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NON-LINEAR WEIGHTING FUNCTION FOR NON-STATIONARY SIGNAL DENOISING

Farès Abda, David Brie, Radu Ranta

CRAN UMR 7039 CNRS-UHP-INPL, B.P. 239, 54506 Vandœuvre-lès-Nancy, France

ABSTRACT

We propose in this paper a new strategy for non-stationary
signals denoising based on designing a time-varying filter ada-
pted to the signal short term spectral characteristics. Thebasic
idea leading us to use a new parametric nonlinear weighting
of the measured signal short term spectral amplitude (STSA)
is exposed. The overall system consists in combining the
estimated STSA and the complex exponential of the noisy
phase. The proposed technique results in a significant reduc-
tion of the noise for a variety of non-stationary signals includ-
ing speech signals.

1. INTRODUCTION

The denoising problem consisting in enhancing a signal de-
graded by uncorrelated additive noise when only the noisy
measure is available, is a fundamental task in signal process-
ing. Because of the non-stationarity of the original signal,
the short-time Fourier analysis and synthesis concepts have
been widely used [1–4]. The noisy signal is decomposed
into spectral components by means of the short-time Fourier
transform. The advantages of the spectral decomposition re-
sults from a good separation of the original signal and noise
as well as the decorrelation of spectral components. There-
fore, it is possible to treat the frequency bins independently
and the estimation problem is simplified since the time vary-
ing filtering procedure can be implemented in the frequency
domain where multiplicative modifications are applied on the
short-time spectrum and the enhanced signal is synthesized
from the modified short-time spectrum using the OverLap
Add method (OLA). In general, it is significantly easier to
estimate the STSA of the original signal than to estimate both
amplitude and phase. There are a variety of denoising tech-
niques that capitalize on this aspect by focusing on enhancing
only the STSA of the noisy signal. We propose in this article
a new strategy for the restoration of the STSA. We introduce
a parametric spectral gain formulation based on a continuous
non-linear function, namely, the arctangent.

The paper is organized as follows. In section 2 we intro-
duce the necessary concepts of analysis and synthesis using
the short-time Fourier transform, with a special attentionto
the OLA method and the effects of spectral modifications on
the reconstructed signal. In section 3, we expose the overall
scheme of the denoising system using the nonlinear spectral

weighting method. In section 4, we discuss the empirical pa-
rameters determination. In section 5, we summarize the paper
and draw conclusions.

2. SHORT-TIME FOURIER ANALYSIS AND
SYNTHESIS

Let x(n) andd(n) denote the original signal and the statisti-
cally independent additive noise respectively. The set of ob-
servations expressed using the modely(n) = x(n) + d(n) is
analysed using the short-time discrete Fourier transform de-
fined as

Yk(n) =
∑

m

w(n − m)y(m)e−j2πmk/L (1)

wherew(n−m) is an appropriate sliding window (e.g. Ham-
ming window) of sizeN , andL ≥ N is the number of anal-
ysis frequenciesωk = 2πk/L for k = 0, . . . , L − 1. The
denoising procedure may be viewed as the application of a
weighting rule, or nonnegative real-valued spectral gainGk(n),
to each bink of the observed short-time spectrumYk(n), in
order to form an estimatêXk(n) of the original signal short-
time spectrum. We recall in the following the OLA method
[1] for reconstructing the estimated signalx̂(n) from the mod-
ified short-time spectrum̂Xk(n). Expressing a time-varying
multiplicative modification to the short-time spectrum ofy(n)
as

X̂k(n) = Yk(n)Gk(n), (2)

the synthesized signal is obtained by inverse Fourier trans-
form of X̂k(n), and summing over all the windowed frames

x̂(n) =
∑

m

[

1

L

∑

k

Yk(m)Gk(m)ej2πkn/L

]

. (3)

By defining the time-varying impulse response corresponding
to Gk(n) as

gn(m) =
1

L

∑

k

Gk(m)ej2πkn/L, (4)

and using the definition ofYk(n), we obtain from (3)

x̂(n) =
∑

l

y(l)

[

∑

m

w(m − l)gm(n − l)

]

. (5)



If we let r = n − l or l = n − r, the latter relation becomes

x̂(n) =
∑

r

y(n − r)

[

∑

m

w(m − n + r)gm(r)

]

. (6)

If we define

ĝ(r − n, r) = ĝ(q, r) =
∑

m

gm(r)w(m − q) (7)

then (5) becomes

x̂(n) =
∑

r

y(n − r)ĝ(r − n, r). (8)

We see from equation (7) that the resulting time-varying fil-
ter ĝ(r − n, r) is a filtered version ofgm(n) by means of the
low-pass filterw(n). However, in our case the spectral time-
varying filterGk(n) is a nonlinearly obtained spectral weight-
ing from Yk(n). Thus, time-varying modifications applied to
the measured short-time spectrumYk(n) are only dependent
on the latter. Therefore, sinceYk(n) is a slowly time-varying
function (by taking into account the band limiting effect of
the analysis window), the analysis window will not have any
significant effect on the designed time-varying filter.

We do not discuss here the selection of the rate at which
Yk(n) should be sampled in both time and frequency to pro-
vide an unaliased representation ofYk(n). This point is de-
tailed in [1] from which it turns out that a properly sampled
short-time transform using a Hamming window requires on
the order of four times more information as would be required
relative to the original signal. In turn to this redundancy one
obtains a very flexible signal representation for which exten-
sive modifications can be made.

3. NONLINEAR WEIGHTING OF THE SHORT-TIME
SPECTRAL AMPLITUDE

Most of the denoising techniques operate in the frequency
domain by applying a frequency dependent gain function to
the spectral components of the noisy signal, in an attempt to
heavily attenuate the noise only spectral components, while
preserving those corresponding to the original signal. These
denoising algorithms commonly consists of three major com-
ponents: a spectral analysis/synthesis system which was de-
scribed in section 2, a noise estimation algorithm, and a spec-
tral gain computation. The gain modifies only the Fourier
magnitudes of an input frame.

3.1. Minimum statistics noise PSD estimation

Noise estimation usually involves some kind of SNR based
signal activity detection which restrict the update of the noise
estimate to periods of signal absence. However, these tradi-
tional noise estimation approaches are difficult to tune and
their application to low SNR signals results often in distorted
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Fig. 1: Block diagram of a single channel signal denoising algorithm.

signals. Due to these reasons, we used a useful noise estima-
tion method, known as the minimum statistics [5–7], which
consists in tracking the minima values of a smoothed power
estimate of the noisy signal.

3.2. The spectral gain calculation

The time-varying filterGk(n) is specified by a pass region
(Gk(n) ≈ 1) which covers the effective support region of the
original signalx(n), a stop region (Gk(n) ≈ 0) which has to
suppress the undesired spectral components representative of
the noise and an intermediate region (0 < Gk(n) < 1) where
both signal and noise are present with values depending on
the relative spectral values of the original signal and noise.

Based on this intuitively appealing interpretation of the
spectral weighting functionGk(n), and given an estimate of
the noise PSD̂σ2

k(n), we propose to design the time-varying
filter as

Gα,β
k (n) =

{

1

π
arctan [β (|Yk(n)| − ασ̂k(n))] +

1

2

}

, (9)

whereα, β > 0 are design parameters that have to be chosen
in order to adjust at best the shape ofGk(n). The values of
α andβ control the suppression level of the noise as well as
the resulting signal distorsion. This nonlinear gain function
is depicted in figure (2). We see that this function takes very
low values corresponding to small spectral amplitudes of the
measured signal compared to the estimated noise PSD, and
takes values close to the unity for large values of the spectral
amplitudes. Consequently, this function performs a selective
weighting of spectral components based on the noise PSD es-
timate. However, since the gain function (9) is sensitive tothe
dynamical range of the spectral amplitudes, the input signal
has to be normalised with its maximal value in order to obtain
the same variation range for all signals. An other solution
to this problem consists in using the modified gain function
expressed as

G̃α,β
k (n) =

{

1

π
arctan

[

β
(

√

γk(n) − α
)]

+
1

2

}

, (10)

where

γk(n) =
|Yk(n)|2

σ̂2

k(n)
(11)



is thea posterioriSNR as defined in [2].
The proposed short-term spectral amplitude estimator is

therefore given by

|X̂α,β

k (n)| =

{

1

π
arctan

[

β
(

√

γk(n) − α
)]

+
1

2

}

|Yk(n)|

= G̃
α,β

k (n)|Yk(n)|. (12)

Finally, by combining this spectral amplitude estimate with
the noisy phase of the measured signal, we obtain the short-
term spectral estimate as

X̂α,β
k (n) = G̃α,β

k (n)Yk(n), (13)

and the corresponding synthesized signalx̂α,β(n) is obtained
using (3).
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Fig. 2: Weighting function (9) forβ = 3.

4. EMPIRICAL PARAMETER DETERMINATION

We consider in this section the experimental determinationof
the parametersα andβ using the Nelder-Mead algorithm for
the minimisation of the MSE between the noise free and the
estimated signal calculated as1M

∑M
n=1

[

x(n) − x̂α,β(n)
]2

,
whereM the length of the input signal. We used in a first
study four speech signals corrupted by computer-generated
white Gaussian noises in order to have different SNRs. The
obtained optimal values ofα andβ with the corresponding
output SNRs are given in table (1).

Several simulations have been conducted and we found
that reasonable values in the case of speech signals must be
chosen such that2 < α ≤ 5 and2 < β ≤ 5. However, if we
chooseα = 2.8 andβ = 3, the algorithm performs high noise
reduction in the most cases. Furthermore, we found that this
algorithm, using the proposed values outperforms (in term of
SNR improvements) the Wiener [8] and the MMSE-LSA [3,
9] algorithms both using the decision-directed approach for
estimating thea priori SNR.

Table (2) shows the obtained SNR improvements for four
different speech signals using the proposed algorithm, theWi-
ener and the MMSE-LSA estimators for several input SNRs.
The SNR improvement is calculated as

∆SNR = 10 log
10

[

∑M
n=1

(x(n) − y(n))
2

∑M
n=1

(x(n) − x̂(n))
2

]

(14)

Input SNR 0dB 5dB 10dB 15dB 20dB

Signal 1
α 3.09 2.54 2.25 1.68 0.56

β 3.18 2.58 1.98 1.45 1.48

Signal 2
α 3.00 2.78 2.55 2.19 1.75

β 3.26 2.77 2.34 2.36 2.42

Signal 3
α 3.06 2.84 2.62 2.41 2.19

β 2.93 2.66 2.58 2.76 2.48

Signal 4
α 3.01 2.75 2.43 1.92 1.25

β 2.77 2.46 2.11 1.97 1.87

Table 1: Optimal values of parametersα andβ obtained over100

simulations for four different speech signals

and negative values indicates that there is a signal degrada-
tion.

Input SNR 0dB 5dB 10dB 15dB 20dB

Signal 1
A 6.72 4.94 3.01 0.90 -1.87

W 6.10 3.94 1.78 -0.42 -3.30

M 6.23 4.24 2.26 0.15 -2.64

Signal 2
A 7.49 5.80 4.04 1.99 -0.55

W 7.02 4.93 2.96 0.86 -1.74

M 6.95 5.13 3.29 1.28 -1.28

Signal 3
A 7.69 6.13 4.82 3.56 2.39

W 7.23 5.40 3.85 2.53 1.20

M 7.19 5.59 4.16 2.90 1.66

Signal 4
A 7.35 5.53 3.61 1.56 -1.15

W 6.89 4.80 2.55 0.26 -2.64

M 6.88 5.03 2.96 0.84 -1.91

Table 2: SNR improvements (in dB) for the proposed algorithm
(A), the Wiener (W) and the MMSE-LSA (M) filters for four
speech signals and different noise levels.

As we can see from table (2), the proposed method gives
the best results. Moreover, the residual noise sounds very sim-
ilarly to that obtained using the MMSE-LSA algorithm which
is known to provide lessmusical tonesphenomenon [10].

We also tested the proposed algorithm for denoising sim-
ulatedsparsesignals, i.e., a few large coefficients dominate
the signal time-frequency representation. In this case, we
found it necessary to use a larger value for the parameterα
while maintaining the same value forβ, and the best results
were obtained using the fixed valueα = 5. Table (3) gives
the SNR improvements calculated using (14) for different in-
put SNRs obtained for three test signals, namely, the linear
chirp, the quadratic chirp and the two chirps signals corrupted
with computer-generated white Gaussian noise. The corre-
sponding noise-free spectrograms are represented in Figure
(3). The obtained results confirm the efficiency of the pro-



posed method in denoising such signals.
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(c) Two Chirps

Fig. 3: Sparse test signals.

Input SNR 0dB 5dB 10dB 15dB 20dB

Linear
Chirp

A 16.09 14.92 13.07 10.00 5.88

W 13.64 13.00 11.82 9.30 5.60

M 11.62 11.23 10.44 8.46 5.22

Quadratic
Chirp

A 15.08 13.96 11.83 8.13 3.74

W 13.35 12.17 10.78 7.57 3.57

M 11.50 10.66 9.65 7.01 3.34

Two
Chirps

A 12.24 11.97 11.22 9.51 6.47

W 11.64 11.21 10.39 8.76 6.14

M 10.30 10.00 9.38 8.08 5.75

Table 3: SNR improvements (in dB) for the proposed algorithm
(A), the Wiener (W) and the MMSE-LSA (M) filters for three
sparse test signals and different noise levels.

5. CONCLUSION

We proposed a simple and intuitively appealing method for
non-stationary signal denoising consisting in a non-linear weight-
ing of the STSA coefficients. We believe that the full po-
tential of the proposed approach is not yet fully exploited,
although very encouraging results were obtained. A future
work will concern the development of regularization-based
parameters estimation from only the noisy measure by tak-
ing into accounta priori knowledge about the original sig-
nal. The same non-linear function can be applied to develop
a shrinkage function in a wavelets denoising context [11]. In
that respect, the derivation of a SureShrink-type threshold for
the wavelet based denoising approach is also thinkable since
the corresponding shrinking function have a bounded weak
derivative [12]. These issues are now being investigated.

6. REFERENCES

[1] J. B. Allen and L. R. Rabiner, “A unified approach to
short-time fourier analysis and synthesis,”Proceedings
of the IEEE, vol. 65, no. 11, pp. 1558–1564, November
1977.

[2] R. J. McAulay and M. L. Malpass, “Speech enhance-
ment using a soft-decision noise suppression filter,”
IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 28, no. 2, pp. 137–145, April 1980.

[3] Y. Ephraim and D. Malah, “Speech enhancement us-
ing a minimum mean-square error short-time spectral
amplitude estimator,”IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 32, no. 6, pp. 1109–
1121, December 1984.

[4] P. J. Wolfe and S. J. Godsill, “Simple alternatives to
the Ephraim and Malah suppression rule for speech en-
hancement,”in Proc. 11th IEEE Workshop on Statistical
Signal Processing, vol. II, pp. 496–499, 2001.

[5] Douglas B. Paul, “The spectral envelope estimation
vocoder,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 29, no. 4, pp. 786–794, August
1981.

[6] R. Martin, “Spectral subtraction based on minimum
statistics,” in Proc. Eur. Signal Processing Conf., pp.
1182–1185, 1994.

[7] R. Martin, “Noise power spectral density estimation
based on optimal smoothing and minimum statistics,”
IEEE Transactions on Speech and Audio Processing,
vol. 9, no. 5, pp. 504–512, July 2001.

[8] J. S. Lim and A. V. Oppeheim, “Enhancement and band-
width compression of noisy speech,”Proceedings of the
IEEE, vol. 67, no. 12, pp. 1586–1604, December 1979.

[9] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum mean-square error log-spectral amplitude es-
timator,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 33, no. 2, pp. 443–445, April
1985.
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