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NON-LINEAR WEIGHTING FUNCTION FOR NON-STATIONARY SIGNAL DENOISING
Fares Abda, David Brie, Radu Ranta

CRAN UMR 7039 CNRS-UHP-INPL, B.P. 239, 54506 Vandceuws-Nancy, France

ABSTRACT weighting method. In section 4, we discuss the empirical pa-

We propose in this paper a new strategy for non-stationarjgmeters determlr_latlon. In section 5, we summarize therpape
signals denoising based on designing a time-varying filara 2nd draw conclusions.

pted to the signal short term spectral characteristics.bak&

idea leading us to use a new parametric nonlinear weighting 2. SHORT-TIME FOURIER ANALYSISAND

of the measured signal short term spectral amplitude (STSA) SYNTHESIS

is exposed. The overall system consists in combining the

estimated STSA and the complex exponential of the noisy-et z(n) andd(n) denote the original signal and the statisti-
phase. The proposed technique results in a significant redugally independent additive noise respectively. The setbef o
tion of the noise for a variety of non-stationary signaldude  servations expressed using the moglel) = x(n) + d(n) is

ing speech signals. analysed using the short-time discrete Fourier transfaem d
fined as
1. INTRODUCTION ;
Yi(n) = w(n —m)y(m)e 2mmH/E (1)
The denoising problem consisting in enhancing a signal de- m

graded by uncorrelated additive noise when only the noisyherew(n —m) is an appropriate sliding window (e.g. Ham-
measure is available, is a fundamental task in signal psacesming window) of sizeN, andL > N is the number of anal-
ing. Because of the non-stationarity of the original signalysis frequencies), = 2rk/L for k = 0,...,L — 1. The
the short-time Fourier analysis and synthesis concepts ha@enoising procedure may be viewed as the application of a
been widely used [1-4]. The noisy signal is decomposetieighting rule, or nonnegative real-valued spectral gain),
into spectral components by means of the short-time Fourigp each bink of the observed short-time spectrdm(n), in
transform. The advantages of the spectral decomposition r@rder to form an estimat&},(n) of the original signal short-
sults from a good separation of the original signal and noiséme spectrum. We recall in the following the OLA method
as well as the decorrelation of spectral components. Therél] for reconstructing the estimated sigrigh) from the mod-
fore, it is possible to treat the frequency bins indeperigient ified short-time spectrunX (n). Expressing a time-varying
and the estimation problem is simplified since the time varymultiplicative modification to the short-time spectrumyof.)
ing filtering procedure can be implemented in the frequencys A

domain where multiplicative modifications are applied om th Xi(n) = Yi(n)Gr(n), (2

short-time spectrum and the enhanced signal is synthesizggy synthesized signal is obtained by inverse Fourier trans

from the modified short-time spectrum using the OverLag,,m of Xk(n), and summing over all the windowed frames
Add method (OLA). In general, it is significantly easier to

estimate the STSA of the original signal than to estimaté bot R 1 "
amplitude and phase. There are a variety of denoising tech- (1) = Y 7 > Yi(m)Gr(m)e?™ )
nigues that capitalize on this aspect by focusing on enhgnci m k

only the STSA of the noisy sigpal. We propose in this articIeBy defining the time-varying impulse response correspandin
a new strategy for the restoration of the STSA. We introducg Gr(n) as

a parametric spectral gain formulation based on a contsuou
_ . . 1 X kn

non-linear funqhon, namely, the arctangent. _ _ gn(m) = — Z G (m)el?™® /. (4)
The paper is organized as follows. In section 2 we intro- L k

duce the necessary concepts of analysis and synthesis using _ o _

the short-time Fourier transform, with a special attention and using the definition df} (n), we obtain from (3)

the OLA method and the effects of spectral modifications on

the reconstructed S|gqal. In sectlon.s, we expose the dveral #(n) = Zy(l) Zw(m — Dgm(n—1)| . (5)

scheme of the denoising system using the nonlinear spectral 7 —



If weletr =n —{orl =n — r, the latter relation becomes

Yi(A) :
F - .
2(n) = Z y(n—r) Z w(m —n+7)gm(r)|. (6) w(n) : $ - |- E : O\fC:'d-ap
r m L 17T
If we define T : S (l)
y(n) ’\;’(gf')e ™ Gr(A &(n
or=n.r) = i(ar) = Y gu(jum—a) (7 )

then (5) becomes

E(n) = y(n—r)gr—mn,r). (8)

Fig. 1: Block diagram of a single channel signal denoising algatith

signals. Due to these reasons, we used a useful noise estima-
tion method, known as the minimum statistics [5—7], which
consists in tracking the minima values of a smoothed power
estimate of the noisy signal.

We see from equation (7) that the resulting time-varying fil-
ter g(r — n,r) is afiltered version o§,,(n) by means of the
low-pass filterw(n). However, in our case the spectral time-
varying filterGy (n) is a nonlinearly obtained spectral weight-
ing from Yy (n). Thus, time-varying modifications applied to
the measured short-time spectrifi(n) are only dependent The time-varying filterGy,(n) is specified by a pass region
on the latter. Therefore, sind (n) is a slowly time-varying (, (n) ~ 1) which covers the effective support region of the
function (by tqking into account the band limiting effect of original signalz(n), a stop region@},(n) ~ 0) which has to
the analysis window), the analysis window will not have anysyppress the undesired spectral components represerdtiv
significant effect on the designed time-varying filter. the noise and an intermediate region{ G, (n) < 1) where

We do not discuss here the selection of the rate at whicRoth signal and noise are present with values depending on
Yi(n) should be sampled in both time and frequency 10 prothe relative spectral values of the original signal andenois
vide an unaliased representationigf(n). This point is de- Based on this intuitively appealing interpretation of the
tailed in [1] from which it turns out that a properly sampled spectral weighting functiot;,(n), and given an estimate of

short-time transform using a Hamming window requires onpe noise PS32(n), we propose to design the time-varying
the order of four times more information as would be requiredijter a5

relative to the original signal. In turn to this redundancyeo 1 1
obtains a very flexible signal representation for which exte Ggﬁ(n) = {_ arctan [ (|Yx(n)| — adr(n))] + _} . (9)
sive modifications can be made. Q 2

3.2. The spectral gain calculation

whereq, 3 > 0 are design parameters that have to be chosen

3. NONLINEAR WEIGHTING OF THE SHORT-TIME  in order to adjust at best the shapeaf(n). The values of
SPECTRAL AMPLITUDE « and g control the suppression level of the noise as well as

the resulting signal distorsion. This nonlinear gain fimct
Most of the denoising techniques operate in the frequencis depicted in figure (2). We see that this function takes very
domain by applying a frequency dependent gain function téow values corresponding to small spectral amplitudes ef th
the spectral components of the noisy signal, in an attempt tmeasured signal compared to the estimated noise PSD, and
heavily attenuate the noise only spectral components ewhiltakes values close to the unity for large values of the sglectr
preserving those corresponding to the original signal.s€he amplitudes. Consequently, this function performs a siefect
denoising algorithms commonly consists of three major comweighting of spectral components based on the noise PSD es-
ponents: a spectral analysis/synthesis system which was démate. However, since the gain function (9) is sensitiviheo
scribed in section 2, a noise estimation algorithm, and a-spedynamical range of the spectral amplitudes, the input $igna
tral gain computation. The gain modifies only the Fourierhas to be normalised with its maximal value in order to obtain

magnitudes of an input frame. the same variation range for all signals. An other solution
to this problem consists in using the modified gain function
3.1. Minimum statistics noise PSD estimation expressed as

Noise estimation usually involves some kind of SNR based ¢ (;) — {1 arctan [5( e(n) — a)} 4 ;} . (10)

signal activity detection which restrict the update of tioése ™
estimate to periods of signal absence. However, these tradjnere
tional noise estimation approaches are difficult to tune and

their application to low SNR signals results often in distdr m(n) = 53(n) (11)




is thea posterioriSNR as defined in [2]. | InputSNR || odB | 5dB | 10dB | 15dB | 20dB |
The proposed short-term spectral amplitude estimator is

) Signal 1 L@ 1l 309|254 225 | 168 | 0.56
therefore given by g 3 | 318 258 | 1.98 | 1.45 | 1.48
X 1 1 . o || 3.00| 278 | 255 | 219 | 175
o, _ - — —
X = {71’ arctan [ﬁ( k(1) O‘)} + 2} [Yie(n)| Signal 2 e T 277 [ 234 | 236 | 2.42
_ G‘Z"ﬁ(n)lYk(n)l (12) Signal 3 « 3.06 | 284 | 2.62 241 2.19
. o . _ . _ B || 293 | 266 | 258 | 2.76 | 2.48
Flnally, by combining this spectral .amplltude est[matelwn . o 3011 2751 243 | 192 | 1.25
the noisy phase of the measured signal, we obtain the short- Signal 4 5 277] 246 | 211 | 197 | 187
term spectral estimate as
X?ﬁ(n) = Gz’ﬁ(n)Yk(n), (13) Table 1: Optimal values of parametersand3 obtained ovet 00

) ] . ) ) simulations for four different speech signals
and the corresponding synthesized sigifaf (n) is obtained

using (3).

1 . . . . .
and negative values indicates that there is a signal degrada
tion.

£ o8l ] | inputsNR || 0dB | 5dB | 10dB [ 15dB | 20B ]
&)
) A || 672 | 494 | 301 | 090 | -1.87
Signal 1
W || 6.10 | 3.94 | 1.78 | -0.42 | -3.30
o M || 623 | 424 | 226 | 0.15 | -2.64
ao, (m . A || 749 | 580 | 4.04 | 1.99 | -0.55
Signal 2
W || 7.02| 493 | 2.96 | 0.86 | -1.74
Fig. 2: Weighting function (9) for3 = 3. M || 6.95| 513 | 3.29 | 1.28 | -1.28
) A || 769 | 6.13 | 482 | 356 | 2.39
Signal 3
W || 7.23| 5.40| 3.85 | 253 | 1.20
4. EMPIRICAL PARAMETER DETERMINATION M || 719 | 559 | 416 | 2.90 | 1.66
sianala | A | 735|553 | 361 | 156 | -1.15
We consider in this section the experimental determinaifon 9 W || 6.89| 480 | 255 | 0.26 | -2.64
the parameters and using the Nelder-Mead algorithm for M || 6.88| 5.03| 2.96 | 0.84 | -1.91

the minimisation of the MSE between the noise free and the

. . M N 2
estimated signal calculated_ 35 27}:1 [2(n) — zaﬁ(”)] »  Table 2: SNR improvements (in dB) for the proposed algorithm
where M the length of the input signal. We used in a first (A), the Wiener (W) and the MMSE-LSA (M) filters for four

study four speech signals corrupted by computer—generat%(geech signals and different noise levels.
white Gaussian noises in order to have different SNRs. The

obtained optimal values af and § with the corresponding
output SNRs are given in table (1).

Several simulations have been conducted and we found As we can see from table (2), the proposed method gives
that reasonable values in the case of speech signals must e best results. Moreover, the residual noise sounds irery s
chosen such th& < o < 5and2 < 8 < 5. However, if we ilarly to that obtained using the MMSE-LSA algorithm which
choosey = 2.8 andg = 3, the algorithm performs high noise is known to provide lesmusical tonephenomenon [10].
reduction in the most cases. Furthermore, we found that this We also tested the proposed algorithm for denoising sim-
algorithm, using the proposed values outperforms (in teffm oulatedsparsesignals, i.e., a few large coefficients dominate
SNR improvements) the Wiener [8] and the MMSE-LSA [3, the signal time-frequency representation. In this case, we
9] algorithms both using the decision-directed approach fofound it necessary to use a larger value for the parameter
estimating the priori SNR. while maintaining the same value f@; and the best results

Table (2) shows the obtained SNR improvements for fouwere obtained using the fixed valae= 5. Table (3) gives
different speech signals using the proposed algorithmiMike the SNR improvements calculated using (14) for different in
ener and the MMSE-LSA estimators for several input SNRsput SNRs obtained for three test signals, namely, the linear

The SNR improvement is calculated as chirp, the quadratic chirp and the two chirps signals cdedp
v ) with computer-generated white Gaussian noise. The corre-
ASNR = 101log;, >on=1 (@(n) —y(n)) (14) sponding noise-free spectrograms are represented ing~igur
flw:l (z(n) — &(n))? (3). The obtained results confirm the efficiency of the pro-



posed method in denoising such signals.
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(a) Linear Chirp (b) Quadratic Chirp (c) Two Chirps

Fig. 3: Sparse test signals.

InputSNR || odB | 5dB [ 10dB | 15dB | 20dB |
Linear A [[ 16.09] 14.92] 13.07 [ 10.00| 5.88
Chirp W || 13.64 | 13.00 | 11.82| 9.30 | 5.60

M || 11.62] 11.23| 10.44 | 846 | 5.22
Quadratic | A || 15.08 | 13.96 | 11.83| 8.13 | 3.74
Chirp w || 1335] 12.17 | 10.78 | 7.57 | 3,57
M || 11.50 | 10.66 | 9.65 | 7.01 | 3.34
Two A || 1224] 1197 | 11.22| 951 | 6.47
Chirps w || 1164 | 11.21| 1039 876 | 6.14
M || 10.30] 10.00| 9.38 | 8.08 | 5.75

Table 3: SNR improvements (in dB) for the proposed algorithm
(A), the Wiener (W) and the MMSE-LSA (M) filters for three
sparse test signals and different noise levels.

5. CONCLUSION

We proposed a simple and intuitively appealing method for
non-stationary signal denoising consisting in a non-linegight-

ing of the STSA coefficients. We believe that the full po-
tential of the proposed approach is not yet fully exploited,
although very encouraging results were obtained. A future
work will concern the development of regularization-baseo[lol
parameters estimation from only the noisy measure by tak-

ing into accounta priori knowledge about the original sig-

nal. The same non-linear function can be applied to develop
a shrinkage function in a wavelets denoising context [14]. | [11]

that respect, the derivation of a SureShrink-type threksfal

the wavelet based denoising approach is also thinkable sinc
the corresponding shrinking function have a bounded weak

derivative [12]. These issues are now being investigated.
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