4R

)3

, δ0

}

Then we have

C0δ ≤
(1/2

4R

)3

inf
s∈Ωδ

{
|||∇Φ(s)|||32|||

(
∇Φ(s)

)−1
|||22

}

Thanks to the corollary of Lemmas 4.1 and 4.2 the domains Bδ,k have a diameter less than 3Rδ and they are

star-shaped with respect to a ball of radius δ/16. From Theorem 1.3 there exist rigid body displacements

r2k, k ∈
{
0, . . . ,

N − 1

2

}
and r̃k, k ∈

{
0, . . . ,

N − 3

2

}
such that

(4.3)

{
Dp(u − r2k, Bδ,2k) ≤ CEp(u, Bδ,2k),

‖u− r2k‖
p
Lp(Bδ,2k ;R3) ≤ CδpEp(u,Bδ,2k),

{
Dp(u− r̃k, Cδ,k) ≤ CEp(u, Cδ,k),

‖u − r̃k‖
p
Lp(Cδ,k;R3) ≤ CδpEp(u,Cδ,k),

where the constants do not depend on k and δ.

We define the one-to-one mapping Ψ : C
′

δ,k −→] − 3, 3[×] − 1, 1[×] − 1,1[ by

(s1, s2, s3) 7−→
(s1 − α4k+3

δ
,

s2 − f(s1)

δ(18M + 2)
,
s3

δ

)

We have

∀s ∈ C
′

δ,k det
(
∇Ψ(s)

)
=

1

(18M + 2)δ3
.
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For every k in
{

0, . . . ,
N − 1

2

}
, the function (u− r2k) ◦Φ is defined on Bδ,2k. We extend (u− r2k) ◦Φ ◦Ψ−1

by reflexion and then we return in B
′

δ,2k and we add r2k to the obtained displacement. We call again u this

new displacement. We have (the constants do not depend on k and δ)

Ep(u,B
′

δ,2k) + Dp(u − r2k, B
′

δ,2k) ≤ CEp(u, Bδ,2k), ‖u− r2k‖
p

Lp(B
′

δ,2k
;R3)

≤ CδpEp(u, Bδ,2k).

S

Figure 4. A portion of the boundary of the shell and the first extension of displacement u.

Thanks to (4.3) we can compare r̃k, r2k and r2k+2. We obtain

Ep(u, C
′′

δ,k) + Dp(u − r̃k, C
′′

δ,k) ≤ CEp(u,Cδ,k), ‖u− r̃k‖
p

Lp(C
′′

δ,k
;R3)

≤ CδpEp(u, Cδ,k)

The function (u − r̃k) ◦ Φ is defined on C
′′

δ,k. There exists a linear and continuous extension operator P

from W 1,p(] − 3, 3[×] − 1, 1[2\] − 1, 1[×]0,1[×] − 1,1[) into W 1,p(] − 3, 3[×] − 1, 1[2). Using P we extend

(u− r̃k) ◦Φ ◦Ψ−1 then we return in C
′

δ,2k and we add r̃k to the obtained displacement. We call again u this

new displacement. We have

Ep(u,

(N−3)/2⋃

k=0

C
′

δ,k) ≤ CEp(u,

(N−3)/2⋃

k=0

Cδ,k) ≤ CEp(u,Qδ)

Now we go on with the other portions of the boundary of the shell. We take r = 2. If the extension is

already defined on a part of the domain
{
(s12, s22) | f2(s12) < s22 < f2(s12)+ B, s12 ∈]0,A[

}
, we preserve

only the part defined on the first or on the last domain of type B
′

δ,k.
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