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ABSTRACT

Here we propose a new blockwise Rate-Distortion (R-D)
model dedicated to lattice vector quantization (LVQ) of
sparse and structured signals. We first show that the clus-
tering properties leads to a distribution of the norm Lα of
source vectors close to a mixture of Gamma density. From
this issue, we derive the joint distribution of vectors as a mix-
ture of multidimensional generalized gaussian densities. This
data modelling not only allows us to compute more accurate
analytical R-D model for LVQ but provides a new theoretical
framework to the design of codebooks better suited to data
like dead zone LVQ [5, 12].

1. INTRODUCTION

In the field of transform coding, Lattice Vector Quantizers
(LVQ) have proved for years their efficiency, as they can
exploit statistical characteristics of vectors (i.e. blocks of
source samples), while maintaining a low computational cost.
However, to be competitive with scalar quantizers, practical
realizations of LVQ must deal with the design of an appropri-
ate codebook with respect to the distribution of data, as well
as an efficient bit rate allocation process which is unavoidable
in transform coding. A lot of works [2, 7, 6] related to this
topic have been done, but they have in common to assume
i.i.d. signals while block-based signal processing methods
(like LVQ) can take advantage of the non i.i.d. properties
of real data (like clustering of wavelet coefficients for exam-
ple). The best answer to these questions stands in a realistic
model of the data. In this context, Fisher et al. for example,
have proposed in [3] the use of elliptical codebooks. How-
ever, this approach has a high complexity since it requires
the computing of the orientation of the ellipsoid and a spe-
cific indexing methods [10]. Furthermore, these schemes ex-
ploit polarizations between samples which is a specific kind
of dependance.

Here we aim at taking into account clustering effects
within data and designing low cost algorithms. The key
point of our approach stands in the modelling of the correla-
tions within any vector by using a new prior on the joint dis-
tribution of source vectors based on a multidimensional mix-
ture of generalized gaussian (MMGG) densities. We derive
two main improvements to lattice quantizers: firstly, a new
analytical Rate-Distortion (R-D) model (called R-D mixture
model) which can be an efficient tool to solve the problem of
bit allocation by outperforming classical R-D models under
the i.i.d. assumption. Secondly, the MMGG prior provides a
new theoretical framework to the design of codebooks better
suited to the data. We have proposed in a previous work
such a LVQ scheme based on the use of a vector dead zone
(DZLVQ) [5, 12] .

The paper is organized as follows. Section 2 is dedicated
to the presentation of the MMGG model which is mainly
based on a study of the Lα norm of the source vectors. We
show that, in the case of sparse and clustered signals, the

norm distribution has a particular shape, and is close to a
Gamma mixture. Thanks to a well stated property of the
Gamma law, we deduce, in sub-section 2.2., that the joint
distribution of the source vectors can be approximated by a
mixture of multidimensional Generalized Gaussian densities
(MMGG). Finally, the R-D mixture model is presented in
section 3 and is also extended to our new class of LVQ with
dead zone. The efficiency of our approach is illustrated by
experimental results performed on wavelet coefficients using
the 9-7 filter [1].

2. VECTOR NORM AND SOURCE
DISTRIBUTION MODELLING USING

MIXTURE MODELS

Most popular lattice vector quantizers in source coding are
based on the use of a product code. The basic principles are
the following: In a first step, a source vector X is quantized
within the lattice by Q(.), then this quantized vector Y =
Q(X

γ
), where γ is the scaling factor, is encoded by using

a prefix code which associates to Y a unique pair (e, pos),
where e = ‖Y ‖α

α and pos stands for the position of Y on
the shell of radius e [7]. The suffix pos is fixed-length coded
while e is encoded using entropy coding. The total rate of
the quantized source is then given by:

R = −

rT
∑

r=0

P (e = r)
{

log
2

[

P (e = r)
]

− log
2

[

N (r)
]}

(1)

where N (r) is the population of the shell of radius r (i.e.
the cardinal of the set of vectors of norm equal to r), P the
discrete law of the radius and rT the truncation radius of the
codebook.

The efficiency of LVQ stands mainly in the entropy cod-
ing of norm of vectors1, particularly in the case of correlated
and sparse source samples like wavelet coefficients. As il-
lustrated in figure 2 for the L1 case, the vector norm dis-
tribution has a mode close to zero because of clustering of
small samples which leads to a large amount of vectors with
a low norm. In addition, the density has an heavy tail corre-
sponding to clusters of high magnitude samples. In most of
works, the modelling of the norm is deduced from the distri-
bution of source samples which is often assumed independent
and identically distributed (i.i.d.). This hypothesis leads to
simple analytical developments but does not yield a good de-
scription of the norm properties (and obviously cannot take
into account sample dependencies). For example, under the
assumption of an i.i.d. generalized gaussian distribution the
value of the mode is only linked to the standard deviation.
A large standard deviation yields a mode far from zero and
thus often involves a non reliable model of the norm.

1For sake of simplicity we still call norm the norm at power α.



Here, our approach is inverse: we propose a flexible
model for the norm which allows to modelling the joint dis-
tribution of source vectors.

2.1 Vector norm modelling

A distribution with a mode near zero and a heavy tail nat-
urally leads to a model consisting in a mixture of densities.
Since the norm of vectors is sparse and non-negative, the
mixture of Gamma densities seems to be a good candidate.
Recall that a random variable ε which is Gamma distributed
(in the sequel, ε represents the norm of blocks) has the fol-
lowing probability density function (pdf):

G(ε; a, b) =
ba

Γ(a)
εa−1 exp[−b ε] Iε>0, (2)

where Γ(a) is the Gamma function, Iε>0 is the indicator
function and the parameters (a > 0, b > 0) allow to adjust
the shape of the Gamma density (denoted G(ε; a, b)). As
shown in figure 1, for 0 < a < 1 the distribution has a sharp
shape, which is well suited to sparse signals, and for a > 1,
the distribution has a mode in (a− 1)/b and is heavy tailed.
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Figure 1: Typical shapes of the Gamma distribution.

Assuming that the norm of vectors ε belongs to Nmix

classes Sk of weight ck = P (ε ∈ Sk), we obtain the following
mixture model:

p(ε; a,b) =

Nmix
∑

k=1

ck G(ε; ak, bk), (3)

with a = [a1, ..., aNmix
], b = [b1, ..., bNmix

].
In the framework of our application, the norm of vec-

tors is assumed to belong to two classes: low and high norm
states, denoted S1 and S2. The parameters (c1, c2) are esti-
mated by using a Monte Carlo Markov chain algorithm [8],
where the Gamma parameters a and b are simulated us-
ing the algorithm given in [11]. Figure 2 shows that the two
Gamma mixture fits well the norm distribution, i.e. the peak
and the heavy tail. Furthermore, the good performances of
the mixture model emphasizes the fact that a joint distri-
bution which leads to a gamma mixture distribution of the
norm could be a good candidate to modelling of the source
distribution. This point is adressed in the following sub-
section.
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Figure 2: Histogram of the norm of vectors (size 8) of
the vertical wavelet sub-image of Lena (level 3)
and the corresponding estimated two Gamma mix-
ture density with parameters a = [5.12, 1.49],
b = [0.92, 0.03] and c = [0.24, 0.76].

2.2 Source distribution

According to the vector norm distribution expressed by the
gamma mixture model (3), the joint distribution f of the
random vector X representing the source is given by:

f (X) =

Nmix
∑

k=1

ckf (X|‖X‖α
α ∈ Sk) (4)

where f (X|‖X‖α
α ∈ Sk) is the distribution of the random

vector X conditionally to the state Sk.
The choice of the distributions f (X|‖X‖α

α ∈ Sk) is mo-
tivated by a well stated theoretical property of the Gamma
mixture model: If we consider a vector X = (x1, ..., xn),
whose components xk are GG distributed, it can be shown

that its norm, ε =
n
∑

k=1

|xk|
α, is Gamma distributed with pa-

rameters a = n/α and b = 1/βα, where α and β are the
power and shape parameters of the GG density, which is
expressed by:

GG(xi; α, β) =
α β1/α

2Γ(1/α)
exp[−βxα

i ].

According to this property and under the condition that
the components of each vector are identically distributed,
the Gamma mixture model of the norm leads to a model of
MMGG densities for the joint distribution (4) of the source
vectors. By assuming that the Nmix class of vectors are
Generalized Gaussian distributed the joint distribution of X
conditionally to the state Sk is then:

f (X|‖X‖α
α ∈ Sk) =

n
∏

j=1

GG(xj ; αk, βk). (5)

Before showing in the next section the efficiency of the
MMGG model by computing accurate R-D models for LVQ,
let us remark some important issues:
• The MMGG model is different from that consisting in a

mixture of scalar Generalized Gaussian distributions with
independent labels because it enables to account samples
dependencies.



• The sample dependencies are estimated in a simple man-
ner since the MMGG model is deduced from the parame-
ters of the gamma mixture model with independent labels
representing the vector norm distribution.

• As it will be shown in the following, our approach al-
lows to reuse works related to the classical i.i.d. assump-
tion thanks to advantageous mathematical properties:
The coordinates of vectors are assumed identically dis-
tributed, the conditional distributions are separable and,
finally, the i.i.d. generalized Gaussian (GG) density is a
wide spread assumption in LVQ.

3. LATTICE VECTOR QUANTIZATION
BASED ON THE MMGG MODEL

In source coding, the knowledge of the source statistics is of
interest for both the design of an efficient quantizer and the
estimation of the R-D function of the quantized source. In
this section we first design under the MMGG assumption an
accurate R-D model for LVQ schemes. Then, we present our
LVQ scheme with a codebook shape adapted to the MMGG
model, the dead zone LVQ (DZLVQ). R-D models dedicated
to DZLVQ are then computed.

3.1 LVQ Rate distortion models

The key point of the design of a R-D model based on the
MMGG prior (R-D mixture model) stands in the fact that
it only requires R-D model in the i.i.d. case.

3.1.1 Problem statement

The distortion model Dmix associated to a mixture of den-
sities is given by:

Dmix =

Nmix
∑

k=1

ckDk (6)

where Dk is the distortion of the kth distribution of the mix-
ture and Nmix the number of densities.

Furthermore, according to (1), the rate model Rmix is
given by:

Rmix = −

rT
∑

r=0

Pmix(e = r)
{

log
2

[

Pmix(e = r)
]

− ⌈log
2
(N (r))⌉

}

(7)

where Pmix (e = r) =
Nmix
∑

k=1

ckPk (e = r) is the discrete distri-

bution of the radius of the mixture, and Pk the probability
of the kth class Sk.

3.1.2 Experimental results

Experimental results are performed using a pyramidal LVQ
scheme on lattice Z

n which is a good trade-off between cod-
ing performances and complexity. Classical modelling of R-D
curves in the pyramidal case are computed under the i.i.d.
Laplacian assumption [9]. We are going to show that the R-D
model based on a multidimensional mixture of laplacian den-
sities gives significantly more accurate results. Table 1 allows
to compare the mean relative error (RE) and the maximum
RE between the R-D functions estimated by the two models
and the real R-D function2 performed on the vertical sub
images of level 2 of images ”Boat”, ”Peppers” and ”Lena”.
As we can see the mixture assumption gives a much more re-
alistic R-D model that the i.i.d. assumption. This efficiency
is also illustrated in figure 3 where the mixture model fits

2Definitions of the mean and the maximum RE are given in
appendix A

precisely the real R-D curve whereas the curve correspond-
ing to the i.i.d. Laplacian assumption diverges. Finally, note
that tests have also been performed on all other sub images
which lead to the same results.

Lena Boat Peppers
Mean RE 0.194; 2.084 0.299; 1.774 0.068;2.958
Max RE 0.364; 3.632 0.512; 3.486 0.2297; 4.064

Table 1: Mean and maximum relative error (RE) with the
LVQ experimental R-D curve of the mixture (bold)
and the Laplacian i.i.d. R-D models for three verti-
cal wavelet subbands of level 2 (Lena, Peppers, and
boat images).
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Figure 3: LVQ R-D functions (level 2 vertical sub image of
Lena image): real data, proposed mixture model
and i.i.d. Laplacian model.

3.2 Lattice quantizers with adapted codebook
shape

Previous experimental results emphasize the fact that clas-
sical LVQ designed in an i.i.d. framework can be improved
by taking into account the statistical dependencies within
vectors. As it has be previously mentioned, one of the main
properties of a block mixture distributed signal is the high
amount of low norm vectors. We have proposed in [5, 12] a
new LVQ quantizer based on the use of a vector dead zone,
called dead zone lattice vector quantizer (DZLVQ), which
takes benefit from the pick density by increasing the amount
of null vectors, putting thus more bits on significant vectors.

3.2.1 Problem Statement

A vector dead zone of radius RDZ enables to threshold source
vectors according to their Lα norm. Thus, any source vector
X is quantized by the following way:

• if ‖X‖α
α ≤ RDZ , then X is replaced by a null vector;

• if ‖X‖α
α > RDZ , then X is scaled within the codebook

(by a parameter called scale factor γ) and quantized using
usual fast lattice quantization algorithms (here in Z

n).

The comparison of figures 4 (A) and 4 (B) show the impor-
tance of these properties on the coder performances: The
first one shows that the distribution of the norm in the case
of an i.i.d. source (here on a Laplacian distribution) is not as
sharp as the second one (a realistic signal of equal variance).
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Figure 4: Histogram of the norm of vectors after DZLVQ
on: (A) Laplacian source (zero mean and stan-
dard deviation equals to 7.7) (B): Level 3 vertical
orientation wavelet coefficients of Lena image. Pa-
rameters of DZLVQ are identical for both (A) and
(B).

Figure 5 allows to compare, the signal to noise ratio (SNR) of
DZLVQ and LVQ (both with a pyramidal shape) performed
on a structured and sparse signal (here the vertical sub im-
age (level 3) of ”Lena” produced with the 9-7 filter). These
curves show that DZLVQ outperforms LVQ [12, 5].
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Figure 5: SNR as a function of the bit rate for DZLVQ and
LVQ applied on the vertical sub image of Lena
(level 3).

Compared to classical schemes, the rate allocation of
DZLVQ requires the tuning of an additional parameter, the
dead zone radius RDZ . Thus, the need of an analytical R-D
model is crucial for the design of a practical realization of
DZLVQ. As it has been explained in paragraph 3.1, our ap-
proach only requires to compute R-D models under the i.d.d.
generalized gaussian assumption.

The rate model is deduced from the classical radius law
by substituting in formula (7) the probability of the null
vector by the probability to belong to the vector dead zone of

radius RDZ : Pmix (e = 0) =
Nmix
∑

k=1

ckPk (‖X‖α
α < RDZ). This

formula only depends on the knowledge of the repartition
function of the law of ‖X‖α

α. In the case of a GG distribution
an analytical expression is given in [2].

The distortion model for DZLVQ can be obtained using
the following proposition.

Proposition 1: Under the high resolution assumption
outside the dead zone, the distortion as a function of the
dead zone radius RDZ and the scale factor γ is given by:

D (RDZ , γ) =
1

n

[

DDZ (RDZ) +
nγ2

12
(1 − Fn (RDZ))

]

(8)

where DDZ(RDZ) is the distortion within the vector dead
zone, Fn the repartition function of the law of ‖X‖α

α and n
the dimension of X.

The high resolution approximation in formula (8) is jus-
tified by the fact that the MMGG density decreases slowly
outside the dead zone.

The formula of DDZ(RDZ) is given by3:

DDZ (RDZ) = n

∫

|x|α<RDZ

x2GG(x)Fn−1 (RDZ − |x|α) dx

(9)
The proof is given in appendix B.

Finally, the R-D mixture model is given by substituting
formula (8) in (6).

3.2.2 Experimental results

The proposed mixture R-D model is tested under the as-
sumption of a mixture of multidimensional Laplacian densi-
ties. The analytical expression of the dead zone distortion in
the case of an Laplacian i.i.d. source of standard deviation
σ is given in [4] and is equal to:

DDZ (RDZ) = n

(

J − 2λe−λRDZ R3

DZ

2
∑

k=0

(λRDZ)k

(k + 3)!

)

(10)

with J = −e−λRDZ

(

R2

DZ + 2

λ
RDZ + 2

λ2

)

+ 2

λ2 , λ =
√

2

σ
.

The corresponding rate model for pyramidal DZLVQ is
given in [12]. In the same manner as in paragraph 3.1.1, table
2 and figure 6 show the accuracy of our analytical model
to estimate the R-D function of DZLVQ. Furthermore, by
comparing table 1 and 2, we can notice that the proposed R-
D model dedicated to DZLVQ approximates a little bit more
precisely the R-D functions than the mixture R-D model in
the case of classical LVQ.

Lena Boat Peppers
Mean RE 0.059; 2.218 0.192; 0.436 0.079; 3.325
Max RE 0.138; 3.967 0.320; 2.654 0.196; 4.429

Table 2: Mean and maximum relative error (RE) with the
DZLVQ experimental R-D curve of the mixture
(bold) and the Laplacian i.i.d. R-D models for three
vertical subbands of level 2 (images Lena, Peppers,
and boat).

4. CONCLUSION

In this paper, we have proposed new rate distortion statisti-
cal models related to lattice vector quantization allowing to
take into account clustering and sparsity properties of sig-
nals. It is based on the modelling of the norm of vectors us-
ing a mixture of Gamma densities which leads to assuming a
mixture of multidimensional generalized Gaussian densities
for the joint distribution of the source vectors themselves.

From this property, we have derived a blockwise R-D
model which can be simply deduced from classical model

3For sake of simplicity GG(x; α, β) is replaced here by GG(x)
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Figure 6: DZLVQ R-D functions (level 2 vertical sub image
of Lena image): real data, proposed mixture model
and i.i.d. Laplacian model.

in the i.i.d. case. Experimental results in the case of a
pyramidal lattice vector quantizer under the assumption of
a Laplacian mixture show the accuracy of the model.

This last point confirms that the multidimensional mix-
ture is a prior well suited to signals like wavelet coefficients.
Furthermore, in a previous work we have proposed a LVQ
codebook shape adapted to these statistics. It is based on
the use of a vector dead zone whose radius is tuned according
to the target rate. The need of an accurate analytical model
is of importance to minimize the complexity of such an algo-
rithm. The efficiency of the proposed R-D model dedicated
to DZLVQ shows that the complexity of this new scheme
does not increase compared to classical LVQ schemes.

Future works concern the design of a fast rate allocation
procedure deduced from the R-D model. Finally, the accu-
racy of the MMGG model and its well stated mathematical
properties are promising to apply this statistical tool to other
areas of source coding or signal processing like, for example,
denoising.

A. MEASURE OF THE ACCURACY OF THE
R-D MODELS

The mean and the maximum relative error between a R-D
model of distortion D and the real R-D curve of distortion
Dreal using Ntest test values are given by:

mean RE =
1

Ntest

Ntest
∑

i=1

|D(i) − Dreal(i)|

Dreal(i)

max RE = max
i=1,...,Ntest

|D(i) − Dreal(i)|

Dreal(i)

B. COMPUTING OF THE DEAD ZONE
DISTORTION

The analytical expression of the dead zone distortion DDZ is
calculated using some noticeable properties of the pdf. We
have:

DDZ (RDZ) =
∫

‖X‖α
α

<RDZ

‖X‖2

2
f (x1, ..., xn) dx1...dxn

=
∫

‖X‖α
α

<RDZ

(

x2

1 + ... + x2

n

)

GG(x1)...GG(xn)dx1...dxn.

X being i.i.d:

DDZ (RDZ) =
n
∑

i=1

∫

‖X‖α
α

<RDZ

x2

iGG(x1)...GG(xn)dx1...dxn

DDZ (RDZ) = n
∫

‖X‖α
α

<RDZ

x2

1GG(x1)...GG(xn)dx1...dxn

We denote A = {|x2|
α + ... + |xn|

α < RDZ − |x1|
α}.

Then we have:

DDZ (RDZ) = n

∫

|x|α<RDZ

x2GG(x)





∫

A

GG(x2)...GG(xn)dx2...dxn



 dx,

since,
{

‖X‖
1

< RDZ

}

= {|x1| < RDZ} ∩ A

The bracketed integral is the repartition function Fn−1

of the radius law for a GG distribution of dimension n − 1.
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