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Junction of a periodic family of elastic rods with a 3d

plate. Part I.

Dominique Blanchard∗, Antonio Gaudiello† and Georges Griso ‡

Abstract

We consider a set of elastic rods periodically distributed over a 3d elastic plate
(both of them with axis x3) and we investigate the limit behavior of this problem as
the periodicity ε and the radius r of the rods tend to zero (see fig.1 below). We use
a decomposition of the displacement field in the rods of the form u = U + u where
the principal part U is a field which is piecewise constant with respect to the variables
(x1, x2) (and then naturally extended on a fixed domain), while the perturbation u

remains defined on the oscillating domain containing the rods. We derive estimates of
U and u in term of the total elastic energy. This allows to obtain a priori estimates
on u without solving the delicate question of the dependence, with respect to ε and r,
of the constant in Korn’s inequality in such an oscillating domain. To deal with the
field u, we use a version of an unfolding operator which permits both to rescale all the
rods and to work on the same fixed domain as for U to carry out the homogenization
process. The above decomposition also helps in passing to the limit and to identify the
limit junction conditions between the rods and the 3d plate.

Résumé

Nous considérons un ensemble de poutres élastiques périodiquement distribuées sur
une plaque élastique 3d (toutes d’axe x3) et nous analysons le comportement limite de
ce problème lorsque la périodicité ε et le rayon r des poutres tendent vers zéro. Nous
introduisons une décomposition du champ de déplacement de la forme u = U +u dans
laquelle la partie principale U est un champ constant par morceau par rapport aux
variables (x1, x2) (et qui s’ étend donc naturellement sur un domaine fixe), alors que la
perturbation u reste un champ défini sur le domaine oscillant qui représente les poutres.
Nous donnons des estimations de U et u en fonction de l’énergie élastique totale. Ceci
permet d’obtenir des estimations a priori de u sans chercher à évaluer la dépendance,
par rapport à ε et r, de la constante de l’inégalité de Korn pour un tel domaine
oscillant. Pour traiter le champ u, nous utilisons une version d’opérateur d’ éclatement
qui permet simultanément de redimensionner toutes les poutres et de travailler sur le
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même domaine fixe que pour U afin d’analyser le problème d’homogénéisation. La
décomposition ci-dessus facilite aussi le passage à la limite et l’obtention les conditions
de jonction limites entre les poutres et la plaque 3d.

Keywords: linear elasticity, rods, rough boundary.
2000 AMS subject classifications: 74B05, 74K10, 35B27.

1 Introduction

This paper is devoted to describe the asymptotic behavior of an elastic multistructure com-
posed of a set of periodic elastic rods in junction with a 3d plate (see Figure 1). The diameter
of each rod tends to zero as the periodicity vanishes, while the height of the rods remains
constant. The lateral boundary of the plate is assumed to be clamped. The mechanical
model under investigation is the isotropic linearized elasticity system (see e.g. [6]). In this
first paper, we consider a plate of constant thickness. The case of the vanishing thickness
for the plate is investigated in the second paper [3].

We,r
We,r

W

Figure 1: Elastic multistructure with highly oscillating boundary

Since the periodicity and the diameters of the rods tend to zero, while the height of
the rods remains constant, this problem pertains to the field of elliptic problems posed on
a domain which has a so called: ”highly oscillating boundary”. Boundary-value problems
involving rough boundaries or interfaces appear in many fields of physics and engineering sci-
ences, such as the scattering of acoustic waves on small periodic obstacles, the free vibrations
of elastic bodies, the behavior of fluids over rough walls, or of coupled fluid-solid periodic
structures. There is a long list of paper concerning domains with highly oscillating boundary
(for scalar problems, see e.g. [1], [2], [4], [10], [12], [13] and [22]). Precisely, in [4] the limit
problem for the Laplace equation with the homogeneous Neumann boundary condition and
with a L2-right-hand side is derived. For the same problem, a nonoscillating approximation
of the solution at order O

(
ε1−δ

)
in the H1-norm is obtained in [22], under an additional as-

sumption on the right-hand side. In the case of the Laplace equation with Dirichlet boundary
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conditions, a nonoscillating approximation of the solution at order O
(
ε

3

2

)
in the H1-norm

is constructed in [1]. The Laplace equation with a non-homogeneous Neumann boundary
condition is studied in [13]. The limit energy of the p-laplacian is obtained in [10], while a
corresponding monotone problem is considered in [2]. The optimal control for a parabolic
problem is studied in [12]. For the asymptotic behaviour of transmission problems, we refer
to [14] and [18]. For general references about domains with singular perturbations and mul-
tidomain, we refer to [9], [19], [20], [21], [25]. For mathematical modelling of rods we refer
to [23], [24] and [27]. For a presentation of the homogenization theory we refer to [26].

Even if our model is linear isotropic elasticity, the vectorial character of the unknown (the
3d displacement) precludes from reproducing the analysis used for the above scalar problems
to take into account the fast oscillations of the rods. Indeed, the first difference concerns the
derivation of a priori estimates on the displacement (or the stress) field: the dependance of
the constant in Korn’s inequality with respect to the period ε of the rods and their diameter
r is not relevant. In some sense this is due to very different behavior of the displacements in
the rods and in the plate. To overcome this first difficulty we use a decomposition of the 3d
displacement in the rods introduced in [16] and [17], which involves the mean displacement
and the main rotation of each cross section of each rod (see Section 3). The main property
of this decomposition relies on a priori estimates of its terms with bounds depending on ε,
r and the total elastic energy. Loosely speaking, this leads to estimates of the type:

‖uε,r
i ‖2

L2(Ω+
ε,r) ≤ ci(ε, r)EΩε,r

(uε,r), i = 1, 2, 3,

where uε,r is the displacement in the set of rods Ω+
ε,r, ci(ε, r) is a constant which depends on

ε, r and on the component of the displacement, and EΩε,r
(uε,r) is the total elastic energy in

the rods Ω+
ε,r and in the plate Ω−: that is Ωε,r = Ω+

ε,r ∪ Ω−. This process allows to precise
the scaling of the applied forces and to obtain more precise estimates on the displacement
(or on its decomposition) than by using Korn’s inequality. The second difficulty arises when
passing to limit as ε and r tend to 0; indeed the solution is defined on a domain Ωε,r which
depends on ε and r. In the scalar case, it is sufficient to extend the solution by 0 outside Ω+

ε,r

and to remark that the derivative in the direction of the axis of the rods (say x3) commutes
with this extension process. It is well known that this simple argument does not work in
elasticity in order to describe the bending in the rods (the only deformation which commutes
with the 0-extension is ∂x3

u3). Actually, the decomposition we use for the displacement also
helps passing to the limit: it provides an approximation of the 3d displacement in the rods
which is defined on a fixed domain (the domain asymptotically filled by the rods). Indeed,
the mean displacement and the mean rotation of each rod lead to functions of x3 which are
piecewise constant with respect to (x1, x2). To deal with the rest of the decomposition, i.e.
the part which remains a field of (x1, x2, x3), we use first the a priori estimates (in terms of
the elastic energy) mentioned above and then a tool developed in [8], referred as the unfolding
operator technique, which also allows to work on a fixed domain (but with more variables).
A similar technique has been used in [5] for reticulated elastic structure. Let us emphasize
that with such an approach we not only identify the limit problem as a ”continuum” model
of 1d rods coupled with 3d elasticity in the plate; but we also show that the relevant physical
quantities (the mean of the 3d displacement in the cross-section of each rod) converge (in
adapted norms) to the solution of the limit problem. References and other applications of
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the unfolding operator technique can be found in [7], [11] and [15].

The paper is organizes as follows. In Section 2 we describe the geometry and the model
under consideration and specify the assumptions on the applied forces. Section 3 is devoted
to introduce the decomposition of the displacement field uε in the rods. In Section 4, we
derive the a priori estimates on each rods. In Section 5 we introduce the unfolding operator
and derive the estimates on the unfold fields. We also obtain the junction conditions between
the limit model for the rods and the plate. We first pass to the limit in Section 6 in the case
where the radius of the rods r is of order ε. In Section 7 we examine the case r = o(ε). At
least in Section 8 we prove convergence of the energies and deduce a few strong convergence
results of the fields. Section 9 is devoted to summarize the results.

2 Position of the problem

We investigate the behavior of an elastic 3d body Ωε,r composed of two parts: a forest of
rods Ω+

ε,r and a 3d plate Ω−.
To describe the geometry of Ω+

ε,r, let us consider an open bounded domain ω with Lipschitz
boundary contained in the (x1, x2)-coordinate plane. For a real number ε > 0, Nε denotes
the following subset of Z

2:

Nε =
{

(p, q) ∈ Z
2 :

]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
⊂ ω

}
. (2.1)

Fix L > 0. For each (p, q) ∈ Z
2, ε > 0 and r > 0, we consider a rod Pε,r

pq whose cross section
is the disk of center (εp, εq) and radius r, and whose axis is x3 and which has a height equal
to L:

Dε,r
pq =

{
(x1, x2) ∈ R

2 : (x1 − εp)2 + (x2 − εq)2 < r2
}

, (2.2)

Pε,r
pq =

{
(x1, x2, x3) ∈ R

3 : (x1, x2) ∈ Dε,r
pq , 0 < x3 < L

}
. (2.3)

Then, for r ∈
]
0,

ε

2

[
, we denote by Ω+

ε,r the set of all the rods defined as above:

Ω+
ε,r =

⋃

(p,q)∈Nε

Pε,r
pq . (2.4)

The lower cross sections of all the rods is denoted by ωε,r:

ωε,r =
⋃

(p,q)∈Nε

Dε,r
pq × {0} ⊂ ω. (2.5)

We have assumed that r ≤
ε

2
, in order to avoid the contact between two different rods.

The 3d plate is defined by

Ω− =
{
(x1, x2, x3) ∈ R

3 : (x1, x2) ∈ ω, −l < x3 < 0
}

, (2.6)

where l is a positive fixed real number.
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The elastic body Ωε,r is defined by

Ωε,r = Ω+
ε,r ∪ ωε,r ∪ Ω−. (2.7)

The domain asymptotically filled by the oscillating part Ω+
ε,r of Ωε,r (as ε tends to zero)

is denoted by Ω+:
Ω+ = ω×]0, L[. (2.8)

Moreover, Ω is defined by
Ω = ω×] − l, L[. (2.9)

We consider the standard linear isotropic equations of elasticity in Ωε,r.
The displacement field in Ωε,r is denoted by

uε,r : Ωε,r → R
3.

The linearized deformation field in Ωε,r is defined by

γ(uε,r) =
1

2

(
Duε,r + (Duε,r)T

)
, (2.10)

or equivalently by its components:

γij(u
ε,r) =

1

2

(
∂iu

ε,r
j + ∂ju

ε,r
i

)
, i, j = 1, 2, 3. (2.11)

The Cauchy stress tensor in Ωε,r is linked to γ(uε,r) through the standard Hooke’s law:

σε,r = λ (Tr γ(uε,r)) I + 2µγ(uε,r), (2.12)

where λ and µ denotes the Lamé coefficients of the elastic material, and I is the identity
3 × 3 matrix. Indeed (2.12) writes as

σ
ε,r
ij = λ

(
3∑

k=1

γkk(u
ε,r)

)
δij + 2µγij(u

ε,r), i, j = 1, 2, 3, (2.13)

where δij = 0 if i 6= j and δij = 1 if i = j.
The equation of equilibrium in Ωε,r writes as

−
3∑

j=1

∂jσ
ε,r
ij = f

ε,r
i in Ωε,r, i = 1, 2, 3, (2.14)

where f ε,r : Ωε,r → R
3 denotes the volume applied force.

In order to specify the boundary conditions on ∂Ωε,r, we will assume that:

• the 3d plate is clamped on its lateral boundary ∂ω×] − l, 0[= Γlat:

uε,r = 0 on Γlat, (2.15)

5



• the boundary ∂Ωε,r \ Γlat is free:

σε,rν = 0 on ∂Ωε,r \ Γlat, (2.16)

where ν denotes the exterior unit normal to Ωε,r.

Remark 2.1. Assumption (2.16) means that the density of applied surface forces on the
boundary ∂Ωε,r \Γlat is zero. This assumption is not necessary to carry on the analysis, but
it is a bit natural as far as the fast oscillating boundary ∂Ω+

ε,r is concerned.

The variational formulation of (2.14)÷(2.16) is very standard. If Vε,r denotes the space:

Vε,r =
{

v ∈
(
H1(Ωε,r)

)3
: v = 0 on Γlat

}
, (2.17)

it results that




uε,r ∈ Vε,r,

∫

Ωε,r

3∑

i,j=1

σ
ε,r
ij γij(v)dx =

∫

Ωε,r

3∑

i=1

f
ε,r
i vidx, ∀v ∈ Vε,r.

(2.18)

As far as the assumption on the applied forces is concerned, we assume that throughout
the paper

f ε,r
α = rfα in Ω+

ε,r, for α = 1, 2, (2.19)

f
ε,r
3 = f3 in Ω+

ε,r, (2.20)

f
ε,r
i = fi in Ω−, for i = 1, 2, 3, (2.21)

where f ∈ (L2(Ω))
3

is given.

3 Decomposition of the displacement in Ω+
ε,r and esti-

mates in Ω−

As usual, to obtain a priori estimates on uε,r, then on γ(uε,r) and σε,r, we plug the test
function uε,r in (2.18) to obtain

∫

Ωε,r

3∑

i,j=1

σ
ε,r
ij γij(u

ε,r)dx =

∫

Ωε,r

3∑

i=1

f
ε,r
i u

ε,r
i dx. (3.1)

The main difficulty in deriving a priori estimates from (3.1) is the dependance upon r and ε in
the Korn’s inequality in Ωε,r. Indeed, this is due to the fast oscillating part Ω+

ε,r (in Ω− Korn’s
inequality is standard and the boundary condition (2.15) permits to control ‖uε,r

i ‖L2(Ω−)).
Moreover, for a multi-structure like Ωε,r, it is not very convenient to estimate the constant
in a Korn’s type inequality because the order of each component of the displacement field
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(say in L2-norm, with respect to ε and r) may be very different. To overcome this difficulty,
in the sequel we will use a decomposition of the field uε,r in each rod Pε,r

pq , which, in some
sense, takes advantage of the geometry of a rod (see [17]).

Fix ε, r, and (p, q) in Nε and let us drop the index ε, r and (p, q) in Dε,r
pq and Pε,r

pq (then
for a while, D and P denote Dε,r

pq and Pε,r
pq ).

For any displacement v ∈ (H1(O))3 of a open smooth domain O, the elastic energy is
denoted by

EO(v) =

∫

O


λ

(
3∑

k=1

γkk(v)

)2

+ 2µ
3∑

i,j=1

(γij(v))2


 dx. (3.2)

In order to obtain a useful decomposition of v, we introduce the following notations:

U(x3) =
1

πr2

∫

D

v(x1, x2, x3)dx1dx2, (3.3)

R1(x3) =
1

I2r4

∫

D

(x2 − εq)v3(x1, x2, x3)dx1dx2, (3.4)

R2(x3) = −
1

I1r4

∫

D

(x1 − εp)v3(x1, x2, x3)dx1dx2, (3.5)

R3(x3) =
1

(I1 + I2)r4

∫

D

(x1 − εp)v2(x1, x2, x3) − (x2 − εq)v1(x1, x2, x3)dx1dx2, (3.6)

where I1 =
1

r4

∫

D

(x1 − εp)2dx1dx2 =
π

4
=

1

r4

∫

D

(x2 − εq)2dx1dx2 = I2.

Let us denote by R the vectorial field (R1,R2,R3) and set

v(x1, x2, x3) = v(x1, x2, x3) − U(x3) −R(x3) ∧ ((x1 − εp)e1 + (x2 − εq)e2). (3.7)

where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).
Indeed, due to the definition of R and to the symmetry of D, one has that

∫

D

vi(x1, x2, x3)dx1dx2 = 0, for i = 1, 2, 3, (3.8)

∫

D

(x1 − εp)v3(x1, x2, x3)dx1dx2 =

∫

D

(x2 − εq)v3(x1, x2, x3)dx1dx2 = 0, (3.9)

∫

D

(x1 − εp)v2(x1, x2, x3) − (x2 − εq)v1(x1, x2, x3)dx1dx2 = 0, (3.10)

for almost any x3 in ]0, L[.
The following lemma is proved in [16].

Lemma 3.1. For L > r, there exists a constant c (which does not depend on L and r) such
that for any v ∈ (H1(P))3:

∥∥∥∥
dU

dx3

−R ∧ e3

∥∥∥∥
2

(L2]0,L[)3
≤

c

r2
EP(v), (3.11)
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∥∥∥∥
dR

dx3

∥∥∥∥
2

(L2]0,L[)3
≤

c

r4
EP(v), (3.12)

‖v‖2
(L2(P))3 ≤ cr2EP(v), (3.13)

‖Dv‖2
(L2(P))9 ≤ cEP(v), (3.14)

where U = (U1,U2,U3), R = (R1,R2,R3) and v are defined in (3.3)÷(3.7).

To end this section, we recall that, since uε,r = 0 on ∂ω×]− l, 0[, Korn’s inequality yields:

‖uε,r‖2
(L2(Ω−))3 + ‖Duε,r‖2

(L2(Ω−))9 ≤ cEΩ−(uε,r) = c

∫

Ω−

3∑

i,j=1

σ
ε,r
ij γij(u

ε,r)dx, (3.15)

where c is a constant independent of ε and r.

4 A priori estimates

Let us consider the displacement uε,r ∈ (H1(Ωε,r))
3

solution of (2.14)÷(2.16). Indeed, uε,r ∈(
H1(Pε,r

pq )
)3

, for any (p, q) ∈ N ε. Then, the previous section permits to define, for any
(p, q) ∈ N ε, the fields U ε,r

pq , Rε,r
pq and uε,r

pq , through the formulae (3.3)÷(3.7), with uε,r in

place of v. Recall that for any (p, q) ∈ N ε, U ε,r
pq ∈ (H1(]0, L[))

3
, Rε,r

pq ∈ (H1(]0, L[))
3
, and

uε,r
pq ∈

(
H1(Pε,r

pq )
)3

.
In order to shorten the notation, we set:

ω̃ε =
⋃

(p,q)∈N ε

(]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[)
⊂ ω. (4.1)

Now we define the field U ε,r and Rε,r almost everywhere in Ω+ by

U ε,r(x1, x2, x3) = U ε,r
pq (x3), if (x1, x2) ∈

]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, (4.2)

Rε,r(x1, x2, x3) = Rε,r
pq (x3), if (x1, x2) ∈

]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, (4.3)

U ε,r(x1, x2, x3) = Rε,r(x1, x2, x3) = 0, if (x1, x2) ∈ ω \ ω̃ε, (4.4)

which means that U ε,r(·, ·, x3) and Rε,r(·, ·, x3) are constants on each cell
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
.

Indeed, we have that U ε,r, Rε,r ∈ (L2(Ω+))
3
, and for i = 1, 2, 3

‖U ε,r
i ‖2

L2(Ω+) = ε2
∑

(p,q)∈N ε

∫ L

0

∣∣∣
(
U ε,r

pq

)
i
(x3)

∣∣∣
2

dx3 = ε2
∑

(p,q)∈N ε

‖
(
U ε,r

pq

)
i
‖2

L2(]0,L[), (4.5)

‖Rε,r
i ‖2

L2(Ω+) = ε2
∑

(p,q)∈N ε

∫ L

0

∣∣∣
(
Rε,r

pq

)
i
(x3)

∣∣∣
2

dx3 = ε2
∑

(p,q)∈N ε

‖
(
Rε,r

pq

)
i
‖2

L2(]0,L[). (4.6)
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Moreover, since

∂U ε,r

∂x3

(x1, x2, x3) =
dU ε,r

pq

dx3

(x3), if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, (4.7)

and

∂Rε,r

∂x3

(x1, x2, x3) =
dRε,r

pq

dx3

(x3), if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, (4.8)

it follows that
U ε,r,Rε,r ∈

(
L2

(
ω,H1(]0, L[)

))3
, (4.9)

(recall that U ε,r
pq ,Rε,r

pq ∈ (H1(]0, L[))
3
, for any (p, q) ∈ N ε) and for i = 1, 2, 3

∥∥∥∥
∂U ε,r

i

∂x3

∥∥∥∥
2

L2(Ω+)

= ε2
∑

(p,q)∈N ε

∫ L

0

∣∣∣∣
(

dU ε,r
pq

dx3

)

i

∣∣∣∣
2

dx3 = ε2
∑

(p,q)∈N ε

∥∥∥∥
(

dU ε,r
pq

dx3

)

i

∥∥∥∥
2

L2(]0,L[)

, (4.10)

∥∥∥∥
∂Rε,r

i

∂x3

∥∥∥∥
2

L2(Ω+)

= ε2
∑

(p,q)∈N ε

∫ L

0

∣∣∣∣
(

dRε,r
pq

dx3

)

i

∣∣∣∣
2

dx3 = ε2
∑

(p,q)∈N ε

∥∥∥∥
(

dRε,r
pq

dx3

)

i

∥∥∥∥
2

L2(]0,L[)

. (4.11)

As far as the set of functions uε,r
pq are concerned, we define the function uε,r a.e. in Ω+

ε,r

by
uε,r = uε,r

pq , if (x1, x2, x3) ∈ Pε,r
pq . (4.12)

In order to obtain estimates on the quantities U ε,r, Rε,r, uε,r and uε,r in various norm,
the strategy is the following. At first, we derive a few estimates on the fields U ε,r, Rε,r, uε,r

and uε,r respectively in terms of the total elastic energy:

EΩε,r
(uε,r) =

∫

Ωε,r

3∑

i,j=1

σ
ε,r
ij γij(u

ε,r)dx.

Then, we use (3.1) and assumptions (2.19), (2.20), (2.21) on the forces (f ε,r
i ) to obtain an

uniform estimates on EΩε,r
(uε,r), from which we deduce uniform bounds on U ε,r, Rε,r, uε,r

and uε,r.
In the sequel of this Section, c denotes any positive constant independent of ε and r.

4.1 Uniform bound on U ε,r and Rε,r in terms of EΩε,r
(uε,r)

The estimates on U ε,r and Rε,r are obtained in two steps. In the first step, estimates on
U ε,r(·, ·, 0) and Rε,r(·, ·, 0) are derived in term of EΩ−(uε,r), by using the definitions (3.3)÷(3.6)
and estimate (3.15). Then, in step 2, we use (4.7) and (4.8) and estimates (3.11), (3.14) in
each road Pε,r

pq .

Step 1. Estimates on U ε,r(·, ·, 0) and Rε,r(·, ·, 0).
We begin with Rε,r(·, ·, 0) and we only detail the technique for Rε,r

1 .
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First recall that for any (p, q) ∈ N ε, we have that

(
Rε,r

pq

)
1
(0) =

1

I2r4

∫

Dε,r
pq

(x2 − εq)uε,r
3 (x1, x2, 0)dx1dx2. (4.13)

Now u
ε,r
3 (x1, x2, 0) is indeed also the trace on Dε,r

pq of the displacement u
ε,r
3 in Ω−. Then, by

using estimate (3.15), we have

‖uε,r
3 (x1, x2, 0)‖2

L2(ω) ≤ cEΩ−(uε,r).

Consequently, by using the Cauchy-Schwarz’s inequality in (4.13) and by summing up all
the obtained inequalities over (p, q) ∈ N ε, we get

∑

(p,q)∈N ε

∣∣∣
(
Rε,r

pq

)
1
(0)

∣∣∣
2

≤
c

r4
EΩ−(uε,r). (4.14)

Actually we derive a sharper estimate using Poincaré-Wirtinger inequality’s and the term
(x2 − εq) in definition (4.13) (this will be useful to obtain the junction condition on ω in the
limit problem).

For any (p, q) ∈ N ε, we extend
(
Rε,r

pq

)
1

for almost x3 ∈] − l, 0[ by

(
Rε,r

pq

)
1
(x3) =

1

I2r4

∫

Dε,r
pq

(x2 − εq)uε,r
3 (x1, x2, x3)dx1dx2. (4.15)

Indeed
(
Rε,r

pq

)
1
∈ H1(] − l, 0[), and

d
(
Rε,r

pq

)
1

dx3

(x3) =
1

I2r4

∫

Dε,r
pq

(x2 − εq)
∂u

ε,r
3

∂x3

(x1, x2, x3)dx1dx2. (4.16)

If we denote by MDε,r
pq

(uε,r
3 )(x3) the mean of u

ε,r
3 over Dε,r

pq , that is

MDε,r
pq

(uε,r
3 )(x3) =

1

|Dε,r
pq |

∫

Dε,r
pq

u
ε,r
3 (x1, x2, x3)dx1dx2,

we first have that

(
Rε,r

pq

)
1
(x3) =

1

I2r4
ε

∫

Dε,r
pq

(x2 − εq)
[
u

ε,r
3 (x1, x2, x3) −MDε,r

pq
(uε,r

3 )(x3)
]
dx1dx2, (4.17)

(and here the term (x2 − εq) plays the important role in the estimate) and secondly, because
of Poincaré-Wirtinger inequality’s on Dε,r

pq (which has radius equal to r), we have that

∥∥u
ε,r
3 −MDε,r

pq
(uε,r

3 )
∥∥2

L2(Dε,r
pq ×]−l,0[)

≤ cr2 ‖Dx1,x2
u

ε,r
3 ‖2

(L2(Dε,r
pq ×]−l,0[))

2 , (4.18)

where Dx1,x2
u

ε,r
3 denotes the gradient of u

ε,r
3 with respect to the variables x1, x2.

From (4.17) and (4.18), we deduce that, for any (p, q) ∈ N ε,

∥∥∥
(
Rε,r

pq

)
1

∥∥∥
2

L2(]−l,0[)
≤

c

r2
‖Dx1,x2

u
ε,r
3 ‖2

(L2(Dε,r
pq ×]−l,0[))

2 . (4.19)

10



Due to (4.16) we have

∥∥∥∥∥
d

(
Rε,r

pq

)
1

dx3

∥∥∥∥∥

2

L2(]−l,0[)

≤
c

r4

∥∥∥∥
∂u

ε,r
3

∂x3

∥∥∥∥
2

L2(Dε,r
pq ×]−l,0[)

. (4.20)

As a consequence of (4.19) and (4.20) it results that

∣∣∣
(
Rε,r

pq

)
1
(0)

∣∣∣
2

≤
c

r3
‖Du

ε,r
3 ‖2

(L2(Dε,r
pq ×]−l,0[))

3 . (4.21)

By summing up over all (p, q) ∈ N ε, we obtain

∑

(p,q)∈N ε

∣∣∣
(
Rε,r

pq

)
1
(0)

∣∣∣
2

≤
c

r3
‖uε,r

3 ‖2
H1(Ω−). (4.22)

and, with the help of the Korn’s inequality in Ω− (see (3.15)), we have

∑

(p,q)∈N ε

∣∣∣
(
Rε,r

pq

)
1
(0)

∣∣∣
2

≤
c

r3
EΩ−(uε,r), (4.23)

which is an improvement of (4.14).
Now, in view of the definition (4.3)-(4.4) of Rε,r, we deduce that

‖(Rε,r)1 (·, ·, 0)‖2
L2(ω) ≤

cε2

r3
EΩ−(uε,r). (4.24)

Indeed, we have the same estimates on (Rε,r)2 (0) and (Rε,r)3 (0) in L2(ω), so that

‖Rε,r(·, ·, 0)‖2
(L2(ω))3 ≤

cε2

r3
EΩ−(uε,r). (4.25)

To obtain an estimate on U ε,r(·, ·, 0), we just write, that for any (p, q) ∈ N ε,

U ε,r
pq (0) =

1

πr2

∫

Dε,r
pq

uε,r(x1, x2, 0)dx1dx2, (4.26)

and then by Cauchy-Schwarz’s inequality

∣∣U ε,r
pq (0)

∣∣2 ≤ c

r2

∫

Dε,r
pq

|uε,r(x1, x2, 0)|2dx1dx2. (4.27)

Due to the definition (4.2)÷(4.4) of U ε,r, summing up with respect to (p, q) ∈ N ε, we
obtain

‖U ε,r(·, ·, 0)‖2
(L2(ω))3 ≤

cε2

r2
‖uε,r(·, ·, 0)‖2

(L2(ω))3 .

Now, again with the help of the Korn’s inequality in Ω− (see again (3.15)) and of the trace
theorem in Ω−, it yields

‖U ε,r(·, ·, 0)‖2
(L2(ω))3 ≤

cε2

r2
EΩ−(uε,r). (4.28)

11



Step 2. Estimates on U ε,r and Rε,r.
For any (p, q) ∈ N ε, recall that by (3.12)

∥∥∥∥
dRε,r

pq

dx3

∥∥∥∥
2

(L2(]0,L[))3
≤

c

r4
EPε,r

pq
(uε,r).

Then, with the help of (4.8), we deduce that

∥∥∥∥
∂Rε,r

∂x3

∥∥∥∥
2

(L2(Ω+))3
≤

cε2

r4
EΩ+

ε,r
(uε,r), (4.29)

which, together with (4.25) permits to obtain

‖Rε,r‖2
(L2(ω,H1(]0,L[)))3 ≤

cε2

r4
EΩε,r

(uε,r), (4.30)

since EΩ+
ε,r

(uε,r) + EΩ−(uε,r) = EΩε,r
(uε,r) (the sharper estimate (4.25) will be used in Subsec-

tion 5.5).
To obtain estimates on U ε,r, we first investigate the components U ε,r

1 and U ε,r
2 , and we

only give the proof for U ε,r
1 (since it is identical for U ε,r

2 ).
Due to (3.11), for any (p, q) ∈ N ε, we have that

∥∥∥∥∥
d

(
U ε,r

pq

)
1

dx3

∥∥∥∥∥

2

L2(]0,L[)

≤ c

[∥∥∥
(
Rε,r

pq

)
2

∥∥∥
2

L2(]0,L[)
+

1

r2
EPε,r

pq
(uε,r)

]
,

from which, by using (4.7), it follows that

∥∥∥∥
∂U ε,r

1

∂x3

∥∥∥∥
2

L2(Ω+)

≤ c

[
‖Rε,r

2 ‖2
L2(Ω+) +

ε2

r2
EΩ+

ε,r
(uε,r)

]
,

where c is a constant independent of ε. Then, with the help of (4.30), we obtain that (since
r << 1) ∥∥∥∥

∂U ε,r
1

∂x3

∥∥∥∥
2

L2(Ω+)

≤ c
ε2

r4
EΩε,r

(uε,r). (4.31)

In view of (4.28), we deduce that

‖U ε,r
1 ‖2

L2(Ω+) ≤ c
ε2

r4
EΩε,r

(uε,r). (4.32)

Similarly we have

‖U ε,r
2 ‖2

L2(Ω+) ≤ c
ε2

r4
EΩε,r

(uε,r), (4.33)

∥∥∥∥
∂U ε,r

2

∂x3

∥∥∥∥
2

L2(Ω+)

≤ c
ε2

r4
EΩε,r

(uε,r). (4.34)
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Let us now consider U ε,r
3 . For any (p, q) ∈ N ε, we have from (3.11)

∥∥∥∥∥
d

(
U ε,r

pq

)
3

dx3

∥∥∥∥∥

2

L2(]0,L[)

≤
c

r2
EPε,r

pq
(uε,r),

which yields with (4.7) ∥∥∥∥
∂U ε,r

3

∂x3

∥∥∥∥
2

L2(Ω+)

≤ c
ε2

r2
EΩ+

ε,r
(uε,r).

By using (4.28), it follows that

‖U ε,r
3 ‖2

L2(Ω+) ≤ c
ε2

r2
EΩε,r

(uε,r). (4.35)

4.2 Uniform bound on uε,r in term of EΩε,r
(uε,r)

Let us recall that in view of (3.13)-(3.14) and of the definition (4.12) of uε,r, one has for any
(p, q) ∈ N ε,

‖uε,r‖2

(L2(Pε,r
pq ))

3 ≤ cr2EPε,r
pq

(uε,r),

and
‖Duε,r‖2

(L2(Pε,r
pq ))

9 ≤ cEPε,r
pq

(uε,r).

Through summation over (p, q) ∈ N ε, we deduce that

‖uε,r‖2

(L2(Ω+
ε,r))

3 ≤ cr2EΩ+
ε,r

(uε,r), (4.36)

and
‖Duε,r‖2

(L2(Ω+
ε,r))

9 ≤ cEΩ+
ε,r

(uε,r). (4.37)

4.3 Estimates on uε,r in term of EΩε,r
(uε,r)

First recall that from (3.7) and (4.12), we have, for any (p, q) ∈ N ε, and for almost every
(x1, x2, x3) ∈ Ω+

ε,r

u
ε,r
1 (x1, x2, x3) =

(
U ε,r

pq

)
1
(x3) −

(
Rε,r

pq

)
3
(x3)(x2 − εq) + u

ε,r
1 (x1, x2, x3), if (x1, x2) ∈ Dε,r

pq .

(4.38)

u
ε,r
2 (x1, x2, x3) =

(
U ε,r

pq

)
2
(x3) +

(
Rε,r

pq

)
3
(x3)(x1 − εp) + u

ε,r
2 (x1, x2, x3), if (x1, x2) ∈ Dε,r

pq .

(4.39)
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We derive first L2 estimates on u
ε,r
1 (the details are identical for u

ε,r
2 ). We have, for any

(p, q) ∈ N ε and for almost every x3 ∈]0, L[
∫

Dε,r
pq

|uε,r
1 (x1, x2, x3)|

2dx1dx2 ≤

c

[
r2

∣∣∣
(
U ε,r

pq

)
1
(x3)

∣∣∣
2

+ r4
∣∣∣
(
Rε,r

pq

)
3
(x3)

∣∣∣
2

+

∫

Dε,r
pq

|uε,r
1 (x1, x2, x3)|

2dx1dx2

]
.

By adding the previous inequalities with respect to (p, q) ∈ N ε, and by integrating over
]0, L[, we obtain, in view of (4.5) and (4.6)

‖uε,r
1 ‖2

L2(Ω+
ε,r)

≤ c

[
r2

ε2
‖U ε,r

1 ‖2
L2(Ω+) +

r4

ε2
‖Rε,r

3 ‖2
L2(Ω+) + ‖uε,r

1 ‖2
L2(Ω+

ε,r)

]
.

Appealing now to (4.30), (4.32) and (4.36), it yields that

‖uε,r
1 ‖2

L2(Ω+
ε,r)

≤ c

[
1

r2
+ 1 + r2

]
EΩε,r

(uε,r).

Finally, and proceeding identically for u
ε,r
2 , we obtain

‖uε,r
α ‖2

L2(Ω+
ε,r)

≤
c

r2
EΩε,r

(uε,r), for α = 1, 2. (4.40)

As far as u
ε,r
3 is concerned, recall that with (3.7) and (4.12) we have, for any (p, q) ∈ N ε,

and for almost every (x1, x2, x3) ∈ Ω+
ε,r

u
ε,r
3 (x1, x2, x3) =

(
U ε,r

pq

)
3
(x3) +

(
Rε,r

pq

)
1
(x3)(x2 − εq)−

(
Rε,r

pq

)
2
(x3)(x1 − εp) + u

ε,r
3 (x1, x2, x3), if (x1, x2) ∈ Dε,r

pq .

(4.41)

This implies that for any (p, q) ∈ N ε and for almost every x3 ∈]0, L[
∫

Dε,r
pq

|uε,r
3 (x1, x2, x3)|

2dx1dx2 ≤

c

[
r2

∣∣∣
(
U ε,r

pq

)
3
(x3)

∣∣∣
2

+ r4

(∣∣∣
(
Rε,r

pq

)
1
(x3)

∣∣∣
2

+
∣∣∣
(
Rε,r

pq

)
2
(x3)

∣∣∣
2
)

+

∫

Dε,r
pq

|uε,r
3 (x1, x2, x3)|

2dx1dx2

]
.

Proceeding as for u
ε,r
1 , it yields with the help of (4.5) and (4.6)

‖uε,r
3 ‖2

L2(Ω+
ε,r)

≤ c

[
r2

ε2
‖U ε,r

3 ‖2
L2(Ω+) +

r4

ε2

(
‖Rε,r

1 ‖2
L2(Ω+) + ‖Rε,r

2 ‖2
L2(Ω+)

)
+ ‖uε,r

3 ‖2
L2(Ω+

ε,r)

]
.

Now we use (4.30), (4.35) and (4.36) to obtain

‖uε,r
3 ‖2

L2(Ω+
ε,r)

≤ c
[
1 + r2

]
EΩε,r

(uε,r),

and finally
‖uε,r

3 ‖2
L2(Ω+

ε,r)
≤ cEΩε,r

(uε,r). (4.42)
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4.4 A priori estimates on uε,r

The inserting (2.13) into (3.1) leads to

EΩε,r
(uε,r) ≤

2∑

α=1

‖f ε,r
α ‖L2(Ω+

ε,r)‖u
ε,r
α ‖L2(Ω+

ε,r) + ‖f ε,r
3 ‖L2(Ω+

ε,r)‖u
ε,r
3 ‖L2(Ω+

ε,r)+

3∑

i=1

‖f ε,r
i ‖L2(Ω−)‖u

ε,r
i ‖L2(Ω−).

Then the estimates on ‖uε,r
i ‖2

L2(Ω+
ε,r)

in the previous section and estimates (3.15) on

‖uε,r‖2
(L2(Ω−))3 permit to obtain

EΩε,r
(uε,r) ≤

c

[
1

r

2∑

α=1

‖f ε,r
α ‖L2(Ω+

ε,r) + ‖f ε,r
3 ‖L2(Ω+

ε,r) +
3∑

i=1

‖f ε,r
i ‖L2(Ω−)

]
(
EΩε,r

(uε,r)
) 1

2 .

(4.43)

In view of (4.43), the assumptions (2.19)÷(2.21) on the forces f ε,r in Ω+
ε,r and Ω− appear (a

posteriori) natural to obtain an estimate on EΩε,r
(uε,r), namely here

EΩε,r
(uε,r) ≤ c. (4.44)

Remark 4.1. Indeed, Problem (2.11)÷(2.16) is linear with respect to f ε,r. Then at the
possible rescaling of uε,r, what is important in (4.43) is the relative behavior between f ε,r

α

and f
ε,r
3 in Ω+

ε,r and f
ε,r
i in Ω−. Here we have decided to normalize f

ε,r
i in Ω−, to obtain an

elastic energy EΩε,r
(uε,r) of order 1 with respect to ε.

Once (4.44) is established, the estimates stated in the following lemma are direct conse-
quences of the previous sections.

Lemma 4.2. Under assumptions (2.19)÷ (2.21), there exists a constant c independent of ε

and r such that
r‖uε,r

α ‖L2(Ω+
ε,r) ≤ c, for α = 1, 2, (4.45)

‖uε,r
3 ‖L2(Ω+

ε,r) ≤ c, (4.46)

‖uε,r
i ‖L2(Ω−) ≤ c, for i = 1, 2, 3, (4.47)

‖γij(u
ε,r)‖L2(Ω+

ε,r) ≤ c, for i, j = 1, 2, 3 (4.48)

‖γij(u
ε,r)‖L2(Ω−) ≤ c, for i, j = 1, 2, 3, (4.49)

r2

ε
‖U ε,r

α ‖L2(ω,H1(]0,L[)) ≤ c, for α = 1, 2, (4.50)

r

ε
‖U ε,r

3 ‖L2(ω,H1(]0,L[)) ≤ c, (4.51)
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r2

ε
‖Rε,r

i ‖L2(ω,H1(]0,L[)) ≤ c, for i = 1, 2, 3, (4.52)

r

ε

∥∥∥∥
∂U ε,r

∂x3

− (Rε,r ∧ e3)

∥∥∥∥
(L2(Ω+))3

≤ c, (4.53)

‖uε,r‖
(L2(Ω+

ε,r))
3 ≤ cr, (4.54)

‖Duε,r‖
(L2(Ω+

ε,r))
9 ≤ c. (4.55)

5 Unfolding operator and estimates on the unfold fields

In the sequel of this paper, {ε} will be a sequence of positive real numbers which tends to
zero and the radius of the rods will take values in a sequence {rε}ε which also tends to zero.
For sake of simplicity, we will drop the index rε in the notations

In this section we first adapt the notion of ”unfolding technique”, introduced in [8] for
thin or periodic structures, to take into account both the usual rescaling in rods theory and
the periodic character of Ω+

ε . References on unfolding operators can be found in [8], [11]
and [15]. Then we deduce from Section 4.4, the estimates on the unfolded various quantities
studied in this section.

5.1 The unfolding operator

Throughout the paper D will now denote the unit disk of R
2: D = {(x1, x2) ∈ R

2 : x2
1 + x2

2 < 1}.
Let v be a function of L2(Ω+

ε ). We define the function T ε(v) on Ω+ × D by, for almost
(x1, x2, x3) ∈ Ω+ and (X1, X2) ∈ D,

T ε(v)(x1, x2, x3, X1, X2) =





v(pε + rεX1, qε + rεX2, x3),

if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, (p, q) ∈ Nε,

0, if (x1, x2) ∈ ω \ ω̃ε

(5.1)

(recall that ω̃ε is defined in (4.1)).
Let us make a few comments on this definition. First, it is clear that x3 appears in 5.1

as a parameter. Then T ε(v) is well defined on Ω+ × D since for (X1, X2) ∈ D, one has
(εp + rεX1, εq + rεX2, x3) ∈ Pε

pq. For the points (x1, x2, x3) ∈ Ω+ for which (x1, x2) ∈ ω \ ω̃ε,
T ε(v)(x1, x2, x3, X1, X2) = 0 a.e.. The main interest in considering T ε(v) rather than v, is
that the effect of the oscillations of Ω+

ε is, in some sense, decoupled to the slow (and here
disconnected) variation of (x1, x2). Namely, (x1, x2) are split into (εp, εq) in one hand and
(X1, X2) on the other hand.

As a convention, if v ∈ L2(Ω+), we set T ε(v) = T ε(v|
Ω

+
ε

).
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The following lemma contains the main properties of the operator T ε which will be used
throughout the paper.

Lemma 5.1.
(a) For all function v and w in L2(Ω+

ε ), one has
∫

Ω+
ε

vwdx1dx2dx3 =
r2
ε

ε2

∫

Ω+×D

T ε(v)T ε(w)dx1dx2dx3dX1dX2.

(b) In the case rε = kε, for any function v in L2(Ω+),

T ε(v) → v strongly in L2(Ω+ × D),

as ε tends to 0.
(c) In the case where

rε

ε
tends to zero, and for any function v ∈ C0(Ω+),

T ε(v) → v strongly in L2(Ω+ × D),

as ε tends to 0.
(d) In the case rε = kε, if {vε}ε is a sequence of L2(Ω+) such that vε → v strongly in

L2(Ω+), then
T ε(vε) → v strongly in L2(Ω+ × D),

as ε tends to 0.
(e) For any v ∈ H1(Ω+

ε ),

∂(T ε(v))

∂Xα

= rεT
ε

(
∂v

∂xα

)
a.e. in Ω+ × D, for α = 1, 2,

and
∂(T ε(v))

∂x3

= T ε

(
∂v

∂x3

)
a.e. in Ω+ × D.

Proof. In order to obtain (a) we write
∫

Ω+
ε

vwdx1dx2dx3 =

∫ L

0

∑

(p,q)∈N ε

∫

Dε
pq

v(x1, x2, x3)w(x1, x2, x3)dx1dx2dx3 =

r2
ε

∫ L

0

∑

(p,q)∈N ε

∫

D

v(εp + rεX1, εq + rεX2, x3)w(εp + rεX1, εq + rεX2, x3)dX1dX2dx3 =

r2
ε

∫ L

0

∑

(p,q)∈N ε

1

ε2

∫

D×]εp− ε
2
,εp+ ε

2 [×]εq− ε
2
,εq+ ε

2 [
v(εp + rεX1, εq + rεX2, x3)

w(εp + rεX1, εq + rεX2, x3)dX1dX2dx1dx2dx3 =

r2
ε

ε2

∫

]0,L[×D×ω

T ε(v)T ε(w)dx3dX1dX2dx1dx2 =

r2
ε

ε2

∫

Ω+×D

T ε(v)T ε(w)dx1dx2dx3dX1dX2.
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The last equality being due to T ε(v) = 0 if (x1, x2) ∈ ω \ ω̃ε.

To prove (b) and (c), first consider a function ϕ ∈ C0(Ω+). By definition (5.1) of T ε, we
have for any (x1, x2, x3) ∈ Ω+ and (X1, X2) ∈ D,

|T ε(ϕ)(x1, x2, x3, X1, X2) − ϕ(x1, x2, x3)| = |ϕ(εp + rεX1, εq + rεX2, x3) − ϕ(x1, x2, x3)| ,

if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
and (p, q) ∈ Nε,

|T ε(ϕ)(x1, x2, x3, X1, X2) − ϕ(x1, x2, x3)| = |ϕ(x1, x2, x3)| ,

if (x1, x2) ∈ ω \ ω̃ε.

Then, since ϕ ∈ C0(Ω+),

|T ε(ϕ)(x1, x2, x3, X1, X2) − ϕ(x1, x2, x3)| ≤ δ(ε)χω̃ε
+ (1 − χω̃ε

) ‖ϕ‖
C0(Ω+) , (5.2)

where δ(ε) tends to zero as ε tends to zero, and χω̃ε denotes the characteristic function of
ω̃ε. It follows that

‖T ε(ϕ) − ϕ‖L2(Ω+×D) ≤ cδ(ε) + c(meas(ω − ω̃ε))
1

2‖ϕ‖
C0(Ω+) (5.3)

Now when ε tends to 0, meas(ω−ω̃ε) tends to zero, because ∂ω is assumed to be Lipschitz
and ε → 0, so that we obtain

T ε(v) → v strongly in L2(Ω+ × D), (5.4)

as ε tends to 0. This establish (c).
To obtain (b), remark that if rε = kε, (a), gives

‖T ε(ϕ) − T ε(ψ)‖L2(Ω+×D) =
1

k
‖ϕ − ψ‖L2(Ω+

ε ) ≤
1

k
‖ϕ − ψ‖L2(Ω+) , (5.5)

for all ϕ and ψ in L2(Ω+). In view of (5.4) and (5.5), a classical density argument shows that
(b) hods true. Property (d) is an easy consequence of (b) and of (5.5). Property (e) follows

from the standard chain rule formulae in each cell
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
and

it is trivial if (x1, x2) ∈ ω \ ω̃ε.

Remark 5.2. Let us conclude this section with a remark which will be useful to identify the
junction condition between Ω+ and Ω−. Consider a function v ∈ L2(Ωε). Then, since x3

appears as a parameter in (5.1), one can also define T ε(v) in Ω−×D (i.e. for −l < x3 < 0).
In the case where rε = kε and if now {vε}ε ⊂ L2(Ωε) is a sequence such that vε|

Ω−

converges

strongly in L2(Ω−) to a function v ∈ L2(Ω−), as ε → 0, then

T ε(vε) → v strongly in L2(Ω− × D), (5.6)

as ε tends to 0.
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5.2 Estimates on the unfold fields

Lemma 4.2 and Lemma 5.1 together with 4.38, 4.39, 4.41 permit to obtain the following
Lemma:

Lemma 5.3. Under assumptions (2.19)÷(2.21), there exists a constant c independent of ε

such that
rε ‖T

ε(uε
α)‖L2(ω,H1(D×]0,L[)) ≤ c

(
1 +

ε

rε

)
, for α = 1, 2, (5.7)

‖T ε(uε
3)‖L2(ω,H1(D×]0,L[)) ≤ c

(
1 +

ε

rε

)
, (5.8)

rε

ε
‖T ε(γij(u

ε))‖
L2(Ω+×D) ≤ c, for i, j = 1, 2, 3 (5.9)

1

ε
‖T ε(uε)‖(L2(Ω+×D))3 ≤ c, (5.10)





1

ε

∥∥∥∥
∂(T ε(uε))

∂Xα

∥∥∥∥
(L2(Ω+×D))3

≤ c, for α = 1, 2,

rε

ε

∥∥∥∥
∂(T ε(uε))

∂x3

∥∥∥∥
(L2(Ω+×D))3

≤ c,

(5.11)

rε

ε

∥∥T ε(σε
ij)

∥∥
L2(Ω+×D)

≤ c, for i, j = 1, 2, 3. (5.12)

Until now, we have kept the possibility in all the above estimates that rε and ε may behave

in a way such that lim
ε→0

rε

ε
= k, where k is a real number such that 0 ≤ k <

1

2
. Actually, here

we have to distinguish the case where
rε

ε
= k > 0 to the case where lim

ε→0

rε

ε
= 0. We first

investigate in the following the case where rε = kε, and postpone the analysis for the case

lim
ε→0

rε

ε
= 0 to Section 7.

5.3 Weak limits of the fields (case rε = kε)

As explained above, we assume here that rε = kε and we just introduce the notations for
the weak limit, up to a subsequence still denoted by ε, of the bounded fields appearing in
Lemma 4.2 and Lemma 5.3.

Lemma 5.4. Assume (2.19)÷(2.21), and that rε = kε.
For a subsequence, still denoted by {ε},
• there exist u0

i ∈ L2(ω,H1(D×]0, L[)) and u0
i ∈ L2(Ω+, H1(D)), for i = 1, 2, 3, such

that, as ε tends to zero,

εT ε(uε
α) ⇀ u0

α weakly in L2(ω,H1(D×]0, L[)), for α = 1, 2, (5.13)

T ε(uε
3) ⇀ u0

3 weakly in L2(ω,H1(D×]0, L[)), (5.14)

1

ε
T ε(uε

i ) ⇀ u0
i weakly in L2(Ω+, H1(D)), for i = 1, 2, 3; (5.15)
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• there exist U0
i ∈ L2 (ω,H1(]0, L[)), R0

i ∈ L2 (ω,H1(]0, L[)), for i = 1, 2, 3, and Z ∈
(L2(Ω+))

3
such that, as ε tends to zero,

εU ε
α ⇀ U0

α weakly in L2
(
ω,H1(]0, L[)

)
, for α = 1, 2, (5.16)

U ε
3 ⇀ U0

3 weakly in L2
(
ω, H1(]0, L[)

)
, (5.17)

εRε
i ⇀ R0

i weakly in L2
(
ω, H1(]0, L[)

)
, for i = 1, 2, 3, (5.18)

∂U ε

∂x3

− (Rε ∧ e3) ⇀ Z weakly in
(
L2(Ω+)

)3
; (5.19)

• there exist Xij ∈ L2(Ω+ × D) and Σij ∈ L2(Ω+ × D), for i, j = 1, 2, 3, such that, as ε

tends to zero,

T ε(γij(u
ε)) ⇀ Xij weakly in L2(Ω+ × D), for i, j = 1, 2, 3, (5.20)

T ε(σε
ij) ⇀ Σij weakly in L2(Ω+ × D), for i, j = 1, 2, 3; (5.21)

• there exist u−
i ∈ H1(Ω−), with u−

i = 0 on ∂ω×] − l, 0[, for i = 1, 2, 3, such that, as ε

tends to zero,
uε

i ⇀ u−
i weakly in H1(Ω−), strongly in L2(Ω−). (5.22)

5.4 Relation between the limit fields (case rε = kε)

In this section we still assume rε = kε and we derive a few relations between U0, R0, u0 on
one hand, and X, Σ on the other hand.

First, consider (4.53) which implies

ε

(
∂U ε

1

∂x3

−Rε
2

)
→ 0 strongly in L2(Ω+),

as ε tends to 0. Then, (5.16) and (5.18) give

∂U0
1

∂x3

= R0
2 in Ω+. (5.23)

Indeed, using the second component in (4.53) leads to

∂U0
2

∂x3

= −R0
1 in Ω+. (5.24)

It follows that U0
α ∈ L2 (ω,H2(]0, L[)), for α = 1, 2.

Now, consider (4.38) which can be written, for any (p, q) ∈ N ε, as

uε
1(x1, x2, x3) = U ε

1|
Ω

+
ε

(x1, x2, x3) −Rε
3|

Ω
+
ε

(x1, x2, x3)(x2 − εq) + uε
1(x1, x2, x3),

if (x1, x2) ∈ Dε
pq, x3 ∈]0, L[.
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Then, for any (p, q) ∈ N ε,

T ε(uε
1)(x1, x2, x3, X1, X2) = T ε

(
U ε

1|
Ω

+
ε

)
(x1, x2, x3, X1, X2)−

T ε

(
Rε

3|
Ω

+
ε

(x2 − εq)

)
(x1, x2, x3, X1, X2) + T ε(uε

1)(x1, x2, x3, X1, X2),

if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, x3 ∈]0, L[, (X1, X2) ∈ D.

(5.25)

Now remark that the function U ε
1|

Ω
+
ε

(x1, x2, x3) is constant on each Dε
pq, for almost any fixed

x3. As a consequence, the definition (5.1) of T ε gives, for any (p, q) ∈ N ε,

T ε(U ε
1|

Ω
+
ε

) = U ε
1 ,

if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, x3 ∈]0, L[, (X1, X2) ∈ D.

(5.26)

Since, for any (p, q) ∈ N ε,

T ε

(
Rε

3|
Ω

+
ε

(x2 − εq)

)
(x1, x2, x3, X1, X2) = rεX2R

ε
3(x1, x2, x3),

if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, x3 ∈]0, L[, (X1, X2) ∈ D,

and equality (5.25) leads to

T ε(uε
1)(x1, x2, x3, X1, X2) = U ε

1 (x1, x2, x3)−

rεX2R
ε
3(x1, x2, x3) + T ε(uε

1)(x1, x2, x3, X1, X2) a.e. in Ω+ × D.

(5.27)

In (5.27) we also have used the fact that

T ε(uε
1) = U ε

1 = Rε
3 = T ε(uε

1) = 0,

if (x1, x2, x3) ∈ Ω+ \ (ω̃ε×]0, L[) .

In view of (5.13), (5.15), (5.16) and (5.18), by passing to the limit in (5.27), as ε tends
to zero, we obtain, since rε = kε,

u0
1(x1, x2, x3, X1, X2) = U0

1 (x1, x2, x3).

Repeating the above arguments for uε
2, we conclude that,

u0
α(x1, x2, x3, X1, X2) = U0

α(x1, x2, x3),

for almost any (x1, x2, x3) ∈ Ω+, (X1, X2) ∈ D, for α = 1, 2.
(5.28)

21



Remark that u0
α, for α = 1, 2, do not depend on the variables (X1, X2).

As far as uε
3 is concerned, we have by (4.41) for any (p, q) ∈ N ε,

uε
3(x1, x2, x3) = U ε

3|
Ω

+
ε

(x1, x2, x3) + Rε
1|

Ω
+
ε

(x1, x2, x3)(x2 − εq)−

Rε
2|

Ω
+
ε

(x1, x2, x3)(x1 − εp) + uε
3(x1, x2, x3), if (x1, x2) ∈ Dε

pq, x3 ∈]0, L[.
(5.29)

First we have
T ε(uε

3) → 0 strongly in L2(Ω+ × D), (5.30)

because of (5.15).
Then, as above for U ε

α and Rε
α, α = 1, 2, for any (p, q) ∈ N ε, it results





T ε(U ε
3|

Ω
+
ε

) = U ε
3 ,

T ε

(
Rε

1|
Ω

+
ε

(x2 − εq)

)
(x1, x2, x3, X1, X2) = rεX2R

ε
1(x1, x2, x3),

T ε

(
Rε

2|
Ω

+
ε

(x1 − εp)

)
(x1, x2, x3, X1, X2) = rεX1R

ε
2(x1, x2, x3),

if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, x3 ∈]0, L[, (X1, X2) ∈ D.

Proceeding as for U ε
α above, and using now (5.14), (5.17), (5.18) and (5.30), equality (5.29)

implies that, since rε = kε,

u0
3(x1, x2, x3, X1, X2) = U0

3 (x1, x2, x3) + kX2R
0
1(x1, x2, x3) − kX1R

0
2(x1, x2, x3),

for almost any (x1, x2, x3) ∈ Ω+, (X1, X2) ∈ D.

(5.31)

Remark that, due to (5.23) and (5.24), relation (5.31) can be equivalently rewritten as

u0
3(x1, x2, x3, X1, X2) = U0

3 (x1, x2, x3) − kX1
∂U0

1

∂x3

(x1, x2, x3) − kX2
∂U0

2

∂x3

(x1, x2, x3),

for almost any (x1, x2, x3) ∈ Ω+, (X1, X2) ∈ D.

(5.32)

We now turn to the identification of Xij (see (5.20)). In view of the decomposition of uε

given in (4.38) and (4.39), we have

γαβ(uε) = γαβ(uε) a.e. in Ω+
ε , for α, β = 1, 2. (5.33)

Appealing now to the rule for the derivation of an unfold field given in (e) of Lemma 5.1, we
obtain

rεT
ε (γαβ(uε)) = Γαβ (T ε(uε)) a.e. in Ω+ × D, for α, β = 1, 2, (5.34)
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where for any field v, say in (L2(Ω+; H1(D))
3
, we have set

Γαβ(v) =
1

2

(
∂Xβ

vα + ∂Xα
vβ

)
a.e. in Ω+ × D, for α, β = 1, 2. (5.35)

Dividing (5.34) by ε and passing to the limit, as ε tends to zero, yields using (5.15) and
(5.20)

kXαβ = Γαβ(u0) a.e. in Ω+ × D, for α, β = 1, 2. (5.36)

Let us now consider γ13(u
ε). Fix (p, q) ∈ N ε. In view of (4.38) and (4.41), we have

γ13(u
ε)(x1, x2, x3) =

1

2

[
∂U ε

1

∂x3

(x1, x2, x3) −
∂Rε

3

∂x3

(x1, x2, x3)(x2 − εq) +
∂uε

1

∂x3

(x1, x2, x3)−

Rε
2(x1, x2, x3) +

∂uε
3

∂x1

(x1, x2, x3)

]
, if (x1, x2) ∈ Dε

pq, x3 ∈]0, L[.

(5.37)

We apply the unfolding operator to both hand of (5.37) and consider the behavior of each
term appearing in the right hand side. Since again U ε

i and Rε
i are constant on each Dε

pq, we
have for (p, q) ∈ N ε (as for (5.26)),

T ε

(
∂U ε

1

∂x3 |
Ω

+
ε

−Rε
2|

Ω
+
ε

)
=

∂U ε
1

∂x3

−Rε
2, (5.38)

T ε

(
∂Rε

3

∂x3 |
Ω

+
ε

(x2 − εq)

)
= rεX2

∂Rε
3

∂x3

, (5.39)

T ε
(
Rε

2|
Ω

+
ε

)
= Rε

2, (5.40)

if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
, x3 ∈]0, L[, (X1, X2) ∈ D. Using the rules

(e) of Lemma 5.1 for the derivations of an unfold field, yields

rεT
ε

(
∂uε

3

∂x1

)
=

∂(T ε(uε
3))

∂X1

a.e. in Ω+ × D, (5.41)

T ε

(
∂uε

1

∂x3

)
=

∂(T ε(uε
1))

∂x3

a.e. in Ω+ × D. (5.42)

Then (5.37)÷(5.42) give

T ε (γ13(u
ε)) =

1

2

[ (
∂U ε

1

∂x3

−Rε
2

)
− rεX2

∂Rε
3

∂x3

+
∂(T ε(uε

1))

∂x3

+
1

rε

∂(T ε(uε
3))

∂X1

]
a.e. in Ω+ × D.

(5.43)
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Convergences (5.15), (5.18), (5.19) and (5.20) allow to pass to the limit in (5.43), and to
obtain

X13 =
1

2

[
Z1 − X2k

∂R0
3

∂x3

+
1

k

∂u0
3

∂X1

]
a.e. in Ω+ × D,

which can be written as

X13 =
1

2

[
∂

∂X1

(
X1Z1 +

1

k
u0

3

)
− X2k

∂R0
3

∂x3

]
a.e. in Ω+ × D. (5.44)

Proceeding as above to identify X13, we obtain

X23 =
1

2

[
∂

∂X2

(
X2Z2 +

1

k
u0

3

)
+ X1k

∂R0
3

∂x3

]
a.e. in Ω+ × D. (5.45)

To derive X33, we write, for any (p, q) ∈ N ε, in view of (4.41),

γ33(u
ε)(x1, x2, x3) =

∂U ε
3

∂x3

(x1, x2, x3) +
∂uε

3

∂x3

(x1, x2, x3) +
∂Rε

1

∂x3

(x1, x2, x3)(x2 − εq)−

∂Rε
2

∂x3

(x1, x2, x3)(x1 − εp) if (x1, x2) ∈ Dε
pq, x3 ∈]0, L[.

(5.46)

The same type of calculations that leads to the expression of X13, which is not repeated
here, gives

X33 =
∂U0

3

∂x3

+ kX2
∂R0

1

∂x3

− kX1
∂R0

2

∂x3

a.e. in Ω+ × D. (5.47)

According to (5.23) and (5.24), X33 can be expressed as

X33 =
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

a.e. in Ω+ × D. (5.48)

To conclude this subsection, we deduce from the constitutive law (2.12), from (5.20) and
(5.21) and from the above expression of Xij that

Σ11 =
1

k

[
(λ + 2µ)Γ11(u

0) + λΓ22(u
0)

]
+ λ

(
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

)

a.e. in Ω+ × D,

(5.49)

Σ22 =
1

k

[
(λ + 2µ)Γ22(u

0) + λΓ11(u
0)

]
+ λ

(
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

)

a.e. in Ω+ × D,

(5.50)

Σ12 = 2
µ

k
Γ12(u

0) a.e. in Ω+ × D, (5.51)
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Σ13 = µ

[
∂

∂X1

(
X1Z1 +

1

k
u0

3

)
− kX2

∂R0
3

∂x3

]
a.e. in Ω+ × D, (5.52)

Σ23 = µ

[
∂

∂X2

(
X2Z2 +

1

k
u0

3

)
+ kX1

∂R0
3

∂x3

]
a.e. in Ω+ × D, (5.53)

Σ33 = (λ + 2µ)

(
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

)
+

λ

k

(
Γ11(u

0) + Γ22(u
0)

)

a.e. in Ω+ × D.

(5.54)

5.5 Limit kinematic conditions (case rε = kε)

In this section we derive, in the case rε = kε, the kinematic conditions on the ”type”
displacement fields U0

i , R0
i and u0

i . In particular, we derive the kinematic junction conditions
between the ”continuum” of rods in Ω+ and the 3d body in Ω−.

First of all, comparing (4.28), (5.16) on the one hand, and (4.25), (5.18) on the other
hand leads to to

U0
α(x1, x2, 0) = 0 a.e. in ω, for α = 1, 2, (5.55)

and
R0

i (x1, x2, 0) = 0 a.e. in ω, for i = 1, 2, 3. (5.56)

This last relation together with (5.23), (5.24) gives

∂U0
α

∂x3

(x1, x2, 0) = 0 a.e. in ω, for α = 1, 2. (5.57)

We now turn to the transmission condition between U0
3 and u−

3 on ω.
Since uε ∈ H1(Ωε), recalling Remark 5.2, one can define T ε (uε

3) on ]− l, L[×ω ×D (still

by (5.1)). One has
∂ (T ε (uε

3))

∂x3

= T ε

(
∂uε

3

∂x3

)
, and then the weak convergences (5.14) and

(5.20) imply that T ε (uε
3) is bounded in L2(ω×D, H1(]− l, L[)). Then, T ε (uε

3) ⇀ u∗
3 weakly

in L2(ω × D, H1(] − l, L[)) = H1(] − l, L[, L2(ω × D)) (at least for a subsequence). Due to
(5.14) and (5.31), we first have

u∗
3 = U0

3 + kX2R
0
1 − kX1R

0
2 in Ω+ × D.

Now, from (5.22), uε
3 → u−

3 strongly in L2(Ω−), and using again Remark 5.2, we know
that T ε (uε

3) → u−
3 strongly in L2(Ω− × D), so that u∗

3 = u−
3 in Ω− × D. Since u∗

3 ∈
C0(] − l, L[, L2(ω × D)), we obtain

u−
3 (x1, x2, 0) = U0

3 (x1, x2, 0) + kX2R
0
1(x1, x2, 0) − kX1R

0
2(x1, x2, 0)

a.e. in ω × D.

(5.58)

This last relation together with (5.56) (actually it gives again (5.56) because (X1, X2) are
arbitrary in D) leads to

u−
3 (x1, x2, 0) = U0

3 (x1, x2, 0) a.e. in ω × D, (5.59)
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which is the transmission condition on the vertical displacement of the rods and the plate.
To end this section, we derive the kinematic conditions on u0 which follow from (3.8)÷(3.10).

Recall that by definition (4.12) of uε and (3.8)÷(3.10), we have for any for any (p, q) ∈ N ε

∫

Dε
pq

uε
i (x1, x2, x3)dx1dx2 = 0 for i = 1, 2, 3, (5.60)

∫

Dε
pq

(x1 − εp)uε
3(x1, x2, x3)dx1dx2 =

∫

Dε
pq

(x2 − εq)uε
3(x1, x2, x3)dx1dx2 = 0, (5.61)

∫

Dε
pq

[
(x1 − εp)uε

2(x1, x2, x3) − (x2 − εq)uε
1(x1, x2, x3)

]
dx1dx2 = 0, (5.62)

for almost any x3 in ]0, L[.
Let ϕ be a function of C∞

0 (Ω+). For ε small enough the support of ϕ is included in
ω̃ε×]0, L[. Then, define ϕ̃ in Ω+ as follows: for any (p, q) ∈ N ε, ϕ̃ε(x1, x2, x3) = ϕ(εp, εq, x3),

if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
and x3 ∈]0, L[, ϕ̃ε(x1, x2, x3) = 0 otherwise.

Due to (5.60)÷(5.62), it follows that

∫

Ω+
ε

ϕ̃εu
ε
idx1dx2dx3 = 0, for i = 1, 2, 3, (5.63)





∑

(p,q)∈N ε

∫ L

0

∫

Dε
pq

ϕ̃ε(x1 − εp)uε
3dx1dx2dx3 = 0,

∑

(p,q)∈N ε

∫ L

0

∫

Dε
pq

ϕ̃ε(x2 − εq)uε
3dx1dx2dx3 = 0,

(5.64)

∑

(p,q)∈N ε

∫ L

0

∫

Dε
pq

ϕ̃ε [(x1 − εp)uε
2 − (x2 − εq)uε

1] dx1dx2dx3 = 0. (5.65)

In term of the unfolding operator T ε, (5.63) reads as

∫

Ω+×D

T ε (ϕ̃ε) T
ε (uε) dx1dx2dx3dX1dX2 = 0. (5.66)

Since ϕ̃ε is constant in each Dε
pq for fixed x3, T ε (ϕ̃ε) = ϕ̃ε. Indeed ϕ̃ε → ϕ strongly in

L2(Ω+), so that (5.15) implies that

∫

Ω+×D

ϕ(x1, x2, x3)u
0(x1, x2, x3, X1, X2)dx1dx2dx3dX1dX2 = 0,

from which we deduce that for almost any (x1, x2, x3) ∈ Ω+

∫

D

u0(x1, x2, x3, X1, X2)dX1dX2 = 0. (5.67)
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The same technique permits to obtain from (5.64) and (5.65) that for almost any (x1, x2, x3) ∈
Ω+ ∫

D

Xαu0
3(x1, x2, x3, X1, X2)dX1dX2 = 0, for α = 1, 2, (5.68)

∫

D

[
X1u

0
2(x1, x2, x3, X1, X2) − X2u

0
1(x1, x2, x3, X1, X2)

]
dX1dX2 = 0. (5.69)

6 The limit problem (case rε = kε)

In this section we derive the equations satisfied by U0, R0, u0 and u−.
As a starting point, and in order to pass to the limit as the parameter ε tends to zero,

we write (2.18) in terms of the unfolding operator T ε in Ω+
ε . It gives, recalling rε = kε and

(a) of Lemma 5.1,

k2

3∑

i,j=1

∫

Ω+×D

T ε
(
σε

ij

)
T ε (γij(v)) dx1dx2dx3dX1dX2+

3∑

i,j=1

∫

Ω−

σε
ijγij(v)dx1dx2dx3 = k2

3∑

i=1

∫

Ω+×D

T ε (f ε
i ) T ε (vi) dx1dx2dx3dX1dX2

+
3∑

i=1

∫

Ω−

f ε
i vidx1dx2dx3, ∀v ∈ Vε.

(6.1)

We will pass to the limit in (6.1) when ε tends to zero, and the advantage in introducing
T ε is that now the domain Ω+ × D is fixed. The limit process is achieved with specific
choices of the test function v.

The section is organized as follows. First, we obtain the relations between u0
α and U0

3 and
we show that u0

3 = 0. Then, we obtain the system of partial differential equations verified
by U0 and u−. At least, we prove strong convergence of the energy.

6.1 Equations for u (case rε = kε)

Let ϕ be in C∞
0 (ω) and v be a function of

(
C∞(D × [0, L])

)3
such that v(X1, X2, 0) = 0. In

(6.1), we choose the function vε defined for (x1, x2, x3) ∈ Ω+
ε by

vε(x1, x2, x3) = rεϕ(εp, εq)v

(
x1 − εp

rε

,
x2 − εq

rε

, x3

)

if (x1, x2) ∈ Dε
pq, x3 ∈]0, L[, for (p, q) ∈ N ε,

(6.2)

and
vε(x1, x2, x3) = 0 if (x1, x2, x3) ∈ Ω−. (6.3)

Then vε ∈
(
C∞(Ω+

ε )
)3

∩ Vε.
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In Ω+
ε we have

γ11(v
ε)(x1, x2, x3) = ϕ(εp, εq)

∂v1

∂X1

(
x1 − εp

rε

,
x2 − εq

rε

, x3

)
,

γ22(v
ε)(x1, x2, x3) = ϕ(εp, εq)

∂v2

∂X2

(
x1 − εp

rε

,
x2 − εq

rε

, x3

)
,

γ12(v
ε)(x1, x2, x3) =

ϕ(εp, εq)

2

[
∂v1

∂X2

+
∂v2

∂X1

] (
x1 − εp

rε

,
x2 − εq

rε

, x3

)
,

γ13(v
ε)(x1, x2, x3) =

ϕ(εp, εq)

2

[
rε

∂v1

∂x3

+
∂v3

∂X1

](
x1 − εp

rε

,
x2 − εq

rε

, x3

)
,

γ23(v
ε)(x1, x2, x3) =

ϕ(εp, εq)

2

[
rε

∂v2

∂x3

+
∂v3

∂X2

](
x1 − εp

rε

,
x2 − εq

rε

, x3

)
,

γ33(v
ε)(x1, x2, x3) = ϕ(εp, εq)rε

∂v3

∂x3

(
x1 − εp

rε

,
x2 − εq

rε

, x3

)
,

if (x1, x2) ∈ Dε
pq, x3 ∈]0, L[, for (p, q) ∈ N ε.

Define the function ϕ̃ε in ω by

ϕ̃ε(x1, x2) =





ϕ(εp, εq), if (x1, x2) ∈
]
εp −

ε

2
, εp +

ε

2

[
×

]
εq −

ε

2
, εq +

ε

2

[
,

0, if (x1, x2) ∈ ω \ ω̃ε,

(6.4)

then applying the unfolding operator to γ(vε) leads to

T ε (γαβ(vε)) = ϕ̃εΓαβ(v) a.e. in Ω+ × D, for α, β = 1, 2, (6.5)

T ε (γα3(v
ε)) = ϕ̃ε 1

2

[
rε

∂vα

∂x3

+
∂v3

∂Xα

]
a.e. in Ω+ × D, for α = 1, 2, (6.6)

T ε (γ33(v
ε)) = ϕ̃εrεΓ33(v) a.e. in Ω+ × D, (6.7)

where Γij is defined in (5.35).
Since ϕ̃ε → ϕ strongly in L2(ω) as ε → 0, we obtain using the convergence (5.21)

lim
ε→0

3∑

i,j=1

∫

Ω+×D

T ε(σε
ij)T

ε (γij(v
ε)) dx1dx2dx3dX1dX2 =

2∑

α,β=1

∫

Ω+×D

ϕΣαβΓαβ(v)dx1dx2dx3dX1dX2+

2∑

α=1

∫

Ω+×D

ϕΣα3
∂v3

∂Xα

dx1dx2dx3dX1dX2,

(6.8)
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because rε = kε → 0 as ε → 0.
As far as the right hand side of (6.1) is concerned, we first have by assumption (2.19),

(2.20) and (b) of Lemma 5.1

T ε(f ε
α) = rεT

ε(fα) → 0 strongly in L2(Ω+ × D), (6.9)

and
T ε(f ε

3 ) = T ε(f3) → f+
3 strongly in L2(Ω+ × D). (6.10)

Moreover, with (6.2),
T ε(vε) = ϕ̃εrεv a.e. in Ω+ × D. (6.11)

then, we obtain from (6.1), (6.8) and (6.9)÷(6.11)

2∑

α,β=1

∫

Ω+×D

ϕΣαβΓαβ(v)dx1dx2dx3dX1dX2+

2∑

α=1

∫

Ω+×D

ϕΣα3
∂v3

∂Xα

dx1dx2dx3dX1dX2 = 0,

(6.12)

and this equality holds true for any ϕ ∈ C∞
0 (ω) and v ∈ C∞(D×[0, L]) such that v(X1, X2, 0) =

0. Since ϕ is arbitrary, (6.12) can be indeed localized a.e. in ω.
We first choose v1 = v2 = 0 a.e. in D×]0, L[. According to (5.52) and (5.54), it yields:

∫

D×]0,L[

[
∂

∂X1

(
X1Z1 +

1

k
u0

3

)
− kX2

∂R0
3

∂x3

]
∂v3

∂X1

dX1dX2dx3+

∫

D×]0,L[

[
∂

∂X2

(
X2Z2 +

1

k
u0

3

)
+ kX1

∂R0
3

∂x3

]
∂v3

∂X2

dX1dX2dx3 = 0 a.e. in ω.

(6.13)

Remarking that (6.13) can be also localized with respect to x3 and recalling that Z1, Z2 and

R0
3 do not depend on (X1, X2), it implies that the function w = X1Z1 + X2Z2 +

1

k
u0

3 satisfies





−
∂2w

∂X2
1

−
∂2w

∂X2
2

= 0 in D, a.e. in Ω+,

∂w

∂n
= 0 in ∂D, a.e. in Ω+,

because on ∂D, X1n1 − X2n2 = 0 a.e.. But by (5.67), w also satisfies

∫

D

w dX1dX2 = 0, for

almost any (x1, x2, x3) ∈ Ω+. As a consequence we deduce that w = 0, that is

u0
3 = −k(X1Z1 + X2Z2) a.e. in Ω+ × D.
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At least, using the kinematic condition (5.68) on u0
3, we obtain Z1 = Z2 = 0 and

u0
3 = 0. (6.14)

Remark that taking into account (6.14), the expressions (5.52) and (5.53) simplify to give

Σ13 = −µkX2
∂R0

3

∂x3

a.e. in Ω+ × D, (6.15)

Σ23 = µkX1
∂R0

3

∂x3

a.e. in Ω+ × D. (6.16)

Now we choose v3 = 0 in (6.12), using (5.49)÷(5.51), it leads to
∫

D×]0,L[

λ + 2µ

k

[
Γ11(u

0)Γ11(v) + Γ22(u
0)Γ22(v)

]
dX1dX2dx3+

∫

D×]0,L[

λ

k

[
Γ11(u

0)Γ22(v) + Γ22(u
0)Γ11(v)

]
dX1dX2dx3+

∫

D×]0,L[

4µ

k
Γ12(u

0)Γ12(v)dX1dX2dx3 =

−λ

∫

D×]0,L[

(
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

)
(Γ11(v) + Γ22(v)) dX1dX2dx3,

(6.17)

for any vα ∈ C∞(D×[0, L]) such that vα(X1, X2, 0) = 0 and then for any vα ∈ L2(]0, L[; H1(D)),
α = 1, 2.

Actually, and after localization with respect to x3, the variational problem (6.17) cor-
responds to classical 2d elastic problem for (u0

1, u
0
2) with constant forces on D or on ∂D.

Taking into account the kinematic conditions (5.60) and (5.62), the unique solution of (6.17)
is given by

u0
1 = ν

{
−kX1

∂U0
3

∂x3

+ k2X2
1 − X2

2

2

∂2U0
1

∂x2
3

+ k2X1X2
∂2U0

2

∂x2
3

}
, (6.18)

u0
2 = ν

{
−kX2

∂U0
3

∂x3

+ k2X1X2
∂2U0

1

∂x2
3

+ k2X2
2 − X2

1

2

∂2U0
2

∂x2
3

}
, (6.19)

where ν =
λ

2(λ + µ)
is the Poisson coefficient of the material. Expressions (6.18) and (6.19)

permits to derive from (5.36), (5.49)÷(5.51) and (5.54)

X11 = X22 = ν

{
−

∂U0
3

∂x3

+ kX1
∂2U0

1

∂x2
3

+ kX2
∂2U0

2

∂x2
3

}
, (6.20)

X12 = 0,

Σ11 = Σ22 = Σ12 = 0 a.e. in Ω+ × D, (6.21)

Σ33 = E

(
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

)
a.e. in Ω+ × D, (6.22)

where E =
µ(3λ + 2µ)

λ + µ
is the Young modulus of the elastic material.
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6.2 The rods equations in Ω+ (case rε = kε)

Let now ϕ ∈ C∞
0 (ω), V1,V2 be in C∞([0, L]) such that V1(0) = V2(0) = V ′

1(0) = V ′
2(0) = 0,

A3 be in C∞([0, L]) such that A3(0) = 0.
We choose as a test function in (6.1) the field defined in Ω+

ε by

vε(x1, x2, x3) = ϕ(εp, εq)

[ (
1

rε

V1(x3) −
x2 − εq

rε

A3(x3)

)
e1

+

(
1

rε

V2(x3) +
x1 − εp

rε

A3(x3)

)
e2 +

(
−

x1 − εp

rε

V ′
1(x3) −

x2 − εq

rε

V ′
2(x3)

)
e3

]
,

(6.23)

if (x1, x2) ∈ Dε
pq, x3 ∈]0, L[, for (p, q) ∈ N ε, and vε = 0 in Ω−. Remark that the boundary

conditions on V1, V2 and A3 at x3 = 0 imply that vε ∈ H1(Ωε). Then in Ω+
ε we have

γ11(v
ε) = γ22(v

ε) = γ12(v
ε) = 0,

γ13(v
ε) = −ϕ(εp, εq)

x2 − εq

rε

1

2
A′

3(x3),

γ23(v
ε) = ϕ(εp, εq)

x1 − εp

rε

1

2
A′

3(x3),

γ33(v
ε) = ϕ(εp, εq)

(
−

x1 − εp

rε

V ′′
1 (x3) −

x2 − εq

rε

V ′′
2 (x3)

)
.

With the definition (6.4) of ϕ̃ε in the previous section, it yields

T ε(γαβ(vε)) = 0, for α, β = 1, 2,

T ε(γ13(v
ε)) = −ϕ̃εX2

1

2
A′

3(x3),

T ε(γ23(v
ε)) = ϕ̃εX1

1

2
A′

3(x3),

T ε(γ23(v
ε)) = ϕ̃ε (−X1V

′′
1 (x3) − X2V

′′
2 (x3)) .

Using the convergence (5.21) of T ε(σε
ij) allows to pass to the limit in the left hand side of

(6.1) to obtain

lim
ε→0

3∑

i,j=1

∫

Ω+×D

T ε(σε
ij)T

ε (γij(v
ε)) dx1dx2dx3dX1dX2 =

−

∫

Ω+×D

ϕΣ13X2A
′
3dx1dx2dx3dX1dX2 +

∫

Ω+×D

ϕΣ23X1A
′
3dx1dx2dx3dX1dX2+

∫

Ω+×D

ϕΣ33 (−X1V
′′
1 (x3) − X2V

′′
2 (x3)) dx1dx2dx3dX1dX2.

(6.24)
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Now, in view of (6.23), we have

T ε(vε) = ϕ̃ε

[ (
1

rε

V1 − X2A3

)
e1

+

(
1

rε

V2 + X1A3

)
e2 + (−X1V

′
1 − X2V

′
2) e3

]
,

(6.25)

so that with (6.9) and (6.10)

lim
ε→0

∫

Ω+×D

T ε(f ε)T ε(vε)dx1dx2dx3dX1dX2 =

∫

Ω+×D

ϕ

[
2∑

α=1

fαVα + f3 (−X1V
′
1 − X2V

′
2)

]
dx1dx2dx3dX1dX2.

(6.26)

Using (6.15), (6.16) and (6.22), (6.1), (6.24) and (6.26) gives

µk

∫

Ω+×D

ϕ(X2
1 + X2

2 )
∂R0

3

∂x3

A′
3dx1dx2dx3dX1dX2+

E

∫

Ω+×D

ϕ

[
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

]
[−X1V

′′
1 − X2V

′′
2 ] dx1dx2dx3dX1dX2 =

∫

Ω+×D

ϕ

[
2∑

α=1

fαVα + f3 (−X1V
′
1 − X2V

′
2)

]
dx1dx2dx3dX1dX2,

(6.27)

for any ϕ ∈ C∞
0 (ω), A3 ∈ C∞([0, L]) such that A3(0) = 0, for V1,V2 ∈ C∞([0, L]) such that

V1(0) = V2(0) = V ′
1(0) = V ′

2(0) = 0.
Taking V1 = V2 = 0 in (6.27) gives together with the boundary condition (5.56)

R0
3 = 0. (6.28)

Once this result is obtained, (6.27) implies that (U0
1 ,U0

2 ) satisfies the equations




kEIα

∂4U0
α

∂x4
3

= πfα a.e. in Ω+,

∂2U0
α

∂x2
3

(x1, x2, L) =
∂3U0

α

∂x3
3

(x1, x2, L) = 0 a.e. in ω,

(6.29)

for α = 1, 2. Recall that in order to obtain (6.29), we have used the fact that
∫

D

X1dX1dX2 =

∫

D

X2dX1dX2 =

∫

D

X1X2dX1dX2 = 0.

Due to the boundary conditions (5.55) and (5.57), the field (U0
1 ,U0

2 ) is unique in (L2(ω, H2(]0, L[)))2.
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6.3 The stress transmission condition, the equation for U0
3 and

the equations in Ω− (case rε = kε)

Let us plug an arbitrary test field v ∈ (C∞(ω × [−l, L]))3 such that v = 0 on ∂ω×]− l, 0[, in
(6.1) (indeed in Ω+

ε , v|
Ω

+
ε

∈ (H1(Ω+
ε ))3) and we pass to the limit as ε tends to zero.

To this aim recall first that, by (b) of Lemma 5.1, T ε (γij(v)) → γij(v) strongly in
L2(Ω+ × D) and that T ε (v) → v strongly in (L2(Ω+ × D))3. Then using (6.9) and (6.21),
it gives

2k2

∫

Ω+×D

Σ13γ13(v)dx1dx2dx3dX1dX2 + 2k2

∫

Ω+×D

Σ23γ23(v)dx1dx2dx3dX1dX2+

k2

∫

Ω+×D

Σ33γ33(v)dx1dx2dx3dX1dX2 +

∫

Ω−

3∑

i,j=1

σ−
ijγij(v)dx1dx2dx3 =

k2

∫

Ω+×D

f3v3dx1dx2dx3dX1dX2 +

∫

Ω−

3∑

i=1

fividx1dx2dx3,

(6.30)

where
σ− = λ

(
Tr γ(u−)

)
I + 2µγ(u−) ∈

(
L2(Ω−)

)3×3
. (6.31)

Now, because of (6.15), (6.16) and (6.28) the two first terms of (6.30) are equal to zero.
Moreover, the expression (6.22) of Σ33 permits to obtain from (6.30) (note that γ13 does not
depend on (X1, X2))

Ek2π

∫

Ω+

∂U0
3

∂x3

∂v3

∂x3

dx1dx2dx3 +

∫

Ω−

3∑

i,j=1

σ−
ijγij(v)dx1dx2dx3 =

k2π

∫

Ω+

f3v3dx1dx2dx3 +

∫

Ω−

3∑

i=1

fividx1dx2dx3,

(6.32)

for any v ∈ (C∞(ω × [−l, L]))3 such that v = 0 on ∂ω×] − l, 0[.
If W is the Hilbert space defined by

W = {(V, v) ∈ L2(ω, H1(]0, L[)) × (H1(Ω−))3;

V(x1, x2, 0) = v3(x1, x2, 0) on ω and v = 0 on ∂ω×] − l, 0[},
(6.33)

the continuity condition (5.59) shows that (U0
3 , u−) ∈ W . Then Korn’s inequality in Ω−

(together with the expression (6.31) of σ−) implies that (6.32) (which indeed holds true for
any v ∈ W by density) admits a unique solution (U0

3 , u−) ∈ W . In terms of equations on Ω+

and Ω− and of a transmission condition and boundary conditions, it gives

−E
∂2U0

3

∂x2
3

= f3 in Ω+ (6.34)
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−
3∑

j=1

∂jσ
−
ij = fi in Ω−, for i = 1, 2, 3, (6.35)

σ−
33 = Ek2π

∂U0
3

∂x3

on ω, (6.36)

∂U0
3

∂x3

= 0 on ω × {L}, (6.37)

σ−
α3 = 0 on ω and on ω × {−l}, (6.38)

σ−
33 = 0 on ω and on ω × {−l}. (6.39)

Equation (6.34) is the standard compression-traction equation for rods and here (x1, x2)
appears as a parameter (as this was the case for (6.29)). In some sense, the rods equations
(6.29) describe a continuum of rods indexed by (x1, x2) ∈ ω.

Equations (6.35) together the constitutive law (6.31) are the standard equations of elas-
ticity in Ω−. The equation (6.36) reflects the continuity of the normal stress between the
rods and Ω− since it can be written as

σ−
33 = k2

∫

D

Σ33dX1dX2, on ω.

7 The case
rε

ε
→ 0

We start with the estimates of Lemma 4.2 and Lemma 5.3 which are still valid in the case
rε

ε
→ 0. By comparison with the analysis performed in the preceding sections for the case

rε = kε, those estimates show that a few fields must be re-scaled (e.g. by multiplication by
rε

ε
) to exhibit weak limits. Once these re-scalings are adopted, many points of the analysis

are identical in both cases. As a consequence, we will only detail the points where the
arguments must be modified.

7.1 Weak limits of the fields (case
rε

ε
→ 0)

Lemma 4.2 and Lemma 5.3 give the following weak convergence results:

Lemma 7.1. Assume (2.19)÷(2.21), and that
rε

ε
→ 0.

For a subsequence, still denoted by {ε},
• there exist u0

i ∈ L2(ω,H1(D×]0, L[)) and u0
i ∈ L2(Ω+, H1(D)), for i = 1, 2, 3, such

that, as ε tends to zero,

r2
ε

ε
T ε(uε

α) ⇀ u0
α weakly in L2(ω,H1(D×]0, L[)), for α = 1, 2, (7.1)

rε

ε
T ε(uε

3) ⇀ u0
3 weakly in L2(ω, H1(D×]0, L[)), (7.2)
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1

ε
T ε(uε

i ) ⇀ u0
i weakly in L2(Ω+, H1(D)), for i = 1, 2, 3; (7.3)

• there exist U0
i ∈ L2 (ω,H1(]0, L[)), R0

i ∈ L2 (ω,H1(]0, L[)), for i = 1, 2, 3, and Z ∈
(L2(Ω+))

3
such that, as ε tends to zero,

r2
ε

ε
U ε

α ⇀ U0
α weakly in L2

(
ω,H1(]0, L[)

)
, for α = 1, 2, (7.4)

rε

ε
U ε

3 ⇀ U0
3 weakly in L2

(
ω,H1(]0, L[)

)
, (7.5)

r2
ε

ε
Rε

i ⇀ R0
i weakly in L2

(
ω,H1(]0, L[)

)
, for i = 1, 2, 3, (7.6)

rε

ε

(
∂U ε

∂x3

− (Rε ∧ e3)

)
⇀ Z weakly in

(
L2(Ω+)

)3
; (7.7)

• there exist Xij ∈ L2(Ω+ × D) and Σij ∈ L2(Ω+ × D), for i, j = 1, 2, 3, such that, as ε

tends to zero,

rε

ε
T ε(γij(u

ε)) ⇀ Xij weakly in L2(Ω+ × D), for i, j = 1, 2, 3, (7.8)

rε

ε
T ε(σε

ij) ⇀ Σij weakly in L2(Ω+ × D), for i, j = 1, 2, 3; (7.9)

• there exist u−
i ∈ L2(Ω−), with u−

i = 0 on ∂ω×] − l, 0[, for i = 1, 2, 3, such that, as ε

tends to zero,
uε

i ⇀ u−
i weakly in H1(Ω−) strongly in L2(Ω−). (7.10)

With the limit introduced in Lemma 7.1, the analysis developed in Section 5.3 remains
identical so that U0

i , u0
i and Σij verify (5.23) (5.24), (5.32) and (5.49)÷(5.54) in Ω+ × D

with k = 1, and the boundary conditions (5.55)÷(5.57). Let us just explain why k becomes
1 (and not 0) in those expressions. Loosely speaking, when the unfolding operator T ε is
applied to a field it results that some terms are multiplied by r (see e.g. (5.27)). Then,
in the case where rε = kε, the corresponding weak limits are multiplied by k. In the case

where
rε

ε
→ 0, the rescaling of the fields (as shown in Lemma 7.1) leads to the constant 1

when T ε is applied. Let us now turn to the analog of the kinematic conditions obtained in
Section 5.5. Conditions (5.55) and (5.56) remain true and are derived identically. The main
difference here is the continuity condition (5.59) which can not be established here, because
the measure of the set Ω+

ε goes to zero too rapidly. Defining T ε(uε
3) as in Section 5.5 also for

x3 ∈]− l, 0[, we have here
rε

ε
T ε(uε

3) bounded in L2(ω×D,H1(]− l, L[)) (because of estimates

of Lemma 5.3). Then
rε

ε
T ε(uε

3) ⇀ u∗
3 weakly in L2(ω ×D, H1(]− l, L[)) (for a subsequence)

as ε tends to zero. Because of the weak convergence of
rε

ε
T ε(uε

3) in Lemma 7.1 and using

(5.31) which holds true with k = 1 in the present case, we obtain

u∗
3 = U0

3 + X2R
0
1 − X1R

0
2 in Ω+ × D. (7.11)

Now, from (7.10) we know that uε
3 → u−

3 strongly in L2(Ω−). As we have
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rε

ε
‖T ε(uε

3)‖L2(Ω−×D) =

(∫

ωε,rε×]−l,0[

|uε
3|

2

) 1

2

, we deduce that
rε

ε
T ε(uε

3) → 0 strongly in

L2(Ω− × D). Then u∗
3(x1, x2, 0, X1, X2) = 0 in L2(ω × D) which implies with (7.11) that

U0
3 (x1, x2, 0) = 0 on ω. (7.12)

Next deriving the kinematic conditions (5.67), (5.68) and (5.69) on u0 is identical to the
case rε = kε. We now turn to obtaining the limit problem. Writing (2.18) in terms of the
operator T ε gives here (see (a) of Lemma 5.1)

r2
ε

ε2

3∑

i,j=1

∫

Ω+×D

T ε
(
σε

ij

)
T ε (γij(v)) dx1dx2dx3dX1dX2+

3∑

i,j=1

∫

Ω−

σε
ijγij(v)dx1dx2dx3 =

r2
ε

ε2

3∑

i=1

∫

Ω+×D

T ε (f ε
i ) T ε (vi) dx1dx2dx3dX1dX2

+
3∑

i=1

∫

Ω−

f ε
i vidx1dx2dx3, ∀v ∈ Vε,r.

(7.13)

Recall that we have by assumptions (2.19) and (2.20)

T ε(f ε
α) = rεT

ε(fα), for α = 1, 2,

and
T ε(f ε

3 ) = T ε(f3),

and by (a) of Lemma 5.1

rε

ε
‖T ε(f ε

i )‖L2(Ω+×D) = ‖fi‖L2(Ω+
ε ) for i = 1, 2, 3.

Then
1

ε
‖T ε(f ε

α)‖L2(Ω+×D) = ‖fα‖L2(Ω+
ε ) → 0 for α = 1, 2, (7.14)

and
rε

ε
‖T ε(f ε

3 )‖L2(Ω+×D) = ‖f3‖L2(Ω+
ε ) → 0, (7.15)

because fi ∈ L2(Ω+) for i=1,2,3 and meas(Ω+
ε ) → 0.

As far as the determination of u0 is concerned, we choose the same test functions vε given

by (6.2) and (6.3) in (7.13). With the help of the convergence on
rε

ε
T ε (σε) given by Lemma

7.1 and of (7.14), (7.15) we obtain the same problem (6.13) and (6.17) with k = 1. It turns
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out that u0
3 = 0, and that u0

1 and u0
2 are given by (6.18), (6.19), and that Σ is given by (6.15),

(6.16), (6.21) and (6.22).
To obtain the rods equations in Ω+, we first use the function vε defined in (6.23) as a

test function in (7.13). Taking into account (7.14), (7.15), we deduce that (6.27) holds true
with a right hand side equal to zero. It follows that (6.28) and (6.29) are satisfied with a
right hand side equal to zero and with k = 1. In view of the boundary condition satisfied by
U0

α on ∂ω, we obtain U0
α = 0 in Ω+ × D.

In order to obtain the equation for U0
3 in Ω+, we choose in (7.13) the test function vε

defined by

vε(x1, x2, x3) = ϕ(εp, εq)V3 (x3) e3, if (x1, x2) ∈ Dε
pq, x3 ∈]0, L[, for (p, q) ∈ N ε,

and
vε(x1, x2, x3) = 0, if x3 ∈] − l, 0[.

where ϕ is in C∞
0 (ω) and V3 ∈ C∞([0, L]) with V3(0) = 0. Then we have in Ω+

ε :

γij(v
ε) = 0, for (i, j) 6= (3, 3),

γ33(v
ε) = ϕ(εp, εq)V ′

3 (x3) , if (x1, x2) ∈ Dε
pq, x3 ∈]0, L[, for (p, q) ∈ N ε.

Using the same type of arguments than in Section 6.2, we obtain

T ε(vε) → ϕV3 in L2(Ω+ × D),

T ε(γij(v
ε)) = 0, (i, j) 6= (3, 3),

T ε(γ33(v
ε)) → ϕV ′

3, in L2(Ω+ × D),

as ε tends to zero.
With the help of the weak convergence of

rε

ε
T ε(σij), (7.14), (7.15), (6.22) and the fact

that U0
1 = U0

2 = 0, we pass to the limit in (7.13) and it yields

∫

Ω+

∂U0
3

∂x3

V ′
3dx1dx2dx3 = 0, (7.16)

for any ϕ ∈ C∞
0 (ω) and V3 ∈ C∞([0, L]) with V3(0) = 0. Indeed (7.16) gives equation and

∂2U0
3

∂x2
3

= 0, a.e. in L2(Ω+),

and
∂U0

3

∂x3

= 0, in ω × {L},

and because of the boundary condition (7.12), it follows that U0
3 = 0 in Ω+. In conclusion,

in the present case where
rε

ε
→ 0, we find that U0

i = 0 in Ω+, for i = 1, 2, 3. To conclude

this section it remains to obtain the equations and boundary conditions in Ω−. To this end,
let us take v ∈ C∞(ω × [−l, L]) such that v = 0 on ∂ω×] − l, 0[ as a test function in (7.13).
With the help of (c) of Lemma 5.1, we have T ε(γij(v)) → γij(v) strongly in L2(Ω+ ×D), for
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i = 1, 2, 3, and T ε(v) → v strongly in L2(Ω+ × D), as ε tends to zero. In view of the weak

convergence of
rε

ε
T ε (σε) given by Lemma 7.1 and of (7.14), (7.15), passing to the limit in

(7.13) leads to
3∑

i,j=1

∫

Ω−

σ−
ijγijdx1dx2dx3 =

3∑

i=1

∫

Ω−

fividx1dx2dx3,

for any v as above. Then, we obtain

−
3∑

j=1

∂σ−
ij

∂xj

= fi in Ω−,

σ−
α3 = σ−

33 = 0, on ω × {0} and ω × {−l}.

Since σ−
ij is still given by (6.31), it gives a standard elastic problem in Ω− which indeed

admits a unique solution.

8 Convergence of the energies

We only investigate the case r = kε, the case
rε

ε
→ 0 being very similar. We take v = uε in

(6.1) to obtain the energy identity:

EΩε
(uε) = k2

3∑

i,j=1

∫

Ω+×D

T ε
(
σε

ij

)
T ε (γij(u

ε)) dx1dx2dx3dX1dX2+

3∑

i,j=1

∫

Ω−

σε
ijγij(u

ε)dx1dx2dx3 = k2

3∑

i=1

∫

Ω+×D

T ε (f ε
i ) T ε (uε

i ) dx1dx2dx3dX1dX2

+
3∑

i=1

∫

Ω−

f ε
i uε

idx1dx2dx3.

Since rε = kε, from (2.19) and (2.20) we have

k2

3∑

i=1

∫

Ω+×D

T ε (f ε
i ) T ε (uε

i ) dx1dx2dx3dX1dX2 =

k3

2∑

α=1

∫

Ω+×D

εT ε (fα) T ε (uε
α) dx1dx2dx3dX1dX2+

k2

∫

Ω+×D

T ε (f3) T
ε (uε

3) dx1dx2dx3dX1dX2,
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and (5.13), (5.14) and the strong convergence of T ε (fi) to fi permits us to obtain

lim
ε→0

EΩε
(uε) = k3

2∑

α=1

∫

Ω+×D

fαu0
αdx1dx2dx3dX1dX2+

k2

∫

Ω+×D

f3u
0
3dx1dx2dx3dX1dX2 +

3∑

i=1

∫

Ω−

fiu
−
i dx1dx2dx3.

(8.1)

Now remark that the expressions derived in the preceding section lead to

X11 + X22 + 2νX33 = 0, X11 = X22, X12 = X13 = X23 = 0, (8.2)

X33 =
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

. (8.3)

We will now use the easy to verify algebraic identity which is valid for any symmetric
matrix d = (dij)

λ(Tr d)(Tr d) + 2µ
3∑

i,j=1

dijdij = Ed33d33 +
E

(1 + ν)(1 − 2ν)
(d11 + d22 + 2νd33)

2+

E

2(1 + ν)

[
(d11 − d22)

2 + 4(d2
12 + d2

13 + d2
23)

]
.

(8.4)

Then we have, in view of (8.2) and (8.3),

∫

Ω+×D

{
λTr(X)Tr(X) +

3∑

i,j=1

2µXijXij

}
dx1dx2dx3dX1dX2 =

E

∫

Ω+×D

(
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

)2

dx1dx2dx3dX1dX2 =

Eπ

∫

Ω+

(
∂U0

3

∂x3

)2

dx1dx2dx3+

Ek2

∫

Ω+

(
I1

(
∂2U0

1

∂x2
3

)2

+ I2

(
∂2U0

2

∂x2
3

)2
)

dx1dx2dx3,

(8.5)

(using again

∫

D

X1dX1dX2 =

∫

D

X2dX1dX2 =

∫

D

X1X2dX1dX2 = 0).

Using U0
α = u0

α (recall (5.28)) as a test function in (6.29) gives also taking into account
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the boundary conditions on U0
α:

Ek4

∫

Ω+

(
I1

(
∂2U0

1

∂x2
3

)2

+ I2

(
∂2U0

2

∂x2
3

)2
)

dx1dx2dx3 =

k3

2∑

α=1

∫

Ω+

fαu0
αdx1dx2dx3

(8.6)

Secondly, plugging the test function defined by U0
3 in Ω+ × D and u− in Ω− in (6.32), and

recalling (5.32), leads to

Ek2π

∫

Ω+

(
∂U0

3

∂x3

)2

dx1dx2dx3 +

∫

Ω−

3∑

ij=1

σ−
ijγij(u

−)dx1dx2dx3 =

k2

∫

Ω+×D

f3u
0
3dx1dx2dx3dX1dX2 +

∫

Ω−

3∑

i=1

fiu
−
i dx1dx2dx3.

(8.7)

Adding (8.6) and (8.7) and using (8.1) and (8.5) give

lim
ε→0

EΩε
(uε) = k2

∫

Ω+×D

{
λTr(X)Tr(X) +

3∑

i,j=1

2µXijXij

}
dx1dx2dx3dX1dX2

+

∫

Ω−

3∑

ij=1

σ−
ijγij(u

−)dx1dx2dx3,

(8.8)

which yields the convergence of the energy E(uε) to the elastic limit energy. A standard
argument based on the strict convexity of the elastic energy shows that the convergences
(5.20) and (5.21) are strong in L2(Ω+ × D) and that γij(u

ε) → γij(u
−) strongly in L2(Ω−)

as ε tends to zero. This last fact implies directly that uε → u− strongly in H1(Ω−).
The strong convergence in (5.20), for i = j = 3, together with (5.15) and the expression

(5.47) of X33 gives

∂U ε
3

∂x3

+ kεX2
∂Rε

1

∂x3

− kεX1
∂Rε

2

∂x3

+
∂T ε(uε

3)

∂x3

→
∂U0

3

∂x3

+ kX2
∂R0

1

∂x3

− kX1
∂R0

2

∂x3

strongly in L2(Ω+ × D),

(8.9)

as ε tends to zero. Using

∫

D

T ε(uε
3)dX1dX2 =

∫

D

XαT
ε(uε

3)dX1dX2 = 0 a.e. in Ω+, for

α = 1, 2, we easily deduce from (8.9) that

∂U ε
3

∂x3

→
∂U0

3

∂x3

, ε
∂Rε

α

∂x3

→
∂R0

α

∂x3

strongly in L2(Ω+ × D), for α = 1, 2, (8.10)
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as ε tends to zero.
Now remark that, in view of (4.25) we know that εRε

α(·, ·, 0) strongly converges to 0 in
L2(ω), as ε tends to zero. Then (8.10) implies that

εRε
α → R0

α strongly in L2(ω; H1(]0, L[)), for α = 1, 2, (8.11)

as ε tends to zero. From (5.19) and (8.11) it follows that

εU ε
α → U0

α strongly in L2(ω; H1(]0, L[)), for α = 1, 2, (8.12)

as ε tends to zero. As a consequence of the decomposition 4.38, 4.39 of the uε
α’s, we deduce

from the previous convergences that

εT ε(uε
α) → U0

α strongly in L2(ω; H1(D×]0, L[)), for α = 1, 2. (8.13)

As far as U ε
3 is concerned, remark that uε

3(x1, x2, 0) → u0
3(x1, x2, 0) strongly in L2(ω) and then

the estimates on U ε
3(x1, x2, 0) in Step 1 of Section 4.1 shows that U ε

3 (x1, x2, 0) → U0
3 (x1, x2, 0)

strongly in L2(ω). With (8.10) it gives

U ε
3 → U0

3 strongly in L2(ω; H1(]0, L[)), (8.14)

as ε tends to zero. At least, proceeding as above leads to

T ε(uε
3) → U0

3 − kX1
∂U0

1

∂x3

− kX2
∂U0

2

∂x3

strongly in L2(ω; H1(D×]0, L[)). (8.15)

Remark 8.1. As far as the strong convergences of the sequences
1

ε
T ε(uε) and εRε

3 in (5.15)

and (5.18) are concerned, the analysis is more intricate (even for a single rod, see [16]).

What is easy to prove is that
1

ε
T ε(uε

α) →u0
α strongly in L2(Ω+; H1(D)) for α = 1, 2. This is

a consequence of the strong convergence of T ε (γαβ(uε)) in L2(Ω+ ×D), of (5.34) and of the
Korn’s inequality in D for a displacement field satisfying (3.8) and (3.10).

9 Summarize (case r = kε)

Let ε be a sequence of positive real numbers which tends to 0. Let (uε, σε) be the solution of
(2.13)÷(2.18) and U ε and Rε be the two first terms of the decomposition of uε in Ω+

ε given
in Section 3. The unfolding operator T ε in Ω+

ε is defined in Section 5.1.
In order to state the convergence theorem below, we first recall the limit problems ob-

tained in Section 6.2 and 6.3.
Limit problem: let (f1, f2, f3) be in (L2(Ω))3.
• Bending problem in the rods (indexed (x1, x2) ∈ ω):
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Let us denote by (U0
1 ,U0

1 ) ∈ (L2(ω; H1(]0, L[)))
2

be the unique weak solution of the problem:





kEIα

∂4U0
α

∂x4
3

= πfα, in Ω+,

U0
α =

∂U0
α

∂x3

in ω × {0},

∂2U0
α

∂x2
3

=
∂3U0

α

∂x3
3

= 0 in ω × {L}.

(9.1)

• Coupled problem for the stretching in the rods and 3d elasticity in Ω−: let us denote by
U0

3 ∈ (L2(ω; H1(]0, L[))) and (u−, σ−) ∈ (H1(Ω−))
3
× (L2(Ω))

3×3
s the unique weak solution

of the problem: 



−E
∂2U0

3

∂x2
3

= f3, in Ω+,

σ−
ij = λ

(
3∑

k=1

γkk(u
−))

)
δij + 2µγij(u

−) in Ω−,

−
3∑

j=1

∂σ−
ij

∂xj

= fi in Ω−

(9.2)

with
• the transmission condition on ω × {0}:





U3 = u−
3 on ω × {0},

σ−
α3 = 0, σ−

33 = Ek2π
∂U0

3

∂x3

on ω × {0},
(9.3)

• the boundary conditions:




∂U0
3

∂x3

= 0 on ω × {L},

σ−
α3 = σ−

33 = 0 on ω × {−l},

u− = 0 on ∂ω× ] − l, 0[.

(9.4)

According to the proof developed in the previous sections, we can state the following
convergence result:

Theorem 9.1. Under the assumptions (2.19)÷(2.21) on the applied forces, the sequence
(uε, σε) satisfy the following convergences:

• εT ε(uε
α) → u0

α strongly in L2(ω, H1(D×]0, L[)), for α = 1, 2,
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• T ε(uε
3) → u0

3 strongly in L2(ω, H1(D×]0, L[)),

where (u0
1, u

0
2, u

0
3) is the Bernoulli-Navier displacement

u0
α(x1, x2, x3, X1, X2) = U0

α(x1, x2, x3), for α = 1, 2,

u0
3(x1, x2, x3, X1, X2) = U0

3 (x1, x2, x3) − kX1
∂U0

1

∂x3

(x1, x2, x3) − kX2
∂U0

2

∂x3

(x1, x2, x3),

U0
1 , U

0
2 and U0

3 being the solution of (9.1), and (9.2)÷(9.4).

• εU ε
α → U0

α strongly in L2
(
ω, H1(]0, L[)

)
, for α = 1, 2,

• U ε
3 → U0

3 strongly in L2
(
ω,H1(]0, L[)

)
,

• T ε(γij(u
ε)) → Xij strongly in L2(Ω+ × D), for i, j = 1, 2, 3,

where

X11 = X22 = ν

{
−

∂U0
3

∂x3

+ kX1
∂2U0

1

∂x2
3

+ kX2
∂2U0

2

∂x2
3

}
,

X12 = X13 = X23 = 0,

X33 =
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

.

• T ε(σε
ij) → Σij strongly in L2(Ω+ × D), for i, j = 1, 2, 3

where
Σ11 = Σ22 = Σ12 = Σ13 = Σ23 = 0,

Σ33 = E

(
∂U0

3

∂x3

− kX1
∂2U0

1

∂x2
3

− kX2
∂2U0

2

∂x2
3

)
,

with E =
µ(3λ + 2µ)

λ + µ
.

• uε
i → u−

i strongly in H1(Ω−), for i = 1, 2, 3,

• σε
ij → σ−

ij strongly in L2(Ω−), for i, j = 1, 2, 3.
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