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). We use a decomposition of the displacement field in the rods of the form u = U + u where the principal part U is a field which is piecewise constant with respect to the variables (x 1 , x 2 ) (and then naturally extended on a fixed domain), while the perturbation u remains defined on the oscillating domain containing the rods. We derive estimates of U and u in term of the total elastic energy. This allows to obtain a priori estimates on u without solving the delicate question of the dependence, with respect to ε and r, of the constant in Korn's inequality in such an oscillating domain. To deal with the field u, we use a version of an unfolding operator which permits both to rescale all the rods and to work on the same fixed domain as for U to carry out the homogenization process. The above decomposition also helps in passing to the limit and to identify the limit junction conditions between the rods and the 3d plate.

Résumé

Nous considérons un ensemble de poutres élastiques périodiquement distribuées sur une plaque élastique 3d (toutes d'axe x 3 ) et nous analysons le comportement limite de ce problème lorsque la périodicité ε et le rayon r des poutres tendent vers zéro. Nous introduisons une décomposition du champ de déplacement de la forme u = U + u dans laquelle la partie principale U est un champ constant par morceau par rapport aux variables (x 1 , x 2 ) (et qui s' étend donc naturellement sur un domaine fixe), alors que la perturbation u reste un champ défini sur le domaine oscillant qui représente les poutres. Nous donnons des estimations de U et u en fonction de l'énergie élastique totale. Ceci permet d'obtenir des estimations a priori de u sans chercher à évaluer la dépendance, par rapport à ε et r, de la constante de l'inégalité de Korn pour un tel domaine oscillant. Pour traiter le champ u, nous utilisons une version d'opérateur d' éclatement qui permet simultanément de redimensionner toutes les poutres et de travailler sur le

Introduction

This paper is devoted to describe the asymptotic behavior of an elastic multistructure composed of a set of periodic elastic rods in junction with a 3d plate (see Figure 1). The diameter of each rod tends to zero as the periodicity vanishes, while the height of the rods remains constant. The lateral boundary of the plate is assumed to be clamped. The mechanical model under investigation is the isotropic linearized elasticity system (see e.g. [START_REF] Ciarlet | Elasticité tridimensionelle[END_REF]). In this first paper, we consider a plate of constant thickness. The case of the vanishing thickness for the plate is investigated in the second paper [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF].

W e,r W e,r W Figure 1: Elastic multistructure with highly oscillating boundary Since the periodicity and the diameters of the rods tend to zero, while the height of the rods remains constant, this problem pertains to the field of elliptic problems posed on a domain which has a so called: "highly oscillating boundary". Boundary-value problems involving rough boundaries or interfaces appear in many fields of physics and engineering sciences, such as the scattering of acoustic waves on small periodic obstacles, the free vibrations of elastic bodies, the behavior of fluids over rough walls, or of coupled fluid-solid periodic structures. There is a long list of paper concerning domains with highly oscillating boundary (for scalar problems, see e.g. [START_REF] Amirat | Asymptotic Approximation of the Solution of the Laplace Equation in a Domain with Highly Oscillating Boundary[END_REF], [START_REF] Blanchard | Homogenization of a Monotone Problem in a Domain with Oscillating Boundary[END_REF], [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF], [START_REF] Esposito | Homogenization of the p-Laplacian in a Domain with Oscillating Boundary[END_REF], [START_REF] De Maio | Optimal Control for a Parabolic Problem in a Domain with Highly Oscillating Boundary[END_REF], [START_REF] Gaudiello | Asymptotic Behaviour of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary[END_REF] and [START_REF] Mel'nyk | Homogenization of the Poisson Equations in a Thick Periodic Junction[END_REF]). Precisely, in [START_REF] Brizzi | Boundary Homogenization and Neumann Boundary Value Problem[END_REF] the limit problem for the Laplace equation with the homogeneous Neumann boundary condition and with a L 2 -right-hand side is derived. For the same problem, a nonoscillating approximation of the solution at order O ε 1-δ in the H 1 -norm is obtained in [START_REF] Mel'nyk | Homogenization of the Poisson Equations in a Thick Periodic Junction[END_REF], under an additional assumption on the right-hand side. In the case of the Laplace equation with Dirichlet boundary conditions, a nonoscillating approximation of the solution at order O ε in the H 1 -norm is constructed in [START_REF] Amirat | Asymptotic Approximation of the Solution of the Laplace Equation in a Domain with Highly Oscillating Boundary[END_REF]. The Laplace equation with a non-homogeneous Neumann boundary condition is studied in [START_REF] Gaudiello | Asymptotic Behaviour of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary[END_REF]. The limit energy of the p-laplacian is obtained in [START_REF] Esposito | Homogenization of the p-Laplacian in a Domain with Oscillating Boundary[END_REF], while a corresponding monotone problem is considered in [START_REF] Blanchard | Homogenization of a Monotone Problem in a Domain with Oscillating Boundary[END_REF]. The optimal control for a parabolic problem is studied in [START_REF] De Maio | Optimal Control for a Parabolic Problem in a Domain with Highly Oscillating Boundary[END_REF]. For the asymptotic behaviour of transmission problems, we refer to [START_REF] Gaudiello | Homogenization of an Elliptic Transmission Problem[END_REF] and [START_REF] Keller | Homogenization of Rough Boundary and Interfaces[END_REF]. For general references about domains with singular perturbations and multidomain, we refer to [START_REF] Cioranescu | Homogenization of Reticulated Structures[END_REF], [START_REF] Kozlov | Asymptotic analysis of Fields in a Multi-Structure[END_REF], [START_REF] Dret | Problèmes variationnels dans les multi-domaines: modélisation des jonctions et applications[END_REF], [START_REF] Maz'ya | Asymptotic Behavior of Solution of Elliptic Boundary Value Problems under Singular Pertubations of the Domain[END_REF], [START_REF] Pironneau | Optimal Shape Design for Elliptic Systems[END_REF]. For mathematical modelling of rods we refer to [START_REF] Murat | Comportement asymptotique des solutions du sytème de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces[END_REF], [START_REF] Percivale | Thin elastic beams : the variational approach to St. Venant's problem[END_REF] and [START_REF] Trabucho | Mathematical Modelling of Rods Hand-book of Numerical Analysis[END_REF]. For a presentation of the homogenization theory we refer to [START_REF] Tartar | Partially written in F. Murat, H-Convergence[END_REF].

Even if our model is linear isotropic elasticity, the vectorial character of the unknown (the 3d displacement) precludes from reproducing the analysis used for the above scalar problems to take into account the fast oscillations of the rods. Indeed, the first difference concerns the derivation of a priori estimates on the displacement (or the stress) field: the dependance of the constant in Korn's inequality with respect to the period ε of the rods and their diameter r is not relevant. In some sense this is due to very different behavior of the displacements in the rods and in the plate. To overcome this first difficulty we use a decomposition of the 3d displacement in the rods introduced in [START_REF] Griso | Décomposition des déplacements d'une poutre : simplification d'une problème d'élasticité[END_REF]] and [START_REF] Griso | Asymptotic Behavior of Curved Rods by the Unfolding Method[END_REF], which involves the mean displacement and the main rotation of each cross section of each rod (see Section 3). The main property of this decomposition relies on a priori estimates of its terms with bounds depending on ε, r and the total elastic energy. Loosely speaking, this leads to estimates of the type: [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF], where u ε,r is the displacement in the set of rods Ω + ε,r , c i (ε, r) is a constant which depends on ε, r and on the component of the displacement, and E Ωε,r (u ε,r ) is the total elastic energy in the rods Ω + ε,r and in the plate Ω -: that is Ω ε,r = Ω + ε,r ∪ Ω -. This process allows to precise the scaling of the applied forces and to obtain more precise estimates on the displacement (or on its decomposition) than by using Korn's inequality. The second difficulty arises when passing to limit as ε and r tend to 0; indeed the solution is defined on a domain Ω ε,r which depends on ε and r. In the scalar case, it is sufficient to extend the solution by 0 outside Ω + ε,r and to remark that the derivative in the direction of the axis of the rods (say x 3 ) commutes with this extension process. It is well known that this simple argument does not work in elasticity in order to describe the bending in the rods (the only deformation which commutes with the 0-extension is ∂ x 3 u 3 ). Actually, the decomposition we use for the displacement also helps passing to the limit: it provides an approximation of the 3d displacement in the rods which is defined on a fixed domain (the domain asymptotically filled by the rods). Indeed, the mean displacement and the mean rotation of each rod lead to functions of x 3 which are piecewise constant with respect to (x 1 , x 2 ). To deal with the rest of the decomposition, i.e. the part which remains a field of (x 1 , x 2 , x 3 ), we use first the a priori estimates (in terms of the elastic energy) mentioned above and then a tool developed in [START_REF] Cioranescu | Periodic Unfolding and Homogenization[END_REF], referred as the unfolding operator technique, which also allows to work on a fixed domain (but with more variables). A similar technique has been used in [START_REF] Diaz | Homogenization of the Anisotropic Heterogeneous Linearized Elasticity System in Thin Reticulated Structures[END_REF] for reticulated elastic structure. Let us emphasize that with such an approach we not only identify the limit problem as a "continuum" model of 1d rods coupled with 3d elasticity in the plate; but we also show that the relevant physical quantities (the mean of the 3d displacement in the cross-section of each rod) converge (in adapted norms) to the solution of the limit problem. References and other applications of the unfolding operator technique can be found in [START_REF] Cioranescu | Homogenization of Quasiconvex Integrals via the Periodic Unfolding Method[END_REF], [START_REF] Damlamian | An Elementary Introduction to Periodic Unfolding[END_REF] and [START_REF] Griso | Comportement asymptotique d'une grue[END_REF].

u ε,r i 2 L 2 (Ω + ε,r ) ≤ c i (ε, r)E Ωε,r (u ε,r ), i = 1, 2,
The paper is organizes as follows. In Section 2 we describe the geometry and the model under consideration and specify the assumptions on the applied forces. Section 3 is devoted to introduce the decomposition of the displacement field u ε in the rods. In Section 4, we derive the a priori estimates on each rods. In Section 5 we introduce the unfolding operator and derive the estimates on the unfold fields. We also obtain the junction conditions between the limit model for the rods and the plate. We first pass to the limit in Section 6 in the case where the radius of the rods r is of order ε. In Section 7 we examine the case r = o(ε). At least in Section 8 we prove convergence of the energies and deduce a few strong convergence results of the fields. Section 9 is devoted to summarize the results.

Position of the problem

We investigate the behavior of an elastic 3d body Ω ε,r composed of two parts: a forest of rods Ω + ε,r and a 3d plate Ω -. To describe the geometry of Ω + ε,r , let us consider an open bounded domain ω with Lipschitz boundary contained in the (x 1 , x 2 )-coordinate plane. For a real number ε > 0, N ε denotes the following subset of Z 2 :

N ε = (p, q) ∈ Z 2 : εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 ⊂ ω . (2.1) 
Fix L > 0. For each (p, q) ∈ Z 2 , ε > 0 and r > 0, we consider a rod P ε,r pq whose cross section is the disk of center (εp, εq) and radius r, and whose axis is x 3 and which has a height equal to L:

D ε,r pq = (x 1 , x 2 ) ∈ R 2 : (x 1 -εp) 2 + (x 2 -εq) 2 < r 2 , (2.2) 
P ε,r pq = (x 1 , x 2 , x 3 ) ∈ R 3 : (x 1 , x 2 ) ∈ D ε,r pq , 0 < x 3 < L . (2.3)
Then, for r ∈ 0, ε 2 , we denote by Ω + ε,r the set of all the rods defined as above:

Ω + ε,r = (p,q)∈N ε P ε,r pq . (2.4) 
The lower cross sections of all the rods is denoted by ω ε,r :

ω ε,r = (p,q)∈N ε D ε,r pq × {0} ⊂ ω. (2.5)
We have assumed that r ≤ ε 2 , in order to avoid the contact between two different rods. The 3d plate is defined by

Ω -= (x 1 , x 2 , x 3 ) ∈ R 3 : (x 1 , x 2 ) ∈ ω, -l < x 3 < 0 , (2.6)
where l is a positive fixed real number.

The elastic body Ω ε,r is defined by

Ω ε,r = Ω + ε,r ∪ ω ε,r ∪ Ω -. (2.7)
The domain asymptotically filled by the oscillating part Ω + ε,r of Ω ε,r (as ε tends to zero) is denoted by Ω + :

Ω + = ω×]0, L[. (2.8)
Moreover, Ω is defined by

Ω = ω×] -l, L[. (2.9)
We consider the standard linear isotropic equations of elasticity in Ω ε,r . The displacement field in Ω ε,r is denoted by

u ε,r : Ω ε,r → R 3 .
The linearized deformation field in Ω ε,r is defined by

γ(u ε,r ) = 1 2 Du ε,r + (Du ε,r ) T , (2.10) 
or equivalently by its components:

γ ij (u ε,r ) = 1 2 ∂ i u ε,r j + ∂ j u ε,r i , i, j = 1, 2 , 3. (2.11) 
The Cauchy stress tensor in Ω ε,r is linked to γ(u ε,r ) through the standard Hooke's law:

σ ε,r = λ (Tr γ(u ε,r )) I + 2µγ(u ε,r ), (2.12) 
where λ and µ denotes the Lamé coefficients of the elastic material, and I is the identity 3 × 3 matrix. Indeed (2.12) writes as

σ ε,r ij = λ 3 k=1 γ kk (u ε,r ) δ ij + 2µγ ij (u ε,r ), i, j = 1, 2, 3, (2.13) 
where

δ ij = 0 if i = j and δ ij = 1 if i = j.
The equation of equilibrium in Ω ε,r writes as

- 3 j=1 ∂ j σ ε,r ij = f ε,r i in Ω ε,r , i = 1, 2, 3, (2.14) 
where f ε,r : Ω ε,r → R 3 denotes the volume applied force.

In order to specify the boundary conditions on ∂Ω ε,r , we will assume that:

• the 3d plate is clamped on its lateral boundary ∂ω×]l, 0[= Γ lat :

u ε,r = 0 on Γ lat , (2.15) 
• the boundary ∂Ω ε,r \ Γ lat is free:

σ ε,r ν = 0 on ∂Ω ε,r \ Γ lat , (2.16) 
where ν denotes the exterior unit normal to Ω ε,r .

Remark 2.1. Assumption (2.16) means that the density of applied surface forces on the boundary ∂Ω ε,r \ Γ lat is zero. This assumption is not necessary to carry on the analysis, but it is a bit natural as far as the fast oscillating boundary ∂Ω + ε,r is concerned.

The variational formulation of (2.14)÷(2.16) is very standard. If V ε,r denotes the space:

V ε,r = v ∈ H 1 (Ω ε,r ) 3 : v = 0 on Γ lat , (2.17) it results that          u ε,r ∈ V ε,r , Ωε,r 3 i,j=1 σ ε,r ij γ ij (v)dx = Ωε,r 3 i=1 f ε,r i v i dx, ∀v ∈ V ε,r .
(2.18)

As far as the assumption on the applied forces is concerned, we assume that throughout the paper

f ε,r α = rf α in Ω + ε,r , for α = 1, 2, (2.19) 
f ε,r 3 = f 3 in Ω + ε,r , (2.20) 
f ε,r i = f i in Ω -, for i = 1, 2, 3, (2.21) 
where f ∈ (L 2 (Ω)) 3 is given.

3 Decomposition of the displacement in Ω + ε,r and estimates in Ω - As usual, to obtain a priori estimates on u ε,r , then on γ(u ε,r ) and σ ε,r , we plug the test function u ε,r in (2.18) to obtain

Ωε,r 3 i,j=1 σ ε,r ij γ ij (u ε,r )dx = Ωε,r 3 i=1 f ε,r i u ε,r i dx. (3.1)
The main difficulty in deriving a priori estimates from (3.1) is the dependance upon r and ε in the Korn's inequality in Ω ε,r . Indeed, this is due to the fast oscillating part Ω + ε,r (in Ω -Korn's inequality is standard and the boundary condition (2.15) 

permits to control u ε,r i L 2 (Ω -) ).
Moreover, for a multi-structure like Ω ε,r , it is not very convenient to estimate the constant in a Korn's type inequality because the order of each component of the displacement field (say in L 2 -norm, with respect to ε and r) may be very different. To overcome this difficulty, in the sequel we will use a decomposition of the field u ε,r in each rod P ε,r pq , which, in some sense, takes advantage of the geometry of a rod (see [START_REF] Griso | Asymptotic Behavior of Curved Rods by the Unfolding Method[END_REF]).

Fix ε, r, and (p, q) in N ε and let us drop the index ε, r and (p, q) in D ε,r pq and P ε,r pq (then for a while, D and P denote D ε,r pq and P ε,r pq ). For any displacement v ∈ (H 1 (O)) 3 of a open smooth domain O, the elastic energy is denoted by

E O (v) = O   λ 3 k=1 γ kk (v) 2 + 2µ 3 i,j=1 (γ ij (v)) 2   dx. (3.2)
In order to obtain a useful decomposition of v, we introduce the following notations:

U(x 3 ) = 1 πr 2 D v(x 1 , x 2 , x 3 )dx 1 dx 2 , (3.3) 
R 1 (x 3 ) = 1 I 2 r 4 D (x 2 -εq)v 3 (x 1 , x 2 , x 3 )dx 1 dx 2 , (3.4) R 2 (x 3 ) = - 1 I 1 r 4 D (x 1 -εp)v 3 (x 1 , x 2 , x 3 )dx 1 dx 2 , (3.5) R 3 (x 3 ) = 1 (I 1 + I 2 )r 4 D (x 1 -εp)v 2 (x 1 , x 2 , x 3 ) -(x 2 -εq)v 1 (x 1 , x 2 , x 3 )dx 1 dx 2 , (3.6) 
where

I 1 = 1 r 4 D (x 1 -εp) 2 dx 1 dx 2 = π 4 = 1 r 4 D (x 2 -εq) 2 dx 1 dx 2 = I 2 .
Let us denote by R the vectorial field (R 1 , R 2 , R 3 ) and set

v(x 1 , x 2 , x 3 ) = v(x 1 , x 2 , x 3 ) -U(x 3 ) -R(x 3 ) ∧ ((x 1 -εp)e 1 + (x 2 -εq)e 2 ). (3.7) 
where e 1 = (1, 0, 0), e 2 = (0, 1, 0) and e 3 = (0, 0, 1). Indeed, due to the definition of R and to the symmetry of D, one has that

D v i (x 1 , x 2 , x 3 )dx 1 dx 2 = 0, for i = 1, 2, 3, (3.8) 
D (x 1 -εp)v 3 (x 1 , x 2 , x 3 )dx 1 dx 2 = D (x 2 -εq)v 3 (x 1 , x 2 , x 3 )dx 1 dx 2 = 0, (3.9) 
D (x 1 -εp)v 2 (x 1 , x 2 , x 3 ) -(x 2 -εq)v 1 (x 1 , x 2 , x 3 )dx 1 dx 2 = 0, (3.10) 
for almost any x 3 in ]0, L[. The following lemma is proved in [START_REF] Griso | Décomposition des déplacements d'une poutre : simplification d'une problème d'élasticité[END_REF].

Lemma 3.1. For L > r, there exists a constant c (which does not depend on L and r) such that for any v ∈ (H 1 (P)) 3 :

dU dx 3 -R ∧ e 3 2 (L 2 ]0,L[) 3 ≤ c r 2 E P (v), (3.11) 
dR dx 3 2 (L 2 ]0,L[) 3 ≤ c r 4 E P (v), (3.12) v 2 (L 2 (P)) 3 ≤ cr 2 E P (v), (3.13) 
Dv 2 (L 2 (P)) 9 ≤ cE P (v), (3.14) where

U = (U 1 , U 2 , U 3 ), R = (R 1 , R 2 , R 3
) and v are defined in (3.3)÷(3.7).

To end this section, we recall that, since u ε,r = 0 on ∂ω×]l, 0[, Korn's inequality yields:

u ε,r 2 (L 2 (Ω -)) 3 + Du ε,r 2 (L 2 (Ω -)) 9 ≤ cE Ω -(u ε,r ) = c Ω - 3 i,j=1 σ ε,r ij γ ij (u ε,r )dx, (3.15) 
where c is a constant independent of ε and r.

A priori estimates

Let us consider the displacement u ε,r ∈ (H 1 (Ω ε,r )) 3 solution of (2.14)÷(2.16). Indeed, u ε,r ∈ H 1 (P ε,r pq ) 3 , for any (p, q) ∈ N ε . Then, the previous section permits to define, for any (p, q) ∈ N ε , the fields U ε,r pq , R ε,r pq and u ε,r pq , through the formulae (3.3)÷(3.7), with u ε,r in place of v. Recall that for any (p,

q) ∈ N ε , U ε,r pq ∈ (H 1 (]0, L[)) 3 , R ε,r pq ∈ (H 1 (]0, L[))
3 , and

u ε,r pq ∈ H 1 (P ε,r pq ) 3 .
In order to shorten the notation, we set:

ω ε = (p,q)∈N ε εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 ⊂ ω. (4.1)
Now we define the field U ε,r and R ε,r almost everywhere in Ω + by

U ε,r (x 1 , x 2 , x 3 ) = U ε,r pq (x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (4.2) 
R ε,r (x 1 , x 2 , x 3 ) = R ε,r pq (x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (4.3) 
U ε,r (x 1 , x 2 , x 3 ) = R ε,r (x 1 , x 2 , x 3 ) = 0, if (x 1 , x 2 ) ∈ ω \ ω ε , (4.4) 
which means that U ε,r (•,

•, x 3 ) and R ε,r (•, •, x 3 ) are constants on each cell εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 .
Indeed, we have that U ε,r , R ε,r ∈ (L 2 (Ω + )) 3 , and for i = 1, 2, 3

U ε,r i 2 L 2 (Ω + ) = ε 2 (p,q)∈N ε L 0 U ε,r pq i (x 3 ) 2 dx 3 = ε 2 (p,q)∈N ε U ε,r pq i 2 L 2 (]0,L[), (4.5) R ε,r i 2 L 2 (Ω + ) = ε 2 (p,q)∈N ε L 0 R ε,r pq i (x 3 ) 2 dx 3 = ε 2 (p,q)∈N ε R ε,r pq i 2 L 2 (]0,L[). (4.6) 
Moreover, since

∂U ε,r ∂x 3 (x 1 , x 2 , x 3 ) = dU ε,r pq dx 3 (x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (4.7) 
and

∂R ε,r ∂x 3 (x 1 , x 2 , x 3 ) = dR ε,r pq dx 3 (x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (4.8) 
it follows that

U ε,r , R ε,r ∈ L 2 ω, H 1 (]0, L[) 3 , (4.9) 
(recall that U ε,r pq , R ε,r pq ∈ (H 1 (]0, L[)) 3 , for any (p, q) ∈ N ε ) and for i = 1, 2, 3

∂U ε,r i ∂x 3 2 L 2 (Ω + ) = ε 2 (p,q)∈N ε L 0 dU ε,r pq dx 3 i 2 dx 3 = ε 2 (p,q)∈N ε dU ε,r pq dx 3 i 2 L 2 (]0,L[) , (4.10) 
∂R ε,r i ∂x 3 2 L 2 (Ω + ) = ε 2 (p,q)∈N ε L 0 dR ε,r pq dx 3 i 2 dx 3 = ε 2 (p,q)∈N ε dR ε,r pq dx 3 i 2 L 2 (]0,L[) . (4.11)
As far as the set of functions u ε,r pq are concerned, we define the function u ε,r a.e. in Ω

+ ε,r by u ε,r = u ε,r pq , if (x 1 , x 2 , x 3 ) ∈ P ε,r pq . (4.12) 
In order to obtain estimates on the quantities U ε,r , R ε,r , u ε,r and u ε,r in various norm, the strategy is the following. At first, we derive a few estimates on the fields U ε,r , R ε,r , u ε,r and u ε,r respectively in terms of the total elastic energy:

E Ωε,r (u ε,r ) = Ω ε,r 3 i,j=1 σ ε,r ij γ ij (u ε,r )dx.
Then, we use (3.1) and assumptions (2.19), (2.20), (2.21) on the forces (f ε,r i ) to obtain an uniform estimates on E Ωε,r (u ε,r ), from which we deduce uniform bounds on U ε,r , R ε,r , u ε,r and u ε,r .

In the sequel of this Section, c denotes any positive constant independent of ε and r.

4.1 Uniform bound on U ε,r and R ε,r in terms of E Ω ε,r (u ε,r )

The estimates on U ε,r and R ε,r are obtained in two steps. In the first step, estimates on Step 1. Estimates on U ε,r (•, •, 0) and R ε,r (•, •, 0). We begin with R ε,r (•, •, 0) and we only detail the technique for R ε,r 1 .

U ε,r (•, •, 0) and R ε,r (•, •, 0) are derived in term of E Ω -(u ε,
First recall that for any (p, q) ∈ N ε , we have that

R ε,r pq 1 (0) = 1 I 2 r 4 D ε,r pq (x 2 -εq)u ε,r 3 (x 1 , x 2 , 0)dx 1 dx 2 . (4.13)
Now u ε,r 3 (x 1 , x 2 , 0) is indeed also the trace on D ε,r pq of the displacement u ε,r 3 in Ω -. Then, by using estimate (3.15), we have

u ε,r 3 (x 1 , x 2 , 0) 2 L 2 (ω) ≤ cE Ω -(u ε,r ).
Consequently, by using the Cauchy-Schwarz's inequality in (4.13) and by summing up all the obtained inequalities over (p, q) ∈ N ε , we get

(p,q)∈N ε R ε,r pq 1 (0) 2 ≤ c r 4 E Ω -(u ε,r ). (4.14)
Actually we derive a sharper estimate using Poincaré-Wirtinger inequality's and the term (x 2εq) in definition (4.13) (this will be useful to obtain the junction condition on ω in the limit problem).

For any (p, q) ∈ N ε , we extend R ε,r pq 1 for almost

x 3 ∈] -l, 0[ by R ε,r pq 1 (x 3 ) = 1 I 2 r 4 D ε,r pq (x 2 -εq)u ε,r 3 (x 1 , x 2 , x 3 )dx 1 dx 2 . (4.15) Indeed R ε,r pq 1 ∈ H 1 (] -l, 0[), and d R ε,r pq 1 dx 3 (x 3 ) = 1 I 2 r 4 D ε,r pq (x 2 -εq) ∂u ε,r 3 ∂x 3 (x 1 , x 2 , x 3 )dx 1 dx 2 . (4.16)
If we denote by M D ε,r pq (u ε,r 3 )(x 3 ) the mean of u ε,r 3 over D ε,r pq , that is

M D ε,r pq (u ε,r 3 )(x 3 ) = 1 |D ε,r pq | D ε,r pq u ε,r 3 (x 1 , x 2 , x 3 )dx 1 dx 2 ,
we first have that

R ε,r pq 1 (x 3 ) = 1 I 2 r 4 ε D ε,r pq (x 2 -εq) u ε,r 3 (x 1 , x 2 , x 3 ) -M D ε,r pq (u ε,r 3 )(x 3 ) dx 1 dx 2 , (4.17) 
(and here the term (x 2εq) plays the important role in the estimate) and secondly, because of Poincaré-Wirtinger inequality's on D ε,r pq (which has radius equal to r), we have that

u ε,r 3 -M D ε,r pq (u ε,r 3 ) 2 L 2 (D ε,r pq ×]-l,0[) ≤ cr 2 D x 1 ,x 2 u ε,r 3 2 (L 2 (D ε,r pq ×]-l,0[)) 2 , (4.18) 
where D x 1 ,x 2 u ε,r 3 denotes the gradient of u ε,r 3 with respect to the variables x 1 , x 2 . From (4.17) and (4.18), we deduce that, for any (p, q) ∈ N ε ,

R ε,r pq 1 2 L 2 (]-l,0[) ≤ c r 2 D x 1 ,x 2 u ε,r 3 2 (L 2 (D ε,r pq ×]-l,0[)) 2 . (4.19) Due to (4.16) we have d R ε,r pq 1 dx 3 2 L 2 (]-l,0[) ≤ c r 4 ∂u ε,r 3 ∂x 3 2 L 2 (D ε,r pq ×]-l,0[) . (4.20)
As a consequence of (4. [START_REF] Kozlov | Asymptotic analysis of Fields in a Multi-Structure[END_REF]) and (4.20) it results that

R ε,r pq 1 (0) 2 ≤ c r 3 Du ε,r 3 2 ( L 2 (D ε,r pq ×]-l,0[) ) 3 . (4.21)
By summing up over all (p, q) ∈ N ε , we obtain

(p,q)∈N ε R ε,r pq 1 (0) 2 ≤ c r 3 u ε,r 3 2 H 1 (Ω -) . (4.22)
and, with the help of the Korn's inequality in Ω -(see (3.15)), we have

(p,q)∈N ε R ε,r pq 1 (0) 2 ≤ c r 3 E Ω -(u ε,r ), (4.23) 
which is an improvement of (4.14). Now, in view of the definition

(4.3)-(4.4) of R ε,r , we deduce that (R ε,r ) 1 (•, •, 0) 2 L 2 (ω) ≤ cε 2 r 3 E Ω -(u ε,r ). (4.24) 
Indeed, we have the same estimates on (R ε,r ) 2 (0) and (R ε,r

) 3 (0) in L 2 (ω), so that R ε,r (•, •, 0) 2 (L 2 (ω)) 3 ≤ cε 2 r 3 E Ω -(u ε,r ). (4.25)
To obtain an estimate on U ε,r (•, •, 0), we just write, that for any (p, q) ∈ N ε ,

U ε,r pq (0) = 1 πr 2 D ε,r pq u ε,r (x 1 , x 2 , 0)dx 1 dx 2 , (4.26) 
and then by Cauchy-Schwarz's inequality

U ε,r pq (0) 2 ≤ c r 2 D ε,r pq |u ε,r (x 1 , x 2 , 0)| 2 dx 1 dx 2 . (4.27)
Due to the definition (4.2)÷(4.4) of U ε,r , summing up with respect to (p, q) ∈ N ε , we obtain

U ε,r (•, •, 0) 2 (L 2 (ω)) 3 ≤ cε 2 r 2 u ε,r (•, •, 0) 2 (L 2 (ω)) 3
. Now, again with the help of the Korn's inequality in Ω -(see again (3.15)) and of the trace theorem in Ω -, it yields

U ε,r (•, •, 0) 2 (L 2 (ω)) 3 ≤ cε 2 r 2 E Ω -(u ε,r ). (4.28)
Step 2. Estimates on U ε,r and R ε,r . For any (p, q) ∈ N ε , recall that by (3.12)

dR ε,r pq dx 3 2 (L 2 (]0,L[)) 3 ≤ c r 4 E P ε,r pq (u ε,r ).
Then, with the help of (4.8), we deduce that

∂R ε,r ∂x 3 2 (L 2 (Ω + )) 3 ≤ cε 2 r 4 E Ω + ε,r (u ε,r ), (4.29) 
which, together with (4.25) permits to obtain

R ε,r 2 (L 2 (ω,H 1 (]0,L[))) 3 ≤ cε 2 r 4 E Ωε,r (u ε,r ), (4.30) since E Ω + ε,r (u ε,r ) + E Ω -(u ε,r ) = E Ωε,r (u ε,r
) (the sharper estimate (4.25) will be used in Subsection 5.5).

To obtain estimates on U ε,r , we first investigate the components U ε,r 1 and U ε,r 2 , and we only give the proof for U ε,r 1 (since it is identical for U ε,r 2 ). Due to (3.11), for any (p, q) ∈ N ε , we have that

d U ε,r pq 1 dx 3 2 L 2 (]0,L[) ≤ c R ε,r pq 2 2 L 2 (]0,L[) + 1 r 2 E P ε,r pq (u ε,r ) ,
from which, by using (4.7), it follows that

∂U ε,r 1 ∂x 3 2 L 2 (Ω + ) ≤ c R ε,r 2 2 L 2 (Ω + ) + ε 2 r 2 E Ω + ε,r (u ε,r ) ,
where c is a constant independent of ε. Then, with the help of (4.30), we obtain that (since r << 1)

∂U ε,r 1 ∂x 3 2 L 2 (Ω + ) ≤ c ε 2 r 4 E Ω ε,r (u ε,r ). (4.31)
In view of (4.28), we deduce that

U ε,r 1 2 L 2 (Ω + ) ≤ c ε 2 r 4 E Ωε,r (u ε,r ). (4.32)
Similarly we have

U ε,r 2 2 L 2 (Ω + ) ≤ c ε 2 r 4 E Ωε,r (u ε,r ), (4.33) ∂U ε,r 2 ∂x 3 2 L 2 (Ω + ) ≤ c ε 2 r 4 E Ωε,r (u ε,r ). ( 4 

.34)

Let us now consider U ε,r 3 . For any (p, q) ∈ N ε , we have from (3.11)

d U ε,r pq 3 dx 3 2 L 2 (]0,L[) ≤ c r 2 E P ε,r pq (u ε,r ), which yields with (4.7) ∂U ε,r 3 ∂x 3 2 L 2 (Ω + ) ≤ c ε 2 r 2 E Ω + ε,r (u ε,r ).
By using (4.28), it follows that

U ε,r 3 2 L 2 (Ω + ) ≤ c ε 2 r 2 E Ωε,r (u ε,r ). (4.35) 4.2 Uniform bound on u ε,r in term of E Ω ε,r (u ε,r )
Let us recall that in view of (3.13)-(3.14) and of the definition (4.12) of u ε,r , one has for any

(p, q) ∈ N ε , u ε,r 2 (L 2 (P ε,r pq )) 3 ≤ cr 2 E P ε,r pq (u ε,r ), and Du ε,r 2 (L 2 (P ε,r pq )) 9 ≤ cE P ε,r pq (u ε,r ). Through summation over (p, q) ∈ N ε , we deduce that u ε,r 2 (L 2 (Ω + ε,r )) 3 ≤ cr 2 E Ω + ε,r (u ε,r ), (4.36) 
and

Du ε,r 2 ( L 2 (Ω + ε,r ) ) 9 ≤ cE Ω + ε,r (u ε,r ). (4.37) 4.3 Estimates on u ε,r in term of E Ω ε,r (u ε,r )
First recall that from (3.7) and (4.12), we have, for any (p, q) ∈ N ε , and for almost every

(x 1 , x 2 , x 3 ) ∈ Ω + ε,r u ε,r 1 (x 1 , x 2 , x 3 ) = U ε,r pq 1 (x 3 ) -R ε,r pq 3 (x 3 )(x 2 -εq) + u ε,r 1 (x 1 , x 2 , x 3 ), if (x 1 , x 2 ) ∈ D ε,r pq . (4.38) u ε,r 2 (x 1 , x 2 , x 3 ) = U ε,r pq 2 (x 3 ) + R ε,r pq 3 (x 3 )(x 1 -εp) + u ε,r 2 (x 1 , x 2 , x 3 ), if (x 1 , x 2 ) ∈ D ε,r pq . (4.39)
We derive first L 2 estimates on u ε,r 1 (the details are identical for u ε,r 2 ). We have, for any (p, q) ∈ N ε and for almost every

x 3 ∈]0, L[ D ε,r pq |u ε,r 1 (x 1 , x 2 , x 3 )| 2 dx 1 dx 2 ≤ c r 2 U ε,r pq 1 (x 3 ) 2 + r 4 R ε,r pq 3 (x 3 ) 2 + D ε,r pq |u ε,r 1 (x 1 , x 2 , x 3 )| 2 dx 1 dx 2 .
By adding the previous inequalities with respect to (p, q) ∈ N ε , and by integrating over ]0, L[, we obtain, in view of (4.5) and (4.6)

u ε,r 1 2 L 2 (Ω + ε,r ) ≤ c r 2 ε 2 U ε,r 1 2 L 2 (Ω + ) + r 4 ε 2 R ε,r 3 2 L 2 (Ω + ) + u ε,r 1 2 L 2 (Ω + ε,r ) .
Appealing now to (4.30), (4.32) and (4.36), it yields that

u ε,r 1 2 L 2 (Ω + ε,r ) ≤ c 1 r 2 + 1 + r 2 E Ωε,r (u ε,r ).
Finally, and proceeding identically for u ε,r 2 , we obtain

u ε,r α 2 L 2 (Ω + ε,r ) ≤ c r 2 E Ωε,r (u ε,r ), for α = 1, 2. (4.40) 
As far as u ε,r 3 is concerned, recall that with (3.7) and (4.12) we have, for any (p, q) ∈ N ε , and for almost every (

x 1 , x 2 , x 3 ) ∈ Ω + ε,r u ε,r 3 (x 1 , x 2 , x 3 ) = U ε,r pq 3 (x 3 ) + R ε,r pq 1 (x 3 )(x 2 -εq)- R ε,r pq 2 (x 3 )(x 1 -εp) + u ε,r 3 (x 1 , x 2 , x 3 ), if (x 1 , x 2 ) ∈ D ε,r pq . (4.41)
This implies that for any (p, q) ∈ N ε and for almost every

x 3 ∈]0, L[ D ε,r pq |u ε,r 3 (x 1 , x 2 , x 3 )| 2 dx 1 dx 2 ≤ c r 2 U ε,r pq 3 (x 3 ) 2 + r 4 R ε,r pq 1 (x 3 ) 2 + R ε,r pq 2 (x 3 ) 2 + D ε,r pq |u ε,r 3 (x 1 , x 2 , x 3 )| 2 dx 1 dx 2 .
Proceeding as for u ε,r 1 , it yields with the help of (4.5) and (4.6)

u ε,r 3 2 L 2 (Ω + ε,r ) ≤ c r 2 ε 2 U ε,r 3 2 L 2 (Ω + ) + r 4 ε 2 R ε,r 1 2 L 2 (Ω + ) + R ε,r 2 2 L 2 (Ω + ) + u ε,r 3 2 L 2 (Ω + ε,r ) .
Now we use (4.30), (4.35) and (4.36) to obtain

u ε,r 3 2 L 2 (Ω + ε,r ) ≤ c 1 + r 2 E Ωε,r (u ε,r
), and finally u ε,r

3 2 L 2 (Ω + ε,r ) ≤ cE Ω ε,r (u ε,r ). (4.42) 4.4 A priori estimates on u ε,r
The inserting (2.13) into (3.1) leads to

E Ωε,r (u ε,r ) ≤ 2 α=1 f ε,r α L 2 (Ω + ε,r ) u ε,r α L 2 (Ω + ε,r ) + f ε,r 3 L 2 (Ω + ε,r ) u ε,r 3 L 2 (Ω + ε,r ) + 3 i=1 f ε,r i L 2 (Ω -) u ε,r i L 2 (Ω -) .
Then the estimates on u ε,r i 2 L 2 (Ω + ε,r ) in the previous section and estimates (3.15) on

u ε,r 2 (L 2 (Ω -)) 3 permit to obtain E Ωε,r (u ε,r ) ≤ c 1 r 2 α=1 f ε,r α L 2 (Ω + ε,r ) + f ε,r 3 L 2 (Ω + ε,r ) + 3 i=1 f ε,r i L 2 (Ω -) E Ω ε,r (u ε,r ) 1 2 . 
(4.43)

In view of (4.43), the assumptions (2.19)÷(2.21) on the forces f ε,r in Ω + ε,r and Ω -appear (a posteriori) natural to obtain an estimate on E Ωε,r (u ε,r ), namely here 

E Ω ε,r (u ε,r ) ≤ c. ( 4 
r u ε,r α L 2 (Ω + ε,r ) ≤ c, for α = 1, 2, (4.45) u ε,r 3 L 2 (Ω + ε,r ) ≤ c, (4.46) u ε,r i L 2 (Ω -) ≤ c, for i = 1, 2, 3, (4.47) γ ij (u ε,r ) L 2 (Ω + ε,r ) ≤ c, for i, j = 1, 2, 3 (4.48) γ ij (u ε,r ) L 2 (Ω -) ≤ c, for i, j = 1, 2, 3, (4.49) r 2 ε U ε,r α L 2 (ω,H 1 (]0,L[)) ≤ c, for α = 1, 2, (4.50) r ε U ε,r 3 L 2 (ω,H 1 (]0,L[)) ≤ c, (4.51) r 2 ε R ε,r i L 2 (ω,H 1 (]0,L[)) ≤ c, for i = 1, 2, 3, (4.52) r ε ∂U ε,r ∂x 3 -(R ε,r ∧ e 3 ) (L 2 (Ω + )) 3 ≤ c, (4.53) u ε,r (L 2 (Ω + ε,r )) 3 ≤ cr, (4.54) Du ε,r (L 2 (Ω + ε,r )) 9 ≤ c. (4.55)
5 Unfolding operator and estimates on the unfold fields

In the sequel of this paper, {ε} will be a sequence of positive real numbers which tends to zero and the radius of the rods will take values in a sequence {r ε } ε which also tends to zero. For sake of simplicity, we will drop the index r ε in the notations In this section we first adapt the notion of "unfolding technique", introduced in [START_REF] Cioranescu | Periodic Unfolding and Homogenization[END_REF] for thin or periodic structures, to take into account both the usual rescaling in rods theory and the periodic character of Ω + ε . References on unfolding operators can be found in [START_REF] Cioranescu | Periodic Unfolding and Homogenization[END_REF], [START_REF] Damlamian | An Elementary Introduction to Periodic Unfolding[END_REF] and [START_REF] Griso | Comportement asymptotique d'une grue[END_REF]. Then we deduce from Section 4.4, the estimates on the unfolded various quantities studied in this section.

The unfolding operator

Throughout the paper D will now denote the unit disk of

R 2 : D = {(x 1 , x 2 ) ∈ R 2 : x 2 1 + x 2 2 < 1}. Let v be a function of L 2 (Ω + ε ). We define the function T ε (v) on Ω + × D by, for almost (x 1 , x 2 , x 3 ) ∈ Ω + and (X 1 , X 2 ) ∈ D, T ε (v)(x 1 , x 2 , x 3 , X 1 , X 2 ) =              v(pε + r ε X 1 , qε + r ε X 2 , x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , (p, q) ∈ N ε , 0, if (x 1 , x 2 ) ∈ ω \ ω ε (5.1) (recall that ω ε is defined in (4.1)).
Let us make a few comments on this definition. First, it is clear that x 3 appears in 5.1 as a parameter. Then

T ε (v) is well defined on Ω + × D since for (X 1 , X 2 ) ∈ D, one has (εp + r ε X 1 , εq + r ε X 2 , x 3 ) ∈ P ε pq . For the points (x 1 , x 2 , x 3 ) ∈ Ω + for which (x 1 , x 2 ) ∈ ω \ ω ε , T ε (v)(x 1 , x 2 , x 3 , X 1 , X 2 ) = 0 a.e.
. The main interest in considering T ε (v) rather than v, is that the effect of the oscillations of Ω + ε is, in some sense, decoupled to the slow (and here disconnected) variation of (x 1 , x 2 ). Namely, (x 1 , x 2 ) are split into (εp, εq) in one hand and (X 1 , X 2 ) on the other hand.

As a convention, if v ∈ L 2 (Ω + ), we set

T ε (v) = T ε (v | Ω + ε ).
The following lemma contains the main properties of the operator T ε which will be used throughout the paper. Lemma 5.1.

(a) For all function v and w in L 2 (Ω + ε ), one has

Ω + ε vwdx 1 dx 2 dx 3 = r 2 ε ε 2 Ω + ×D T ε (v)T ε (w)dx 1 dx 2 dx 3 dX 1 dX 2 .
(b) In the case r ε = kε, for any function v in L 2 (Ω + ),

T ε (v) → v strongly in L 2 (Ω + × D),
as ε tends to 0.

(c) In the case where r ε ε tends to zero, and for any function v ∈ C 0 (Ω + ),

T ε (v) → v strongly in L 2 (Ω + × D), as ε tends to 0. (d) In the case r ε = kε, if {v ε } ε is a sequence of L 2 (Ω + ) such that v ε → v strongly in L 2 (Ω + ), then T ε (v ε ) → v strongly in L 2 (Ω + × D), as ε tends to 0. (e) For any v ∈ H 1 (Ω + ε ), ∂(T ε (v)) ∂X α = r ε T ε ∂v ∂x α a.e. in Ω + × D, for α = 1, 2,
and

∂(T ε (v)) ∂x 3 = T ε ∂v ∂x 3 a.e. in Ω + × D.
Proof. In order to obtain (a) we write

Ω + ε vwdx 1 dx 2 dx 3 = L 0 (p,q)∈N ε D ε pq v(x 1 , x 2 , x 3 )w(x 1 , x 2 , x 3 )dx 1 dx 2 dx 3 = r 2 ε L 0 (p,q)∈N ε D v(εp + r ε X 1 , εq + r ε X 2 , x 3 )w(εp + r ε X 1 , εq + r ε X 2 , x 3 )dX 1 dX 2 dx 3 = r 2 ε L 0 (p,q)∈N ε 1 ε 2 D× ] εp-ε 2 ,εp+ ε 2 [ × ] εq-ε 2 ,εq+ ε 2 [ v(εp + r ε X 1 , εq + r ε X 2 , x 3 ) w(εp + r ε X 1 , εq + r ε X 2 , x 3 )dX 1 dX 2 dx 1 dx 2 dx 3 = r 2 ε ε 2 ]0,L[×D×ω T ε (v)T ε (w)dx 3 dX 1 dX 2 dx 1 dx 2 = r 2 ε ε 2 Ω + ×D T ε (v)T ε (w)dx 1 dx 2 dx 3 dX 1 dX 2 .
The last equality being due to

T ε (v) = 0 if (x 1 , x 2 ) ∈ ω \ ω ε .
To prove (b) and (c), first consider a function ϕ ∈ C 0 (Ω + ). By definition (5.1) of T ε , we have for any (x 1 , x 2 , x 3 ) ∈ Ω + and (X 1 , X 2 ) ∈ D,

|T ε (ϕ)(x 1 , x 2 , x 3 , X 1 , X 2 ) -ϕ(x 1 , x 2 , x 3 )| = |ϕ(εp + r ε X 1 , εq + r ε X 2 , x 3 ) -ϕ(x 1 , x 2 , x 3 )| , if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 and (p, q) ∈ N ε , |T ε (ϕ)(x 1 , x 2 , x 3 , X 1 , X 2 ) -ϕ(x 1 , x 2 , x 3 )| = |ϕ(x 1 , x 2 , x 3 )| , if (x 1 , x 2 ) ∈ ω \ ω ε . Then, since ϕ ∈ C 0 (Ω + ), |T ε (ϕ)(x 1 , x 2 , x 3 , X 1 , X 2 ) -ϕ(x 1 , x 2 , x 3 )| ≤ δ(ε)χ ω ε + (1 -χ ω ε ) ϕ C 0 (Ω + ) , (5.2) 
where δ(ε) tends to zero as ε tends to zero, and χ ωε denotes the characteristic function of ω ε . It follows that

T ε (ϕ) -ϕ L 2 (Ω + ×D) ≤ cδ(ε) + c(meas(ω -ω ε )) 1 2 ϕ C 0 (Ω + ) (5.3) 
Now when ε tends to 0, meas(ω-ω ε ) tends to zero, because ∂ω is assumed to be Lipschitz and ε → 0, so that we obtain

T ε (v) → v strongly in L 2 (Ω + × D), (5.4) 
as ε tends to 0. This establish (c).

To obtain (b), remark that if r ε = kε, (a), gives

T ε (ϕ) -T ε (ψ) L 2 (Ω + ×D) = 1 k ϕ -ψ L 2 (Ω + ε ) ≤ 1 k ϕ -ψ L 2 (Ω + ) , (5.5) 
for all ϕ and ψ in L 2 (Ω + ). In view of (5.4) and (5.5), a classical density argument shows that (b) hods true. Property (d) is an easy consequence of (b) and of (5.5). Property (e) follows from the standard chain rule formulae in each cell εp -

ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 and it is trivial if (x 1 , x 2 ) ∈ ω \ ω ε .
Remark 5.2. Let us conclude this section with a remark which will be useful to identify the junction condition between Ω + and Ω -. Consider a function v ∈ L 2 (Ω ε ). Then, since x 3 appears as a parameter in (5.1), one can also define

T ε (v) in Ω -× D (i.e. for -l < x 3 < 0).
In the case where r ε = kε and if now

{v ε } ε ⊂ L 2 (Ω ε ) is a sequence such that v ε| Ω -converges strongly in L 2 (Ω -) to a function v ∈ L 2 (Ω -), as ε → 0, then T ε (v ε ) → v strongly in L 2 (Ω -× D), (5.6) 
as ε tends to 0. 

Estimates on the unfold fields

r ε T ε (u ε α ) L 2 (ω,H 1 (D×]0,L[)) ≤ c 1 + ε r ε , for α = 1, 2, (5.7) 
T ε (u ε 3 ) L 2 (ω,H 1 (D×]0,L[)) ≤ c 1 + ε r ε , (5.8) 
r ε ε T ε (γ ij (u ε )) L 2 (Ω + ×D) ≤ c, for i, j = 1, 2, 3 (5.9) 1 ε T ε (u ε ) (L 2 (Ω + ×D)) 3 ≤ c, (5.10)              1 ε ∂(T ε (u ε )) ∂X α (L 2 (Ω + ×D)) 3 ≤ c, for α = 1, 2, r ε ε ∂(T ε (u ε )) ∂x 3 (L 2 (Ω + ×D)) 3 ≤ c, (5.11) 
r ε ε T ε (σ ε ij ) L 2 (Ω + ×D) ≤ c, for i, j = 1, 2 , 3. (5.12) 
Until now, we have kept the possibility in all the above estimates that r ε and ε may behave in a way such that lim

ε→0 r ε ε = k, where k is a real number such that 0 ≤ k < 1 2 .
Actually, here we have to distinguish the case where r ε ε = k > 0 to the case where lim ε→0 r ε ε = 0. We first investigate in the following the case where r ε = kε, and postpone the analysis for the case lim ε→0 r ε ε = 0 to Section 7.

Weak limits of the fields (case r ε = kε)

As explained above, we assume here that r ε = kε and we just introduce the notations for the weak limit, up to a subsequence still denoted by ε, of the bounded fields appearing in Lemma 4. 

u 0 i ∈ L 2 (ω, H 1 (D×]0, L[)) and u 0 i ∈ L 2 (Ω + , H 1 (D)), for i = 1, 2, 3, such that, as ε tends to zero, εT ε (u ε α ) ⇀ u 0 α weakly in L 2 (ω, H 1 (D×]0, L[)), for α = 1, 2, (5.13) 
T ε (u ε 3 ) ⇀ u 0 3 weakly in L 2 (ω, H 1 (D×]0, L[)), (5.14) 
1 ε T ε (u ε i ) ⇀ u 0 i weakly in L 2 (Ω + , H 1 (D)), for i = 1, 2 , 3; 
(5.15)

• there exist U 0 i ∈ L 2 (ω, H 1 (]0, L[)), R 0 i ∈ L 2 (ω, H 1 (]0, L[))
, for i = 1, 2, 3, and Z ∈ (L 2 (Ω + ))

3 such that, as ε tends to zero,

εU ε α ⇀ U 0 α weakly in L 2 ω, H 1 (]0, L[) , for α = 1, 2, (5.16 
)

U ε 3 ⇀ U 0 3 weakly in L 2 ω, H 1 (]0, L[) , (5.17 
)

εR ε i ⇀ R 0 i weakly in L 2 ω, H 1 (]0, L[) , for i = 1, 2, 3, (5.18 
)

∂U ε ∂x 3 -(R ε ∧ e 3 ) ⇀ Z weakly in L 2 (Ω + ) 3 ; (5.19)
• there exist

X ij ∈ L 2 (Ω + × D) and Σ ij ∈ L 2 (Ω + × D), for i, j = 1, 2, 3, such that, as ε tends to zero, T ε (γ ij (u ε )) ⇀ X ij weakly in L 2 (Ω + × D), for i, j = 1, 2, 3, (5.20) 
T ε (σ ε ij ) ⇀ Σ ij weakly in L 2 (Ω + × D), for i, j = 1, 2 , 3; 
(5.21)

• there exist u - i ∈ H 1 (Ω -), with u - i = 0 on ∂ω×] -l, 0[, for i = 1, 2, 3, such that, as ε tends to zero, u ε i ⇀ u - i weakly in H 1 (Ω -), strongly in L 2 (Ω -). (5.22)
5.4 Relation between the limit fields (case r ε = kε)

In this section we still assume r ε = kε and we derive a few relations between U 0 , R 0 , u 0 on one hand, and X, Σ on the other hand. First, consider (4.53) which implies

ε ∂U ε 1 ∂x 3 -R ε 2 → 0 strongly in L 2 (Ω + ),
as ε tends to 0. Then, (5.16) and (5.18) give

∂U 0 1 ∂x 3 = R 0 2 in Ω + .
(5.23) Indeed, using the second component in (4.53) leads to

∂U 0 2 ∂x 3 = -R 0 1 in Ω + . (5.24) It follows that U 0 α ∈ L 2 (ω, H 2 (]0, L[))
, for α = 1, 2. Now, consider (4.38) which can be written, for any (p, q) ∈ N ε , as

u ε 1 (x 1 , x 2 , x 3 ) = U ε 1| Ω + ε (x 1 , x 2 , x 3 ) -R ε 3| Ω + ε (x 1 , x 2 , x 3 )(x 2 -εq) + u ε 1 (x 1 , x 2 , x 3 ), if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[.
Then, for any (p, q) ∈ N ε ,

T ε (u ε 1 )(x 1 , x 2 , x 3 , X 1 , X 2 ) = T ε U ε 1| Ω + ε (x 1 , x 2 , x 3 , X 1 , X 2 )- T ε R ε 3| Ω + ε (x 2 -εq) (x 1 , x 2 , x 3 , X 1 , X 2 ) + T ε (u ε 1 )(x 1 , x 2 , x 3 , X 1 , X 2 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , x 3 ∈]0, L[, (X 1 , X 2 ) ∈ D.
(5.25)

Now remark that the function U ε

1| Ω + ε (x 1 , x 2 , x 3
) is constant on each D ε pq , for almost any fixed x 3 . As a consequence, the definition (5.1) of T ε gives, for any (p, q) ∈ N ε ,

T ε (U ε 1| Ω + ε ) = U ε 1 , if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , x 3 ∈]0, L[, (X 1 , X 2 ) ∈ D.
(5.26)

Since, for any (p, q) ∈ N ε ,

T ε R ε 3| Ω + ε (x 2 -εq) (x 1 , x 2 , x 3 , X 1 , X 2 ) = r ε X 2 R ε 3 (x 1 , x 2 , x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , x 3 ∈]0, L[, (X 1 , X 2 ) ∈ D,
and equality (5.25) leads to

T ε (u ε 1 )(x 1 , x 2 , x 3 , X 1 , X 2 ) = U ε 1 (x 1 , x 2 , x 3 )- r ε X 2 R ε 3 (x 1 , x 2 , x 3 ) + T ε (u ε 1 )(x 1 , x 2 , x 3 , X 1 , X 2 ) a.e. in Ω + × D.
(5.27)

In (5.27) we also have used the fact that

T ε (u ε 1 ) = U ε 1 = R ε 3 = T ε (u ε 1 ) = 0, if (x 1 , x 2 , x 3 ) ∈ Ω + \ ( ω ε ×]0, L[) .
In view of (5.13), (5.15), (5.16) and (5.18), by passing to the limit in (5.27), as ε tends to zero, we obtain, since r ε = kε,

u 0 1 (x 1 , x 2 , x 3 , X 1 , X 2 ) = U 0 1 (x 1 , x 2 , x 3 ).
Repeating the above arguments for u ε 2 , we conclude that,

u 0 α (x 1 , x 2 , x 3 , X 1 , X 2 ) = U 0 α (x 1 , x 2 , x 3 ),
for almost any (x 1 , x 2 , x 3 ) ∈ Ω + , (X 1 , X 2 ) ∈ D, for α = 1, 2.

(5.28)

Remark that u 0 α , for α = 1, 2, do not depend on the variables (X 1 , X 2 ). As far as u ε 3 is concerned, we have by (4.41) for any (p, q) ∈ N ε ,

u ε 3 (x 1 , x 2 , x 3 ) = U ε 3| Ω + ε (x 1 , x 2 , x 3 ) + R ε 1| Ω + ε (x 1 , x 2 , x 3 )(x 2 -εq)- R ε 2| Ω + ε (x 1 , x 2 , x 3 )(x 1 -εp) + u ε 3 (x 1 , x 2 , x 3 ), if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[.
(5.29)

First we have

T ε (u ε 3 ) → 0 strongly in L 2 (Ω + × D), (5.30) 
because of (5.15). Then, as above for U ε α and R ε α , α = 1, 2, for any (p, q) ∈ N ε , it results

                               T ε (U ε 3| Ω + ε ) = U ε 3 , T ε R ε 1| Ω + ε (x 2 -εq) (x 1 , x 2 , x 3 , X 1 , X 2 ) = r ε X 2 R ε 1 (x 1 , x 2 , x 3 ), T ε R ε 2| Ω + ε (x 1 -εp) (x 1 , x 2 , x 3 , X 1 , X 2 ) = r ε X 1 R ε 2 (x 1 , x 2 , x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , x 3 ∈]0, L[, (X 1 , X 2 ) ∈ D.
Proceeding as for U ε α above, and using now (5.14), (5.17), (5.18) and (5.30), equality (5.29) implies that, since r ε = kε,

u 0 3 (x 1 , x 2 , x 3 , X 1 , X 2 ) = U 0 3 (x 1 , x 2 , x 3 ) + kX 2 R 0 1 (x 1 , x 2 , x 3 ) -kX 1 R 0 2 (x 1 , x 2 , x 3 ),
for almost any (x 1 , x 2 , x 3 ) ∈ Ω + , (X 1 , X 2 ) ∈ D.

(5.31)

Remark that, due to (5.23) and (5.24), relation (5.31) can be equivalently rewritten as

u 0 3 (x 1 , x 2 , x 3 , X 1 , X 2 ) = U 0 3 (x 1 , x 2 , x 3 ) -kX 1 ∂U 0 1 ∂x 3 (x 1 , x 2 , x 3 ) -kX 2 ∂U 0 2 ∂x 3 (x 1 , x 2 , x 3 ), for almost any (x 1 , x 2 , x 3 ) ∈ Ω + , (X 1 , X 2 ) ∈ D.
(5.32)

We now turn to the identification of X ij (see (5.20)). In view of the decomposition of u ε given in (4.38) and (4.39), we have

γ αβ (u ε ) = γ αβ (u ε ) a.e. in Ω + ε , for α, β = 1, 2.
(5.33)

Appealing now to the rule for the derivation of an unfold field given in (e) of Lemma 5.1, we obtain

r ε T ε (γ αβ (u ε )) = Γ αβ (T ε (u ε )) a.e. in Ω + × D, for α, β = 1, 2, (5.34) 
where for any field v, say in (L 2 (Ω + ; H 1 (D)) 3 , we have set

Γ αβ (v) = 1 2 ∂ X β v α + ∂ Xα v β a.e. in Ω + × D, for α, β = 1, 2.
(5.35) Dividing (5.34) by ε and passing to the limit, as ε tends to zero, yields using (5.15) and (5.20) kX αβ = Γ αβ (u 0 ) a.e. in Ω + × D, for α, β = 1, 2.

(5.36)

Let us now consider γ 13 (u ε ). Fix (p, q) ∈ N ε . In view of (4.38) and (4.41), we have

γ 13 (u ε )(x 1 , x 2 , x 3 ) = 1 2 ∂U ε 1 ∂x 3 (x 1 , x 2 , x 3 ) - ∂R ε 3 ∂x 3 (x 1 , x 2 , x 3 )(x 2 -εq) + ∂u ε 1 ∂x 3 (x 1 , x 2 , x 3 )- R ε 2 (x 1 , x 2 , x 3 ) + ∂u ε 3 ∂x 1 (x 1 , x 2 , x 3 ) , if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[.
(5.37)

We apply the unfolding operator to both hand of (5.37) and consider the behavior of each term appearing in the right hand side. Since again U ε i and R ε i are constant on each D ε pq , we have for (p, q) ∈ N ε (as for (5.26)),

T ε ∂U ε 1 ∂x 3 | Ω + ε -R ε 2| Ω + ε = ∂U ε 1 ∂x 3 -R ε 2 , (5.38) 
T ε ∂R ε 3 ∂x 3 | Ω + ε (x 2 -εq) = r ε X 2 ∂R ε 3 ∂x 3 , (5.39) 
T ε R ε 2| Ω + ε = R ε 2 , (5.40) if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , x 3 ∈]0, L[, (X 1 , X 2 ) ∈ D.
Using the rules (e) of Lemma 5.1 for the derivations of an unfold field, yields

r ε T ε ∂u ε 3 ∂x 1 = ∂(T ε (u ε 3 )) ∂X 1
a.e. in Ω + × D, (5.41)

T ε ∂u ε 1 ∂x 3 = ∂(T ε (u ε 1 )) ∂x 3
a.e. in Ω + × D.

(5.42) Then (5.37)÷(5.42) give

T ε (γ 13 (u ε )) = 1 2 ∂U ε 1 ∂x 3 -R ε 2 -r ε X 2 ∂R ε 3 ∂x 3 + ∂(T ε (u ε 1 )) ∂x 3 + 1 r ε ∂(T ε (u ε 3 )) ∂X 1
a.e. in Ω + × D.

(5.43) Convergences (5.15), (5.18), (5.19) and (5.20) allow to pass to the limit in (5.43), and to obtain

X 13 = 1 2 Z 1 -X 2 k ∂R 0 3 ∂x 3 + 1 k ∂u 0 3 ∂X 1 a.e. in Ω + × D,
which can be written as

X 13 = 1 2 ∂ ∂X 1 X 1 Z 1 + 1 k u 0 3 -X 2 k ∂R 0 3 ∂x 3 a.e. in Ω + × D.
(5.44)

Proceeding as above to identify X 13 , we obtain

X 23 = 1 2 ∂ ∂X 2 X 2 Z 2 + 1 k u 0 3 + X 1 k ∂R 0 3 ∂x 3 a.e. in Ω + × D.
(5.45)

To derive X 33 , we write, for any (p, q) ∈ N ε , in view of (4.41),

γ 33 (u ε )(x 1 , x 2 , x 3 ) = ∂U ε 3 ∂x 3 (x 1 , x 2 , x 3 ) + ∂u ε 3 ∂x 3 (x 1 , x 2 , x 3 ) + ∂R ε 1 ∂x 3 (x 1 , x 2 , x 3 )(x 2 -εq)- ∂R ε 2 ∂x 3 (x 1 , x 2 , x 3 )(x 1 -εp) if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[.
(5.46)

The same type of calculations that leads to the expression of X 13 , which is not repeated here, gives

X 33 = ∂U 0 3 ∂x 3 + kX 2 ∂R 0 1 ∂x 3 -kX 1 ∂R 0 2 ∂x 3
a.e. in Ω + × D.

(5.47)

According to (5.23) and (5.24), X 33 can be expressed as

X 33 = ∂U 0 3 ∂x 3 -kX 1 ∂ 2 U 0 1 ∂x 2 3 -kX 2 ∂ 2 U 0 2 ∂x 2 3
a.e. in Ω + × D.

(5.48)

To conclude this subsection, we deduce from the constitutive law (2.12), from (5.20) and (5.21) and from the above expression of X ij that

Σ 11 = 1 k (λ + 2µ)Γ 11 (u 0 ) + λΓ 22 (u 0 ) + λ ∂U 0 3 ∂x 3 -kX 1 ∂ 2 U 0 1 ∂x 2 3 -kX 2 ∂ 2 U 0 2 ∂x 2 3
a.e. in Ω + × D,

(5.49)

Σ 22 = 1 k (λ + 2µ)Γ 22 (u 0 ) + λΓ 11 (u 0 ) + λ ∂U 0 3 ∂x 3 -kX 1 ∂ 2 U 0 1 ∂x 2 3 -kX 2 ∂ 2 U 0 2 ∂x 2 3
a.e. in Ω + × D,

(5.50)

Σ 12 = 2 µ k Γ 12 (u 0 ) a.e. in Ω + × D, (5.51) Σ 13 = µ ∂ ∂X 1 X 1 Z 1 + 1 k u 0 3 -kX 2 ∂R 0 3 ∂x 3 a.e. in Ω + × D, (5.52) Σ 23 = µ ∂ ∂X 2 X 2 Z 2 + 1 k u 0 3 + kX 1 ∂R 0 3 ∂x 3 a.e. in Ω + × D, (5.53) Σ 33 = (λ + 2µ) ∂U 0 3 ∂x 3 -kX 1 ∂ 2 U 0 1 ∂x 2 3 -kX 2 ∂ 2 U 0 2 ∂x 2 3 + λ k Γ 11 (u 0 ) + Γ 22 (u 0 )
a.e. in Ω + × D.

(5.54)

Limit kinematic conditions (case r ε = kε)

In this section we derive, in the case r ε = kε, the kinematic conditions on the "type" displacement fields U 0 i , R 0 i and u 0 i . In particular, we derive the kinematic junction conditions between the "continuum" of rods in Ω + and the 3d body in Ω -.

First of all, comparing (4.28), (5.16) on the one hand, and (4.25), (5.18) on the other hand leads to to U 0 α (x 1 , x 2 , 0) = 0 a.e. in ω, for α = 1, 2, (5.55) and R 0 i (x 1 , x 2 , 0) = 0 a.e. in ω, for i = 1, 2, 3.

(5.56)

This last relation together with (5.23), (5.24) gives

∂U 0 α ∂x 3 (x 1 , x 2 , 0) = 0 a.e. in ω, for α = 1, 2. (5.57)
which is the transmission condition on the vertical displacement of the rods and the plate.

To end this section, we derive the kinematic conditions on u 0 which follow from (3.8)÷(3.10). Recall that by definition (4.12) of u ε and (3.8)÷(3.10), we have for any for any (p, q) ∈ N ε

D ε pq u ε i (x 1 , x 2 , x 3 )dx 1 dx 2 = 0 for i = 1, 2, 3, (5.60) D ε pq (x 1 -εp)u ε 3 (x 1 , x 2 , x 3 )dx 1 dx 2 = D ε pq (x 2 -εq)u ε 3 (x 1 , x 2 , x 3 )dx 1 dx 2 = 0, (5.61) D ε pq (x 1 -εp)u ε 2 (x 1 , x 2 , x 3 ) -(x 2 -εq)u ε 1 (x 1 , x 2 , x 3 ) dx 1 dx 2 = 0, (5.62)
for almost any x 3 in ]0, L[. Let ϕ be a function of C ∞ 0 (Ω + ). For ε small enough the support of ϕ is included in

ω ε ×]0, L[. Then, define ϕ in Ω + as follows: for any (p, q) ∈ N ε , ϕ ε (x 1 , x 2 , x 3 ) = ϕ(εp, εq, x 3 ), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 and x 3 ∈]0, L[, ϕ ε (x 1 , x 2 , x 3 ) = 0 otherwise.
Due to (5.60)÷(5.62), it follows that

Ω + ε ϕ ε u ε i dx 1 dx 2 dx 3 = 0, for i = 1, 2, 3, (5.63) 
               (p,q)∈N ε L 0 D ε pq ϕ ε (x 1 -εp)u ε 3 dx 1 dx 2 dx 3 = 0, (p,q)∈N ε L 0 D ε pq ϕ ε (x 2 -εq)u ε 3 dx 1 dx 2 dx 3 = 0, (5.64) (p,q)∈N ε L 0 D ε pq ϕ ε [(x 1 -εp)u ε 2 -(x 2 -εq)u ε 1 ] dx 1 dx 2 dx 3 = 0. (5.65)
In term of the unfolding operator T ε , (5.63) reads as

Ω + ×D T ε ( ϕ ε ) T ε (u ε ) dx 1 dx 2 dx 3 dX 1 dX 2 = 0. (5.66) Since ϕ ε is constant in each D ε pq for fixed x 3 , T ε ( ϕ ε ) = ϕ ε . Indeed ϕ ε → ϕ strongly in L 2 (Ω + ), so that (5.15) implies that Ω + ×D ϕ(x 1 , x 2 , x 3 )u 0 (x 1 , x 2 , x 3 , X 1 , X 2 )dx 1 dx 2 dx 3 dX 1 dX 2 = 0, from which we deduce that for almost any (x 1 , x 2 , x 3 ) ∈ Ω + D u 0 (x 1 , x 2 , x 3 , X 1 , X 2 )dX 1 dX 2 = 0.
(5.67)

The same technique permits to obtain from (5.64) and (5.65) that for almost any (

x 1 , x 2 , x 3 ) ∈ Ω + D X α u 0 3 (x 1 , x 2 , x 3 , X 1 , X 2 )dX 1 dX 2 = 0, for α = 1, 2, (5.68) D X 1 u 0 2 (x 1 , x 2 , x 3 , X 1 , X 2 ) -X 2 u 0 1 (x 1 , x 2 , x 3 , X 1 , X 2 ) dX 1 dX 2 = 0.
(5.69) [START_REF] Ciarlet | Elasticité tridimensionelle[END_REF] The limit problem (case r ε = kε)

In this section we derive the equations satisfied by U 0 , R 0 , u 0 and u -. As a starting point, and in order to pass to the limit as the parameter ε tends to zero, we write (2.18) in terms of the unfolding operator T ε in Ω + ε . It gives, recalling r ε = kε and (a) of Lemma 5.1,

k 2 3 i,j=1 Ω + ×D T ε σ ε ij T ε (γ ij (v)) dx 1 dx 2 dx 3 dX 1 dX 2 + 3 i,j=1 Ω - σ ε ij γ ij (v)dx 1 dx 2 dx 3 = k 2 3 i=1 Ω + ×D T ε (f ε i ) T ε (v i ) dx 1 dx 2 dx 3 dX 1 dX 2 + 3 i=1 Ω - f ε i v i dx 1 dx 2 dx 3 , ∀v ∈ V ε . (6.1)
We will pass to the limit in (6.1) when ε tends to zero, and the advantage in introducing T ε is that now the domain Ω + × D is fixed. The limit process is achieved with specific choices of the test function v.

The section is organized as follows. First, we obtain the relations between u 0 α and U 0 3 and we show that u 0 3 = 0. Then, we obtain the system of partial differential equations verified by U 0 and u -. At least, we prove strong convergence of the energy.

Equations for u (case

r ε = kε) Let ϕ be in C ∞ 0 (ω) and v be a function of C ∞ (D × [0, L]) 3 such that v(X 1 , X 2 , 0) = 0. In (6.1), we choose the function v ε defined for (x 1 , x 2 , x 3 ) ∈ Ω + ε by v ε (x 1 , x 2 , x 3 ) = r ε ϕ(εp, εq)v x 1 -εp r ε , x 2 -εq r ε , x 3 if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[, for (p, q) ∈ N ε , (6.2) and v ε (x 1 , x 2 , x 3 ) = 0 if (x 1 , x 2 , x 3 ) ∈ Ω -. (6.3) Then v ε ∈ C ∞ (Ω + ε ) 3 ∩ V ε .
In Ω + ε we have

γ 11 (v ε )(x 1 , x 2 , x 3 ) = ϕ(εp, εq) ∂v 1 ∂X 1 x 1 -εp r ε , x 2 -εq r ε , x 3 , γ 22 (v ε )(x 1 , x 2 , x 3 ) = ϕ(εp, εq) ∂v 2 ∂X 2 x 1 -εp r ε , x 2 -εq r ε , x 3 , γ 12 (v ε )(x 1 , x 2 , x 3 ) = ϕ(εp, εq) 2 
∂v 1 ∂X 2 + ∂v 2 ∂X 1 x 1 -εp r ε , x 2 -εq r ε , x 3 , γ 13 (v ε )(x 1 , x 2 , x 3 ) = ϕ(εp, εq) 2 r ε ∂v 1 ∂x 3 + ∂v 3 ∂X 1 x 1 -εp r ε , x 2 -εq r ε , x 3 , γ 23 (v ε )(x 1 , x 2 , x 3 ) = ϕ(εp, εq) 2 r ε ∂v 2 ∂x 3 + ∂v 3 ∂X 2 x 1 -εp r ε , x 2 -εq r ε , x 3 , γ 33 (v ε )(x 1 , x 2 , x 3 ) = ϕ(εp, εq)r ε ∂v 3 ∂x 3 x 1 -εp r ε , x 2 -εq r ε , x 3 , if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[, for (p, q) ∈ N ε . Define the function ϕ ε in ω by ϕ ε (x 1 , x 2 ) =      ϕ(εp, εq), if (x 1 , x 2 ) ∈ εp - ε 2 , εp + ε 2 × εq - ε 2 , εq + ε 2 , 0, if (x 1 , x 2 ) ∈ ω \ ω ε , (6.4) 
then applying the unfolding operator to γ(v ε ) leads to

T ε (γ αβ (v ε )) = ϕ ε Γ αβ (v) a.e. in Ω + × D, for α, β = 1, 2, (6.5) 
T ε (γ α3 (v ε )) = ϕ ε 1 2 r ε ∂v α ∂x 3 + ∂v 3 ∂X α a.e. in Ω + × D, for α = 1, 2, (6.6) 
T ε (γ 33 (v ε )) = ϕ ε r ε Γ 33 (v) a.e. in Ω + × D, (6.7) 
where Γ ij is defined in (5.35). Since ϕ ε → ϕ strongly in L 2 (ω) as ε → 0, we obtain using the convergence (5.21)

lim ε→0 3 i,j=1 Ω + ×D T ε (σ ε ij )T ε (γ ij (v ε )) dx 1 dx 2 dx 3 dX 1 dX 2 = 2 α,β=1 Ω + ×D ϕΣ αβ Γ αβ (v)dx 1 dx 2 dx 3 dX 1 dX 2 + 2 α=1 Ω + ×D ϕΣ α3 ∂v 3 ∂X α dx 1 dx 2 dx 3 dX 1 dX 2 , (6.8) 
because r ε = kε → 0 as ε → 0. As far as the right hand side of (6.1) is concerned, we first have by assumption (2.19), (2.20) and (b) of Lemma 5.1

T ε (f ε α ) = r ε T ε (f α ) → 0 strongly in L 2 (Ω + × D), (6.9) 
and

T ε (f ε 3 ) = T ε (f 3 ) → f + 3 strongly in L 2 (Ω + × D). (6.10) 
Moreover, with (6.2),

T ε (v ε ) = ϕ ε r ε v a.e. in Ω + × D. (6.11) 
then, we obtain from (6.1), (6.8) and (6.9)÷(6.11)

2 α,β=1 Ω + ×D ϕΣ αβ Γ αβ (v)dx 1 dx 2 dx 3 dX 1 dX 2 + 2 α=1 Ω + ×D ϕΣ α3 ∂v 3 ∂X α dx 1 dx 2 dx 3 dX 1 dX 2 = 0, (6.12) 
and this equality holds true for any

ϕ ∈ C ∞ 0 (ω) and v ∈ C ∞ (D×[0, L]) such that v(X 1 , X 2 , 0) = 0.
Since ϕ is arbitrary, (6.12) can be indeed localized a.e. in ω.

We first choose v 1 = v 2 = 0 a.e. in D×]0, L[. According to (5.52) and (5.54), it yields:

D×]0,L[ ∂ ∂X 1 X 1 Z 1 + 1 k u 0 3 -kX 2 ∂R 0 3 ∂x 3 ∂v 3 ∂X 1 dX 1 dX 2 dx 3 + D×]0,L[ ∂ ∂X 2 X 2 Z 2 + 1 k u 0 3 + kX 1 ∂R 0 3 ∂x 3 ∂v 3 ∂X 2 dX 1 dX 2 dx 3 = 0 a.e. in ω. (6.13) 
Remarking that (6.13) can be also localized with respect to x 3 and recalling that Z 1 , Z 2 and

R 0 3 do not depend on (X 1 , X 2 ), it implies that the function w = X 1 Z 1 + X 2 Z 2 + 1 k u 0 3 satisfies          - ∂ 2 w ∂X 2 1 - ∂ 2 w ∂X 2 2 = 0 in D, a.e. in Ω + , ∂w ∂n = 0 in ∂D, a.e. in Ω + ,
because on ∂D, X 1 n 1 -X 2 n 2 = 0 a.e.. But by (5.67), w also satisfies D w dX 1 dX 2 = 0, for almost any (x 1 , x 2 , x 3 ) ∈ Ω + . As a consequence we deduce that w = 0, that is

u 0 3 = -k(X 1 Z 1 + X 2 Z 2 ) a.e. in Ω + × D.
At least, using the kinematic condition (5.68) on u 0 3 , we obtain Z 1 = Z 2 = 0 and u 0 3 = 0. (

Remark that taking into account (6.14), the expressions (5.52) and (5.53) simplify to give

Σ 13 = -µkX 2 ∂R 0 3 ∂x 3 a.e. in Ω + × D, (6.15) 
Σ 23 = µkX 1 ∂R 0 3 ∂x 3 a.e. in Ω + × D. (6.16) 
Now we choose v 3 = 0 in (6.12), using (5.49)÷(5.51), it leads to

D×]0,L[ λ + 2µ k Γ 11 (u 0 )Γ 11 (v) + Γ 22 (u 0 )Γ 22 (v) dX 1 dX 2 dx 3 + D×]0,L[ λ k Γ 11 (u 0 )Γ 22 (v) + Γ 22 (u 0 )Γ 11 (v) dX 1 dX 2 dx 3 + D×]0,L[ 4µ k Γ 12 (u 0 )Γ 12 (v)dX 1 dX 2 dx 3 = -λ D×]0,L[ ∂U 0 3 ∂x 3 -kX 1 ∂ 2 U 0 1 ∂x 2 3 -kX 2 ∂ 2 U 0 2 ∂x 2 3 (Γ 11 (v) + Γ 22 (v)) dX 1 dX 2 dx 3 , (6.17) 
for any

v α ∈ C ∞ (D×[0, L]) such that v α (X 1 , X 2 , 0) = 0 and then for any v α ∈ L 2 (]0, L[; H 1 (D)), α = 1, 2.
Actually, and after localization with respect to x 3 , the variational problem (6.17) corresponds to classical 2d elastic problem for (u 0 1 , u 0 2 ) with constant forces on D or on ∂D. Taking into account the kinematic conditions (5.60) and (5.62), the unique solution of (6.17) is given by

u 0 1 = ν -kX 1 ∂U 0 3 ∂x 3 + k 2 X 2 1 -X 2 2 2 ∂ 2 U 0 1 ∂x 2 3 + k 2 X 1 X 2 ∂ 2 U 0 2 ∂x 2 3 , (6.18) 
u 0 2 = ν -kX 2 ∂U 0 3 ∂x 3 + k 2 X 1 X 2 ∂ 2 U 0 1 ∂x 2 3 + k 2 X 2 2 -X 2 1 2 ∂ 2 U 0 2 ∂x 2 3 , (6.19) 
where

ν = λ 2(λ + µ)
is the Poisson coefficient of the material. Expressions (6.18) and (6.19) permits to derive from (5.36), (5.49)÷(5.51) and (5.54)

X 11 = X 22 = ν - ∂U 0 3 ∂x 3 + kX 1 ∂ 2 U 0 1 ∂x 2 3 + kX 2 ∂ 2 U 0 2 ∂x 2 3 , (6.20) 
X 12 = 0, Σ 11 = Σ 22 = Σ 12 = 0 a.e. in Ω + × D, (6.21) 
Σ 33 = E ∂U 0 3 ∂x 3 -kX 1 ∂ 2 U 0 1 ∂x 2 3 -kX 2 ∂ 2 U 0 2 ∂x 2 3 a.e. in Ω + × D, (6.22) 
where E = µ(3λ + 2µ) λ + µ is the Young modulus of the elastic material.

The rods equations in

Ω + (case r ε = kε) Let now ϕ ∈ C ∞ 0 (ω), V 1 , V 2 be in C ∞ ([0, L]) such that V 1 (0) = V 2 (0) = V ′ 1 (0) = V ′ 2 (0) = 0, A 3 be in C ∞ ([0, L]) such that A 3 (0) = 0.
We choose as a test function in (6.1) the field defined in Ω + ε by

v ε (x 1 , x 2 , x 3 ) = ϕ(εp, εq) 1 r ε V 1 (x 3 ) - x 2 -εq r ε A 3 (x 3 ) e 1 + 1 r ε V 2 (x 3 ) + x 1 -εp r ε A 3 (x 3 ) e 2 + - x 1 -εp r ε V ′ 1 (x 3 ) - x 2 -εq r ε V ′ 2 (x 3 ) e 3 , (6.23) 
if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[, for (p, q) ∈ N ε , and v ε = 0 in Ω -. Remark that the boundary conditions on V 1 , V 2 and A 3 at x 3 = 0 imply that v ε ∈ H 1 (Ω ε ). Then in Ω + ε we have γ 11 (v ε ) = γ 22 (v ε ) = γ 12 (v ε ) = 0, γ 13 (v ε ) = -ϕ(εp, εq) x 2 -εq r ε 1 2 A ′ 3 (x 3 ), γ 23 (v ε ) = ϕ(εp, εq) x 1 -εp r ε 1 2 A ′ 3 (x 3 ), γ 33 (v ε ) = ϕ(εp, εq) - x 1 -εp r ε V ′′ 1 (x 3 ) - x 2 -εq r ε V ′′ 2 (x 3 ) .
With the definition (6.4) of ϕ ε in the previous section, it yields

T ε (γ αβ (v ε )) = 0, for α, β = 1, 2, T ε (γ 13 (v ε )) = -ϕ ε X 2 1 2 A ′ 3 (x 3 ), T ε (γ 23 (v ε )) = ϕ ε X 1 1 2 A ′ 3 (x 3 ), T ε (γ 23 (v ε )) = ϕ ε (-X 1 V ′′ 1 (x 3 ) -X 2 V ′′ 2 (x 3 )
) . Using the convergence (5.21) of T ε (σ ε ij ) allows to pass to the limit in the left hand side of (6.1) to obtain lim

ε→0 3 i,j=1 Ω + ×D T ε (σ ε ij )T ε (γ ij (v ε )) dx 1 dx 2 dx 3 dX 1 dX 2 = - Ω + ×D ϕΣ 13 X 2 A ′ 3 dx 1 dx 2 dx 3 dX 1 dX 2 + Ω + ×D ϕΣ 23 X 1 A ′ 3 dx 1 dx 2 dx 3 dX 1 dX 2 + Ω + ×D ϕΣ 33 (-X 1 V ′′ 1 (x 3 ) -X 2 V ′′ 2 (x 3 )) dx 1 dx 2 dx 3 dX 1 dX 2 . (6.24)
Now, in view of (6.23), we have

T ε (v ε ) = ϕ ε 1 r ε V 1 -X 2 A 3 e 1 + 1 r ε V 2 + X 1 A 3 e 2 + (-X 1 V ′ 1 -X 2 V ′ 2 ) e 3 , (6.25) 
so that with (6.9) and (6.10)

lim ε→0 Ω + ×D T ε (f ε )T ε (v ε )dx 1 dx 2 dx 3 dX 1 dX 2 = Ω + ×D ϕ 2 α=1 f α V α + f 3 (-X 1 V ′ 1 -X 2 V ′ 2 ) dx 1 dx 2 dx 3 dX 1 dX 2 .
(6.26)

Using (6.15), (6.16) and (6.22), (6.1), (6.24) and (6.26) gives (6.27) gives together with the boundary condition (5.56)

µk Ω + ×D ϕ(X 2 1 + X 2 2 ) ∂R 0 3 ∂x 3 A ′ 3 dx 1 dx 2 dx 3 dX 1 dX 2 + E Ω + ×D ϕ ∂U 0 3 ∂x 3 -kX 1 ∂ 2 U 0 1 ∂x 2 3 -kX 2 ∂ 2 U 0 2 ∂x 2 3 [-X 1 V ′′ 1 -X 2 V ′′ 2 ] dx 1 dx 2 dx 3 dX 1 dX 2 = Ω + ×D ϕ 2 α=1 f α V α + f 3 (-X 1 V ′ 1 -X 2 V ′ 2 ) dx 1 dx 2 dx 3 dX 1 dX 2 , (6.27) 
for any ϕ ∈ C ∞ 0 (ω), A 3 ∈ C ∞ ([0, L]) such that A 3 (0) = 0, for V 1 , V 2 ∈ C ∞ ([0, L]) such that V 1 (0) = V 2 (0) = V ′ 1 (0) = V ′ 2 (0) = 0. Taking V 1 = V 2 = 0 in
R 0 3 = 0. (6.28)
Once this result is obtained, (6.27) implies that (U 0 1 , U 0 2 ) satisfies the equations

           kEI α ∂ 4 U 0 α ∂x 4 3 = πf α a.e. in Ω + , ∂ 2 U 0 α ∂x 2 3 (x 1 , x 2 , L) = ∂ 3 U 0 α ∂x 3 3 (x 1 , x 2 , L) = 0 a.e. in ω, (6.29) 
for α = 1, 2. Recall that in order to obtain (6.29), we have used the fact that

D X 1 dX 1 dX 2 = D X 2 dX 1 dX 2 = D X 1 X 2 dX 1 dX 2 = 0.
Due to the boundary conditions (5.55) and (5.57), the field (U 0 1 , U 0 2 ) is unique in (L 2 (ω, H 2 (]0, L[))) 2 .

6.3

The stress transmission condition, the equation for U 0 3 and the equations in Ω -(case r ε = kε)

Let us plug an arbitrary test field v ∈ (C ∞ (ω × [-l, L])) 3 such that v = 0 on ∂ω×]l, 0[, in (6.1) 

(indeed in Ω + ε , v | Ω + ε ∈ (H 1 (Ω + ε ))
3 ) and we pass to the limit as ε tends to zero. To this aim recall first that, by (b) of Lemma 5.1, T ε (γ ij (v)) → γ ij (v) strongly in L 2 (Ω + × D) and that T ε (v) → v strongly in (L 2 (Ω + × D)) 3 . Then using (6.9) and (6.21), it gives

2k 2 Ω + ×D Σ 13 γ 13 (v)dx 1 dx 2 dx 3 dX 1 dX 2 + 2k 2 Ω + ×D Σ 23 γ 23 (v)dx 1 dx 2 dx 3 dX 1 dX 2 + k 2 Ω + ×D Σ 33 γ 33 (v)dx 1 dx 2 dx 3 dX 1 dX 2 + Ω - 3 i,j=1 σ - ij γ ij (v)dx 1 dx 2 dx 3 = k 2 Ω + ×D f 3 v 3 dx 1 dx 2 dx 3 dX 1 dX 2 + Ω - 3 i=1 f i v i dx 1 dx 2 dx 3 , (6.30) 
where

σ -= λ Tr γ(u -) I + 2µγ(u -) ∈ L 2 (Ω -) 3×3 . (6.31) 
Now, because of (6.15), (6.16) and (6.28) the two first terms of (6.30) are equal to zero. Moreover, the expression (6.22) of Σ 33 permits to obtain from (6.30) (note that γ 13 does not depend on (X 1 , X 2 ))

Ek 2 π Ω + ∂U 0 3 ∂x 3 ∂v 3 ∂x 3 dx 1 dx 2 dx 3 + Ω - 3 i,j=1 σ - ij γ ij (v)dx 1 dx 2 dx 3 = k 2 π Ω + f 3 v 3 dx 1 dx 2 dx 3 + Ω - 3 i=1 f i v i dx 1 dx 2 dx 3 , (6.32) 
for any v ∈ (C ∞ (ω × [-l, L])) 3 such that v = 0 on ∂ω×]l, 0[. If W is the Hilbert space defined by

W = {(V, v) ∈ L 2 (ω, H 1 (]0, L[)) × (H 1 (Ω -)) 3 ; V(x 1 , x 2 , 0) = v 3 (x 1 ,
x 2 , 0) on ω and v = 0 on ∂ω×]l, 0[}, (6.33) the continuity condition (5.59) shows that (U 0 3 , u -) ∈ W . Then Korn's inequality in Ω - (together with the expression (6.31) of σ -) implies that (6.32) (which indeed holds true for any v ∈ W by density) admits a unique solution (U 0 3 , u -) ∈ W . In terms of equations on Ω + and Ω -and of a transmission condition and boundary conditions, it gives σ - α3 = 0 on ω and on ω × {-l}, (6.38)

-E ∂ 2 U 0 3 ∂x 2 3 = f 3 in Ω + (6.34) - 3 j=1 ∂ j σ - ij = f i in Ω -, for i = 1, 2,
σ - 33 = 0 on ω and on ω × {-l}. (6.39) Equation ( 6.34) is the standard compression-traction equation for rods and here (x 1 , x 2 ) appears as a parameter (as this was the case for (6.29)). In some sense, the rods equations (6.29) describe a continuum of rods indexed by (x 1 , x 2 ) ∈ ω. Equations (6.35) together the constitutive law (6.31) are the standard equations of elasticity in Ω -. The equation (6.36) reflects the continuity of the normal stress between the rods and Ω -since it can be written as

σ - 33 = k 2 D Σ 33 dX 1 dX 2 , on ω.
7 The case r ε ε → 0

We start with the estimates of Lemma 4.2 and Lemma 5.3 which are still valid in the case r ε ε → 0. By comparison with the analysis performed in the preceding sections for the case r ε = kε, those estimates show that a few fields must be re-scaled (e.g. by multiplication by r ε ε ) to exhibit weak limits. Once these re-scalings are adopted, many points of the analysis are identical in both cases. As a consequence, we will only detail the points where the arguments must be modified. For a subsequence, still denoted by {ε}, • there exist

u 0 i ∈ L 2 (ω, H 1 (D×]0, L[)) and u 0 i ∈ L 2 (Ω + , H 1 (D)), for i = 1, 2, 3, such that, as ε tends to zero, r 2 ε ε T ε (u ε α ) ⇀ u 0 α weakly in L 2 (ω, H 1 (D×]0, L[)), for α = 1, 2, (7.1) 
r ε ε T ε (u ε 3 ) ⇀ u 0 3 weakly in L 2 (ω, H 1 (D×]0, L[)), (7.2) 1 ε T ε (u ε i ) ⇀ u 0 i weakly in L 2 (Ω + , H 1 (D)), for i = 1, 2, 3; (7.3) • there exist U 0 i ∈ L 2 (ω, H 1 (]0, L[)), R 0 i ∈ L 2 (ω, H 1 (]0, L[))
, for i = 1, 2, 3, and Z ∈ (L 2 (Ω + ))

3 such that, as ε tends to zero,

r 2 ε ε U ε α ⇀ U 0 α weakly in L 2 ω, H 1 (]0, L[) , for α = 1, 2, (7.4) 
r ε ε U ε 3 ⇀ U 0 3 weakly in L 2 ω, H 1 (]0, L[) , (7.5) 
r 2 ε ε R ε i ⇀ R 0 i weakly in L 2 ω, H 1 (]0, L[) , for i = 1, 2, 3, (7.6) 
r ε ε ∂U ε ∂x 3 -(R ε ∧ e 3 ) ⇀ Z weakly in L 2 (Ω + ) 3 ; (7.7)
• there exist

X ij ∈ L 2 (Ω + × D) and Σ ij ∈ L 2 (Ω + × D), for i, j = 1, 2, 3, such that, as ε tends to zero, r ε ε T ε (γ ij (u ε )) ⇀ X ij weakly in L 2 (Ω + × D), for i, j = 1, 2, 3, (7.8) 
r ε ε T ε (σ ε ij ) ⇀ Σ ij weakly in L 2 (Ω + × D), for i, j = 1, 2 , 3; (7.9) 
• there exist u

- i ∈ L 2 (Ω -), with u - i = 0 on ∂ω×] -l, 0[, for i = 1, 2, 3, such that, as ε tends to zero, u ε i ⇀ u - i weakly in H 1 (Ω -) strongly in L 2 (Ω -). (7.10) 
With the limit introduced in Lemma 7.1, the analysis developed in Section 5.3 remains identical so that U 0 i , u 0 i and Σ ij verify (5.23) (5.24), (5.32) and (5.49)÷(5.54) in Ω + × D with k = 1, and the boundary conditions (5.55)÷(5.57). Let us just explain why k becomes 1 (and not 0) in those expressions. Loosely speaking, when the unfolding operator T ε is applied to a field it results that some terms are multiplied by r (see e.g. (5.27)). Then, in the case where r ε = kε, the corresponding weak limits are multiplied by k. In the case where r ε ε → 0, the rescaling of the fields (as shown in Lemma 7.1) leads to the constant 1 when T ε is applied. Let us now turn to the analog of the kinematic conditions obtained in Section 5.5. Conditions (5.55) and (5.56) remain true and are derived identically. The main difference here is the continuity condition (5.59) which can not be established here, because the measure of the set Ω + ε goes to zero too rapidly. Defining T ε (u ε 3 ) as in Section 5.5 also for

x 3 ∈] -l, 0[, we have here r ε ε T ε (u ε 3 ) bounded in L 2 (ω × D, H 1 (] -l, L[)) (because of estimates of Lemma 5.3). Then r ε ε T ε (u ε 3 ) ⇀ u * 3 weakly in L 2 (ω × D, H 1 (] -l, L[))
(for a subsequence) as ε tends to zero. Because of the weak convergence of r ε ε T ε (u ε 3 ) in Lemma 7.1 and using (5.31) which holds true with k = 1 in the present case, we obtain

u * 3 = U 0 3 + X 2 R 0 1 -X 1 R 0 2 in Ω + × D. (7.11) 
Now, from (7.10) we know that u ε 3 → u - 3 strongly in L 2 (Ω -). As we have

r ε ε T ε (u ε 3 ) L 2 (Ω -×D) = ωε,r ε ×]-l,0[ |u ε 3 | 2 1 2
, we deduce that

r ε ε T ε (u ε 3 ) → 0 strongly in L 2 (Ω -× D). Then u * 3 (x 1 , x 2 , 0, X 1 , X 2 ) = 0 in L 2 (ω × D) which implies with (7.11) that U 0 3 (x 1 , x 2 , 0) = 0 on ω. (7.12)
Next deriving the kinematic conditions (5.67), (5.68) and (5.69) on u 0 is identical to the case r ε = kε. We now turn to obtaining the limit problem. Writing (2.18) in terms of the operator T ε gives here (see (a) of Lemma 5.1)

r 2 ε ε 2 3 i,j=1 Ω + ×D T ε σ ε ij T ε (γ ij (v)) dx 1 dx 2 dx 3 dX 1 dX 2 + 3 i,j=1 Ω - σ ε ij γ ij (v)dx 1 dx 2 dx 3 = r 2 ε ε 2 3 i=1 Ω + ×D T ε (f ε i ) T ε (v i ) dx 1 dx 2 dx 3 dX 1 dX 2 + 3 i=1 Ω - f ε i v i dx 1 dx 2 dx 3 , ∀v ∈ V ε,r . (7.13) 
Recall that we have by assumptions (2.19) and (2.20)

T ε (f ε α ) = r ε T ε (f α ), for α = 1, 2,
and T ε (f ε 3 ) = T ε (f 3 ), and by (a) of Lemma 5.1

r ε ε T ε (f ε i ) L 2 (Ω + ×D) = f i L 2 (Ω + ε ) for i = 1, 2, 3. Then 1 ε T ε (f ε α ) L 2 (Ω + ×D) = f α L 2 (Ω + ε ) → 0 for α = 1, 2, (7.14) 
and

r ε ε T ε (f ε 3 ) L 2 (Ω + ×D) = f 3 L 2 (Ω + ε ) → 0, (7.15) 
because f i ∈ L 2 (Ω + ) for i=1,2,3 and meas(Ω + ε ) → 0. As far as the determination of u 0 is concerned, we choose the same test functions v ε given by (6.2) and (6.3) in (7.13). With the help of the convergence on r ε ε T ε (σ ε ) given by Lemma 7.1 and of (7.14), (7.15) we obtain the same problem (6.13) and (6.17) with k = 1. It turns out that u 0 3 = 0, and that u 0 1 and u 0 2 are given by (6.18), (6.19), and that Σ is given by (6.15), (6.16), (6.21) and (6.22).

To obtain the rods equations in Ω + , we first use the function v ε defined in (6.23) as a test function in (7.13). Taking into account (7.14), (7.15), we deduce that (6.27) holds true with a right hand side equal to zero. It follows that (6.28) and (6.29) are satisfied with a right hand side equal to zero and with k = 1. In view of the boundary condition satisfied by U 0 α on ∂ω, we obtain U 0 α = 0 in Ω + × D. In order to obtain the equation for U 0 3 in Ω + , we choose in (7.13) the test function v ε defined by

v ε (x 1 , x 2 , x 3 ) = ϕ(εp, εq)V 3 (x 3 ) e 3 , if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[, for (p, q) ∈ N ε , and v ε (x 1 , x 2 , x 3 ) = 0, if x 3 ∈] -l, 0[. where ϕ is in C ∞ 0 (ω) and V 3 ∈ C ∞ ([0, L]) with V 3 (0) = 0. Then we have in Ω + ε : γ ij (v ε ) = 0, for (i, j) = (3, 3), γ 33 (v ε ) = ϕ(εp, εq)V ′ 3 (x 3 ) , if (x 1 , x 2 ) ∈ D ε pq , x 3 ∈]0, L[, for (p, q) ∈ N ε .
Using the same type of arguments than in Section 6.2, we obtain

T ε (v ε ) → ϕV 3 in L 2 (Ω + × D), T ε (γ ij (v ε )) = 0, (i, j) = (3, 3), T ε (γ 33 (v ε )) → ϕV ′ 3 , in L 2 (Ω + × D), as ε tends to zero.
With the help of the weak convergence of r ε ε T ε (σ ij ), (7.14), (7.15), (6.22) and the fact that U 0 1 = U 0 2 = 0, we pass to the limit in (7.13) and it yields

Ω + ∂U 0 3 ∂x 3 V ′ 3 dx 1 dx 2 dx 3 = 0, (7.16) 
for any ϕ ∈ C ∞ 0 (ω) and V 3 ∈ C ∞ ([0, L]) with V 3 (0) = 0. Indeed (7.16) gives equation and

∂ 2 U 0 3 ∂x 2 3 = 0, a.e. in L 2 (Ω + ), and 
∂U 0 3 ∂x 3 = 0, in ω × {L},
and because of the boundary condition (7.12), it follows that U 0 3 = 0 in Ω + . In conclusion, in the present case where r ε ε → 0, we find that U 0 i = 0 in Ω + , for i = 1, 2, 3. To conclude this section it remains to obtain the equations and boundary conditions in Ω -. To this end, let us take v ∈ C ∞ (ω × [-l, L]) such that v = 0 on ∂ω×]l, 0[ as a test function in (7.13). With the help of (c) of Lemma 5.1, we have T ε (γ ij (v)) → γ ij (v) strongly in L 2 (Ω + × D), for i = 1, 2, 3, and T ε (v) → v strongly in L 2 (Ω + × D), as ε tends to zero. In view of the weak convergence of r ε ε T ε (σ ε ) given by Lemma 7.1 and of (7.14), (7.15), passing to the limit in (7.13) leads to

3 i,j=1 Ω - σ - ij γ ij dx 1 dx 2 dx 3 = 3 i=1 Ω - f i v i dx 1 dx 2 dx 3 ,
for any v as above. Then, we obtain

- 3 j=1 ∂σ - ij ∂x j = f i in Ω -,
σ - α3 = σ - 33 = 0, on ω × {0} and ω × {-l}. Since σ - ij is still given by (6.31), it gives a standard elastic problem in Ω -which indeed admits a unique solution.

Convergence of the energies

We only investigate the case r = kε, the case r ε ε → 0 being very similar. We take v = u ε in (6.1) to obtain the energy identity:

E Ω ε (u ε ) = k 2 3 i,j=1 Ω + ×D T ε σ ε ij T ε (γ ij (u ε )) dx 1 dx 2 dx 3 dX 1 dX 2 + 3 i,j=1 Ω - σ ε ij γ ij (u ε )dx 1 dx 2 dx 3 = k 2 3 i=1 Ω + ×D T ε (f ε i ) T ε (u ε i ) dx 1 dx 2 dx 3 dX 1 dX 2 + 3 i=1 Ω - f ε i u ε i dx 1 dx 2 dx 3 .
Since r ε = kε, from (2.19) and (2.20) we have 2µX ij X ij dx 1 dx 2 dx 3 dX 1 dX 2

k 2 3 i=1 Ω + ×D T ε (f ε i ) T ε (u ε i ) dx 1 dx 2 dx 3 dX 1 dX 2 = k 3 2 α=1 Ω + ×D εT ε (f α ) T ε (u ε α ) dx 1 dx 2 dx 3 dX 1 dX 2 + k 2 Ω + ×D T ε (f 3 ) T ε (u ε 3 ) dx 1 dx 2 dx
+ Ω - 3 ij=1 σ - ij γ ij (u -)dx 1 dx 2 dx 3 , (8.8) 
which yields the convergence of the energy E(u ε ) to the elastic limit energy. A standard argument based on the strict convexity of the elastic energy shows that the convergences (5.20) and (5.21) are strong in L 2 (Ω + × D) and that γ ij (u ε ) → γ ij (u -) strongly in L 2 (Ω -) as ε tends to zero. This last fact implies directly that u ε → u -strongly in H 1 (Ω -). The strong convergence in (5.20), for i = j = 3, together with (5.15) and the expression (5.47) of X 33 gives

∂U ε 3 ∂x 3 + kεX 2 ∂R ε 1 ∂x 3 -kεX 1 ∂R ε 2 ∂x 3 + ∂T ε (u ε 3 ) ∂x 3 → ∂U 0 3 ∂x 3 + kX 2 ∂R 0 1 ∂x 3 -kX 1 ∂R 0 2 ∂x 3 strongly in L 2 (Ω + × D), (8.9) 
as ε tends to zero. Using 

3 dX 1 dX 2 , 2 α=1 Ω + ×D f α u 0 α dx 1 dx 2 dx 3 dX 1 dX 2 + k 2 Ω + ×D f 3 u 0 3 dx 1 dx 2 dx 3 dX 1 dX 2 + 3 i=1 Ω - f i u - i dx 1 dx 2 dx 3 .( 8 . 1 ) 3 )

 22233813 and (5.13),(5.14) and the strong convergence of T ε (f i ) to f i permits us to obtainlim ε→0 E Ω ε (u ε ) = k 3Now remark that the expressions derived in the preceding section lead toX 11 + X 22 + 2νX 33 = 0, X 11 = X 22 , X 12 = X 13 = X 23 = 0We will now use the easy to verify algebraic identity which is valid for any symmetricmatrix d = (d ij ) λ(Tr d)(Tr d) + 2µ 3 i,j=1 d ij d ij = Ed 33 d 33 + E (1 + ν)(1 -2ν) (d 11 + d 22 + 2νd 33 ) 2 + E 2(1 + ν) (d 11d 22 ) 2 + 4(d 2 12 + d 2 13 + d 2 23) .

(8. 4 )2µX ij X ij dx 1 dx 2 dx 3 dX 1 dX 2 dx 1 dx 1 dx 2 dx 3 ,X 1 DX 2 DX 1 X 2 f α u 0 α dx 1 dx 2 dx 3 ( 8 . 6 ) 3 i=1 f i u - i dx 1 dx 2 dx 3 .( 8 . 7 )E 2 Ω

 4213121238633872 Then we have, in view of (8.2) and(8.3),dx 2 dx 3 dX 1 dX 2 = dX 1 dX 2 = dX 1 dX 2 = dX 1 dX 2 = 0).Using U 0 α = u 0 α (recall (5.28)) as a test function in (6.29) gives also taking into account the boundary conditions on U 0 α :Secondly, plugging the test function defined by U 0 3 in Ω + × D and u -in Ω -in (6.32), and recalling (5.32), leads toγ ij (u -)dx 1 dx 2 dx 3 = k 2 Ω + ×D f 3 u 0 3 dx 1 dx 2 dx3 dX 1 dX 2 + Ω - Adding (8.6) and (8.7) and using (8.1) and (8.5) give lim ε→0 Ωε (u ε ) = k

D T ε (u ε 3 ) 3 3 =

 333 dX 1 dX 2 = D X α T ε (u ε3 )dX 1 dX 2 = 0 a.e. in Ω + , for α = 1, 2, we easily deduce from (8strongly in L 2 (Ω + × D), for α = 1, 2, (8.10)Let us denote by (U 0 1 , U 0 1 ) ∈ (L 2 (ω; H 1 (]0, L[))) 2 be the unique weak solution of the problem: πf α , in Ω + , ω × {L}.

(9. 1 )• 3 = f 3 ,λ 3 k=1γ( 9 . 4 )Theorem 9 . 1 .

 13339491 Coupled problem for the stretching in the rods and 3d elasticity in Ω -: let us denote byU 0 3 ∈ (L 2 (ω; H 1 (]0, L[))) and (u -, σ -) ∈ (H 1 (Ω -)) 3 × (L 2 (Ω)) 3×3 sthe unique weak solution of the problem:                           in Ω + , σ - ij = kk (u -)) δ ij + 2µγ ij (u -) in Ω -, ω × {L}, σ - α3 = σ - 33 = 0 on ω × {-l}, u -= 0 on ∂ω× ]l, 0[.According to the proof developed in the previous sections, we can state the following convergence result: Under the assumptions(2.19)÷(2.21) on the applied forces, the sequence (u ε , σ ε ) satisfy the following convergences:• εT ε (u ε α ) → u 0 α strongly in L 2 (ω, H 1 (D×]0, L[)), for α = 1, 2,

  Once (4.44) is established, the estimates stated in the following lemma are direct consequences of the previous sections.

	Lemma 4.2. Under assumptions (2.19)÷ (2.21), there exists a constant c independent of ε
	and r such that

.44) Remark 4.1. Indeed, Problem (2.11)÷(2.16) is linear with respect to f ε,r . Then at the possible rescaling of u ε,r , what is important in (4.43) is the relative behavior between f ε,r α and f ε,r 3 in Ω + ε,r and f ε,r i in Ω -. Here we have decided to normalize f ε,r i

in Ω -, to obtain an elastic energy E Ωε,r (u ε,r ) of order 1 with respect to ε.

  Lemma 4.2 and Lemma 5.1 together with 4.38, 4.39, 4.41 permit to obtain the following Lemma: Lemma 5.3. Under assumptions (2.19)÷(2.21), there exists a constant c independent of ε such that

  2 and Lemma 5.3.

	Lemma 5.4. Assume (2.19)÷(2.21), and that r ε = kε.
	For a subsequence, still denoted by {ε},
	• there exist

We now turn to the transmission condition between U 0 3 and u - 3 on ω. Since u ε ∈ H 1 (Ω ε ), recalling Remark 5.2, one can define T ε (u ε 3 ) on ]l, L[×ω × D (still by (5.1)). One has ∂ (T ε (u ε 3 )) ∂x [START_REF] Blanchard | Junction of a periodic family of elastic rods with a 3d plate[END_REF] = T ε ∂u ε 3 ∂x 3 , and then the weak convergences (5.14) and

(5.20) imply that T ε (u

least for a subsequence). Due to (5.14) and (5.31), we first have

, and using again Remark 5.2, we know that

a.e. in ω × D.

(5.58)

This last relation together with (5.56) (actually it gives again (5.56) because (X 1 , X 2 ) are arbitrary in D) leads to

as ε tends to zero. Now remark that, in view of (4.25) we know that εR ε α (•, •, 0) strongly converges to 0 in L 2 (ω), as ε tends to zero. Then (8.10) implies that

as ε tends to zero. From (5.19) and (8.11) it follows that

as ε tends to zero. As a consequence of the decomposition 4.38, 4.39 of the u ε α 's, we deduce from the previous convergences that

As far as

as ε tends to zero. At least, proceeding as above leads to

Remark 8.1. As far as the strong convergences of the sequences 1 ε T ε (u ε ) and εR ε 3 in (5.15) and (5.18) are concerned, the analysis is more intricate (even for a single rod, see [START_REF] Griso | Décomposition des déplacements d'une poutre : simplification d'une problème d'élasticité[END_REF]).

What is easy to prove is that

This is a consequence of the strong convergence of T ε (γ αβ (u ε )) in L 2 (Ω + × D), of (5.34) and of the Korn's inequality in D for a displacement field satisfying (3.8) and (3.10). 9 Summarize (case r = kε)

Let ε be a sequence of positive real numbers which tends to 0. Let (u ε , σ ε ) be the solution of (2.13)÷(2.18) and U ε and R ε be the two first terms of the decomposition of u ε in Ω + ε given in Section 3. The unfolding operator T ε in Ω + ε is defined in Section 5.1. In order to state the convergence theorem below, we first recall the limit problems obtained in Section 6.2 and 6.3.

Limit problem: let (f 1 , f 2 , f 3 ) be in (L 2 (Ω)) 3 .

• Bending problem in the rods (indexed (x 1 , x 2 ) ∈ ω):

1 , U 0 2 and U 0 3 being the solution of (9.1), and (9.2)÷ (9.4).

where , with E = µ(3λ + 2µ) λ + µ .

• u ε i → u - i strongly in H 1 (Ω -), for i = 1, 2, 3,

• σ ε ij → σ - ij strongly in L 2 (Ω -), for i, j = 1, 2, 3.