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Abstract

We consider a three-dimensional composite material made of small inclusions periodi-
cally embedded in an elastic matrix, the whole structure presents strong heterogeneities
between its different components. In the general framework of linearized elasticity we
show that, when the size of the microstructures tends to zero, the limit homogeneous struc-
ture presents, for some wavelengths, a negative mass density tensor. Hence we are able to
rigorously justify the existence of forbidden bands, i.e., intervals of frequencies in which
there is no propagation of elastic waves. In particular, we show how to compute these band
gaps and we illustrate the theoretical results with some numerical simulations.

1 Introduction

After the huge impact due to the development of photonic crystals [10, 14], the develop-
ment of phononic crystals has received growing interest in recent years. These artificial
crystals, which mimic a crystalline atomic lattice, are structured materials formpd-of
riodic microstructures In the case of phononic crystals considered by Vasseur and al.
[13], the media is a two-dimensional binary solid-solid composite made of elastic arrays
of Duralumin cylindrical inclusions embedded in a resin epoxy matrix. For this structure,
measured transmission exhibit absolute acoustic band gaps. A band gap is a range of fre-
guency in which elastic or acoustic waves cannot propagate; it is surrounded, above and
below, by propagating states.

From atechnological point of viewthe main interest of these composites is to help
reduce the noise level, they are also good candidates for the design of elastic or acoustic
waveguides or filters.



From amathematical point of vievthe homogenization approach (which consists in
replacing a composite by a limit homogeneous material) is relevant for the modelling of
such periodic structures. Let us note that the property for a periodic structure to always
present band gaps (Floquet-Bloch’s theory), disappears in the case of an homogeneous
material. However, the asymptotic analysis shows that in the case of photonic crystals
the limit “homogeneous permeability” reegativefor certain wavelengths and hence band
gaps appear [4]. In the case of phononic crystals our study aims at justifying the existence
of band gaps for certain wavelengths; this result is a consequence of the non positivity of
the limit “homogeneous mass density”. The homogenization method we use to obtain this
result relies on the unfolding method [5] that combines the dilatation technique with ideas
from finite element approximations.

From anumerical point of viewsome computational works have been developed to
optimize the shape of the inclusions [7, 12] with a classical approach (different from ours
which is based on the micro-macro study). For the time being, we present in this paper the
numerical simulation of the band gaps, with an emphasis@ak band gap§ropagation
in certain directions only) angtrong band gapéo propagation in any directions). Further
studies on the sensitivity analysis of these forbidden bands are under preparation [11, 9].

To present the problem under study let us start with the description of the geometry
of the composite whose reference configuratibof the elastic body is supposed to be
stress-free. The bounded dom&inc R? with micro structures of size > 0, is split into
a domain(2§ occupied by the matrix made of material 1, and a dorirwith Lipschitz-
continuous boundary denoted b¥?) which contains periodically distributed inclusions
made of material 2, hende = Qf U Q5 with Q5 N Q5 = (. We note that the whole domain
Q is independent of, whereas the domains occupied by the matrix and the inclusions are
bothe-dependent. As for the study of three-dimensional periodic structure, let us introduce
the reference celt” = [0, 1[ with its elementary inclusioy , Yo C Y, Y =Y\Ya.
Therefore, material 2 occupies the domé&if) obtained bye-periodicity and material 1
occupies the remaining domai; = Q\Qs:

OG=J cMa+k), K ={keZ’eYa+k) CQl
keKe

Let us denote by.° (w) the static elastic displacement field that the body undergoes at
afixed wavelengthy (the displacement is indexed bysince, obviously, it depends on the
microstructure size). Our paper deals with the convergence of the sequénéév)}.
whene goes to zero. In section 2 we recall the propagation equations for elastic waves
solved byu®(w) for positive values of. In section 3 we introduce the unfolding operator
and give its essential properties so that we are in a position, in section 4, to establish
the main convergence theorem which gives the propagation equations solved by the limit
displacement fields(w). In section 5 we discuss the possibility of a “negative” mass
density and its consequence for the existence of forbidden propagation bands. All the
proofs of the existence and convergence theorems are given in section 6. Finally, in section
7, numerical simulations illustrate the influence of the change of some parameters of the
micro structures (such as shape of the inclusions, average mass density of the composite,
fill-in coefficient).



2 Propagation of elastic waves

In this section we recall the equations of the elastic waves propagation in the composite
material described previously and next we give the equilibrium equations in the static case
with fixed wavelength.

Let T > 0; under the action of applied force = (F,) : © x (0,T) — R? the body
undergoes an elastic displacement fieltl = (U,) : 2 x (0,7) — R3 which is solution

to the evolution problem:

0% . o . . .
7'5(96)@%(2@16) - @(cmnkz(ﬂc)em(U (,1) =Fm  in Qx(0,7T),
Ue(z,t)=0 on 90 x (0,T),
U¢(z,0) = U%(z), %Us(a:, 0) =U'(x) in Q,

with initial conditionsU?° : Q — R3, U : Q@ — R? and where
1
ekl(V(CU, t)) = 5(8le(a:, t) + 0, Vi (x, t)),

is the linearized deformation tensor.
The mass density® : 2 — R and the elasticity tensor of the structure= (c;,,,.;).
with ¢¢ : 2 — R possess the classical properties of any elastic body:

mnkl

-There exists two positive constants, p5 such that:
p= <rf(x) < p3 forallz € Q.
-The elasticity tensor is symmetric and coercive, i.e., :

Czlmn = Cinnk’l = szmlkv
and there exista® > 0, 5° > 0 such that, for any symmetric matr{X,,,,), we have

o XnXmn < niot (@) Xmn Xt < B Xonn Xomn forall z € Q.

mnkl

For any fixede > 0, and standard assumptions on the regularity of the data
e € L2(Q)’Cfnnkl € LQ(Q)aF S L2(Q X (O7T))a UO € H&(Q)a Ul € L2(Q)a
the associated variational problem has a unique weak solution

U® € C(0,T; H} (), %Uf € C(0,T; L*()).
Let us now consider an incident wave periodixed and independent af, and the pe-
riodic solutionU¢(z,t) = u®(z,w)e’! associated to periodic applied forcE§z,t) =
f(x)e™t and compatible initial conditions; in the sequel we denotaubfyr), instead of

!Latin exponents and indices take their values in the{$e2, 3}. Einstein convention for re-
peated exponents and indices is used. Bold face letters represent vectors or vector spaces.



u®(z,w), the amplitude of the elastic wave B
Hence, for any fixed > 0, the elastic fieldu® : O — C? is given by the stationary
problem,

{ w?re (2)ug, (x) + On(chpp (@)em (U () = —frm in
u(z) =0 on ONQ.

Because of the linearity of the problem, we consider in the sequel only real-valued dis-
placement fieldu® : O — R3. According to Fredholm alternative, for each fixed value

of w different from the resonance values (square root of the eigenvalues of the elasticity
problem) whichdepend upon, the variational problem:

o [rut o= [ dopen@en@ =~ [ foo veem@. @

(whereu - v = uivi) has a unique solution® € H{ ().

The rest of the paper aims, first of all, at showing that the sequigiice of solutions
to (1) converges (in a certain sense that will be made more precise later) to the solution of
an homogeneous problem, and next at interpreting the theoretical and numerical properties
of this limit solution.

3 Unfolding operator and heterogeneities

3.1 Definitions and basic properties of the unfolding operator

In conjunction with the elementary cell, there exists, for alt € R3, a unique de-
compositionz = [z] + {z} with an integer parfz] and a remaining pafz} such that
{z} = z — [z] € Y and equivalently, we have the unique decompositienc[—] +<{—}.
15}
We introduce the unfolding operatar® related to the study of periodic structures
[5, 6]. For allv € L?(£2) extended by outsides? :

Te:ve LX) — T°(v)(z,y) = v(e[g} +ey), zeNyeY.

The main properties of this operator are given below (complete proofs can be found in [5]).
o If {v°}. is uniformly bounded in.?(Q2) then, there exists € L?(Q2 x Y') such that, up

to subsequence still denoted with the same indices, we have the convergéfce. —
vweakly inL2(2 x Y).

o If the sequencgv?}. is uniformly bounded inL?(Q2) and the sequencgVv©}. is
uniformly bounded inZ.2(Q; R3) then, there exists a limit field € L2(Q; H! . (Y)) such

per
that, up to subsequences still denoted with the same indices, we have the convergence:

7¢(v%) — weakly in L2(Q x Y),
T¢(eV,vf) — Vyv weakly in L2(Q x Y;R3),
v (z,y)
whereV, v = [ ———== andV,v = [ ——=~ .
( Ox; )15153 Y ( y; )1§i§3
o If {v°}. is uniformly bounded in7*(Q) then, there exists a limit field € H*(Q) and

dv(z,y)

4



a correctol € L*(Q, H}.(Y)) such that, up to subsequences still denoted with the same

indices, we have the convergence:

Ve - weakly in H(Q),
7= (v®) - weakly in L2(Q x Y),
T¢(Va0f) — Vyu+ V0 weakly in L2(Q x Y;R3).

Periodic problems have also been studied by the two-scale method [1, 8]

3.2 Heterogeneities

We are now in a position to state the dependence of the materials characteristics in terms
of e. When these characteristics are not scaled tne limit homogeneous model does not
exhibit band gaps. Since we are interested by the modelling of the bad gap structure we
assume in the sequel that there exists new functipns, c1, co independent of the size
of the micro structures such that:

(Inthe matrix) ~ 7°(z) = rl({g}), e (x) = cl,mnkl({g}) z e,

mnkl

x

(In the inclusions) r*(z) = r2({Z}),  ¢5u(@) = Seammu({Z}) o € Q5.

in other words, functions,, 15, ¢1, co are defined in the elementary cEllby the relations,
T (Ts)(x7 y) =T (y)a T* (Cfnnkl)(xa y) = Cl,’"mkl(y)) S in Yy < Y17

Te(r)(z,y) = ra(y), To(Epnm) (@ y) = 22 mmui(y), € Q5,y € Ya.

The scalinge2, which appears in front of the elasticity tensor, is the expression of the
strong heterogeneitthat exists between the elastic properties of the matrix and that of the
inclusions ones. Different kinds of scalings are possible, however this scaling is the only
one that gives rise to a limit model with significant physical meanings (in this direction, see
[1] and [2] where an example for which this type of assumption is used to solve a double
porosity problem). This scaling and the continuity and coercivity constants introduced in
Section 3.1 now read: There exists positive constanty.., «, 3 independent of such
that:

p— <ri(y) <pqforally eYi, p- <ra(y) <pqforallyels,

and such that, for all symmetric matriX,,,,), we have:
aanXWLn S Cl,mnkl(y)anXkl S ﬂanan for all Yy S Yla
and the same property holds for the elasticity teragpr

aanan S CQ,mnkl<y)anXkl S Banan for all RS YV2



4  The limit problem

We recall that the solution® to (1) exists for all frequencias different from resonance
values (which depend upeai). Therefore, before showing that when the sizd the micro
structures in the composite goes to zero the sequéatg. converges to the solution of

limit problem, we show that there exist an admissible set of frequenti€mdependent

of ) such that{u®}. exists for all frequencies ifi” for ¢ small enough. However this is

not possible for all structures, hence we have to restrict our study to a class of structures
which allow limit wave propagatian

Assumption on the data. We assume that the density, the elastic characteristies

and the geometry of the elementary inclusignand the density; assure theexistence

of a non empty open set of frequenci®sc R (this will be made more precise in Step

7 of Section 6), that allows us to prove the existence of a solution to (1) for all frequency
w € W and next its convergence to the solution of a limit problem.

Existence Theorem 1. For allw € W, there exists a positive valug(w) such that,
for all e €]0,e0(w)] problem(1) has a unique solution boundedfi?(Q2).
The proof, for the sake of clarity, is postponed to Step 7 of Section 6.

Convergence Theorem 2For all values of the incident wave € W there exists
two limit vector fieldsu! € H}(Q),uw? € L?(Q; H}(Y2)) such that:

(1) The sequencg® (uf) strongly converges ta = u' + u?in L2(Q x Y).

(44) The limitu! € HE(Q) is the unique solution to the variational problem:

wQ/QA*(w)ul(:U)~<I>(:U)dJU/Qc;‘;mklekl(ul(x))emn((b(x))dx

2
_ _/QB*(w)f(x)-q)(x)dx Vo € HJ(),

wherethe homogenized elasticity tensaf, the homogenized generalized mass
density matrixA*(w) andthe homogenized matrig* (w) are given in(6) and(9)
below in sectiors.

(433) The limit displacement field? € L?(Q; H}(Y2)) is the unique solution to
the variational problem:

w? /Y : ra(y)u?(z,y) - U(y)dy — /Y : C2.mnkt (V) €ty (W (2, ) emny (¥ (y))dy

= —wul(z)- / ro(y)¥ (y)dy — f(z) - / U(y)dy VU € H}(Ys).
) - ©



The existence of a unique solutian' to problem (2) is proved in Step 4,
Lemma 3 of Section 6, the existence of a unique solutidrto problem (3) is
proved in Step 3 of Section 6.

Problem (2) has the same form as problem (1). However it is important to
notice that the mass density scatahas been replaced by the homogenized tensor
A*(w) which depends upon the wavelength considesednd that the elasticity
tensorc* = (¢, ,..;) is now homogeneous and independent of

5 Negative mass density and band-gaps

In view of the limit model given by the solution of problem (2), the propagation
of waves in the homogenized structure that occupies the dafhdapends on the
structure of the “mass density matrix{*(w). Therefore we begin by the exami-
nation of its properties in order to prove the existence of the elastic band-gaps, and
next we introduce the notion of the so-calledakor strongband-gaps specially
suitable for applications.

5.1 Properties of the homogenized “mass density matrix’A*(w)

Let us first give the expression df* (that will be justified in Step 3 of section 6),

Af(w) = ZA*’j(w) +rI, = /

r(y)dy + / ra(y)dy.
jeJ Y1

Ys

The elements of each matrik/ = (A7) are given by:

2

Al (w) = wz_if)\] /Y r2(y) ) (y) / 2 ()l (y),

Ys

where{¢’, M} ;> are the eigenelements associated to the elasticity opérates)
posed in the domaik,, see equation (7) below, and= {j > 1,/ ro(y) @’ (y)dy #

Yo

0}.
Hence, matrixA*(w) is symmetric, its eigenvalues are real; however when this
matrix is not positive definite (i.e., when it has at least one negative eigenvalue),
the limit problem may havevanescent solutionshich means that there iso
wave propagatiofin certain directions corresponding to any linear combination of
eigenvectors associated to the negative eigenvalues.

The sign of eigenvaluesf matrix A*(w) will now be investigated in each el-
ementary intervalv/’A/, vV A/+1[. The smallest eigenvalyey (w) is given by the



infimum of the functionz — A*(w)z - z with z = (2,) € R? and||z|| = 1,

2 3 2
(W) = nf <]§,wQ_—wM; (zp /YZ rz(y)wi;(y)> ) ot

For anyj € J, the functionw — py(w) is strictly increasing in the interval
]V, VM. We can distinguish the following two cases: eithéris of or-
der of multiplicity equal to one, or it is of order of multiplicity greater than one
(this situation happens, for example, when the inclusions present geometrical sym-
metries).

e In the first case, matrid* (w) is of rank one, hence the infimum df/ (w)z - z
vanishes. Since in each intenial A/, v )i +1] all quantitiesA**(w)z - z are
bounded for allk # j, we infer that the smallest eigenvalue increases from

to a finite value,uv = pv (VAT If this valueuv is non negative, there exists a
valuewl, €]v/A, VN[ such thapuy (wl) = 0, henceg v/, wi | is a band gap

in the sense that it may happen that some waves arprogtessive By contrast,

in the intervallwy,, v A +1| all waves propagate. Ji% is strictly negative then the
whole intervallv'AJ, v M +1] is a forbidden band.

e In the second case/ is of order of multiplicity M > 1 and (¢?™) =10/ are
the associated eigenvectors. Matix’ (w) = (A (w)) is given by:

A Z / ") [ e w).

If matrix A*7(w) is of full rank, (contrary to the previous casg@)y (w) increases
from —oo to oo, and there always exists a valug, €]v\, \/)\JH[ such that
pv (wv) = 0. In other words there always exists a band pdp’, wg[. Inthe case
where matrixA*7 (w) is not of full rank the behavior of its eigenvalue is the same
as in the previous case, i.e., bounded at v \i+1.

To sum up, in each mterv@{/)TJ V AFL[, the smallest eigenvalue df* (w) takes
negative values in each interval§\/, wv[ with possiblywl, = v AJ+1; in this
last case, the band gap extends to the whole th, VAL

A% (w)

By the same way, we establish that the largest eigenvalues) given by the

supremum of the same functien— A*(w)z -z, 2z € R3, ||z|| = 1, behaves in the
following way:

« Either, it increases from a finite valyé, to +oo,

e Or, itincreases from-oo to +oo. '

Hence, as before, in each interya\, vV AJ 1], it may exist a values), such that

8



the largest eigenvalue of*(w) takes negative values in each interya\/, wg[

with possiblyw’y, = v/\7; in the latter case, the largest eigenvalue is positive in the
whole domain.

5.2 Strong and weak band gaps

With the notations introduced in the previous section, we si@ting band gap
the interval]v/\J, w) [ andweak band gaphe interval]wh , wZ [, with possibly
wh = VA orwl, = VAi+1. This means that, in a strong band gap, matrixis
negative definite and there is no propagatioarny direction in a weak band gap,
matrix A* is neither positive nor negative, there is propagaticat ieast one direc-
tion corresponding to its positive eigenvalue. Finally, in the intefudl, v A +1]
matrix A* is positive definite, there is propagationah directions Thus, in each
interval]\/ﬁ, VAIHL[, four situations may happen: either the whole interval is
formed by only one weak band gap, or by a weak band gag, wjv [ followed by
a propagation zonbjé, Vv M+, or by a strong band gap/\, wg[ followed by
a weak band ga]wg, VMt or for the last configuration, by a strong band gap
VM, W) [ followed by a weak band gdpr , wi [ and next by a propagation zone
}wjv, VAL

Let us insist on the introduction of these definitions which are justified by their
importance on the applications (such as for example noise suppression or reduction
in oneor all directions).

6 Proof of the existence and convergence Theorems.

The convergence relies partly on Bouohittind Feldbacq’s results established in
the Helmoltz diffusion case [4]. We generalize their approach to the framework of
linearized elasticity. The proof of the convergence Theorem is broken into 7 steps.
In Step 1 we assume that the sequence of solutjatig. is uniformly bounded

in L?(Q2). This yields, in Step 2, to the existence of two limit fields, «?, and

of a correctoru which are coupled solutions to the limit problem. In Step 3 we
solve this limit problem, so that the limit field' is solution to a wave propagation
equation and we identify? and@ as solution to variational problems. In Step 4,
we establish the existence of a unique solution for the limit problem (2). In Step
5 we show the strong convergence of the sequdflca:*}., and finally in Step

6 we show by contradiction, that tleepriori bound is satisfied, this conclude the
proof. Finally, in Step 7, we prove the existence of a unique solution for problem
(1) for small enough values ef



Step 1. We begin by ara priori assumption. Let us suppose that the sequence
{uf}. is bounded uniformly irz, i.e., there exists a constafit > 0 such that for
alle >0,

|[u]|L2(0) < C.

Hence, by taking in the stationary problem (1), the test funclica u®, we get:

[ cunen@)enn() + [ chpenta)en(u) = [ e [ £
Q3 Q5 Q Q

1 2

and the scaling ( given in Section 3.2 ) and coercivity condition (given in Section
2) on the elasticity tensaf yields:

o[

Therefore, thea priori assumption yield the following majoration:

er(u)ep (u®) + 52/

05

ekl(ua)ekl(ug)) §w2p2/ﬂlu62+/9f'ue-

£
1

llert(u)||L2s) + [leer(u)||L2g) < €, 1<k, 1 <3, 4)

where(C' is a constant independent af

Step 2. Convergence of the unfolded sequences
For all open set? C R3 let us introduce the elasticity semi-norm (equivalent to
the HZ(O) norm):

[vle.o =D lleij(v)llL2(0)-
0,

Since we have the inclusidn, C Y; and the boundary df; is Lipschitz-continuous,
there exists a linear and continuous extension opefatof ' (Y;) — H'(Y).

Lemma 1. Extension of a bounded vector field
Letv € H'(95), there exists an extensianc H'((2) that satisfies the bound:

leo < Clvleas,

with C' independent of.
Proof. First we consider a displacement fialde H!(Y;). There exists a rigid
displacementr such that:

lo =7l (1) < Cloley-

10



Hence we can define the extensioby:

— (v—r)+r in Y,
| Plo—7)+7r in Yy,

and obviously we get
Wley < Clvley;.

Next we consider a displacement fielde H'(5). With the same extension
operator we can define the extensior H' () and get the majoratiofy|¢ o <
C|’U‘57Q§ with C' independent of.

Corollary of Lemma 1. Decomposition of the displacement fields®
There exists two displacement fields! and u5? such that the solutiom® of
problem(1) can be decomposed as:

ut = us,l 4 ’U,E’Q.

(i) The displacement field** € H}(2) coincides withu® in Q5 and satisfies the
bound:
[u!e o < Cluf|e o

with a constant” independent of.
(41) The displacement field*? € H}(£2) vanishes irf)5.

C : .
(i4i) Moreover, we have the bounfis™!|c o < C, |u?[cq < — which yield

lu e @) < €, lu?||p20) < C. (%)

Proof. We denote byv® the restriction ofu® to Q5. By Lemma 1, letu! be
the extension of° to €2, u®! = v, and we get the majoration of step (i). Since
us! = uf in Q5 we get step (ii). Step (iii) is a consequence of bounds (4).

The homogenization method presented in section 3 and majorations (4) and (5)
yield the following convergence result.

Lemma 2.

(1) There exists two limit vector fields', u?> and a correctoru,

per

u' € H} (Q),u? € L*(Q; H) (Y2)),w € L*(; H! (Y)),/ w=0
Y

11



such that, up to subsequences still denoted with the same indices, we have the
convergences:

T¢(ub*) — ! weakly in L?(Q2 x Y),
Ts(ekl(ul’g)) — ey I(ul) + ekl,y(ﬂ) weakly in LQ(Q X Y),

T¢(us?) — y? weakly in L?(Q x Y5),

eT(er(us?)) — epry(u?) weakly in L?(Q x Ys).

(ii) The three fieldsu', u?, w) solve the following three coupled variational prob-
lems:

( /Y c1mnkl (V) (ekl,x(ul(x)) + epy(u(z, y)))emn(i(y))dy =0 forall ®e H;er(Yl),

wz/ ra(y)(u'(z) + u?(z,y)) "I’(y)dy—/ co,mnit(Y)enty (W (@, 9))emny (¥ (y))dy
Ya Ya

= —f(x)- /y @(y)dy forall U € H&(Y2)>

W /Q ul(z) - (a)( /Y r(y)dy)de + w? /Q B(x) - ( /Y oy )y

~ [ ctman®) (ers(u' (@) + exty (. 9) ) emn(® () da
Q><Yl
:—/f(:r:)~<l>(x)dx for all ® € Hy(Q).
Q

Proof. Weak convergenceg) are obtained by using the bounds (4), (5) and the
properties of the unfolding operator. The limit problems of géart are obtained
with appropriate test-functions in problem (1). More precisely:

-For the first problem we choose test-functions of the foa*mCx)@({g}), x €,
with w € D(Q),® € H, (V).

per

-For the second problem we choose test-functions of the form:

w@¥({}) @ e,
0 x € Q.

with w € D(Q), ¥ € HE(Y2).
-For the last problem we choose test-functions of the fobng H{ (9).

12



Step 3.In this step we solve, successively, each limit variational problem.
e First we solve the problem posed¥h to compute the correctas.

| et (cusa () + e, (@) (@) =0 forall T € HE, (1)
Y1

The correctomz is expressed as the linear combinatitiy, y) = ey (u! () Zmn (y)
where the basis functions,,,, € H]}er(Yl) are solutions to the variational prob-

lems (by symmetry, there exists only 6 different problems in three-dimensional
elasticity and 3 different problems in two-dimensional elasticity):

/ Cl,ijkl (ekl,y(zmn) + 5’5‘571) 6ij7y(5))dy =0 forall &€ H;er(}/l)’

Yy
hence, we get the homogeneous (independen} t&fnsorc*:
C:jkl = / Clyijmn <€mn,y(zkl) + 6frfn)dy7 (6)
Y1
andék! s the Kronecker symbaitl = 0form # korn # 1, and§™? = 1. It

is easy to show that tensef has the same properties of symmetry and coercivity
of the initial onec®.

Let us remark that* is independent af» and only depends upon the value of the

elasticity tensor; within the matrix and the shape of the matrix, more precisely
the shape of the elementary inclusign the same result would have been obtained
with a perforated domairk; being the hole. It is important also to note that the

correctoru is not determined ifY5.

e Next we solve the problem posedtin this allows the computation af?:

WQ/ TQ(y)u2'\I]_/ C2,mnkl(y)ekl,y(uQ)emn,y(@)
Y2 Y2

= —w?u! / ro()V — f- [ ¥ forall Ve HY(Y).
Yo Yo

Let us examine the spectral properties of the previous problentinWe note

{¢’, M};>1 the eigenelements associated to the elasticity operator. The positivity

of ro and the coercivity of tensar, imply that the eigenvalues\’},~; are real

and positive, let us range them in ascending or@let,-- < )/ < M+ < ..

/ clmnkl(y)ekl,y(goj)emmy(@) = /\j/ rg(y)goj .U forall U e Hol(YQ),
Y2 Y2

without summation ornj,

and with the orthogonality condition / r2(y)pl - ! = 4],
Yo

()
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We decompose? in the basis of the eigenvectofg’ } ;. Hence for all frequen-
ciesdifferent from the resonance? # )\, j € J with

T= 4=, | e Wy £ 0, ®)
2
the displacement field? can be explicitly given in terms ai' by the series:

f(z) /Y ¢ (y)

u2($7y) = Z W02 _ M @](y) - W02 N\ tp](y)
Jj=z1

e Finally we solve the problem posedhto get the limit elastic fields' :

wQ/Qul@/Yr(y)+w2/Q<I>-/Y2 r2(y)u2($,y)/QCTnnkzekl(ul)eij(q))
:_/f~<I> forall ® € H}(Q).
Q

We replaceu? by the expression obtained previously, this yields
| nwwtey) - 0@ = Al ) 8) - Bu)f@)- o),
Yo

where matricest = (A,,) andB = (B,,) (of order3) are given by:

/ ra() 2l (v) / ()l (v)
Aplw) =y, et 7

/ el (y) / ra(y) 2} (y)
Bgp(w) = Z e wg% N )

jed

and a straightforward computation leads to the limit problem (2) with

{ A% (w) = —W?Aw) + 1, = [y ri(y)dy + [y, ra(y)dy, )
B*(w) = —w?B(w) + I

Step 4.As stated in section 5.2, for certain types of data (geometi} @nd val-
ues ofc® andr?) it may happen that there i® zone of wave propagation, this is
the case when for ajl € J, wi, = VA/TL. Therefore to establish the existence of

14



the solution to the limit problem, wassumehat there exists a set, still denotéd
such tha’w% < VMl forall j € J. With this assumption we have the following
existence lemma.

Lemma 3. There exists a non empty, open BétC R such that for all frequen-
ciesw € W the limit problem (2) has a unique solution.

Proof. Matrix A*(w) is positive definite for all e]wé, VAL j € J. In each
interval of this type there exists a countable set of resonance frequém@a& Ki
such that for allv # wi the following problem has a unique vanishing solution:

w? /Q A*(w)v(z) - @(z)dx — /Qc:;mklekl(v(m))emn(fb(az))dzx =0 Vo e Hj(Q).

Let W = {w €]wl, VNHI[w # wl k € KJ,j € J}. Hence, by Fredholm
alternative, problem (2) has a unique solution for.alk 1.

An easy way to assure the existence of such &5&t to increase the mass density
r1 which implies the existence of a non empty domain of frequencies wieie
definite positive.

Step 5.In this section we establighe strong convergena# the sequencg? ©(u®)}.

in the spacedl?(Q x Y).

According to Corollary of Lemma 1 and Lemma 2, up to subsequences still de-
noted with the same indices, we have the convergence:

us! — u!  strongly inL?(Q),
Te(u®?) — wu? weaklyinL?(Q2 xY).

Using the decomposition® = u®' + u*2 we rewrite problem (1) in the following

way:
rfus? . @ — 62/ i€t (U2 emn (®)
Qg

o
25 3

:52/ i€k (U™ )emn (@) — / (f +Pr7ul) @ VD e HY(O5).

s 05

Since the unit cells are disjointed, the previous system reduces to a problem posed
in Y2: For almost alle € Q find 7¢(u®?)(z,y) € Hi(Y2) such that:

w2/y 7"27—6(’11,6’2)(1', )@ —/ CQ,mnklekl,y(Tg(UE’Q)(l‘,-))emn,y(q))

Yo
—¢ j ot (T (@) (@, ))emny (®) — / T(f + w?rous)(z,.) - ®
Y5 Y-
Vo € H(Ya). ’
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We make use of the eigen basis’);>; introduced in (7) to express the solution
T¢(us?) as:

e /Y ot (T ()0, 5)) e (5) s

TE(UE’z)($7y) = ]; W2\ @j(y)
TE(f +wrout) (@, 5) - ¢ (s)ds
Y2 ]
N ; o ¢ (y)-

And by linearity of the unfolding operatdr® we get

e /Y a7 1) ) e (3)ds

Toe?) —u2= 3 — o)
i>1
[ @@ -pis P
-y = Y o (y)
i>1
/ WA (TE(ut) —ut)(z, s) - 7 (s)ds |
B Z . Y @’ (y).
i>1

Hence, from the convergence

T5(f) — f stronglyinL?(2 x Y),
Te¢(us') — u! strongly inL?(Q2 x Y),

we get the strong convergence,

Te(ub?) — u? strongly inL2(Q x Y),
T¢(uw®) —ul+u? stronglyinL?(Q xY),

which implies
/ (@) 2de — [ ul (@) + (e, ) Pdady.
Q QOxY

Step 6. We are now in a position to justify the priori boundedness assumption
of Step 1. Let us assume, by contradiction, that||;2) — oo and let us con-

=
sider the displacement fieldt = u . This field is solution to a problem

[[uf[|z2 ()

16



similar to the initial one (1) but where the right-hand siflehas been replaced
by f¢ = ||u€|\f2(n)7 |1 75|l 12() — 0. The sequencf|u=||2(o) }- is uniformly

L
bounded, the convergence Theorem 2 can be applied for all admissible frequencies,
w € W, to show that the sequen@ ®(u®)}. strongly converges to a vanishing
displacement field, this states the contradiction.

Step 7.Finally we prove, for small enough, the Existence Theorem 1 for the ini-
tial problem (1). Let us proceed by contradiction. We consider a vanishing applied
force f = 0 and a sequence of strictly positive numbésg},cn+ converging to
zero and such that, for gil € N*, there exists a displacement fialdr € H} (1),
solution to problem (1) which satisfi¢g:°? || 12y = 1, thus:

w2/ rerutr - o — / P ek (U )emn () =0 VO € Hy().
Q Q

From the strong convergence of Step 5 weﬁehﬂ 2 — / lu! +u??. By
Q axy

assumptior(ii), for allw € W, we haveu' as the unique (vanishing) solution to
the limit problem:

wQ/QA*(w)ul(:z:)-fb(m)dm—/Q cer (U (1)) emn (®(x))de =0 VO € H(Q)

and next the computation give$ = 0 which implies a contradiction.

7 Numerical illustration in the two-dimensional case

In this section we provide some numerical simulations to illustrateatimistic
band gapdletermined by the eigenvalues 4f(w) and the effect of changing the
parameters of the model, in particular we investigate the influence @viliage
material mass densitgnd of thegeometry of the microstructure

The theoretical results obtained in the previous sections were given in the
framework of three-dimensional elasticity, of course they apply as well in the two-
dimensional case of in-plane vibrations. Therefore, in order to reduce the compu-
tational effort (since in this case we have the explicit formulae of both eigenvalues
of A* at hand, i.e., without any further computing) we restrict our work to the two-
dimensional case which exhibits the most important characteristics of the band
gaps structure.

The numerical identification of the band gaps is done through the following
steps:

17



1. Computation by the finite element method of the approximate \@lugs’), j €
N of the eigenelements\/, ¢/) of the elasticity problem (7) posed ovE;.

2. Determination of the reduced index skby eliminating the eigenvalues that
do not contribute to the expression df, thanks to the introduction of a
thresholdr,

J={j>1, ; ro(y)@’ (y)dy| > 7}

3. In each interval v/ M, v M+1], je J, and for selected frequencies
e Compute the entries of matrix*(w) by replacing the infinite sum over the
index set/, see (8) by thdinite sumover.J,

A (w) = A% (w) + 1.
jed

e Computeexplicitly the largest and the smallest eigenvalues denoted by
fia(w) andjiy (w) of matrix A* (w). ' ‘

¢ Localize numerically the frequencies denotedBy(respectivelyz?, ), for
which the smallest eigenvalue (respectively the largest eigenvalut)of)
vanishes. Hence th&trongandweakband gaps and th@ave propagation
zone can easily be identified.

The numerical examples presented below have been obtained by using an in-house
software based on the MATLAB computational tools. For analysis of the eigen-
value elasticity problem (7) defined in domaihwe computed the approximation

of the displacement eigenfunctions with linear finite elements on triangular meshes.

7.1 Numerical simulation of strong and weak band gaps

In Figure 1 we display the successive resonance frequen/cﬁm e J, for ellip-

tic inclusions. Each frequency bahv/ﬂ, vV 5\j+1[ is decomposed into one or two
zones with no wave propagation (the strong and weak zones) followed by a wave
propagation zone. In a weak band, the largest eigenvaluef A* is positive

and the other ongy is negative, there is propagation only in the direction of the
eigenvectorya associated t@ . This direction may change when the frequency

w varies. With the same elliptic inclusions as in Figure 1 we display, in Figure 2,
the variation (with respect t0) of the orientation angle of the eigenvectot. For

this example, the numerical experiment shows that, within the entire weak band
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(rescaled) EIGENVALUES of A" matrix

0.5

-0.5

35
o [kHz]

Fig. 1: Band structure for elliptic inclusions. The resonance frequenéiésare
displayed in red. The largegty (solid) and smallestiv (dashed) eigenvalues of
matrix A* delineate the wave propagation zones. The bands of unlimitac
propagationare displayed in green, tletrongband gaps are displayed in yellow
and theweakband gaps are in white. The eigenvalues with a (almost) vanishing
contribution in the sef are represented by a circle.
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Orientation ANGLE of one eigenvector of A" matrix
90 ——

a5

angle [deg]

-45

-90

35 40 75

o [kHz]

Fig. 2: Band structure for elliptic inclusions. Orientation angle of the eigenvector
associated with the largest eigenvalug(w).

gap, there imo changeof the direction ofi)a; hence the direction of propaga-
tion remains the samdt is worth noting that, due to this property, it makes sense
for applications to use thevholeweak gap interval as the propagation zone for
suppressing vibrations in the direction orhogonapo

However, for more complicated geometries of the inclusions [9], there is a
change in the direction afA. In such cases the weak band gaps behave as the
strong ones.

7.2 Influence of some microstructural parameters in the band gaps
distribution

We illustrate how the acoustic bands depend on some selected features character-
izing the microstructure; in particular we study the effects of changing

o theaveraged material densitgiven byr* = (1 — |Ya|)r1 + |Y2|r2, when
homogeneous materials with mass dengjtandr, are considered respec-
tively in Y7 Y5;

o theshapeof the inclusions, i.e. the shape Yf;
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averaged DENSITY = 0.081165, shape: ms-ellipse-2-vf21-miavrho-81
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averaged DENSITY = 0.19403, shape: ms-ellipse-2-vi21-mi1avrho-0194
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Fig. 3: Influence of the average density variation= (1 — |Y2|)gr1 + |Y2|r2 on
an elliptic inclusionY;. The value ofg is set, from top to bottom, t85%, 70%,
100% and150%.
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o thevolume fractionYz|/|Y
keeping their shape fixed.

, i.e. the (relative) size of the inclusions when

7.2.1 Averaged material density

The influence of the material density in theclusionis rather complex. Obvi-
ously a change in density, of the material inY5 re-scales the distribution of all

resonant frequencies/ﬁ,j e J and influences the magnitude of the frequency-
dependent part of tensors™/ (w), as well as its isometric partI. By contrast,

a change in, i.e. in the density of thenatrix component, is easy to foresee. It
results in a modification of the average density without any impact on the distribu-
tion of the resonant frequencies. Nevertheless, such a modification leadhifo a

in the bounds of both the weak and strong gaps,whereby the quality of the gaps
may change also, for example a strong band becoming a weak one or a weak one
becoming a full propagation zone. This effect is captured in Figure 3, where the
influence of changing the averaged density is tested on an elliptical geometry of
Yo with r* = (1 — |Y2|)gr1 + |Y2|r2 the value ofy is set t025%, 70%, 100% and

150%. It can well be observed théte lighter the matrix isthe larger the band
gaps are more precisely, a smaller densityresults in an increase of the band gap
widths.

7.2.2 Shape of the inclusion.

We perform the computation of the band gaps for different shapes of incligion

for both symmetric geometries (circles, squares) and non symmetric geometries
(ellipses, rectangles); in the latter cases the weak band gaps are distinguishable, in
contrast with the case of symmetric inclusions where only strong band gaps (and
of course propagating zones) appear.

In Figure 4, the distribution is displayed of the predicted band gaps for the first
frequency band. For symmetric micro structures, i.e. those with more than two
axes of the symmetry,we obtaif, = 17y, which recalls the analogy with the case
of diffusion [4].

For highly elongated ellipses the strong gap disappears, see also Figure 4 for
the rectangular domains. All the examples displayed here were obtained with a
square unit celt”, however measurements show that other types of lattices, such
as hexagonal ones, can be more appropriate to enlarge the band gaps. It would be
of interest to investigate such configurations.
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averaged DENSITY = 0.14889, shape: ma-circle-0-vi21
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Fig. 4: Influence of the shape of the inclusibp Left Band gaps distribution.
Right The 2nd resonance eigenmode for the corresponding shapes is illustrated in
terms of the von Mises stress generated by the eigenfungtioNote that the 2nd
modey? corresponds to the eigenfrequendy? representing the lower bound of

the first strong band gap, when it exists.
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BAND GAPS, inclusion: circle, vol.frac.: 21-to-50%

|

L 1 L 1 1 1 L
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sqri(h) , o [kHZ]

micro-structure #

Fig. 5: Influence of the volume fractiofYz|/|Y|. The microstructuregt1, #2,
#3, #4 correspond to volume fraction equal to 21, 30, 40 and 50 %.

7.2.3 Volume fraction of the inclusion.

The effect of the “fill-in” coefficientY>|/|Y'| of the inclusion can be studied ana-
lytically, so that having solved the eigenvalue problem in a doraifor a fixed

volume fraction, the gap distribution can be predicted for other micro structures
with re-scaled size of the inclusion. A change in the rétig /|Y| influences the
averaged density, but also the magnitudes of the resonance frequencies. When this
ratio is increasing, the eigenfrequencies are decreasing and, thereby, the band gaps
are “shifted” to lower bands, as illustrated in Figure 5.

As a brief conclusion for this simulation part, we remark that the numerical simu-
lations presented in this section show the sensitivity of the distribution of the wave
propagation bands with respect to some physical parameters. The next challeng-
ing question to address would be to optimize the design of the micro structures
according to some figures of merit (position, reduction, enlargement, shift of the
band gaps). The first step of this analysis which is the microstructural sensitivity
approach is actually under study [9].
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