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Abstract: This paper deals with the problem of local exponential stochastic sta-
bilization of continuous time Bilinear Active Fault Tolerant Control Systems with
Markovian Parameters (BAFTCSMP). The design technique is based on a differential
inclusion of the bilinear term for a restricted domain of the state space. The above
problematic is addressed under a convex programming approach. Indeed, conditions
for local stochastic stability of the BAFTCSMP are derived and formulated through
some matrix inequalities. The implicit problem being to maximize the region in which
the closed-loop stability can be ensured, some convex optimization problems with LMI
(linear matrix inequalities) relaxations schemes are stated. A numerical example is
presented to illustrate the theoretical results.
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1. INTRODUCTION

Active fault tolerant control systems are feedback
control systems that reconfigure the control law in
real time based on the response from an automatic
fault detection and identification (FDI) scheme. The
dynamic behaviour of active fault tolerant control
systems (AFTCS) is governed by stochastic differ-
ential equations (because the failures and failure de-
tection occur randomly) and can be viewed as a gen-
eral hybrid system (Srichander and Walker 1993). A
major class of hybrid systems is jump linear systems
(JLS). In JLS, a single jump process is used to
describe the random variations affecting the system
parameters. This process is represented by a finite
state Markov chain and is called the plant regime
mode. The theory of stability, optimal control and
H2/H∞ control, as well as important applications

of such systems, can be found in several papers in
the current literature, for instance in (Costa et al.
1999, de Farias et al. 2000, de Souza and Fragoso
1993, Ji and Chizeck 1990, Ji and Chizeck 1992).
To deal with AFTCS, another class of hybrid sys-
tems was defined, denoted as active fault toler-
ant control systems with Markovian parameters
(AFTCSMP). In this class of hybrid systems, two
random processes are defined: the first random pro-
cess represents system components failures and the
second random process represents the FDI process
used to reconfigure the control law. This model
was proposed by Srichander and Walker (Srichander
and Walker 1993). Necessary and sufficient con-
ditions for stochastic stability of AFTCSMP were
developed for a single component failure (actuator
failures). Such a formulation offers a convenient
framework in the consideration of delays and errors



in detecting and isolating the failures.
On the other hand, bilinear systems (BLS) have
been of great interest for the three last decades,
since many real-world systems can be adequately
approximated by a bilinear model. In this class of
systems, some control signal u(t) exerts its effect
purely multiplicatively, but for a fixed u(t), it ex-
hibits a linear comportment. BLS may be inten-
tionally designed to obtain better system response
than is possible with a linear design, or they may
be appropriate models for systems to be controlled
(Elliott 1999). However, a literature search reveals
that the issue of stabilization of continuous time
Bilinear Active Fault Tolerant Control Systems with
Markovian Parameters (BAFTCSMP) has not been
fully investigated and remains important and chal-
lenging. This situation motivates the present study
on the stochastic stabilization of BAFTCSMP.
In this paper, we are concerned with the problem of
local exponential stochastic stabilization of contin-
uous time BAFTCSMP subject to multiple failure
processes: one for plant components and the other
for actuators. The main reason for using two inde-
pendent failure processes is that it allows the mod-
elling of faults at different locations with indepen-
dent failure characteristics (Mahmoud et al. 2003).
The design technique is based on a differential in-
clusion of the bilinear term for a restricted domain
of the state space. The above problematic is ad-
dressed under a convex programming approach. In-
deed, conditions for local stochastic stability of the
BAFTCSMP are derived and formulated through
some matrix inequalities. The implicit problem be-
ing to maximize the region in which the closed-loop
stability can be ensured, some convex optimization
problems with LMI (linear matrix inequalities) re-
laxations schemes are stated.
This paper is organized as follows: section 2 de-
scribes the dynamical model of the system with
appropriately defined random processes. A brief
summary of basic stochastic terms, results and def-
initions are given in section 3. Section 4 derives the
sufficient conditions for the local stochastic expo-
nential stability in the mean square sense of the
BAFTCSMP. A numerical example is presented in
section 5 to illustrate the theoretical results. Finally,
a conclusion is given in section 6.

2. DYNAMICAL MODEL

The system under normal operation (ϕ) can be
described by:

ϕ :




ẋ(t) = Ax(t) + Bu(t) +

m∑

i=1

Nix(t)ui(t)

y(t) = C2x(t)

(1)

where A ∈ R
n×n, B ∈ R

n×r, C2 ∈ R
q×n, x(t) ∈ R

n

is the system state, u(t) ∈ R
r is the system input

and y(t) ∈ R
q is the system measured output.

It is important to note that a basic point to de-
termine the appropriate dynamical model which
describes the faulty system is the location of a fault
and the nature of the faulty components. In this
paper, we will consider that the system is subject
to both plant components and actuator failures.
The random changes affecting plant components are
represented by a homogeneous Markov process ξ(t)
with the finite state space Z = {1, 2, ..., z}, and the
random changes that occur in actuators are rep-
resented by another homogeneous Markov process
η(t) with the finite state space S = {1, 2, ..., s}. In
practice, these random variations are not directly
measurable but rather can only be monitored by an
FDI scheme. Let ψ(t) denote the state of the FDI
process which monitors the states ξ(t) and η(t) of
the random processes describing the failures. The
process ψ(t) is a finite state stochastic process whose
random behaviour is conditioned on the failures
processes states η(t) and ξ(t), therefore, the state
space of the FDI process ψ(t) contains the state
spaces of the two failure processes. This state space
is also finite and is denoted by R = {1, 2, ..., r}.
In AFTCS, we consider that the control law is
only a function of the mesurable FDI process ψ(t).
Therefore, the BAFTCSMP can be described as:

ϕ :





ẋt =A(ξt)xt+B(ηt)u(xt, ψt, t)+

m∑

i=1

Ni(ξt, ηt)xtui(xt, ψt, t)

yt = C2xt

u(xt, ψt, t) = K(ψt)xt

(2)

For notational simplicity, we will denote A(ξt) = Ai,
when ξt = i ∈ Z, B(ηt) = Bj when ηt = j ∈ S,
and K(ψt) = Kk when ψt = k ∈ R. We also denote
•(t) = •t and the initial conditions •(t0) = •0.

The FDI and the Failure Processes: ξt, ηt and
ψt being homogeneous Markov processes with finite
state spaces, we can define the transition probability
of the plant components failure process as:

{
pij(∆t) = πij∆t + o(∆t) (i 6= j)

pii(∆t) = 1 −
∑

i6=j

πij∆t + o(∆t) (i = j)

The transition probability of the actuator failure
process is given by:

{
pkl(∆t) = νkl∆t + o(∆t) (k 6= l)

pkk(∆t) = 1 −
∑

k 6=l

νkl∆t + o(∆t) (k = l)

where πij is the plant components failure rate, and
νkl is the actuator failure rate. Given that ξt = k
and ηt = l, the conditional transition probability of
the FDI process ψt is:

{
p

kl
iv(∆t) = λ

kl
iv∆t + o(∆t) (i 6= v)

p
kl
ii (∆t) = 1 −

∑

i6=v

λ
kl
iv∆t + o(∆t) (i = v)

Here, λkl
iv represents the transition rate from i to v

for the Markov process ψt conditioned on ξt = k ∈ Z
and ηt = l ∈ S.



3. DEFINITIONS

Under the assumption that the system (ϕ) satis-
fies the global Lipschitz condition, the solution xt

determines a family of unique continuous stochastic
processes, one for each choice of the random variable
x0. The joint process {xt, ξt, ηt, ψt} is a Markov
process.
For system (2), we have the following definitions:
Definition 1 (Local stochastic Stability): Sys-
tem (2) is said to be locally exponentially stable in
the mean square sense if for any initial conditions
(x0, ξ0, η0, ψ0) there exists two numbers a > 0 and
b > 0 and a subset D0 in R

n such that when
x0 ∈ D0, the following inequality holds ∀t ≥ t0 for
all solution of (2) with initial condition x0:

E
{
‖xt‖2

}
≤ b‖x0‖2

exp [−a(t− t0)] (3)

Definition 2 (Positive Invariance): A subset D0

in R
n is said to be positive invariant with respect to

(w.r.t) the system (2), if, for any initial condition
x0 ∈ D0, the trajectory x(x0, ξt, ηt, ψt, t) ∈ D0,
∀t ≥ 0, and ∀ξt ∈ Z, ηt ∈ S and ψt ∈ R.
We conclude this section by recalling the following
lemma which will be useful for the proof of our main
results in the next sections.
Lemma 1 (Reciprocal Projection Lemma) (Apkar-
ian et al. 2001): Let P be any given positive-definite
matrix. The following statements are equivalent:

1) Ψ + S + ST < 0;
2) the LMI problem

[
Ψ + P − (W +W

T
) S

T
+W

T

S +W −P

]
< 0

is feasible with respect to W .

4. MAIN RESULTS

In this section, we will derive sufficient conditions
for local exponential stability in the mean square
sense of the system (2). The design technique is
based on a differential inclusion of the bilinear term
for a restricted domain of the state space.

4.1 Local Stochastic Stability

The problematic addressed in this section can be
formulated as follows:
Problem 1: Find feedback gains K(ψt) ∈ R

m×n

and a region of stability (a set of initial conditions)
D0 such that the system (2) is locally exponentially
stabilized in the mean square sense by ut = K(ψt)xt

for any initial condition x0 belonging to D0. ♦

To solve problem 1, we have to determine a domain
D0 such that the closed loop system:

ϕcl :

{
ẋt =A(ξt)xt+N(xt, ξt, ηt)K(ψt)xt

yt = C2xt

N(xt, ξt, ηt) =B(ηt) +[N1(ξt, ηt)xt...Nm(ξt, ηt)xt]

(4)

is locally exponentially stable in the mean square
sense, ∀x0 ∈ D0. In order to determine both suitable

stabilizing gains K(ψt) and a domain of stability D0,
we can consider that the state is restricted to belong
to a certain compact domain in R

n, ∀ξt ∈ Z, ηt ∈ S
and ψt ∈ R, described by:

Ψ(x) =
{
x ∈ R

n
;Qx ≤ κ

}
(5)

where Q ∈ R
g×n, n ≤ g, rankQ = n, and κi > 0,

∀i = 1, ..., g. The positivity of vector κ means
that the origin belongs to the interior of Ψ(x).
Furthermore, we suppose that Ψ(x) is a compact
set and therefore it satisfies:

Ψ(x) ⊆

{
x ∈ R

n
, x =

q∑

j=1

µjXj ,

q∑

j=1

µj = 1, µj ≥ 0

}
(6)

∀ξt ∈ Z, ηt ∈ S and ψt ∈ R.
or equivalently:

Ψ(x) ⊆ Co
{
Xj , j = 1, ..., q

}
, ∀ξt ∈ Z, ηt ∈ S, ψt ∈ R (7)

Remark 1: In (7), the vectors Xj ∈ R
n are

the vertices allowing to describe the convex hull
containing the points of Ψ(x).
Hence a way to exhibit solutions to problem 1 is
to search both K(ψt) and D0 ⊆ Ψ(x). An implicit
problem is then to be able to maximize the size of
the domain of stability D0.

4.2 Differential Inclusion

The main idea to solve problem 1 is to express a
local equivalent representation of the bilinear term
of system (2) for xt ∈ Ψ(x). Indeed, from differential
inclusion results (Molchanov and Pyatniskii 1989),
providing that xt ∈ Ψ(x), we get:

[A(ξt) +N(xt, ξt, ηt)K(ψt)] ∈ Co
{
A1(ξt, ηt, ψt), ...,Aq(ξt, ηt, ψt)

}
(8)

∀ξt ∈ Z, ηt ∈ S, ψt ∈ R

where

Aj(ξt, ηt, ψt) = A(ξt) + (B(ηt)

+ [N1(ξt, ηt)Xj , ..., Nm(ξt, ηt)Xj ])K(ψt)

(9)

∀j = 1, ..., q

Thus, if xt ∈ Ψ(x), then ẋt can be determined from
the following polytopic model:

ẋt =

q∑

j=1

λj(t)Aj(ξt, ηt, ψt)xt (10)

∀ξt ∈ Z, ηt ∈ S, ψt ∈ R

with
q∑

j=1

λj(t) = 1, λj(t) ≥ 0.

The solution of problem 1 consists in determining
positive definite functions V1(xt), V2(xt, ξt, ηt, ψt, t),
gain matrices K(ψt) and a set D0 such that:

1) V1(xt) and V2(xt, ξt, ηt, ψt, t) satisfie the conditions to be a
Lyapunov, and a stochastic Lyapunov functions (see (Srichander
and Walker 1993) for the definition of a stochastic Lyapunov
function), respectively;

2) V̇1(xt) =
∂V1
∂x

ẋt ≤ 0, ∀ξt ∈ Z, ηt ∈ S, ψt ∈ R and ∀x0 ∈ D0;

3) β1‖xt‖2 ≤ V2(xt, ξ, η, ψ, t) ≤ β2‖xt‖2;

4) LV2(xt, ξt, ηt, ψt, t) ≤ −β3‖xt‖2, ∀ξt ∈ Z, ηt ∈ S, ψt ∈ R,
and ∀x0 ∈ D0, where β1, β2, β3 are real positive constants;



where L is the weak infinitesimal operator of the
joint Markov process {xt, ξt, ηt, ψt}.
In order to simplify conditions (2), we want to use
the description of the term N(xt, ξt, ηt) described in
section (4.1). These can be stated by the following
theorem.

Theorem 1: If there exist a Lyapunov
function V1(xt), a stochastic Lyapunov function
V2(xt, ξt, ηt, ψt, t), matrices K(ψt) and Q of
appropriate dimensions, vectors Xj , j = 1, ..., q, a
positive vector κ and a positive scalar γ satisfying

∂V1

∂x
[(A(ξt) + (B(ηt)

+ [N1(ξt, ηt)Xj , ..., Nm(ξt, ηt)Xj ])K(ψt))x] ≤ 0 (11)

Ψ(x) =
{
x ∈ R

n
;Qx ≤ κ

}
⊆ Co

{
Xj , j = 1, ..., q

}
(12)

β1‖xt‖2 ≤ V2(xt, ξ, η, ψ, t) ≤ β2‖xt‖2
(13)

LV2(xt, ξt, ηt, ψt, t) ≤ −β3‖xt‖2
(14)

D0 =
{
x ∈ R

n
;V1(xt) ≤ γ

−1
}

⊆ Ψ(x) (15)

∀ξt ∈ Z, ηt ∈ S, ψt ∈ R, where β1, β2, β3 are
real positive constants, then the gains K(ψt) and
the Lyapunov level set D0 are solutions of problem
1. �

Proof: The existence of matrix Q, vectors κ and
Xj satisfying relation (12) means that the vertices
Xj , j = 1, ..., q allows to describe the convex hull of
the polyhedral set Ψ(x). Condition (15) means that,
for each ξt ∈ Z, ηt ∈ S, ψt ∈ R, the set D0, defined
from the definite positive function V1(xt) and the
positive scalar γ, is included in the polyhedral set
Ψ(x). Then, for all xt ∈ D0, ∀t ≥ 0, there exist

λj(xt) ≥ 0, j = 1, ..., q, with
q∑

j=1

λj(xt) = 1, such

that ẋt can be computed by the polytopic model
(10).
The satisfaction of the condition (11) means, by
invoking convexity arguments, that:

q∑

j=1

λj(xt)
∂V1

∂x
[(A(ξt) + (B(ηt) + [N1(ξt, ηt)Xj , ..., Nm(ξt, ηt)Xj ])

K(ψt))x] = V̇1(xt) ≤ 0 (16)

∀ξt ∈ Z, ηt ∈ S, ψt ∈ R.
Hence, for each ξt ∈ Z, ηt ∈ S, ψt ∈ R, the
time-derivative of V1(xt) along the trajectories of
system (10) is negative or equal to zero along the
trajectories of system (10). Therefore, the condition
(11) guarantees the positive invariance of domain
D0 w.r.t system (10). Conditions (13) and (14)
ensure the stochastic exponential stability in the
mean square sense of the system (10) (Srichander
and Walker 1993).
Since model (10) allows to represent system (2)
only in Ψ(x), and by definition of V2(xt, ξt, ηt, ψt, t),
V1(xt), and then the domain D0, we can conclude
that the system (2) is locally exponentially stable in
the mean square sense ∀x0 ∈ D0. Hence, the proof
is complete. �

Theorem 1 proposes a sufficient condition to solve

the control design problem but such conditions ap-
pear not really constructive in order to exhibit suit-
able functions V1(xt), V2(xt, ξt, ηt, ψt, t), matrices
K(ψt) and Q, vectors Xj and κ. In order to develop
available conditions numerically tractable, a first
step consists in choosing:

1) quadratic functions:

V2(xt, ξt, ηt, ψt, t) = x
T
t P(ξt, ηt, ψt)xt (17)

V1(xt) = x
T
t Sxt (18)

where P (ξt, ηt, ψt) = P (ξt, ηt, ψt)
T > 0 and S = ST > 0.

2) a matrix Q defining Ψ(x) as Q =

[
In
−In

]
∈ R

2n×n.

Lemma 2: (Mahout et al. 2002) The set Ψ(x)

defined by Q =
[
In
−In

]
∈ R

2n×n is such that:

• it admits 2n vertices;
• these vertices are built from the ordered combinations formed

from the components of the vector κ. We define this by:

Xj = comb(κ(i), i = 1, ..., 2n)

Using such quadratic Lyapunov candidate functions
V1(xt), V2(xt, ξt, ηt, ψt, t) and such a matrix Q, the
following proposition derived from theorem 1 can be
first considered.
Proposition 1: If there exists matrices Wijk =
WT

ijk > 0, S = ST > 0, Kk, vectors Xl, l =
1, ..., 2n, and κ, and a positive scalar γ satisfying

A
T
i S + SAi + KT

k NT
ijlS + SNijlKk ≤ 0 (19)

l = 1, ..., 2
n

[
WijkÃ

T
ijk + ÃijkWijk + WijkKT

k NT
ijl + NijlKkWijk Rijk(Wijk)

⋆ Sijk(Wijk)

]
< 0

(20)
l = 1, ..., 2

n

[
κdS QT

d
Qd γκd

]
≥ 0 (21)

d = 1, ..., 2n

Xl = comb(κd, d = 1, ..., 2n) l = 1, ..., 2
n

(22)

∀i ∈ Z, j ∈ S and k ∈ R, where




Rijk(Wijk) =
[
R1ijk(Wijk),R2ijk(Wijk),R3ijk(Wijk)

]

R1ijk(Wijk) =
[
αi1Wijk, ...αi(i−1)Wijk, αi(i+1)Wijk, ..., αizWijk

]

R2ijk(Wijk) =
[
βj1Wijk, ...βj(j−1)Wijk, βj(j+1)Wijk, ..., βjsWijk

]

R3ijk(Wijk) =
[
γk1Wijk, ...γk(k−1)Wijk, γk(k+1)Wijk, ..., γkrWijk

]

αil =
√
πil; βjl =

√
νjl; γkl =

√
λ

ij

kl

Sijk(Wijk) = −diag
[
S1ijk(Wijk),S2ijk(Wijk),S3ijk(Wijk)

]

S1ijk(Wijk) =
[
W1jk, ...,W(i−1)jk,W(i+1)jk, ...,Wzjk

]

S2ijk(Wijk) =
[
Wi1k, ...,Wi(j−1)k,Wi(j+1)k, ...,Wisk

]

S3ijk(Wijk) =
[
Wij1, ...,Wij(k−1),Wij(k+1), ...,Wijr

]

Ãijk = Ai − 0.5I(

∑

h∈Z

h6=i

πih +

∑

l∈S

l 6=j

νjl +

∑

v∈R

v 6=k

λ
ij

kv
)

Nijl = Bj +
[
N1ijXl, ..., NmijXl

]
Wijk = P−1

ijk
.

then the gain matrices Kk and the ellipsoidal Lya-
punov level set D0 solve the problem 1, where

D0 =
{
x ∈ R

n
; x

T Sx ≤ γ
−1

}
(23)

∀i ∈ Z, j ∈ S and k ∈ R. �

Proof: The proof follows from that of theorem 1 by



considering V1(xt) = xT
t Sxt and V2(xt, i, j, k, t) =

xTW−1

ijkx with Wijk = WT
ijk > 0 and S = ST > 0.�

The second step in the computation of numerically
tractable solutions, uses proposition 1 and the re-
ciprocal projection lemma to give more suitable
sufficient conditions for the local stochastic stability
of system (10). Such conditions are given by the
following proposition:
Proposition 2: If there exist matrices Xijk =
X T

ijk > 0, X = X T > 0, Kk, Ωijk, Σijk, vectors Xl,
l = 1, ..., 2n and κ, and a positive scalar γ satisfying
[
µijkI − Ωijk − Ω

T
ijk (µijkXijk − Ωijk) Θijk Rijk(Xijk)

⋆ −µijkI 0 0

⋆ ⋆ −µijkI 0

⋆ ⋆ ⋆ Sijk(Xijk)

]
< 0

(24)
l = 1, ..., 2

n

[
ρijkI − Σijk − Σ

T
ijk (ρijkX − Σijk) Ξijk

⋆ −ρijkI 0

⋆ ⋆ −ρijkI

]
≤ 0 (25)

l = 1, ..., 2
n

[
κdX XQT

d
⋆ γκd

]
≥ 0 (26)

d = 1, ..., 2n

Xl = comb(κd, d = 1, ..., 2n), l = 1, ..., 2
n

(27)

∀i ∈ Z, j ∈ S and k ∈ R, where
{

Θijk = Ãijk + NijlKk + Ωijk

Ξijk = Ai + NijlKk + Σijk

µijk and ρijk are arbitrary positive scalars. These
free scalar parameters are introduced to reduce the
conservatism of the sufficient condition for exponen-
tial stochastic stability. Then the gain matrices Kk

and the ellipsoidal Lyapunov level set D0 solve the
problem 1, where

D0 =
{
x ∈ R

n
; x

T X−1
x ≤ γ

−1
}

(28)

∀i ∈ Z, j ∈ S and k ∈ R. �

Proof: The matrix inequality (18) (in proposition
1) can be written as follows:

Ã
T
ijkPijk +PijkÃijk +KT

k NT
ijlPijk +PijkNijlKk +∆ijk < 0 (29)

where

∆ijk =

∑

h∈Z

h6=i

πihPhjk +

∑

l∈S

l 6=j

νjlPilk +

∑

v∈R

v 6=k

λ
ij

kv
Pijv

The use of the reciprocal projection lemma with
Ψ = (

∑
h∈Z

h6=i

πihPhjk +
∑
l∈S

l 6=j

νjlPilk +
∑

v∈R

v 6=k

λij
kvPijv), and

S = ÃT
ijkPijk + KT

k N
T
ijlPijk yields

[
∆ijk + Zijk − (Ωijk + Ω

T
ijk) PijkÃijk + PijkNijlKk + Ωijk

⋆ −Zijk

]
< 0

(30)

where Zijk is any given positive-definite matrix,
∀i ∈ Z, j ∈ S and k ∈ R.
Let us define Xijk = P−1

ijk and Ωijk = XijkΩijk, then
by the congruence transformation

[
Xijk 0

0 I

]

and with a Schur complement operation with re-
spect to the term

Xijk∆ijkXijk

the inequality (38) in turn becomes
[

XijkZijkXijk − ΩijkXijk − XijkΩ
T
ijk Θijk Rijk(Xijk)

⋆ −Zijk 0

⋆ ⋆ −Sijk(Xijk)

]
< 0

(31)

Since, according to lemma 1, Zijk can be any
positive-definite matrix, we let Zijk = µijkI ∀i ∈ Z,
j ∈ S and k ∈ R. Then, using the Schur complement
operation with respect to the term

XijkZijkXijk − Ω
T
ijkXijk − XijkΩijk

the inequality (39) can be further be written as
[

−µ−1
ijk

ΩijkΩ
T
ijk (µijkXijk − Ωijk) Θijk Rijk(Xijk)

⋆ −µijkI 0 0

⋆ ⋆ −µijkI 0

⋆ ⋆ ⋆ −Sijk(Xijk)

]
< 0

(32)

then, using the relation −µ−1

ijkΩijkΩ
T

ijk ≤ −Ωijk −

Ωijk + µijkI yields the matrix inequality (32).
Hence the feasibility of this last inequality, with
respect to Ωijk, Xijk, Kk and Xl is a sufficient
condition to the feasibility problem of the matrix
inequalitie (20), with respect to Wijk, Kk and Xl.
Using same arguments as above, we can prove that
the feasibility of matrix inequalities (33) and (34),
with respect to Σijk, Kk, X , Xl, κ and γ, implied
the feasibility of matrix inequalities (19) and (21),
respectively, with respect to the decision variables
S, Kk, Xl, κ and γ. Hence, the proof is complete.�

Computational issues: It is important to note
that the decision variables to be found by applying
proposition 2 are Ωijk, Σijk, Xijk = X T

ijk > 0,

X = X T > 0, Kk, Xl, l = 1, ..., 2n, κ, and γ.
However, due to the presence of some terms in-
volving products between some of these variables,
inequalities (32)-(35) are nonlinear. This fact means
that to solve constraints (32)-(35) as a feasibility
problem is very hard or even impossible directly. A
way to overcome this limitation consists in fixing,
a priori, the value of some decision variables while
searching the others. Moreover, since the implicit
objective consists in enlarging the domain of stabil-
ity D0, some convex optimization problem with LMI
constraints can be considered. This is illustrated by
the following algorithm:
Algorithm 1:

• Step 0. Initialization: fix κd, d = 1, ..., 2n and compute Xl, l =
1, ..., 2n from (22).

• Step 1.
- (Feasibility problem) Let γ = 1. Compute Xijk =

XT
ijk

, X = XT , Kk, Ωijk and Σijk, ∀i ∈ Z, j ∈ S and

k ∈ R, solutions to the LMIs:

(32), (33), (34)

- (Maximization of the volume of the domain of

stability D0) Fix X and compute γ solution to:

min
γ

γ

s.t (34)

• Step 2. (Maximization of the size of the compact domain

Ψ(x)) Fix Xijk, X , Ωijk, Σijk and γ and compute κd, d =

1, ..., 2n (and therefore Xl, l = 1, ..., 2n) solutions to:

min

{
−

2n∑

l=1

εl

}



s.t (32), (33), (34), (35)[
εl X

T
l

Xl In

]
≥ 0, l = 1, ..., 2

n
(33)

• Step 3. Go to step 1 until no significant change in the volume
of the initial condition set D0 has occurs.

5. NUMERICAL EXAMPLE

To illustrate the theoretical results presented above,
let us consider a system with one possible fault in
the plant components, i.e. S = {1, 2}. The failure
process is assumed to have Markovian transition
characteristics. The FDI process is also Markovian
with two states R = {1, 2}. The following numerical
values are used

A =




A1 =

[
−1 1

0 0.5

]
Healthy

A2 =

[
−0.5 1

0 1

]
Faulty

;N1 =




N11 =

[
0.5 0.25

0 0.15

]

N12 =

[
0.15 1

0 0.2

]

N2 =




N21 =

[
0.2 0.5

0 0.4

]
Healthy

N22 =

[
0.15 0

0 0.3

]
Faulty

;B =

[
1 1

−0.25 4

]

[πij ] =

[
−0.5 0.5
0.1 −0.1

]
;λ

1
ij =

[
−0.3 0.3
1.2 −1.2

]
;λ

2
ij =

[
−1.2 1.2
0.4 −0.4

]
.

Then, applying the algorithm 1, the LMI solutions
yield the following parameters:

K1 =

[
−0.0192 0.1319
−0.0969 −0.6272

]
;K2 =

[
−0.0188 0.1328
−0.0983 −0.6292

]
;

κ =

[
9.1926
3.9382
3.9811
3.3312

]
; γ = 0.1115.

Thus, we can guarantee that for any initial con-
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Figure 1. Domain of local exponential stochastic
stability

ditions taken in D0(x), defined from X and γ (see
Figure 1), the system (10) is locally exponentially
stable in the mean square sense.

6. CONCLUSION

In this paper, we have considered the problematic
of local exponential stochastic stabilization of con-
tinuous time BAFTCSMP. The design technique
was based on a differential inclusion of the bilinear
term for a restricted domain of the state space. The
above problematic was addressed under a convex
programming approach. Indeed, condition for local
stochastic stability of the BAFTCSMP were derived

and formulated through some matrix inequalities.
The implicit problem being to maximize the region
in which the closed-loop stability can be ensured,
some convex optimization problems with LMI re-
laxations schemes were also stated. A numerical
exemple was also included to illustrate and validate
our theoretical results.
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