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Junction of a periodic family of elastic rods with a 3d
plate. Part I.

Dominique Blanchard* Antonio Gaudiello’ and Georges Griso *

Abstract

We consider a set of elastic rods periodically distributed over a 3d elastic plate
(both of them with axis x3) and we investigate the limit behavior of this problem as
the periodicity € and the radius r of the rods tend to zero (see fig.1 below). We use
a decomposition of the displacement field in the rods of the form v = U + u where
the principal part U is a field which is piecewise constant with respect to the variables
(z1,x2) (and then naturally extended on a fixed domain), while the perturbation @
remains defined on the oscillating domain containing the rods. We derive estimates of
U and @ in term of the total elastic energy. This allows to obtain a priori estimates
on u without solving the delicate question of the dependence, with respect to € and r,
of the constant in Korn’s inequality in such an oscillating domain. To deal with the
field w, we use a version of an unfolding operator which permits both to rescale all the
rods and to work on the same fixed domain as for U to carry out the homogenization
process. The above decomposition also helps in passing to the limit and to identify the
limit junction conditions between the rods and the 3d plate.

Résumé

Nous considérons un ensemble de poutres élastiques périodiquement distribuées sur
une plaque élastique 3d (toutes d’axe x3) et nous analysons le comportement limite de
ce probleme lorsque la périodicité ¢ et le rayon r des poutres tendent vers zéro. Nous
introduisons une décomposition du champ de déplacement de la forme v = U 4+ @ dans
laquelle la partie principale U est un champ constant par morceau par rapport aux
variables (z1,x2) (et qui s’ étend donc naturellement sur un domaine fixe), alors que la
perturbation u reste un champ défini sur le domaine oscillant qui représente les poutres.
Nous donnons des estimations de U et w en fonction de I’énergie élastique totale. Ceci
permet d’obtenir des estimations a priori de u sans chercher a évaluer la dépendance,
par rapport a € et r, de la constante de l'inégalité de Korn pour un tel domaine
oscillant. Pour traiter le champ @, nous utilisons une version d’opérateur d’ éclatement
qui permet simultanément de redimensionner toutes les poutres et de travailler sur le
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méme domaine fixe que pour U afin d’analyser le probleme d’homogénéisation. La
décomposition ci-dessus facilite aussi le passage a la limite et 'obtention les conditions
de jonction limites entre les poutres et la plaque 3d.

Keywords: linear elasticity, rods, rough boundary.
2000 AMS subject classifications: 74B05, 74K10, 35B27.

1 Introduction

This paper is devoted to describe the asymptotic behavior of an elastic multistructure com-
posed of a set of periodic elastic rods in junction with a 3d plate (see Figure 1). The diameter
of each rod tends to zero as the periodicity vanishes, while the height of the rods remains
constant. The lateral boundary of the plate is assumed to be clamped. The mechanical
model under investigation is the isotropic linearized elasticity system (see e.g. [6]). In this
first paper, we consider a plate of constant thickness. The case of the vanishing thickness
for the plate is investigated in the second paper [3].

Figure 1: Elastic multistructure with highly oscillating boundary

Since the periodicity and the diameters of the rods tend to zero, while the height of
the rods remains constant, this problem pertains to the field of elliptic problems posed on
a domain which has a so called: "highly oscillating boundary”. Boundary-value problems
involving rough boundaries or interfaces appear in many fields of physics and engineering sci-
ences, such as the scattering of acoustic waves on small periodic obstacles, the free vibrations
of elastic bodies, the behavior of fluids over rough walls, or of coupled fluid-solid periodic
structures. There is a long list of paper concerning domains with highly oscillating boundary
(for scalar problems, see e.g. [1], [2], [4], [10], [12], [13] and [22]). Precisely, in [4] the limit
problem for the Laplace equation with the homogeneous Neumann boundary condition and
with a L?-right-hand side is derived. For the same problem, a nonoscillating approximation
of the solution at order O (¢!7?) in the H'-norm is obtained in [22], under an additional as-
sumption on the right-hand side. In the case of the Laplace equation with Dirichlet boundary



conditions, a nonoscillating approximation of the solution at order O (s%> in the H'-norm

is constructed in [1]. The Laplace equation with a non-homogeneous Neumann boundary
condition is studied in [13]. The limit energy of the p-laplacian is obtained in [10], while a
corresponding monotone problem is considered in [2]. The optimal control for a parabolic
problem is studied in [12]. For the asymptotic behaviour of transmission problems, we refer
to [14] and [18]. For general references about domains with singular perturbations and mul-
tidomain, we refer to [9], [19], [20], [21], [25]. For mathematical modelling of rods we refer
to [23], [24] and [27]. For a presentation of the homogenization theory we refer to [26].

Even if our model is linear isotropic elasticity, the vectorial character of the unknown (the
3d displacement) precludes from reproducing the analysis used for the above scalar problems
to take into account the fast oscillations of the rods. Indeed, the first difference concerns the
derivation of a priori estimates on the displacement (or the stress) field: the dependance of
the constant in Korn’s inequality with respect to the period ¢ of the rods and their diameter
r is not relevant. In some sense this is due to very different behavior of the displacements in
the rods and in the plate. To overcome this first difficulty we use a decomposition of the 3d
displacement in the rods introduced in [16] and [17], which involves the mean displacement
and the main rotation of each cross section of each rod (see Section 3). The main property
of this decomposition relies on a priori estimates of its terms with bounds depending on e,
r and the total elastic energy. Loosely speaking, this leads to estimates of the type:

s 2, < cile, )., (W57), i=1,2,3,

where u*" is the displacement in the set of rods Q;T, ¢i(e,r) is a constant which depends on
e, r and on the component of the displacement, and &g, , (u™") is the total elastic energy in
the rods Q, and in the plate Q7: that is Q., = Qf U Q™. This process allows to precise
the scaling of the applied forces and to obtain more precise estimates on the displacement
(or on its decomposition) than by using Korn’s inequality. The second difficulty arises when
passing to limit as € and r tend to 0; indeed the solution is defined on a domain €., which
depends on € and r. In the scalar case, it is sufficient to extend the solution by 0 outside Q;r
and to remark that the derivative in the direction of the axis of the rods (say x3) commutes
with this extension process. It is well known that this simple argument does not work in
elasticity in order to describe the bending in the rods (the only deformation which commutes
with the 0-extension is 0,,u3). Actually, the decomposition we use for the displacement also
helps passing to the limit: it provides an approximation of the 3d displacement in the rods
which is defined on a fixed domain (the domain asymptotically filled by the rods). Indeed,
the mean displacement and the mean rotation of each rod lead to functions of x3 which are
piecewise constant with respect to (z1,z3). To deal with the rest of the decomposition, i.e.
the part which remains a field of (z1, xs, z3), we use first the a priori estimates (in terms of
the elastic energy) mentioned above and then a tool developed in [8], referred as the unfolding
operator technique, which also allows to work on a fixed domain (but with more variables).
A similar technique has been used in [5] for reticulated elastic structure. Let us emphasize
that with such an approach we not only identify the limit problem as a ”continuum” model
of 1d rods coupled with 3d elasticity in the plate; but we also show that the relevant physical
quantities (the mean of the 3d displacement in the cross-section of each rod) converge (in
adapted norms) to the solution of the limit problem. References and other applications of
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the unfolding operator technique can be found in [7], [11] and [15].

The paper is organizes as follows. In Section 2 we describe the geometry and the model
under consideration and specify the assumptions on the applied forces. Section 3 is devoted
to introduce the decomposition of the displacement field u® in the rods. In Section 4, we
derive the a priori estimates on each rods. In Section 5 we introduce the unfolding operator
and derive the estimates on the unfold fields. We also obtain the junction conditions between
the limit model for the rods and the plate. We first pass to the limit in Section 6 in the case
where the radius of the rods r is of order €. In Section 7 we examine the case r = o(g). At
least in Section 8 we prove convergence of the energies and deduce a few strong convergence
results of the fields. Section 9 is devoted to summarize the results.

2 Position of the problem

We investigate the behavior of an elastic 3d body ()., composed of two parts: a forest of
rods Qf, and a 3d plate Q™.

To describe the geometry of Qjﬂ,, let us consider an open bounded domain w with Lipschitz
boundary contained in the (z1, z3)-coordinate plane. For a real number € > 0, M. denotes

the following subset of Z2:

N = {(p,q) €Z’: }619— E,S]HE[ X }eq— S g+ E[C w}~ (2.1)
2 2 2 2
Fix L > 0. For each (p,q) € Z* & > 0 and r > 0, we consider a rod P, whose cross section
is the disk of center (ep,eq) and radius r, and whose axis is z3 and which has a height equal
to L:

D = {(z1,22) € R*: (11 — ep)® + (w2 — £q)® < r?}, (2.2)
Pol = {(w1, 29, 33) €R?: (w1,22) €D, 0< a3 <L}. (2.3)

&,

Then, for r € ]O, % [, we denote by QF  the set of all the rods defined as above:

of.= |J Py (2.4)
(p:a)EN-

The lower cross sections of all the rods is denoted by w, ,:

wer= |J Dy x{0} Cuw. (2.5)
(P,q)EN-.

€
We have assumed that » < —, in order to avoid the contact between two different rods.
The 3d plate is defined by

Q" = {(z1,22,23) ER®: (21,22) Ew, — < x5 <0}, (2.6)

where [ is a positive fixed real number.



The elastic body €., is defined by
Qe =QF, Uw,, UQ™. (2.7)

The domain asymptotically filled by the oscillating part QF, of Q. (as ¢ tends to zero)
is denoted by Q7:
O = wx]0, L]. (2.8)

Moreover, €2 is defined by
Q=wx| =1 L] (2.9)

We consider the standard linear isotropic equations of elasticity in €2 ,.
The displacement field in €, , is denoted by

us" Qe — R3.
The linearized deformation field in 2., is defined by
y(ut") = % (Du*" + (Du")") | (2.10)
or equivalently by its components:

Vi (u") = = (O + 0usT) i) =1,2,3. (2.11)

N | —

The Cauchy stress tensor in €., is linked to (u®") through the standard Hooke’s law:
o = XN(Try(u®") I 4+ 2uy(u®"), (2.12)

where A\ and p denotes the Lamé coefficients of the elastic material, and [ is the identity
3 x 3 matrix. Indeed (2.12) writes as

3
oy =X (Z ka(us’r)> Oij + 2uy(u™"), 4,5 =1,2,3, (2.13)
k=1

where 572]' =0 1f27é] and 5ij =1 le:j
The equation of equilibrium in €., writes as

=Y 005 =" in Qo i=1,2,3, (2.14)

where f7: Q.. — R3 denotes the volume applied force.
In order to specify the boundary conditions on 0f2. ,, we will assume that:

e the 3d plate is clamped on its lateral boundary dwx] —[,0[= I';;+:

u™" =0 on I'y, (2.15)



e the boundary 9€2., \ I'|,; is free:

o=y =0 on 00, \ I',t, (2.16)

where v denotes the exterior unit normal to €2, ,.

Remark 2.1. Assumption (2.16) means that the density of applied surface forces on the
boundary 0 . \ Ty, is zero. This assumption is not necessary to carry on the analysis, but

it is a bit natural as far as the fast oscillating boundary 0QF, is concerned.

The variational formulation of (2.14)+(2.16) is very standard. If V., denotes the space:

3

V., = {u e (H'(.,))" :v=0on rlat} , (2.17)

it results that

us" € Ve,

[.3

As far as the assumption on the applied forces is concerned, we assume that throughout
the paper

(2.18)
o5 i (v)dzx _/ Zf "vidx, Vv € V,.

E’I‘Z] 1 Erll

for =rf,in er, fora=1,2, (2.19)
§,r — f3 in Q;w (220)
fir=fiin Q7 fori=1,2,3, (2.21)

where f € (L2(Q))” is given.

3 Decomposition of the displacement in Qw and esti-

mates in )~

As usual, to obtain a priori estimates on u®", then on ~(u®") and ¢%", we plug the test
function u=" in (2.18) to obtain

[.3

The main difficulty in deriving a priori estimates from (3.1) is the dependance upon r and € in
the Korn’s inequality in €2, ,. Indeed, this is due to the fast oscillating part Qj’r (in Q™ Korn’s
inequality is standard and the boundary condition (2.15) permits to control |lu;"||z2q-)).
Moreover, for a multi-structure like €. ,, it is not very convenient to estimate the constant
in a Korn’s type inequality because the order of each component of the displacement field

i) Yig (u") d:r—/ [ ug " dx. (3.1)
Q

grlj 1 g,7 ¢9=1
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(say in L?>-norm, with respect to € and r) may be very different. To overcome this difficulty,
in the sequel we will use a decomposition of the field «=" in each rod P, which, in some
sense, takes advantage of the geometry of a rod (see [17]).

Fix ¢, r, and (p,q) in N and let us drop the index €, r and (p,¢) in D;;" and P;;" (then
for a while, D and P denote D;;" and Pp;").

For any displacement v € (H'(0))? of a open smooth domain O, the elastic energy is
denoted by

Eo(v) :/(9 A (Z’Ykk(@) +2/¢Z(%j(v))2 dx. (3.2)

In order to obtain a useful decomposition of v, we introduce the following notations:

1
U(xs) = _2/ v(71, T2, ¥3)dx1d7y, (3.3)
mr D
1
Rl (5173) = ﬁ (332 — Efq)’l)3(l‘1, Ta, $3)d£€1dx2, (34)
2 Jp
1
RQ(Q?g) = —ﬁ (l’l - Ep)Ug(l'l, Ta, l’g)dl’ldﬂfg, (35)
17 Jp
1
Rs(xs) = T+ L)t /D(ﬂﬁl — ep)va(x1, T2, 23) — (22 — eq)vr (w1, T2, ¥3)da1dzs,  (3.6)
1 9 ™ 1 9
where I} = — (x1 —ep)idrrdey = — = — [ (x2 — eq) dr1dry = Is.
™ Jp 4 rJp
Let us denote by R the vectorial field (R, Rq, R3) and set

(21, o, x3) = (1, T2, x3) — U(x3) — R(x3) A (21 — ep)er + (x2 — £q)ez). (3.7)

where e; = (1,0,0), e; = (0,1,0) and e3 = (0,0, 1).
Indeed, due to the definition of R and to the symmetry of D, one has that

/ 6@'(1‘17 l’g,l’g)dl’ldl’g = O, for i = 1, 2, 3, (38)
D
/(ZEl — €p)@3($1,$27l'3)d$1d1‘2 = /(ZL‘Q — 8(])@3(1’1, $2,{L‘3)dl'1d5(72 = O, (39)
D D
/(ZE‘I — 6]))@2(1‘1,%2, l’3) — ((L’Q — 8(])51(1’1, T, I’g)dl’ldl’g = 0, (310)
D

for almost any x5 in |0, L.
The following lemma is proved in [16].

Lemma 3.1. For L > r, there exists a constant ¢ (which does not depend on L and r) such
that for any v € (H'(P))3:

: < Z&p(v), (3.11)

— — R Aes <
z2o,rp® "

dZL'3
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AR ||° c

‘ Ton < —&p(v), (3.12)
sl 7
017 2pyy2 < cr°Ep(v), (3.13)
1DD[{ 2y < Ep(v), (3.14)

where U = (Uy,Uz,Us), R = (R1,R2,R3) and v are defined in (3.3)+(5.7).

To end this section, we recall that, since u=" = 0 on dwx]| —1, 0], Korn’s inequality yields:

||u€r|| (20 3 4 HDUE rH (20 9 < CEQ sT — C/ Z Uz] %J )da;, (3.15)

i,7=1

where ¢ is a constant independent of € and 7.

4 A priort estimates

Let us consider the displacement u=" € (H*(Q,))® solution of (2.14)+(2.16). Indeed, u" €

(H Y(Ps T))g for any (p,q) € N¢. Then, the previous section permits to define, for any
(p,q) € N¥, the fields U7, Ro7 and w7, through the formulae (3.3)+(3.7), with u®" in
place of v. Recall that for any (p, q) € N5, U € (H*(]0, L[))?, Roy € (H'(]0, L]))’, and
—ar (Hl(PETD ]

In order to shorten the notation, we set:

~ € € € €
= — = — — = — . 4.1
W, U Gsp 2,€p—|—2[><}5q 2,5q+2DCw (4.1)
(p,q)ENE

Now we define the field U*" and R®" almost everywhere in QF by

U (@1, w2, @5) = Uy (2s), i (1, 32) € |ep— - 5

2,€p—|—§[x]5q— 8q+§[, (4.2)

. €
R (w1, w0, w3) = Ry (23), if (71, 72) € ]5}9 — 3

ME’T<:U17 X, x3) == RE’T(‘ID X, 1.3) = 07 lf (xlu x2> cw \&357

€ € €
c - c 4.
,6p—|—2[><]5q 2,€q+2[, (4.3)

—~
.'.b
IS

S—

which means that U=" (-, -, x3) and R*"(-, -, x3) are constants on each cell } Ep — %, ep + g [ X
€q — c €q + 5[
q 9 q 9| )
Indeed, we have that U>", R®" € (L*(Q1))°, and for i = 1,2,3

2
[ / u“ x?, da:3:52 S 0., (4.5)

(p,q)EN® (p.q)EN*®
H,R,ETHLQ(QJr = 5 Z / Rsr LC3 ‘ dLCg = 82 Z || (R;g)z ”%2(]@[/[)_ (46)
(p,q)EN® (p.q)eEN*



Moreover, since

ous" au:;’ , 5 5 5 5
a{,(,’?) ($1,$27$3): d,j:: (l’g), if (.Il,ZL’Q) E]ap—§,€p+§[x]€q—§,€q+§[, (47)
and
ORE" ARy , 5 5 5 5
al’3 ($1,$27$3) = dq]p;)q (]}3), if (.Tl,IQ) E]é?p—§,€p+§[x]€q—§,€q+§[, (48)

it follows that
U R e (L2 (w, H(J0, L]))), (4.9)

(recall that U, Ror € (H'()0, L]))*, for any (p,q) € N¢) and for i = 1,2,3

2

ou:" 2 ducr 2 dUE"

’81 Z / (dpq) drs = &2 Z (dpq) . (410)
3 M2t (pa) N T3 /i waen I\ @3 /il 2qo.r

ORE" 2 L dRE" 2 dRE" 2
; =< ) o) [ des=e ) (4.11)
s @) (pg)ene 70 8 /i (PN 8 Jillz2qo.zp

As far as the set of functions ;" are concerned, we define the function u*" a.e. in QF,
by
u" = if (11,19, 13) € Py (4.12)

pQ’

e,T g,r

In order to obtain estimates on the quantities U*", R*", u*>" and u®" in various norm,
the strategy is the following. At first, we derive a few estimates on the fields =", R®", u®"
and u®" respectively in terms of the total elastic energy:

3

o, () = [ 3 o),
Q

&r 17.]:1

Then, we use (3.1) and assumptions (2.19), (2.20), (2.21) on the forces (f;"") to obtain an
uniform estimates on &, (u*"), from which we deduce uniform bounds on U*", R*", "
and u®"

In the sequel of this Section, ¢ denotes any positive constant independent of € and r.

4.1 Uniform bound on /*" and R*" in terms of &,_ (u")

The estimates on U*" and R*" are obtained in two steps. In the first step, estimates on
Uusr(-,-,0) and R*"(-, -, 0) are derived in term of Eq- (u="), by using the definitions (3.3)=(3.6)
and estimate (3.15). Then, in step 2, we use (4.7) and (4.8) and estimates (3.11), (3.14) in
each road P,

Step 1. Estimates on =" (-, -,0) and R="(-,-,0).

We begin with R (-, -,0) and we only detail the technique for R;".



First recall that for any (p,q) € N¢, we have that
e,r 1 e,r
(”Rp’q)1 (0) = o (29 — eq)ug” (x1, 2, 0)dz1dxs. (4.13)

e,T
DPQ

Now ug" (21, 72,0) is indeed also the trace on D5, of the displacement uz" in Q. Then, by
using estimate (3.15), we have

Hugyr(l‘la T2, 0) "%2((.0) S ngf (UE’T).

Consequently, by using the Cauchy-Schwarz’s inequality in (4.13) and by summing up all
the obtained inequalities over (p, q) € N¢, we get

>R,

(p,q)EN*

2 c e,r
< —éa-(u). (4.14)

Actually we derive a sharper estimate using Poincaré-Wirtinger inequality’s and the term
(x2 —€q) in definition (4.13) (this will be useful to obtain the junction condition on w in the
limit problem).

For any (p,q) € N¢, we extend (R;g)l for almost x5 €] — [, 0] by

1 e
(R;;;)l (x3) = T (29 — eq)uy" (21, Ta, x3)dx1dTs. (4.15)
2 Jopy

Indeed (Rgy), € H'(] —1,0[), and

d(R5), 1 "
d—x3<x3) = ]27 D;;{<x2 - 5(]) 9 Z (xl,l’z,l’g)dxld.TQ. (416)

If we denote by Mper(us”)(23) the mean of uz” over D5, that is

1
Mg (457)(as) = 75 /D T (21, 9, 3)drds,
pq

£,r
rq

we first have that

— 74
127”6

1 e,r e,r
(R;’qr)l (x3) = /DE (x9 — £q) [u3’ (1,29, x3) — Moper (ug )(.733)} dzdzs, (4.17)

T
q

(and here the term (x5 —eq) plays the important role in the estimate) and secondly, because
of Poincaré-Wirtinger inequality’s on D5;" (which has radius equal to ), we have that

|us" — Mopzs 2, (4.18)

2 2
<u§’7¢)||L2(DZ;f><]—l,OD <ert ”D’“’“u?”(

L2(Dj x]-1,0)

where D,, ,,u3" denotes the gradient of u3" with respect to the variables xq, xs.
From (4.17) and (4.18), we deduce that, for any (p,q) € N,

s,

2 c
< —
r2(-to0) ~ r?

e,r|2
HDJBLQJZU’S ||(L2(D;ZIT><}*I,0D)2. (419)
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Due to (4.16) we have

2
2o, ) (4.20)
drs L2(]=1,0) O3 L2(Dpg x]-1,0))
As a consequence of (4.19) and (4.20) it results that
e,r 2 c e,r2
‘(Rp’q)l <0)’ < 5 1D% e gy -0 (4.21)

By summing up over all (p, q) € N¢, we obtain
S | Re, 0 < Sl e (122)
(p,g)EN*
and, with the help of the Korn’s inequality in Q= (see (3.15)), we have
> R, 0 < Sa-wen), (1.23)
(p,g)eN®

which is an improvement of (4.14).
Now, in view of the definition (4.3)-(4.4) of R®", we deduce that

ce?

[(RE), (0 < S5 (u) (.24

Indeed, we have the same estimates on (R®"), (0) and (R®"), (0) in L?(w), so that

2
e ce o
IR (5 O) 112y < — - (u). (4.25)

To obtain an estimate on U=’ (+,-,0), we just write, that for any (p,q) € N,

e,r 1 E,r
U (0) = —3 /E’T u®"(xq, 2, 0)dr1ds, (4.26)
and then by Cauchy-Schwarz’s inequality
‘uar } = cg / =" (01, 2, 0) [Py ds. (4.27)
"Iy

Due to the definition (4.2)+(4.4) of U*", summing up with respect to (p,q) € N*, we

obtain

ce?

T r 2
1457 G Oy < 5 I G ) -
Now, again with the help of the Korn’s inequality in Q™ (see again (3.15)) and of the trace
theorem in O, it yields

ce?

12457 (-, ) {2y < 2 a- (™). (4.28)

11



Step 2. Estimates on U®" and R*".
For any (p,q) € N, recall that by (3.12)

2

HdR&T‘

dl’g

@y T
Then, with the help of (4.8), we deduce that
2 2

< =, (), (4.29)
(L2(Q+))?

aRE ,r
8x3

which, together with (4.25) permits to obtain

ce?

72 r
IR~ H(L2(w,H1(]O,L[)))3 < FSQE,T (u™"), (4.30)

since Eqr (u*") + Eq-(u™") = &g, (u™") (the sharper estimate (4.25) will be used in Subsec-
tion 5.5).

To obtain estimates on U=", we first investigate the components U;" and Uy", and we
only give the proof for U™ (since it is identical for Us™).

Due to (3.11), for any (p,q) € N*, we have that

|

from which, by using (4.7), it follows that

2
d(Usq),

d[L‘g

2llL2qo,Lpy

2 1
(RE).[y * 22E00)

L2(]0,L])

2

AU
8[E3

<c{||7e;"||m++ o >},
)

L2(Q+

where ¢ is a constant independent of €. Then, with the help of (4.30), we obtain that (since
r<<1)

82/[6,7‘ 2 2
“ ! < =&, (). (4.31)
81‘3 L2(QF) r
In view of (4.28), we deduce that
e,r (|12 52
125 HL2(Q+) < Cpgﬂa,r(ua’r)- (4.32)
Similarly we have
2
g,r 2 8 e,
1245 HL2(Q+) < Cﬁgﬂs,r(u ) (4.33)
aus,r 2 2
H 2 &, (1°7). (4.34)
O3 L2(QF) r

12



Let us now consider Us™". For any (p,q) € N¢, we have from (3.11)

2
d (us,r)
pa )3 er
Tdrs < & (u),
L2(Jo,L])
which yields with (4.7)
aus,r 2 2
H 3 <& (u™")
03 L2(0+) re e
By using (4.28), it follows that
e,r (|12 52
U5 ([ 7200) < Cﬁgﬂs,r(ua’r)- (4.35)

4.2 Uniform bound on %*" in term of &y_ (u™")

Let us recall that in view of (3.13)-(3.14) and of the definition (4.12) of @*", one has for any
(p.q) € N,

177 W ooy < er*Epgyr (u™),
and

10T o ey S Epgyr (™),

Through summation over (p,q) € N, we deduce that

7712 ey < €, (1), (4.36)
and
—e,r (|2 e,r
| Du™ H(LQ(Q?,T))g < c€or (u™). (4.37)

4.3 Estimates on v*" in term of &y (u™")

First recall that from (3.7) and (4.12), we have, for any (p,q) € N¥, and for almost every
(33'1, Ta, 1’3) c Q;:r

u?r('%la T2, :U3) =
(4.38)
(Z/l;g]’")l (x3) — (R;;;")g (3) (12 — eq) + 0" (21, 22, w3), if (21, 79) € D5y

U;T(xla T2, .Tg) =

(4.39)
(U;gf)2 (x3) + (R;;;)g (x3)(x1 — ep) + Uy (w1, o, x3), if (21, 22) € D:r.

13



We derive first L? estimates on uj" (the details are identical for u5"). We have, for any
(p,q) € N°¢ and for almost every z3 €]0, L[

/ |u§77‘(l’17$27x3)|2d1'1dl’2 S
Dyy

2 2
’ (u;ér)1<x3)’ +T4‘(R§;g)3($3)‘ +/D” \ﬂi’r($1a$2,$3)|2df€1dﬂi2] -

By adding the previous inequalities with respect to (p,q) € N®, and by integrating over
10, L[, we obtain, in view of (4.5) and (4.6)

2 4
T 2 T -
P L i e L e

Appealing now to (4.30), (4.32) and (4.36), it yields that

1 e,r
” HLQ Q+ |:ﬁ + 1 + 7“2:| (c/,Q&T(fU/ ’ )
Finally, and proceeding identically for u5", we obtain
c
Jug HLz oty S T—QEQE,T(UE’T), fora=1,2. (4.40)

As far as ug" is concerned, recall that with (3.7) and (4.12) we have, for any (p, q) € N°=,
and for almost every (1, s, z3) € QF,

W Carmnas) = 07, () + (RE), () — )
(4.41)
(R;g)z (3)(x1 —ep) +u3" (21, X, x3), if (21,22) € Ds,.

This implies that for any (p,q) € N¢ and for almost every x5 €]0, L]

/er |ug" (21, w9, 3) [Pdar dy <
D )

rq

2

S5, (@s)

r (\ (R3i), <ﬂf3>\2 +|(Re), (@)

Proceeding as for u]", it yields with the help of (4.5) and (4.6)

)+

. ’ﬂg’r(iﬁl, T, .I'g)‘zdl’ldl'g] .
Pq

7"4

2
r e,r2 e,r2 e,r2 —e,r
1657 ) < © |55 1067 ey + 55 (RS ey + 15" ) + 1057 |-
Now we use (4.30), (4.35) and (4.36) to obtain
45 gy < e 1+ 7%] €, (),

and finally

g™ 17 ) < cEau, (W), (4.42)
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4.4 A prior: estimates on u*"

The inserting (2.13) into (3.1) leads to

2
o, (u™") < Z & 2@t llua e,y + 115 2@z 145" | 2 )+
a=1

3
S £ 2@ s 2o
=1

E,T||2

Then the estimates on |u; 120f,) in the previous section and estimates (3.15) on

HUEWH?LQ(Q_));; permit to obtain

Ea., (u") <

12 3 ) (4.43)
“Ir Z 1/ N 2,y + ||f§’r||L2(Q;T) + Z 15 2y | (Eae, (7).
a=1 i=1

In view of (4.43), the assumptions (2.19)+(2.21) on the forces f*" in QF and O~ appear (a
posteriori) natural to obtain an estimate on &g, (u®"), namely here

Ea., (uo") <ec. (4.44)

e,r

Remark 4.1. Indeed, Problem (2.11)+(2.16) is linear with respect to f=". Then at the
possible rescaling of u®", what is important in (4.43) is the relative behavior between fo"
and f3" in QF and f7" in Q. Here we have decided to normalize f;" in Q~, to obtain an
elastic energy Eq_, (u®") of order 1 with respect to ¢.

Once (4.44) is established, the estimates stated in the following lemma are direct conse-
quences of the previous sections.

Lemma 4.2. Under assumptions (2.19)+ (2.21), there exists a constant ¢ independent of €
and r such that

THUZ;T”LQ(Q;T) <eg, fOT' o = 17 27 (445)
[u3" | 20z, < € (4.46)
HU?THLQ(Q—) S C, fOT'i = 172737 (447)
17i5 (W) | 2,y <€ fori,j=1,2,3 (4.48)
15 (W) 220y < ¢ ford, j = 1,2,3, (4.49)
r2
g ||u06é7r||L2(w,H1(]O,L[)) S C, fOT o = 1, 2, (450)
T e,r
- U4 ”LQ(w,Hl(]O,L[)) < (4.51)
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2
r er -
= IR N e mrqo,npy < € fori=1,2,3, (4.52)

aus"
r — (R Aes) <e, (4.53)
el Ors (@)
7 s,y < e (4.54)
HDHE’TH([P(QQ}))S} g C. (455)

5 Unfolding operator and estimates on the unfold fields

In the sequel of this paper, {¢} will be a sequence of positive real numbers which tends to
zero and the radius of the rods will take values in a sequence {r.}. which also tends to zero.
For sake of simplicity, we will drop the index r. in the notations

In this section we first adapt the notion of "unfolding technique”, introduced in [8] for
thin or periodic structures, to take into account both the usual rescaling in rods theory and
the periodic character of QF. References on unfolding operators can be found in [§8], [11]
and [15]. Then we deduce from Section 4.4, the estimates on the unfolded various quantities
studied in this section.

5.1 The unfolding operator

Throughout the paper D will now denote the unit disk of R*: D = {(x,25) € R?: 2?2 + 23 < 1}.
Let v be a function of L?(QF). We define the function 7¢(v) on QO x D by, for almost
(21,2, 23) € QT and (X1, Xs) € D,

Ta<v)(x17 X2, T3, Xl; XQ) -

( U<p€ + T6X17 qe + r5X27 ZE3)7

(5.1)

. g e g e
1f(l’1,$2)€ 5p—§75p+§[x}5q_§75q4‘§ 9 (paq)e-/\/;ru

L 0, if (z1,20) Ew )\ @
(recall that @, is defined in (4.1)).

Let us make a few comments on this definition. First, it is clear that z3 appears in 5.1
as a parameter. Then 7°(v) is well defined on Q% x D since for (X7, X3) € D, one has
(ep +rcX1,6q + 71Xy, 23) € Py,. For the points (w1, 12, x3) € QF for which (z1,72) € w \ &,
T¢(v)(xy1, x2, 3, X1, X2) = 0 a.e.. The main interest in considering 7°¢(v) rather than v, is
that the effect of the oscillations of 7 is, in some sense, decoupled to the slow (and here
disconnected) variation of (x1,z5). Namely, (x1,x2) are split into (ep,eq) in one hand and
(X1, X3) on the other hand.

As a convention, if v € L*(Q"), we set 7¢(v) = T5(v), )-

£
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The following lemma contains the main properties of the operator 7¢ which will be used
throughout the paper.

Lemma 5.1.
(a) For all function v and w in L*(2}), one has

2

/vwdmldxgdxgz% T°(0)T*(w)dr1drodrsd X d Xs.
of € Ja+txb

(b) In the case r. = ke, for any function v in L*(Q7T),
T¢(v) — v strongly in L*(QT x D),

as € tends to 0. , o
(c) In the case where — tends to zero, and for any function v € C°(QF),
€

T¢(v) — v strongly in L*(QT x D),
as € tends to 0.
(d) In the case r. = ke, if {v.-}. is a sequence of L*(QT) such that v. — v strongly in
L*(Q1), then
T¢(v.) — v strongly in L*(Q2" x D),
as € tends to 0.
(e) For any v € H'(QF),
0(T¢(v)) v
i Sl SV
0X, e 0z,

) a.e. in QY x D, fora=1,2,

and

M:Ta ﬁ a.e. in QT x D.
8I3 81‘3

Proof. In order to obtain (a) we write

/dexldxgdxg / Z / v(x1, T9, w3)w(wy, T, 23)dr1drodrs =
Q+

(p,q)EN*®

L
7’?/ Z / U(gp—i_rEXlagq+r5X27x3)w(5p+TEX1,€(]+TEX2,$3)dX1dX2dx3 =
0

(payen= "
/ Z / viep 4+ r-Xi,eq + r.Xo, x3)
ayen= = I Dx|ep=5ept5x]ea-Feats|
w(ep + reX1,eq + reXo, w3)dX1dXodw dwadus =
2
= / T (w)dwsd X, dXod day =
0 L[><D><w
7,2
= / (w)dzrdzadasd X dXos.
QtxD
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The last equality being due to 7°(v) = 0 if (z1,22) € w \ We.
To prove (b) and (c), first consider a function ¢ € C°(Q*). By definition (5.1) of 7¢, we
have for any (z1, 22, x3) € Q" and (X1, X») € D,

’TE(QO)(.Il,QEQ,xg,Xl,XQ) - 90('7:17'7727373)' = |90(€p + TEXlagq + rEX?vxi%) - @(x17$27x3)‘ )

if (z1,) G]&Tp—%,Ep—l—g[X]&q—%,Eq—l—% and (p,q) € N,

|T€(30)('T17I?7I37X17X2) - Q0($1,$2,I3)| - |Q0<171,(L’2,[E3)| )

if (331,1’2) S w\&a- -
Then, since ¢ € C°(QF),

|T€(SO>(£C17'I27 xs, Xl; XZ) - gp(xhlévl‘?))l S 5(5)X@g + <1 - X@E) ||S0||CO(97+) ) (52)

where d(¢) tends to zero as € tends to zero, and ygz. denotes the characteristic function of
w,. It follows that

175(p) = ¢ll 2@ xpy < €0(e) + c(meas(w = @))2 @]l oy (5:3)

Now when ¢ tends to 0, meas(w—o;) tends to zero, because Ow is assumed to be Lipschitz
and € — 0, so that we obtain

T¢(v) — v strongly in L*(Q" x D), (5.4)

as ¢ tends to 0. This establish (c).
To obtain (b), remark that if r. = ke, (a), gives

. . 1 1
17°(p) =T (¢)‘|L2(Q+xp) ~ I — ¢HL2(Qj) < 7 lo — wHLQ(Q-&-) ) (5.5)

for all ¢ and ¢ in L*(Q). In view of (5.4) and (5.5), a classical density argument shows that

(b) hods true. Property (d) is an easy consequence of (b) and of (5.5). Property (e) follows

from the standard chain rule formulae in each cell |ep — g, ep + % X |leq — g, eq+ %[ and

it is trivial if (z1,29) € w \ @..

Remark 5.2. Let us conclude this section with a remark which will be useful to identify the
Junction condition between QT and Q. Consider a function v € L*(Q.). Then, since 3
appears as a parameter in (5.1), one can also define T¢(v) in Q= x D (i.e. for —l < x3<0).
In the case where r. = ke and if now {v.}. C L*(€.) is a sequence such that Ve, converges
strongly in L*(Q7) to a function v € L*(27), as € — 0, then

T¢(v.) — v strongly in L*(1~ x D), (5.6)

as € tends to 0.
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5.2 Estimates on the unfold fields

Lemma 4.2 and Lemma 5.1 together with 4.38, 4.39, 4.41 permit to obtain the following
Lemma:

Lemma 5.3. Under assumptions (2.19)+(2.21), there exists a constant ¢ independent of €
such that

(3 g €
e | 77 (ue) || 2o, i (pxgo,00) < c(1+ T_)’ for a=1,2, (5.7)
(3 3 €
1T (U3 | 2o 1 (Do < (1 + 77)7 (5.8)
Te e . .
T 0 ey < 05 Jorinj =1,2,3 (5.9)
1 € (=€
- 17°(u )||(L2(Q+><D))3 <c (5.10)
( —
1||o(T<(w
- —( (@) <e¢, fora=1,2,
€ OXa 2@+ xpy?
(5.11)
o [le (o) .
[ £l 9 ey
Te \res e -
- |7 (aij)HLz(me) <e, fori,j=1,2,3. (5.12)

Until now, we have kept the possibility in all the above estimates that r. and € may behave

in a way such that hH(l) e _ k, where k is a real number such that 0 < k < 7 Actually, here
e—0 &

T T
we have to distinguish the case where — =k > 0 to the case where hI% — =0. We first
E—>

€ €
investigate in the following the case where r. = ke, and postpone the analysis for the case

r
lim = = 0 to Section 7.
e—0 g

5.3 Weak limits of the fields (case r. = ke)

As explained above, we assume here that r. = ke and we just introduce the notations for
the weak limit, up to a subsequence still denoted by ¢, of the bounded fields appearing in
Lemma 4.2 and Lemma 5.3.

Lemma 5.4. Assume (2.19)+(2.21), and that r. = ke.

For a subsequence, still denoted by {e},

e there erist u) € L*(w, H'(Dx]0,L[)) and @) € L*(QF, H (D)), for i = 1,2,3, such
that, as € tends to zero,

eT°(us) — vl weakly in L*(w, H*(Dx]0, L[)), fora=1,2, (5.13)
T (u§) — uy weakly in L*(w, H*(Dx]0, L)), (5.14)

1
ET‘E(E?) — W) weakly in L*(Q, HY(D)), fori=1,2,3; (5.15)
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e there exist UY € L? (w, H'(]0, L)), RY € L*(w, H'(]0, L)), fori = 1,2,3, and Z €
(LA(Q1))° such that, as e tends to zero,

eUs — U weakly in L* (w, H'(J0, L[)), for a = 1,2, (5.16)
Us — Uy weakly in L* (w, H'(]0, L[)), (5.17)
eR; = R weakly in L* (w, H'(0,L[)), fori=1,2,3, (5.18)
gu — (R° Nes) = Z weakly in (LQ(Q+))3; (5.19)

T3

o there exist X;; € L*(UT x D) and Z;; € L*(QF x D), fori,j =1,2,3, such that, as €
tends to zero,

T (7y35(u)) — Xy weakly in L*(QF x D), fori,j=1,2,3, (5.20)

T (05;) = i weakly in L*(Q0" x D), fori,j=1,2,3; (5.21)

o there exist u; € H'(Q7), with u; =0 on dwx| —1,0[, for i = 1,2,3, such that, as €
tends to zero,
ui — u; weakly in H'(Q7), strongly in L*(Q7). (5.22)

5.4 Relation between the limit fields (case r. = ke)

In this section we still assume r. = ke and we derive a few relations between U°, R, @’ on
one hand, and X, ¥ on the other hand.
First, consider (4.53) which implies

R <8L{1 _ R;) — 0 strongly in L*(Q"),
8903

as € tends to 0. Then, (5.16) and (5.18) give

0
o _ Ry in QF. (5.23)
(9.%3

Indeed, using the second component in (4.53) leads to

U

Iy 0 OF 5.24
Ot Ri in Q (5.24)

It follows that U° € L? (w, H?(]0, L[)), for a = 1, 2.
Now, consider (4.38) which can be written, for any (p,q) € N¢, as

ui(z, w2, x3) = Uy, (21,22, 23) — R?,\M (1, T2, 23) (T2 — £q) + Ui (71, T2, 23),
€

|Q;r

if (1’1, 1‘2) S ng,

T3 G]O,L[
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Then, for any (p,q) € N¢,

T (uf) (w1, 22, w3, X1, Xp) = T¢ (z’{fﬂ+) (@1, T2, T3, X1, X2)—

of

T (R§| +(I'2 - 5(])) (x17x27x37X17X2) + Ts(ﬂi)(l‘l,{[‘%l’?),Xl,Xg), (525)

. € 9 € 3
1f(x1,x2)6}619—§,€p+§[x}€q—§,€q+§[, ZE3€]0,L[, (Xl,Xg)GD.

Now remark that the function Uf, (21, z2, x3) is constant on each D¢, for almost any fixed
Q

pg’

x3. As a consequence, the definition (5.1) of T¢ gives, for any (p,q) € N°¢,

TE(LIf|Q+) =Us,
(5.26)
_ € € € €
1f(x1,x2)E}&p—?gp—l—g[x}aq—a,a?q—l—g , ZE3€]0,L[, (Xl,X2>€D.
Since, for any (p,q) € N¢,
T* (R§Q+ (xQ - 5Q)) <x17x27x37X17X2) = TEX2R§(xlax27x3)a
) € € € €
if (x1,29) € }ep— §,€p+ 5[ X ]eq — §,€q+ Sl s €0, L[, (Xi,X3) € D,
and equality (5.25) leads to
TE(“?)(Z‘17$27$37X17X2) - ulg(x17x27x3)_
(5.27)

re XoR5 (w1, o, x3) + T (U5) (21, g, 3, X1, X2)  a.e. in QF x D.
In (5.27) we also have used the fact that
T=(uy) = Ui = R = T=(u7) = 0,
if (w1, 29, 73) € QT \ (©-%]0, L]) .

In view of (5.13), (5.15), (5.16) and (5.18), by passing to the limit in (5.27), as ¢ tends
to zero, we obtain, since r. = ke,

u(l)(xla XTo, T3, Xl) XQ) == Z/{?(xl, T, 1'3).
Repeating the above arguments for u5, we conclude that,
Ug(l‘l, To, T3, Xl, XQ) = L{g(xl, T, ZL‘3),
(5.28)
for almost any (1,2, 23) € QF, (X7,X3) €D, fora=1,2.

21



Remark that u?, for « = 1,2, do not depend on the variables (X1, X3).
As far as u§ is concerned, we have by (4.41) for any (p,q) € N,

u§(x, xo, 3) = U5, (21,22, 73) + Ri|g+ (21,22, 23) (T2 — £q)—
£

\Q;

(5.29)

RS‘QJr ($1,$2,I3)($1 - é?p) + ﬂg(l’l,l'g,l'g), if (.Tl,l’g) S D;q, T3 E}O, L[

First we have
T (u5) — 0 strongly in L*(Q" x D), (5.30)

because of (5.15).
Then, as above for U< and R, o = 1,2, for any (p,q) € N¢, it results
(T ) =Us,

T° (RiQJr (372 - 5@) (x1>x27x37X17X2> = TEXQRi(mlax%xIS)?

T° (R§|Q+ (z1 — ep)) (21,2, w3, X1, X2) = 1. X1R5 (w1, 72, 73),

if(xl,xg)G}ep—i,sp—l—i[x}eq—i,sq—kg, x3 €]0, L[, (X1,X3) € D.

\ 2 2 2

Proceeding as for UZ above, and using now (5.14), (5.17), (5.18) and (5.30), equality (5.29)
implies that, since r. = ke,

ug(xlwrZ; €3, X17 X2) == u30<x17 SCQ,.CEg) + kXQR(l)(xla x27x3) - leRg(xla x27x3)7
(5.31)
for almost any (21,22, 23) € QF, (X1, X3) € D.

Remark that, due to (5.23) and (5.24), relation (5.31) can be equivalently rewritten as

0 0 az/{? aug
U3($1,$2,$3,X1,X2) = u3 (l’l,l’g,l‘g) - le%(IlvaMIB) - k:XQaT(xthax?))a
3 3 (5.32)

for almost any (21,22, 23) € QF, (X1, X5) € D.

We now turn to the identification of X;; (see (5.20)). In view of the decomposition of u®
given in (4.38) and (4.39), we have

Yap(U®) = Yop(u) a.e. in QF, for o, 3 =1,2. (5.33)

Appealing now to the rule for the derivation of an unfold field given in (e) of Lemma 5.1, we
obtain
7T (Yap(u®)) = Lap (T5(T®)) ae. in QF x D, for o, f = 1,2, (5.34)
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where for any field v, say in (L2(Q"; HY(D))?, we have set
1
Los(v) = 3 (Ox,va + Ox,v5) ae. in QF x D, for a,3 =1,2. (5.35)

Dividing (5.34) by € and passing to the limit, as ¢ tends to zero, yields using (5.15) and
(5.20)

kX.5 = Lop(@®) ae. in QT x D, for a, 8 =1,2. (5.36)
Let us now consider vi3(u). Fix (p,q) € N¢. In view of (4.38) and (4.41), we have
T3(u) (@1, 22, 73) =

1 32/{6 aR€ aﬂe
5 8;1:; ($1,I2,$3) - 61,;’ (xlax%x?,)(lé — EQ) + ax; (1'1,37271‘3)—

(5.37)

e
Rg(l‘l,ZEQ, I3) + 853 (Il,xQ,I‘g)] s if (Il,l'Q) e D: xs3 6]0, L[
1

pq’

We apply the unfolding operator to both hand of (5.37) and consider the behavior of each
term appearing in the right hand side. Since again U; and R;

are constant on each D; , we
have for (p, q) € N* (as for (5.26)),
oUs oU;
TE 1 . Re — b T Rs )
<8x3 |QJr 20?) 3x3 z <5 38)
IR IORS
TE 3 . — z—:X 3 )
<8x3 " (o 5q)> reXo 9z, (5.39)
T ( ;@) - RS, (5.40)

if (x1,29) € ]61) — g,sp + g[ X ]5q — g,eq + %[, x3 €]0, L[, (X31,Xs3) € D. Using the rules
(e) of Lemma 5.1 for the derivations of an unfold field, yields

c(Ouz _ 0T (w3) .o
reT ((91:1) e a.e. in Q" x D, (5.41)

e (91) - AT (1)

= e in QT x D. 42
s o3 a.e. in Q7 x (5.42)
Then (5.37)+(5.42) give
T° (m3(u)) =
_ _ 5.43)
1 [ fous OR:  O(T=(w)) 1 O(T(w)) , (
- —R5 | —r.X ———22 | a.e. Ot x D.
2 (81’3 RQ) " 2(’33:3 * 0xs +r5 0X, a-c. %
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Convergences (5.15), (5.18), (5.19) and (5.20) allow to pass to the limit in (5.43), and to
obtain

1 ORY 10w
Xig==|Z - Xohk=—24+_-_—2| ae in Q" xD
13 2 ! 2 (‘9x3 +k’8X1] a.e. X ’
which can be written as
1| 0 1 3710
X3 =~ X Z Xok—=1 a.e. in QT x D. 5.44
13 [8)(1( 1 1+l{: ) 2 8;1,’3] a.e. 1n X ( )
Proceeding as above to identify X3, we obtain
11 0 1 ORY
X XoZ. Xk e.in QO x D. 5.45
23 = lan( 2 2+k‘ >+ 1 ax?)] a.e. 1n X ( )

To derive X33, we write, for any (p, ¢) € N¢, in view of (4.41),

733(“5)(56’17 T2, 373) =

ous ous OR]

(%i (21, 22, 23) + a—wz(xl,xz, 73) o (01,72, 23) (22 — £0) (5.46)
ORS , ]

89532 (21,29, 3) (w1 — €p) if (w1, 29) € Dy, w3 €]0, L.

The same type of calculations that leads to the expression of Xi3, which is not repeated
here, gives

oUy ORY ORY
Xgg = —> +kXo—— — kX1 —— O x D. 5.47
53 81’3 2 81‘3 ! 8&73 a.c. in % ( )
According to (5.23) and (5.24), X33 can be expressed as
0 27 10 27 10
ngzai—leau —k’Xgau a.e. in Q+XD (548)

To conclude this subsection, we deduce from the constitutive law (2.12), from (5.20) and
(5.21) and from the above expression of X;; that

1 AUY 92U?° O2UY
Si= = [(A+ 201 (@°) + Alae ()] + A ( kX — kXy—2 )
k 81‘3 8!173 8153 (549)
a.e. in QT x D,
1 aUY O2U?° O*UY
Yoo = — [(A+ 2p)Toa(@’) + A1 (@")] + A ( kX — kX, 2)
k O 0’ 3 (5.50)
a.e. in Ot x D,
Y1 = 22T 15(@) ace. in QF x D, (5.51)

k
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by XZ—i—1 —/{:XaRO a.e. in QT x D (5.52)
13 =M 3X1 141 7 28x3 -€. ) .
I 1 orY| .
223 = U 8X2 (XQZQ + kU3> + ]le 81‘33 a.e. 1 Q+ X D, (553)
82/10 o*Uy O*UY) A
Y33 = (/\ + 2,LL) <— — kX — — kXy—— > + — (Fll(ﬂo) + Fgg(ﬂo))
a 3 81'3 aCE?) k (554>
a.e. in QT x D.
5.5 Limit kinematic conditions (case r. = ke)
In this section we derive, in the case r. = ke, the kinematic conditions on the "type”

displacement fields U, RO and ). In particular, we derive the kinematic junction conditions
between the ”continuum” of rods in 27 and the 3d body in Q.

First of all, comparing (4.28), (5.16) on the one hand, and (4.25), (5.18) on the other
hand leads to to

UL (21, 22,0) =0 ae. inw, fora=1,2, (5.55)
and
RY(x1,75,0) =0 ae. in w, fori=1,2,3. (5.56)
This last relation together with (5.23), (5.24) gives
0
(x1,22,0) =0 a.e. inw, fora=1,2. (5.57)
al’g

We now turn to the transmission condition between U and uz on w.
Since u® € H'(£2,), recalling Remark 5.2, one can define 7¢ (u§) on | — I, L[xw x D (still

TE 1> E
by (5.1)). One has w T° g—), and then the weak convergences (5.14) and
L3 L3
(5.20) imply that 7¢ (u5) is bounded in L*(w x D, H'(] =1, L])). Then, 7°¢ (u3) — u} weakly
in L*(wx D,HY (] —1,L])) = HY(] — I, L[, L*(w x D)) (at least for a subsequence). Due to
(5.14) and (5.31), we first have

= U+ kXoRY — kX1RY in QF x D.

Now, from (5.22), u§ — w3 strongly in L*(Q27), and using again Remark 5.2, we know
that 7¢ (u§) — wg strongly in L?(Q~ x D), so that uf = uz in O~ x D. Since u} €
C%] — I, L], L*(w x D)), we obtain

uz (21, 72,0) = U (21, 29,0) + kXoRY (1, 22,0) — kX1 RY(21, 29, 0)
(5.58)

a.e. in w x D.

This last relation together with (5.56) (actually it gives again (5.56) because (X7, Xs) are
arbitrary in D) leads to

uz (71, 22,0) = UY(x1,72,0) ae. inw X D, (5.59)
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which is the transmission condition on the vertical displacement of the rods and the plate.
To end this section, we derive the kinematic conditions on u® which follow from (3.8)+(3.10).
Recall that by definition (4.12) of w* and (3.8)+(3.10), we have for any for any (p,q) € N*©

/ u; (x1, X9, x3)dr1dry =0 fori=1,2,3, (5.60)
/ (x1 — ep)us(xy, T2, x3)dr1dTy = / (xe — eq)us(xy, xo, x3)dx1dTy = 0, (5.61)
/ [(z1 — ep)u3 (21, 22, T3) — (w2 — £q)U; (21, T2, 23) ]| dardas = 0, (5.62)

for almost any x3 in |0, L.

Let ¢ be a function of C§°(2T). For ¢ small enough the support of ¢ is included in
@:x]0, L[. Then, define ¢ in QT as follows: for any (p, q) € N¢, @.(x1,x2,23) = p(ep, £q, x3),
, € € € € ~ :
if (z1,29) € }gp — 5P + > [ X }sq — 5 + 5 [ and x3 €]0, L[, (21, 9, x3) = 0 otherwise.

Due to (5.60)=(5.62), it follows that

/ YU drydradrs =0, fori=1,2,3, (5.63)
of

Z / / e (21 — ep)uzdr dradrs = 0,

(p,g)EN®
(5.64)
Z / / e (xg — eq)usdrydradrs = 0,
L (p,g)eN©
Z / / e [(x1 — ep)ug — (xe — €q)u3] drydzadrs = 0. (5.65)
(p,q)EN® P
In term of the unfolding operator 7¢, (5.63) reads as
/ T* (3.) T* (W) davrdradirsd X 1d Xy = 0. (5.66)
QtxD

Since . is constant in each Dj, for fixed z3, 7° (p.) = ¢.. Indeed p. — ¢ strongly in
L*(Q27), so that (5.15) implies that

/ QO($1, T, xg)ﬂo(l‘l, T2, T3, Xl, XQ)dQTldIEle‘ngldXQ = O,
QtxD
from which we deduce that for almost any (z1, o, x3) € QF
/ ﬂo(xl,.%g,.fg,Xl,Xg)XmdXQ =0. (567)
D
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The same technique permits to obtain from (5.64) and (5.65) that for almost any (xy, z2, x3) €
O+

/ Xaﬂg(xl,xg,:cg, Xl, XQ)XmdXQ = O, fOI" o = 1, 2, (568)

D

/ [X1E(2)(C(]1, I2,$37X17X2) — Xgﬂ(l)(xhl’g, xrs, Xl,X2>] XmdXQ = O (569)
D

6 The limit problem (case r. = ke)

In this section we derive the equations satisfied by U°, R°, u° and u~.

As a starting point, and in order to pass to the limit as the parameter € tends to zero,
we write (2.18) in terms of the unfolding operator 7¢ in QF. It gives, recalling r. = ke and
(a) of Lemma 5.1,

k2 Z ) T° (i (v)) day dadasd X d Xo+
+><D

i,7=1

Z / 05 (v dxldxgdxg—k;2z / Te(f2)T° (v;) doydasdrsd X d Xy (6.1)

Zj 1 QtxD

3
+ Z fividxidrodrs, Vv € V..
- -

We will pass to the limit in (6.1) when ¢ tends to zero, and the advantage in introducing
7¢ is that now the domain Q7 x D is fixed. The limit process is achieved with specific
choices of the test function v.

The section is organized as follows. First, we obtain the relations between u° and U3 and
we show that w5 = 0. Then, we obtain the system of partial differential equations verified
by U° and u~. At least, we prove strong convergence of the energy.

6.1 Equations for u (case r. = ke)

Let ¢ be in C§°(w) and v be a function of (C*°(D x [0, L]))3 such that 7(X7, X5,0) = 0. In
(6.1), we choose the function v® defined for (xq,xq,x3) € QF by

e _ [ X1 —EP T2 —E&q
v (11, T2, T3) = To0(EP, £Q)V ( ) ,1753)

Te Te (6.2)
if (21, 12) € D5, 3 €]0, L[, for (p,q) € N*,
and
v (2, 2o, w3) = 0 if (21,29, 23) € Q™. (6.3)

Then v € (C>( j))3 N V..
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In QF we have

0v1 (11 —€ep To—eq
711(06)(171@2’963) = <P(5p, 561)8)(11 ( : . ) QT ,$3> )
€ €

c Ovy (a1 —ep T2 —eq
’722(11 )($1,1’27$3) = 90(5197 5Q) y I3 ]

00X, re | Te
~ (UE)(I' Lo X ) _ @(5177 SQ) avl aﬁ2 Ty —EpPp X2 —&q T
12 1y 42,43 9 an 8X1 r. ) r. y &3 )
e _ plep,eq) ovy  0vs T1—€Ep X2 —€&q
Y13(V°) (71, T2, 73) = 9 {Teax?) + X, o y T3 ),
e _ plepeq) ovy  O0v3 T1 —Ep T2 —€q
723(?) )(xla X2, .’L'g) - 9 |:715 81:3 + 8X2 re P T , L3 3

0vs (11 —ep x9 —Eq
v°) (21, 9, x3) = Q(eP, Q)T , , T3 |,
Y33(v°) (w1, 22, 23) = (eP, £q) “ s ( " " 3

if (x1,29) € DS

pq’

€3 G]Oa L[a for (p7 Q) € N*=.
Define the function ¢ in w by

. 13 g 13 g
o(ep,eq), if (x1,2q) € ]ép— —,ep+ —[ X ]éq— =, ¢+ —[,
. 2 2 2 2
O (21, m2) =

0, if (x1,22) € w \ We,
then applying the unfolding operator to y(v®) leads to
T° (Vap(v®)) = @ Top(0) ae. in QF x D, for a, 3 = 1,2,

5 . . 1[ ov, Ov
T (ualt)) = 55 |G + 5
T° (33(v°)) = @°r.I'33(v) a.e. in QF x D,

where I';; is defined in (5.35).

Since ¢ — ¢ strongly in L?*(w) as ¢ — 0, we obtain using the convergence (5.21)

} a.e. in Q" x D, fora=1,2,

lim Z / )TF (7i(v7)) daydwadasd X d X, =
QtxD

e—0

2
Z / @Eaﬁfag(E)dwldxgdm3dX1dX2+
QtxD

2

0vs
/ gOZag d$1d$2d$3dX1dX2,
QtxD 0X

a=1
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because r. = ke — 0 as e — 0.
As far as the right hand side of (6.1) is concerned, we first have by assumption (2.19),
(2.20) and (b) of Lemma 5.1

Te(fS) =r.T°(fs) — 0 strongly in L*(QF x D), (6.9)

and
Te(fs) =T4(f3) — f4 strongly in L?(QF x D). (6.10)

Moreover, with (6.2),
T¢(v°) = ¢°r.v a.e. in QF x D. (6.11)

then, we obtain from (6.1), (6.8) and (6.9)+(6.11)

2
/ @Eaﬂrag(@)dl’ldl'gdmnglng—i-
QtxD

a,f=1
(6.12)

> / 5503258 o ddiesd X, dX — 0,
a—1 Y QT xD aXa

and this equality holds true for any ¢ € C5°(w) and v € C=(Dx[0, L]) such that 7(X;, X5,0) =
0. Since ¢ is arbitrary, (6.12) can be indeed localized a.e. in w.
We first choose 77 = Ty = 0 a.e. in Dx]0, L[. According to (5.52) and (5.54), it yields:

0 1 ORY | Ovs
X, Z ) — kX ——dXdXsd
/DX]OL[ 8Xl ( ey E ) 28$3 ox, P vt

(6.13)

a 1 aRO (91)3
XoZ kX 91X, dXpdzs = 0
/DX]OL[ 3X2( ? 2+k; )+ 13333 0X, 1dXodxz =0 a.e. in w.

Remarking that (6.13) can be also localized with respect to x3 and recalling that Z;, Z, and
1
Rg do not depend on (X7, X3), it implies that the function w = X1 7; + X275 + Eﬂg satisfies

Pw  O*w

_W_ﬁXQ =0in D, a.e. in QF,
1

ow =0in 0D, a.e. in Q7,
n

because on 0D, Xin; — Xaong = 0 a.e.. But by (5.67), w also satisfies / wdX;dXy = 0, for

D
almost any (z1,z9,x3) € Q1. As a consequence we deduce that w = 0, that is

Uy = —k(X1Z1 + X27Z5) a.e. in QF x D.
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At least, using the kinematic condition (5.68) on u3, we obtain Z; = Zy = 0 and

a3 = 0. (6.14)
Remark that taking into account (6.14), the expressions (5.52) and (5.53) simplify to give
0
Yz = —ung% a.e. in Q" x D, (6.15)
8x3
0
Yog = kX, OR; a.e. in QF x D, (6.16)
81’3

Now we choose 73 = 0 in (6.12), using (5.49)+(5.51), it leads to

At
/ P Dy (@) 11 (5) + Do ()T (7)) dX1d X odrs
Dx]0,L[ k

A
/ T [Fn( ) 92(T) + FZQ(HO)FH(EH dX dXsdz3+
Dx]0,L[

(6.17)

4
/ : T'15(7°) 012 (7)d X, d X ody =
Dx]0,L[

ou o*U? O*UY
-2 kX1 —— —kXo——2 | (T r dX1dXod
/DX]OL[ <8$3 1 22 235 22 )( 11(0) + T'o2(v)) dX1d Xodzs,
for any 7, € C*®(Dx|0, L]) such that 7,(X1, X5,0) = 0 and then for any v, € L(]0, L[; H*(D)),
a=1,2.

Actually, and after localization with respect to x3, the variational problem (6.17) cor-
responds to classical 2d elastic problem for (u!,u3) with constant forces on D or on dD.
Taking into account the kinematic conditions (5.60) and (5.62), the unique solution of (6.17)

is given by

oUy X? — X2 0°UY O*UY
) =vq—kXi > + K LR X X 6.18
“ { s * 2 Oz 12 0z (6.18)
oUuy O*Up X2 — X2 o0°UY
Ty = kXa——2 + K X1 X. prer——l-——2 6.19
iz = ”{ 2, TH KXo H RS (6.19)
where v = ﬁ is the Poisson coefficient of the material. Expressions (6.18) and (6.19)
o
permits to derive from (5.36), (5.49)+(5.51) and (5.54)
2 2
X11 == X22 =V 81/13 + lea UI + ]{?X28 L{2 (620)
Ers Oz 3
X12 = 07
211 = 222 = 212 =0a.e. in Q+ X D, (621)
ou. o*Uy O*UY)
Sp=FE -2 —kXi—5 —kXo——2 ] ae. in Qt x D 6.22
% (3x3 Y ox? > ox2 ) a.c. 2 (622)
[(3X + 2p)

where F = is the Young modulus of the elastic material.

A+
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6.2 The rods equations in Q" (case r. = ke)

Let now ¢ € C§°(w), Vi, V2 be in C*([0, L]) such that V;(0) = V»(0) = V;(0) = V4(0) = 0,
As be in C*°([0, L]) such that 45(0) = 0.
We choose as a test function in (6.1) the field defined in QF by

v (21, 22, x3) = p(ep, £q)

<%V1($3) -2 qug(I3)> el

3 TE

(6.23)

1 — — _
+ (—Vz(.iﬂg) + al 8p¢43($3)> €9 + (_131 ng{(xg) — 2 8qVé($3)> 63] ,

Te Te Te Te

if (z1,29) € Dy, 23 €0, L], for (p,q) € N*, and v* = 0 in Q7. Remark that the boundary

conditions on Vy, V, and Az at x3 = 0 imply that v* € H'(€2.). Then in QF we have

711(116) = 722(1)6) = %2(05) =0,

Y13(v°) = —p(ep, €q)

Y23(v°) = (ep, €q)

733(v%) = @(ep, eq) (—

3 TE

With the definition (6.4) of ©° in the previous section, it yields

T°(Yap(v?)) =0, for a, 5 =1,2,
o 1
T5(m3(v%)) = — 8X2§v43(553)a

1,
T (723(0%)) = 90£X1§A3(333)>

Te(y23(v%)) = & (=X V) (w3) — XoVy (w3)) -

£

Using the convergence (5.21) of 7¢(of;) allows to pass to the limit in the left hand side of

(6.1) to obtain
3
lim / T(07;)T° (7 (v%)) drrdradrzd X, d Xy =
QtxD

e—0
i,j=1

_/ @El{iXQAédl’ldﬂ?Qde:},Xmng +/ 90223X1Agdl'1d$2d$3dX1dX2+ (624)
QtxD

QtxD

/ O35 (=X V) (23) — XoVi (23)) dvydwadrsd X d Xs.
QtxD
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Now, in view of (6.23), we have

~ 1
T(v°) =¢° (T—V1 - XzAs) €1
(6.25)
1
+ (T’_V2 + XlAg) €9 + (—lei - X2V£> €3,
so that with (6.9) and (6.10)
lim Ts(fe)TE(Us)dl’ldl’gdl’ngldXQ =
=0 Ja+xD
(6.26)

2
/ ¥ [Z faVa + f3 (_X1V1 - XQVé) dfld{L'QdZL'nglng.
QtxD a—1

Using (6.15), (6.16) and (6.22), (6.1), (6.24) and (6.26) gives

0
pk / o(X7 + Xg)?Agd:cldxzddeldXﬁ
Q+txD T3
0 27 40 27 40
E/ ® [% — lea UI - kXQM:| [—X1V{/ — ngg] d.l’ldx'zdl'nglng = (627)
QtxD

/+
Qt+xD

for any ¢ € C§°(w), Az € C*([0, L]) such that Az(0) = 0, for Vi, V, € C°°([0, L]) such that
Vi(0) = V2(0) = V1(0) = V5(0) = 0.
Taking V; =V, = 0 in (6.27) gives together with the boundary condition (5.56)

2

> faVa ot f5 (X0 V) — XoV3) | daydasdasd X1dXo,
a=1

Ry = 0. (6.28)

Once this result is obtained, (6.27) implies that (U, UY) satisfies the equations

U’
kEI,—2% =7f, a.e. in QF,
o (6.29)
U U '
8—;‘(x1,x2,L) = a—;(.xl,IQ,L) =0 a.e. inw,
23 T3

for « = 1,2. Recall that in order to obtain (6.29), we have used the fact that
/ XdX dX, = / XodX1dXs = / X1 Xod X d X5 = 0.
D D D
Due to the boundary conditions (5.55) and (5.57), the field (U, UY) is unique in (L*(w, H*(]0, L[)))?.
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6.3 The stress transmission condition, the equation for U/ and
the equations in Q™ (case 7. = ke)

Let us plug an arbitrary test field v € (C*(@ x [—1, L]))* such that v = 0 on dwx] —1,0[, in

(6.1) (indeed in QF, Uit € (H'(Q21))?) and we pass to the limit as € tends to zero.

To this aim recall first that, by (b) of Lemma 5.1, 7° (v,;;(v)) — 7;(v) strongly in
L?(QT x D) and that 7°¢ (v) — v strongly in (L*(Q" x D))3. Then using (6.9) and (6.21),
it gives

2k2/ 213’713(U)d1'1dl'2d1’3dX1dX2 + 2]{52/ 223’723(U)dl’ldl’gdl'?,XmdXQ—f-
QtxD Q

+xD

2 /Q L S (0)dnidradrgdXodX; + / Zaw% Yz desday = (6.30)

i,7=1

3
k> / favsdardradrsd X dXs + / > fvidzydrydas,
QtxD =1

where

— A (Try(u)) I+ 2uy(u™) € (L3(Q7)) (6.31)

Now, because of (6. 15) (6.16) and (6.28) the two first terms of (6.30) are equal to zero.
Moreover, the expression (6.22) of 333 permits to obtain from (6.30) (note that ;3 does not
depend on (X7, X))

0
Ek’n /Q aﬂ%d:ﬁldazgdasg—l—/ Z 07 (v)dr1dredas =

+ Ox3
2,7=1

(6.32)

BPr | fyvsdaeidredas + / Z frvidzdeodas,

o+ -
for any v € (C®(w x [, L]))* such that v = 0 on dwx] —I,0].
If W is the Hilbert space defined by
W ={(V,v) € L*(w, H'(]0, L])) x (H"(Q7))*;

(6.33)

V(x1,x2,0) = v3(x1,22,0) on w and v = 0 on dwx| — I, 0[},

the continuity condition (5.59) shows that (US,u~) € W. Then Korn’s inequality in Q-
(together with the expression (6.31) of o~) implies that (6.32) (which indeed holds true for
any v € W by density) admits a unique solution (U9, u~) € W. In terms of equations on QT
and €27 and of a transmission condition and boundary conditions, it gives

o*Uy)

K
03

= f3in QF (6.34)
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3

= oy =fiin Q7 fori=1,2,3, (6.35)

j=1
0
033 = Ek%g—zz on w, (6.36)
0
g% —0onwx {L}, (6.37)
0,3 =0o0nwand on w x {—I}, (6.38)
033 =0 on w and on w x {—l}. (6.39)

Equation (6.34) is the standard compression-traction equation for rods and here (xy,z5)
appears as a parameter (as this was the case for (6.29)). In some sense, the rods equations
(6.29) describe a continuum of rods indexed by (z1,x2) € w.

Equations (6.35) together the constitutive law (6.31) are the standard equations of elas-
ticity in Q~. The equation (6.36) reflects the continuity of the normal stress between the
rods and )~ since it can be written as

0'3_3 = ]{52/ E33dX1dX2, on w.
D

7 The case fe — 0
3

We start with the estimates of Lemma 4.2 and Lemma 5.3 which are still valid in the case
— — 0. By comparison with the analysis performed in the preceding sections for the case

re = ke, those estimates show that a few fields must be re-scaled (e.g. by multiplication by
it
—) to exhibit weak limits. Once these re-scalings are adopted, many points of the analysis

are identical in both cases. As a consequence, we will only detail the points where the
arguments must be modified.

7.1 Weak limits of the fields (case % — 0)

Lemma 4.2 and Lemma 5.3 give the following weak convergence results:

Lemma 7.1. Assume (2.19)+(2.21), and that % — 0.

For a subsequence, still denoted by {c},
o there exist u) € L*(w, H'(Dx]0,L])) and u) € L*(Q", HY(D)), fori = 1,2,3, such
that, as € tends to zero,

2
%Ts(u‘;) — u weakly in L*(w, H'(Dx]0, L[)), for a = 1,2, (7.1)

%Ts(ug) — ud weakly in L*(w, H(Dx]0, L[)), (7.2)
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1
ETE(E?) — ﬂ? weakly in LQ(QJF, Hl(D)), fori=1,2,3; (7.3)

e there exist UY € L? (w, H'(]0, L)), RY € L*(w, H'(]0, L)), fori = 1,2,3, and Z €
(LX) such that, as e tends to zero,

TE—?L{S — U weakly in L (w, H*(]o, L[)) , fora=1,2, (7.4)
%U;f — U3 weakly in L* (w, H'(]0, L)) , (7.5)
Z—ERi — R? weakly in L* (w, Hl(]O, L[)) , fori=1,2,3, (7.6)
- (au€ - (R°A 63)) — Z weakly in (LQ(QJF))?’; (7.7)

e \ Oxs

o there exist X;; € L*(QT x D) and ¥;; € L*(QT x D), fori,j =1,2,3, such that, as €
tends to zero,

%T‘E(%j(ua)) — X;; weakly in L*(Q% x D), fori,j=1,2,3, (7.8)
%75(05].) 5 weakly in L2(QY x D), fori,j=1,2,3; (7.9)

e there exist u; € L*(Q7), with u; = 0 on dwx] —1,0[, for i = 1,2,3, such that, as €
tends to zero,
ui — u; weakly in H'(Q1™) strongly in L*(27). (7.10)

With the limit introduced in Lemma 7.1, the analysis developed in Section 5.3 remains
identical so that U, u and X;; verify (5.23) (5.24), (5.32) and (5.49)+(5.54) in QF x D
with k£ = 1, and the boundary conditions (5.55)+(5.57). Let us just explain why k& becomes
1 (and not 0) in those expressions. Loosely speaking, when the unfolding operator 7° is
applied to a field it results that some terms are multiplied by r (see e.g. (5.27)). Then,
in the case where r. = ke, the corresponding weak limits are multiplied by k. In the case
where = — 0, the rescaling of the fields (as shown in Lemma 7.1) leads to the constant 1
when ’Z’gé is applied. Let us now turn to the analog of the kinematic conditions obtained in
Section 5.5. Conditions (5.55) and (5.56) remain true and are derived identically. The main
difference here is the continuity condition (5.59) which can not be established here, because
the measure of the set QF goes to zero too rapidly. Defining 7¢(u§) as in Section 5.5 also for

x3 €] —1,0[, we have here ETa(ug) bounded in L?*(wx D, H*(]—1, L[)) (because of estimates
5
of Lemma 5.3). Then T—ETE(ug) — u} weakly in L?(w x D, H'(] — I, L])) (for a subsequence)
5

r
as € tends to zero. Because of the weak convergence of —7°(u3) in Lemma 7.1 and using
€

(5.31) which holds true with £ = 1 in the present case, we obtain

Now, from (7.10) we know that u§ — uz strongly in L*(€7). As we have
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2
7;—5||Ta(u§)||L2(QfxD) = </ |u§|2) , we deduce that E’T‘E(ug) — 0 strongly in
we e X]—1,0[ €
L*(2~ x D). Then u}(z1, 79,0, X1, X3) =0 in L*(w x D) which implies with (7.11) that
UY(x1,72,0) =0 on w. (7.12)

Next deriving the kinematic conditions (5.67), (5.68) and (5.69) on u" is identical to the
case . = ke. We now turn to obtaining the limit problem. Writing (2.18) in terms of the
operator 7°¢ gives here (see (a) of Lemma 5.1)

9 3
T€ € € €
g2 Z/meT (05,) T° (i (v)) dardvadarsd X1 d X o+

ij=1
3
Z / Uz‘gj%j(v)dxld@dﬂis =
ij=179"
(7.13)
r2 &
S [ TN T ) dndnadndXidX,
e Jatxp
3
+ Z/ ffl)idl‘ldl'gdl’g, Yv € V;;‘,'r-
i=1 /92
Recall that we have by assumptions (2.19) and (2.20)
Te(f2) =rT(fa), fora=1,2,
and
Te(f5) = T°(f5),
and by (a) of Lemma 5.1
Te €/ re .
EHT (2@t xpy = [ fill 2oy for i =1,2,3.
Then .
EHTE(JC;)“LQ(QWD) = HfaHL2(Qz') — 0 for a=1,2, (7.14)
and .
ENT szt x0) = Isllzagas) = O (7.15)

because f; € L*(Q) for i=1,2,3 and meas(Q2F) — 0.
As far as the determination of u° is concerned, we choose the same test functions v° given
by (6.2) and (6.3) in (7.13). With the help of the convergence on s (c°) given by Lemma
€

7.1 and of (7.14), (7.15) we obtain the same problem (6.13) and (6.17) with £ = 1. It turns
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out that 7§ = 0, and that u) and u} are given by (6.18), (6.19), and that ¥ is given by (6.15),
(6.16), (6.21) and (6.22).

To obtain the rods equations in %, we first use the function v* defined in (6.23) as a
test function in (7.13). Taking into account (7.14), (7.15), we deduce that (6.27) holds true
with a right hand side equal to zero. It follows that (6.28) and (6.29) are satisfied with a
right hand side equal to zero and with £ = 1. In view of the boundary condition satisfied by
U? on Ow, we obtain UY =0 in QT x D.

In order to obtain the equation for U in QF, we choose in (7.13) the test function v°
defined by

V¥ (21, T2, 23) = @(ep,eq)Vs (x3) es, if (x1,29) € D;,,, 3 €]0, L], for (p,q) € N=,

pg’

and
vE (21,9, x3) = 0, if 23 €] — 1, 0].

where ¢ is in C§°(w) and V5 € C*°([0, L]) with V3(0) = 0. Then we have in Q7:
’Yij(vs> = Oa for (Z7]> 7£ (3a 3)7
v33(v°) = w(ep,eq)Vs (3) , if (11, 22) € D;,, 23 €]0, L], for (p,q) € N
Using the same type of arguments than in Section 6.2, we obtain
T°(v°) — ¢V3 in L*(QF x D),
Ts(’Yij(v€>> =0, (%]) 7£ (37 3)7
T°(733(v%)) — @V, in L*(QF x D),
as € tends to zero. ,
With the help of the weak convergence of ?Tg(o_ij), (7.14), (7.15), (6.22) and the fact
that UY = U = 0, we pass to the limit in (7.13) and it yields
g

VédIldxgd.Ig == 0, (716)
O+ 8[)’}3

for any ¢ € C3°(w) and V3 € C*([0, L]) with V3(0) = 0. Indeed (7.16) gives equation and

2710
8672/{5 =0, a.e. in L*(Q1),
and o0
a—xz:O, in wx {L},

and because of the boundary condition (7.12), it follows that ¢ = 0 in QF. In conclusion,
in the present case where — — 0, we find that 40 = 0 in Q*, for i = 1,2,3. To conclude

€
this section it remains to obtain the equations and boundary conditions in 27. To this end,
let us take v € C*°(w x [, L]) such that v = 0 on dwx]| — [,0[ as a test function in (7.13).
With the help of (¢) of Lemma 5.1, we have T°(7;;(v)) — ~;(v) strongly in L*(Q" x D), for
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i=1,2,3, and T¢(v) — v strongly in L?(QT x D), as ¢ tends to zero. In view of the weak

convergence of s (0°) given by Lemma 7.1 and of (7.14), (7.15), passing to the limit in
£

(7.13) leads to

Z / 1]'71jd$1d172d1'3 Z fividxydrodas,

3,j=1 Q-

for any v as above. Then, we obtain

3
Jdo
_ Z 5 J
j=1

0,3 =033 =0, onw x {0} and w x {—I}.

= fz n Q_,

Since o;; is still given by (6.31), it gives a standard elastic problem in 2~ which indeed
admits a unique solution.

8 Convergence of the energies

T
We only investigate the case r = ke, the case — — 0 being very similar. We take v = u® in
€

(6.1) to obtain the energy identity:

3
SQE (Ue) = k?2 Z /Q+ 5 T* (O'fj) T° (’)/Z](UE)) dIldIQdCL’nglng—f—

1,j=1

Z/ 057 (u®)dr drodrs =k Z/ () T° (uf) drydrodrsd X d X,
+xD

2,j=1

3
+ Z /g;_ fofdxld.IQd(L’g
=1

Since r. = ke, from (2.19) and (2.20) we have

k2z S (f9)T° () daydaodusd X dXo =
+><D

k32 eT (fa) T° () daydaodasd Xy dXo+
QtxD

k2 / T° (fg) T° (Ug) dl’ldl'gd.%gdxldXQ,
QtxD
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and (5.13), (5.14) and the strong convergence of 7° (f;) to f; permits us to obtain

2

lim & (uf) = k* Z/ fatldrdrydrsd X 1d X o+
e—0 Q+xD

(8.1)
3
k? / fau§drydrydasd X dXy + Y [ fiug doydrydas,
QtxD i=1 Y
Now remark that the expressions derived in the preceding section lead to
X1+ Xop + 20 X33 = 0, X11 = Xoo, Xig = X3 = Xo3 =0, (8.2)
oUuy O*UY O2UY
X33 = —=> — kX — kX 8.3
B D el > oxt (8.3)

We will now use the easy to verify algebraic identity which is valid for any symmetric
matrix d = (d;;)

3
A(Tr d)(Tr d) +2p Y _ dijdi; = Edssdss +

1,j=1

o)1 =) b2

(8.4)
E
2(1+v)

[(diy — dao)? + 4(diy + diy + d3y)] -

Then we have, in view of (8.2) and (8.3),

3
/ {)\TI‘(X)TY(X) + Z Q/LXl]XU} dl'ldfﬂgdl’ngldXQ =
QtxD

1,j=1

0 2 2
E/ s k:Xla U _ nga Uy dxld:vzdxstldXz =
a+xp \ 073 Ox3 Oz

o\ 2
E7r/ <%) dxidrodrs+
+

(8.5)

(9.%3

02U\ 2 92U\ ?
El{j2 /{:ﬁ_ (II <87§1) —|— _[2 (87;) dIldedxi;,

(USIIlg agaln/dedeXg /XQXmdXQ /XlXQXmdXQ—O)

D
Using U2 = u? (recall (5.28)) as a test function in (6.29) gives also taking into account
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the boundary conditions on U2:
920\ 2 20N\
Ek’4 /Q+ (Il (Wg) —|—]2 (Wg) dl‘1d$2d$3 =

2
k3 ol drydrydr
az Q+f 0T10T20T3

(8.6)

Secondly, plugging the test function defined by U in QF x D and v~ in Q™ in (6.32), and
recalling (5.32), leads to

, U\ > L
Ek*m B, ) rrdrades + > 0w )duydwsds =
ot -

ij=1
(8.7)
3
k2 / fsuddaydrodrsd X dX, + / > foug daydzadas.
QtxD T =1
Adding (8.6) and (8.7) and using (8.1) and (8.5) give
3
llII(l) gﬂs (ue) = ]{;2/ {)\TI‘(X)TI'(X) + Z 2/LXZJXZ]} dl’ldIde:;XmdXQ
£— Q+xD ;-
i,7=1
(8.8)

3
—i—/_ Zagvij(u’)dl’ld@dxg,

ij=1

which yields the convergence of the energy £(u®) to the elastic limit energy. A standard
argument based on the strict convexity of the elastic energy shows that the convergences
(5.20) and (5.21) are strong in L*(QF x D) and that v;j(u®) — 7;;(u™) strongly in L*(Q7)
as € tends to zero. This last fact implies directly that u® — u~ strongly in H*(Q27).

The strong convergence in (5.20), for i = j = 3, together with (5.15) and the expression
(5.47) of X33 gives

€ € € TE(TE 0 0 0
ou; + ke Xo R _ ke Xy IRs + 0T (%) — outs + k‘Xz—aR1 — kX, R
8.753 81'3 8.173 8.1'3 833‘3 65133 6113'3 (89)

strongly in L*(Q" x D),

as € tends to zero. Using / T°(u3)dX1dXs = / XoT¢(u3)dX dXs =0 ae. in QF, for
D D
a = 1,2, we easily deduce from (8.9) that

€ 0 € 0
s — o , 587% — IR strongly in L*(Q" x D), for a = 1,2, (8.10)
Oxs Oxs Ox3 Oxs
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as € tends to zero.
Now remark that, in view of (4.25) we know that eR% (-, -, 0) strongly converges to 0 in
L*(w), as € tends to zero. Then (8.10) implies that

eRE, — RY strongly in L*(w; H'(]0, L[)), for a=1,2, (8.11)
as ¢ tends to zero. From (5.19) and (8.11) it follows that
elds — UL strongly in L*(w; H'(]0, L])), for a=1,2, (8.12)

as € tends to zero. As a consequence of the decomposition 4.38, 4.39 of the uZ’s, we deduce
from the previous convergences that

eT¢(uf) — UY strongly in L*(w; H(Dx]0,L])), fora=1,2. (8.13)

As far as U5 is concerned, remark that u§(zy, xq,0) — u(z1, Tq,0) strongly in L*(w) and then
the estimates on U (1, T, 0) in Step 1 of Section 4.1 shows that U5 (x1, z2,0) — U (21, z2,0)
strongly in L?(w). With (8.10) it gives

Us — UY strongly in L*(w; H(]0, L[)), (8.14)

as € tends to zero. At least, proceeding as above leads to

€(,,E 0 au? aug . 2 1
T (u3) — Us — lea_xg - kXQG—xg strongly in L*(w; H (Dx]0, L[)). (8.15)

1
Remark 8.1. As far as the strong convergences of the sequences —T°(u”) and eR5 in (5.15)
€

and (5.18) are concerned, the analysis is more intricate (even for a single rod, see [16]).

1
What is easy to prove is that —T°(ut,) —u., strongly in L*(Q+; H'(D)) for a = 1,2. This is
5

(e

a consequence of the strong convergence of T¢ (Yap(u®)) in L*(Q2T x D), of (5.34) and of the
Korn’s inequality in D for a displacement field satisfying (3.8) and (3.10).

9 Summarize (case r = ke)

Let e be a sequence of positive real numbers which tends to 0. Let (u, 0%) be the solution of
(2.13)+(2.18) and U and R* be the two first terms of the decomposition of u* in QF given
in Section 3. The unfolding operator 7°¢ in 2 is defined in Section 5.1.

In order to state the convergence theorem below, we first recall the limit problems ob-
tained in Section 6.2 and 6.3.

Limit problem: let (fy, fa, f3) be in (L*(Q))3.

e Bending problem in the rods (indexed (x,z2) € w):
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Let us denote by (U2, UY) € (L2(w; H'(]0, L])))* be the unique weak solution of the problem:

(o

kEI,
xs

= mf,, in QF,

0
Ul = 5 < in w x {0}, (9.1)
T3

PU U
a2 = 9u =0inw x {L}.

\

e Coupled problem for the stretching in the rods and 3d elasticity in 27: let us denote by

U € (L*(w; H*(J0, L[))) and (u=,07) € (Hl(Q*))3 X (LQ(Q)):;’XS the unique weak solution
of the problem:

(U

— ; +
- 12 _f?n in () )
3

o5 =A (Z fykk(u))) 8ij + 2py(uw”) in Q7

with

e the transmission condition on w x {0}:
Us = uz on w x {0},

9.3)
) 0 (
03=0, 033= Ekzwﬁ on w x {0},

8.1'3

e the boundary conditions:

(o _

O 0onwx{L},

0,3 =033 =0o0nwx {1}, (9-4)

| v~ =0ondwx | —1,0[

According to the proof developed in the previous sections, we can state the following
convergence result:

Theorem 9.1. Under the assumptions (2.19)+(2.21) on the applied forces, the sequence
(uf, 0%) satisfy the following convergences:

o cT°(uf) — ul strongly in L*(w, H'(Dx]0,L[)), fora=1,2,
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o T¢(u) — uj strongly in L*(w, H(Dx]0, L[)),

where (ud,uy, ul) is the Bernoulli-Navier displacement

ug(xl,mg,xg,Xl,Xg) = uao(l'l,l’g,l'g), fora=1,2,

(92/{0 (97/{0
ug (w1, T, 13, X1, Xo) = U (21, 9, 13) — kX —— o L(z1, 29, 73) — kXQa (w1, 22, z3),
3 T3

U, U and U being the solution of (9.1), and (9.2)+(9.4).
o sU; — U strongly in L? (w, H'(]0,L])), for a=1,2,
o U — Uy strongly in L? (w, H'(J0, L[)),
o T°(vi;(u%)) — Xy; strongly in L*(Q* x D), fori,j=1,2,3,

where ouy o*Uy o*Uy
Xy=Xp=v{-——24+kX|—— +kXo——
11 22 V{ Bz 1(9 + 28363 }
X2 = Xi3 = Xo3 =0,
81/{3 O*UY O*UY
— kX — kX .
57 Das Y02 g
o T°(05;) — Xyj strongly in L*(Q0" x D), fori,j=1,2,3
where
Y11 = Yoo = Xgp = X3 = 23 = 0,
oUy o*UY 0*UY
Ya3 =B | 2 — kX — kX
% (0x3 " ox2 oz} > 0r2 0z} )
with B — M3A+20)
A+
o ut — u; strongly in H'(Q7), fori=1,2,3,
® 0, — 0, strongly in L*(Q7), fori,j =1,2,3.
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