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We solve some decision problems for timed automata which were raised by S. Tripakis in [Tri04] and by E. Asarin in [Asa04]. In particular, we show that one cannot decide whether a given timed automaton is determinizable or whether the complement of a timed regular language is timed regular. We show that the problem of the minimization of the number of clocks of a timed automaton is undecidable. It is also undecidable whether the shuffle of two timed regular languages is timed regular. We show that in the case of timed Büchi automata accepting infinite timed words some of these problems are Π 1 1 -hard, hence highly undecidable (located beyond the arithmetical hierarchy).

Introduction

R. Alur and D. Dill introduced in [AD94] the notion of timed automata reading timed words. Since then the theory of timed automata has been much studied and used for specification and verification of timed systems. In a recent paper, E. Asarin raised a series of questions about the theoretical foundations of timed automata and timed languages which were still open and wrote: "I believe that getting answers to them would substantially improve our understanding of the area" of timed systems, [Asa04]. Some of these questions concern decision problems "à la [Tri04]". For instance : "Is it possible, given a timed automaton A, to decide whether it is equivalent to a deterministic one ?". S. tripakis showed in [Tri04] that there is no algorithm which, given a timed automaton A, decides whether it is equivalent to a deterministic one, and if this is the case gives an equivalent deterministic automaton B. But the above question of the decidability of the determinizability alone (where we do not require the construction of the witness B) was still open. We give in this paper the answer to this question and to several other ones of [Tri04,Asa04]. In particular, we show that one cannot decide whether a given timed automaton is determinizable or whether the complement of a timed regular language is timed regular. We study also the corresponding problems but with "bounded resources" stated in [Tri04].

For that purpose we use a method which is very similar to that one used in [Fin03b] to prove undecidability results about infinitary rational relations, reducing the universality problem, which is undecidable, to some other decision problems.

We study also the problem of the minimization of the number of clocks of a timed automaton, showing that one cannot decide, for a given timed automaton A with n clocks, n ≥ 2, whether there is an equivalent timed automaton B with at most n -1 clocks. The question of the closure of the class of timed regular languages under shuffle was also raised by E. Asarin in [Asa04]. C. Dima proved in [Dim05] that timed regular expressions with shuffle characterize timed languages accepted by stopwatch automata. This implies that the class of timed regular languages is not closed under shuffle. We proved this result independently in [Fin06]. We recall the proof here, giving a simple example of two timed regular languages whose shuffle is not timed regular. Next we use this example to prove that one can not decide whether the shuffle of two given timed regular languages is timed regular. We extend also the previous undecidability results to the case of timed Büchi automata accepting infinite timed words. In this case many problems are Π 1 1 -hard, hence highly undecidable (located beyond the arithmetical hierarchy), because the universality problem for timed Büchi automata, which is itself Π 1 1 -hard, [AD94], can be reduced to these other decision problems. We mention that part of the results stated in this paper were presented very recently in the Bulletin of the EATCS [Fin05,Fin06].

The paper is organized as follows. We recall usual notations in Section 2. The undecidability of determinizability or regular complementability for timed regular languages is proved in Section 3. The problem of minimization of the number of clocks is studied in Section 4. Results about the shuffle operation are stated in Section 5. Finally we extend in Section 6 some undecidability results to the case of timed Büchi automata.

Notations

We assume the reader to be familiar with the basic theory of timed languages and timed automata (TA) [AD94]. The set of positive reals will be denoted R. A (finite length) timed word over a finite alphabet Σ is of the form t 1 .a 1 .t 2 .a 2 . . . t n .a n , where, for all integers i ∈ [1, n], t i ∈ R and a i ∈ Σ. It may be seen as a time-event sequence, where the t i ∈ R represent time lapses between events and the letters a i ∈ Σ represent events. The set of all (finite length) timed words over a finite alphabet Σ is the set (R × Σ) ⋆ . A timed language is a subset of (R × Σ) ⋆ . The complement ( in

(R × Σ) ⋆ ) of a timed language L ⊆ (R × Σ) ⋆ is (R × Σ) ⋆ -L denoted L c .
We consider a basic model of timed automaton, as introduced in [AD94]. A timed automaton A has a finite set of states and a finite set of transitions. Each transition is labelled with a letter of a finite input alphabet Σ. We assume that each transition of A has a set of clocks to reset to zero and only diagonal-free clock guard [AD94]. A timed automaton A is said to be deterministic iff it satisfies the two following requirements: (a) A has only one start state, and (b) if there are multiple transitions starting at the same state with the same label, then their clock constraints are mutually exclusive. Then a deterministic timed automaton A has at most one run on a given timed word [AD94]. As usual, we denote by L(A) the timed language accepted (by final states) by the timed automaton A. A timed language L ⊆ (R × Σ) ⋆ is said to be timed regular iff there is a timed automaton A such that L = L(A).

An infinite timed word over a finite alphabet Σ is of the form t 1 .a 1 .t 2 .a 2 .t 3 .a 3 . . ., where, for all integers i ≥ 1, t i ∈ R and a i ∈ Σ. It may be seen as an infinite time-event sequence. The set of all infinite timed words over Σ is the set (R×Σ)

ω . A timed ω-language is a subset of (R × Σ) ω . The complement ( in (R × Σ) ω ) of a timed ω-language L ⊆ (R × Σ) ω is (R × Σ) ω -L denoted L c .
We consider a basic model of timed Büchi automaton, (TBA), as introduced in [AD94]. We assume, as in the case of TA accepting finite timed words, that each transition of A has a set of clocks to reset to zero and only diagonal-free clock guard [AD94]. The timed ω-language accepted by the timed Büchi automaton A is denoted L ω (A). A timed language L ⊆ (R × Σ) ω is said to be timed ω-regular iff there is a timed Büchi automaton A such that L = L ω (A).

Complementability and determinizability

We first state the undecidability of determinizability or regular complementability for timed regular languages.

Theorem 1. It is undecidable to determine, for a given TA A, whether 1. L(A) is accepted by a deterministic TA. 2. L(A) c is accepted by a TA.

Proof. It is well known that the class of timed regular languages is not closed under complementation. Let Σ be a finite alphabet and let a ∈ Σ. Let A be the set of timed words of the form t 1 .a.t 2 .a . . . t n .a, where, for all integers i ∈ [1, n], t i ∈ R and there is a pair of integers (i, j) such that i, j ∈ [1, n], i < j, and t i+1 + t i+2 + . . . + t j = 1. The timed language A is formed by timed words containing only letters a and such that there is a pair of a's which are separated by a time distance 1. The timed language A is regular but its complement can not be accepted by any timed automaton because such an automaton should have an unbounded number of clocks to check that no pair of a's is separated by a time distance 1, [AD94].

We shall use the undecidability of the universality problem for timed regular languages: one cannot decide, for a given timed automaton A with input alphabet Σ, whether

L(A) = (R × Σ) ⋆ , [AD94].
Let c be an additional letter not in Σ. For a given timed regular language L ⊆ (R × Σ) ⋆ , we are going to construct another timed language L over the alphabet Γ = Σ ∪ {c} defined as the union of the following three languages.

-L 1 = L.(R × {c}).(R × Σ) ⋆ -L 2 is the set of timed words over Γ having no c's or having at least two c's. -L 3 = (R × Σ) ⋆ .(R × {c}).
A, where A is the above defined timed regular language over the alphabet Σ.

The timed language L is regular because L and A are regular timed languages.

There are now two cases.

(1)

First case. L = (R × Σ) ⋆ . Then L = (R × (Σ ∪ {c})) ⋆
. Therefore L has the minimum possible complexity. L is of course accepted by a deterministic timed automaton (without any clock). Moreover its complement L c is empty thus it is also accepted by a deterministic timed automaton (without any clock). (2) Second case. L is strictly included into (R×Σ) ⋆ . Then there is a timed word u = t 1 .a 1 .t 2 .a 2 . . . t n .a n ∈ (R × Σ) ⋆ which does not belong to L. Consider now a timed word x ∈ (R × Σ) ⋆ . It holds that u.1.c.x ∈ L iff x ∈ A. Then we have also :

u.1.c.x ∈ L c iff x ∈ A c .
We are going to show that L c is not timed regular. Assume on the contrary that there is a timed automaton A such that L c = L(A). There are only finitely many possible global states (including the clock values) of A after the reading of the initial segment u.1.c. It is clearly not possible that the timed automaton A, from these global states, accept all timed words in A c and only these ones, for the same reasons which imply that A c is not timed regular. Thus L c is not timed regular. This implies that L is not accepted by any deterministic timed automaton because the class of deterministic regular timed languages is closed under complement.

In the first case L is accepted by a deterministic timed automaton and L c is timed regular. In the second case L is not accepted by any deterministic timed automaton and L c is not timed regular. But one cannot decide which case holds because of the undecidability of the universality problem for timed regular languages.

Below T A(n, K) denotes the class of timed automata having at most n clocks and where constants are at most K. In [Tri04], Tripakis stated the following problems which are similar to the above ones but with "bounded resources". Tripakis showed that these problems are not algorithmically solvable. He asked also whether these bounded-resource versions of previous problems remain undecidable if we do not require the construction of the witness B, i.e. if we omit the sentence "If so construct such a B" in the statement of Problems 10 and 11.

It is easy to see, from the proof of preceding Theorem, that this is actually the case because we have seen that, in the first case, L and L c are accepted by deterministic timed automata without any clock.

Minimization of the number of clocks

The Using a very similar reasoning as in the preceding section, we can prove that this problem is also undecidable.

Theorem 2. Let n ≥ 2 be a positive integer. It is undecidable to determine, for a given TA A with n clocks, whether there exists a TA B with n -1 clocks, such that L(B) = L(A).

Proof. Let Σ be a finite alphabet and let a ∈ Σ. Let n ≥ 2 be a positive integer, and A n be the set of timed words of the form t 1 .a.t 2 .a . . . t k .a, where, for all integers i ∈ [1, k], t i ∈ R and there are n pairs of integers (i, j) such that i, j ∈ [1, k], i < j, and t i+1 + t i+2 + . . . + t j = 1. The timed language A n is formed by timed words containing only letters a and such that there are n pairs of a's which are separated by a time distance 1. A n is a timed regular language but it can not be accepted by any timed automaton with less than n clocks, see [HKW95].

Let c be an additional letter not in Σ. For a given timed regular language L ⊆ (R × Σ) ⋆ accepted by a TA with at most n clocks, we construct another timed language V n over the alphabet Γ = Σ ∪ {c} defined as the union of the following three languages.

-V n,1 = L.(R × {c}).(R × Σ) ⋆ -V n,2
is the set of timed words over Γ having no c's or having at least two c's.

-V n,3 = (R × Σ) ⋆ .(R × {c}).A n .
The timed language V n is regular because L and A n are regular timed languages. Moreover it is easy to see that V n is accepted by a TA with at most n clocks, because L and A n are accepted by timed automata with at most n clocks. There are now two cases.

(1) First case. L = (R × Σ) ⋆ . Then V n = (R × (Σ ∪ {c})) ⋆ , thus V n is accepted by a (deterministic) timed automaton without any clock.

(2) Second case. L is strictly included into (R×Σ) ⋆ . Then there is a timed word

u = t 1 .a 1 .t 2 .a 2 . . . t k .a k ∈ (R × Σ) ⋆ which does not belong to L. Consider now a timed word x ∈ (R × Σ) ⋆ . It holds that u.1.c.x ∈ V n iff x ∈ A n .
Towards a contradiction, assume that V n is accepted by a timed automaton B with at most n -1 clocks. There are only finitely many possible global states (including the clock values) of B after the reading of the initial segment u.1.c. It is clearly not possible that the timed automaton B, from these global states, accept all timed words in A n and only these ones, because it has less than n clocks.

But one cannot decide which case holds because of the undecidability of the universality problem for timed regular languages accepted by timed automata with n clocks, where n ≥ 2.

Remark 3. For timed automata with only one clock, the inclusion problem, hence also the universality problem, have recently been shown to be decidable by J. Ouaknine and J. Worrell [OW04]. Then the above method can not be applied.

It is easy to see that it is decidable whether a timed regular language accepted by a timed automaton with only one clock is also accepted by a timed automaton without any clock.

Shuffle operation

It is well known that the class of timed regular languages is closed under union, intersection, but not under complementation. Another usual operation is the shuffle operation. Recall that the shuffle x ⋊ ⋉ y of two elements x and y of a monoid M is the set of all products of the form

x 1 • y 1 • x 2 • y 2 • • • x n • y n where x = x 1 • x 2 • • • x n and y = y 1 • y 2 • • • y n .
This operation can naturally be extended to subsets of M by setting, for

R 1 , R 2 ⊆ M , R 1 ⋊ ⋉ R 2 = {x ⋊ ⋉ y | x ∈ R 1 and y ∈ R 2 }.
We know that the class of regular (untimed) languages is closed under shuffle.

The question of the closure of the class of timed regular languages under shuffle was raised by E. Asarin in [Asa04]. C. Dima proved in [Dim05] that timed regular expressions with shuffle characterize timed languages accepted by stopwatch automata. This implies that the class of timed regular languages is not closed under shuffle. We proved this result independently in [Fin06].

We are going to reprove this here, giving a simple example of two timed regular languages whose shuffle is not timed regular. Next we shall use this example to prove that one cannot decide whether the shuffle of two given timed regular languages is timed regular.

Theorem 4. The shuffle of timed regular languages is not always timed regular.

Proof. Let a, b be two different letters and Σ = {a, b}.

Let R 1 be the language of timed words over Σ of the form

t 1 • a • 1 • a • t 2 • a
for some positive reals t 1 and t 2 such that t

1 + 1 + t 2 = 2, i.e. t 1 + t 2 = 1.
It is clear that R 1 is a timed regular language of finite timed words.

Remark. As remarked in [AD94, page 217], a timed automaton can compare delays with constants, but it cannot remember delays. If we would like a timed automaton to be able to compare delays, we should add clock constraints of the form x + y ≤ x ′ + y ′ for some clock values x, y, x ′ , y ′ . But this would greatly increase the expressive power of automata: the languages accepted by such automata are not always timed regular, and if we allow the addition primitive in the syntax of clock constraints, then the emptiness problem for timed automata would be undecidable [AD94, page 217].

Notice that the above language R 1 is timed regular because a timed automaton B reading a word of the form

t 1 • a • 1 • a • t 2 • a,
for some positive reals t 1 and t 2 , can compare the delays t 1 and t 2 in order to check that t 1 + t 2 = 1. This is due to the fact that the delay between the two first occurrences of the event a is constant equal to 1.

Using the shuffle operation we shall construct a language R 1 ⋊ ⋉ R 2 , for a regular timed language R 2 . Informally speaking, this will "insert a variable delay" between the two first occurrences of the event a and the resulting language R 1 ⋊ ⋉ R 2 will not be timed regular.

We now give the details of this construction.

Let R 2 be the language of timed words over Σ of the form

1 • b • s • b
for some positive real s.

The language R 2 is of course also a timed regular language.

We are going to prove that R 1 ⋊ ⋉ R 2 is not timed regular.

Towards a contradiction, assume that R 1 ⋊ ⋉ R 2 is timed regular. Let R 3 be the set of timed words over Σ of the form

t 1 • a • 1 • b • s • b • 1 • a • t 2 • a
for some positive reals t 1 , s, t 2 . It is clear that R 3 is timed regular. On the other hand the class of timed regular languages is closed under intersection thus the timed language (R 1 ⋊ ⋉ R 2 ) ∩ R 3 would be also timed regular. But this language is simply the set of timed words of the form

t 1 • a • 1 • b • s • b • 1 • a • t 2 • a, for some positive reals t 1 , s, t 2 such that t 1 + t 2 = 1.
Assume that this timed language is accepted by a timed automaton A.

Consider now the reading by A of a word of the form

t 1 • a • 1 • b • s • b • 1 • a • t 2 • a,
for some positive reals t 1 , s, t 2 . After reading the initial segment

t 1 • a • 1 • b • s • b • 1 • a the value of any clock of A can only be t 1 + s + 2, 2 + s, 1 + s, or 1.
If the clock value of a clock C has been at some time reset to zero, its value may be 2 + s, 1 + s, or 1. So the value t 1 is not stored in the clock value and this clock can not be used to compare t 1 and t 2 in order to check that t 1 + t 2 = 1.

On the other hand if the clock value of a clock C has not been at some time reset to zero, then, after reading

t 1 • a • 1 • b • s • b • 1 • a,
its value will be t 1 + s + 2 . This must hold for uncountably many values of the real s, and again the value t 1 + s + 2 can not be used to accept, from the global state of A after reading the initial segment

t 1 • a • 1 • b • s • b • 1 • a, only the word t 2 • a for t 2 = 1 -t 1 .
This implies that (R 1 ⋊ ⋉ R 2 ) ∩ R 3 hence also (R 1 ⋊ ⋉ R 2 ) are not timed regular.

We can now state the following result:

Theorem 5. It is undecidable to determine whether the shuffle of two given timed regular languages is timed regular.

Proof.

We shall use again the undecidability of the universality problem for timed regular languages: one cannot decide, for a given timed automaton A with input alphabet Σ, whether

L(A) = (R × Σ) ⋆ .
Let Σ = {a, b}, and c be an additional letter not in Σ. For a given timed regular language L ⊆ (R× Σ) ⋆ , we are going firstly to construct another timed language L over the alphabet Γ = Σ ∪ {c}.

The language L is defined as the union of the following three languages.

-L 1 = L.(R × {c}).(R × Σ) ⋆ -L 2 is the set of timed words over Γ having no c's or having at least two c's.

-L 3 = (R × Σ) ⋆ .1.c.R 1 , where R 1 is the above defined timed regular language over the alphabet Σ.

The timed language L is regular because L and R 1 are regular timed languages. Consider now the language L ⋊ ⋉ R 2 , where R 2 is the above defined regular timed language.

There are now two cases.

(1) First case.

L = (R × Σ) ⋆ . Then L = (R × (Σ ∪ {c})) ⋆ and L ⋊ ⋉ R 2 = (R × (Σ ∪ {c})) ⋆ . Thus L ⋊ ⋉ R 2 is timed regular. (2) Second case. L is strictly included into (R × Σ) ⋆ .
Towards a contradiction, assume that L ⋊ ⋉ R 2 is timed regular. Then the timed language

L 4 = (L ⋊ ⋉ R 2 ) ∩ [(R × Σ) ⋆ .1.c.R 3 ]
, where R 3 is the above defined timed regular language, would be also timed regular because it would be the intersection of two timed regular languages.

On the other hand L is strictly included into (R × Σ) ⋆ thus there is a timed word

u = t 1 .a 1 .t 2 .a 2 . . . t n .a n ∈ (R × Σ) ⋆ which does not belong to L. Consider now a timed word x ∈ (R × Σ) ⋆ . It holds that u.1.c.x ∈ L 4 iff x ∈ (R 1 ⋊ ⋉ R 2 ) ∩ R 3 .
We are going to show now that L 4 is not timed regular. Assume on the contrary that there is a timed automaton A such that L 4 = L(A). There are only finitely many possible global states (including the clock values) of A after the reading of the initial segment u.1.c. It is clearly not possible that the timed automaton A, from these global states, accept all timed words in (R 1 ⋊ ⋉ R 2 ) ∩ R 3 and only these ones, for the same reasons which imply that (R 1 ⋊ ⋉ R 2 ) ∩ R 3 is not timed regular. Thus L 4 is not timed regular and this implies that L ⋊ ⋉ R 2 is not timed regular.

In the first case L ⋊ ⋉ R 2 is timed regular. In the second case L ⋊ ⋉ R 2 is not timed regular. But one cannot decide which case holds because of the undecidability of the universality problem for timed regular languages.

We can also study the corresponding problems with "bounded resources": From the proof of above Theorem 5, it is easy to see that these problems are also undecidable. Indeed in the first case L ⋊ ⋉ R 2 was accepted by a deterministic timed automaton without any clocks. And in the second case L ⋊ ⋉ R 2 was not accepted by any timed automaton.

E. Asarin, P. Carpi, and O. Maler have proved in [ACM02] that the formalism of timed regular expressions (with intersection and renaming) has the same expressive power than timed automata. C. Dima proved in [Dim05] that timed regular expressions with shuffle characterize timed languages accepted by stopwatch automata. We refer the reader to [Dim05] for the definition of stopwatch automata. Dima showed that, from two timed automata A and B, one can construct a stopwatch automaton C such that L(C) = L(A) ⋊ ⋉ L(B). Thus we can infer the following corollaries from the above results.

Notice that in [ACM02,Dim05] the authors consider automata with epsilontransitions while in this paper we have only considered timed automata without epsilon-transitions, although we think that many results could be extended to the case of automata with epsilon-transitions. So in the statement of the following corollaries we consider stopwatch automata with epsilon-transitions but only timed automata without epsilon-transitions.

Corollary 6. One cannot decide, for a given stopwatch automaton A, whether there exists a timed automaton B (respectively, a deterministic timed automaton B) such that L(A) = L(B).

Corollary 7. One cannot decide, for a given stopwatch automaton A and nonnegative integers n, K, whether there exists a timed automaton B ∈ T A(n, K) such that L(A) = L(B).

Corollary 8. One cannot decide, for a given stopwatch automaton A and an integer n ≥ 1, whether there exists a timed automaton B with less than n clocks such that L(A) = L(B).

Timed Büchi automata

The previous undecidability results can be extended to the case of timed Büchi automata accepting infinite timed words. Moreover in this case many problems are highly undecidable (Π 1 1 -hard) because the universality problem for timed Büchi automata, which is itself Π 1 1 -hard, [AD94], can be reduced to these problems.

For more information about the analytical hierarchy (containing in particular the class Π 1 1 ) see the textbook [Rog67].

  Problem 10 of [Tri04]. Given a TA A and non-negative integers n, K, does there exist a TA B ∈ T A(n, K) such that L(B) c = L(A) ? If so, construct such a B. Problem 11 of [Tri04]. Given a TA A and non-negative integers n, K, does there exist a deterministic TA B ∈ T A(n, K) such that L(B) = L(A) ? If so, construct such a B.

  following problem was shown to be undecidable by S. Tripakis in [Tri04]. Problem 5 of [Tri04]. Given a TA A with n clocks, does there exists a TA B with n -1 clocks, such that L(B) = L(A) ? If so, construct such a B. The corresponding decision problem, where we require only a Yes / No answer but no witness in the case of a positive answer, was left open in [Tri04].

Problem 1 .

 1 Given two timed automata A and B and non-negative integers n, K, does there exist a TA C ∈ T A(n, K) such that L(C) = L(A) ⋊ ⋉ L(B) ? Problem 2. Given two timed automata A and B and an integer n ≥ 1, does there exist a TA C with less than n clocks such that L(C) = L(A) ⋊ ⋉ L(B) ? Problem 3. Given two timed automata A and B, does there exist a deterministic TA C such that L(C) = L(A) ⋊ ⋉ L(B) ?

Part of the results stated in this paper were presented very recently in the Bulletin of the EATCS [Fin05,Fin06].

We now consider first the problem of determinizability or regular complementability for timed regular ω-languages.
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Theorem 9. The following problems are Π 1 1 -hard. For a given TBA A, determine whether :

1. L ω (A) is accepted by a deterministic TBA. 2. L ω (A) c is accepted by a TBA.

Proof. Let Σ be a finite alphabet and let a ∈ Σ. Let, as in Section 3, A be the set of timed words containing only letters a and such that there is a pair of a's which are separated by a time distance 1. The timed language A is regular but its complement is not timed regular [AD94].

We shall use the Π 1 1 -hardness of the universality problem for timed regular ωlanguages:

Let c be an additional letter not in Σ. For a given timed regular ω-language L ⊆ (R × Σ) ω , we can construct another timed language L over the alphabet Γ = Σ ∪ {c} defined as the union of the following three languages.

-L 1 = A.(R × {c}).(R × Σ) ω , where A is the above defined timed regular language over the alphabet Σ. -L 2 is the set of infinite timed words over Γ having no c's or having at least two c's.

The timed ω-language L is regular because L is a regular timed ω-language and A is a regular timed language. There are now two cases.

(1) First case. L = (R × Σ) ω . Then L = (R × (Σ ∪ {c})) ω . Therefore L has the minimum possible complexity and it is accepted by a deterministic TBA (without any clock). Moreover its complement L c is empty thus it is also accepted by a deterministic TBA (without any clock). (2) Second case. L is strictly included into (R × Σ) ω , i.e. L c is non-empty. It is then easy to see that :

We are going to show that L c is not timed ω-regular. Assume on the contrary that there is a TBA A such that L c = L ω (A). Consider the reading of a timed ω-word of the form x.1.c.u, where x ∈ (R × Σ) ⋆ and u ∈ (R × Σ) ω , by the TBA A. When reading the initial segment x.1.c, the TBA A has to check that x ∈ A c , i.e. that no pair of a's in x is separated by a time distance 1; this is clearly not possible for the same reasons which imply that A c is not timed regular (see above Section 3). Thus L c is not timed ω-regular. This implies that L is not accepted by any deterministic TBA because the class of deterministic regular timed ω-languages is closed under complement, [AD94].

In the first case L is accepted by a deterministic TBA and L c is timed ω-regular.

In the second case L is not accepted by any deterministic TBA and L c is not timed ω-regular. This ends the proof because the universality problem for timed Büchi automata is

As in the case of TA reading finite length timed words, we can consider the corresponding problems with "bounded resources".

Below T BA(n, K) denotes the class of timed Büchi automata having at most n clocks, where constants are at most K.

Problem A. Given a TBA A and non-negative integers n, K, does there exist a TBA B ∈ T BA(n, K) such that L ω (B) c = L ω (A) ?

Problem B. Given a TBA A and non-negative integers n, K, does there exist a deterministic TBA B ∈ T BA(n, K) such that L ω (B) = L ω (A) ?

We can infer from the proof of preceding Theorem, that these problems are also Π 1 1 -hard, because we have seen that, in the first case, L and L c are accepted by deterministic timed Büchi automata without any clock.

In a very similar manner, using the same ideas as in the proof of Theorems 2 and 9, we can study the problem of minimization of the number of clocks for timed Büchi automata. We can then show that it is Π 1 1 -hard, by reducing to it the universality problem for timed Büchi automata with n clocks, where n ≥ 2, which is Π 1 1 -hard. So we get the following result.

Theorem 10. Let n ≥ 2 be a positive integer. It is Π 1 1 -hard to determine, for a given TBA A with n clocks, whether there exists a TBA B with n -1 clocks, such that L ω (B) = L ω (A).

Remark 11. We have already mentioned that, for timed automata with only one clock, the universality problem is decidable [OW04]. On the other hand, for timed Büchi automata with only one clock, the universality problem has been recently shown to be undecidable by P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell in [ADOW05]. However it seems to us that, in the paper [ADOW05], this problem is just proved to be undecidable and not Π 1 1 -hard. Then we can just infer that the above theorem is still true for n = 1 if we replace "Π 1 1 -hard" by "undecidable".