
HAL Id: hal-00121529
https://hal.science/hal-00121529v1

Submitted on 21 Dec 2006 (v1), last revised 9 Dec 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Undecidable Problems About Timed Automata
Olivier Finkel

To cite this version:
Olivier Finkel. Undecidable Problems About Timed Automata. 4th International Conference on
Formal Modelling and Analysis of Timed Systems, FORMATS’06, 2006, France. pp.187-199. �hal-
00121529v1�

https://hal.science/hal-00121529v1
https://hal.archives-ouvertes.fr


Undecidable problems

about timed automata

Olivier Finkel

Equipe de Logique Mathématique
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Abstract. We solve some decision problems for timed automata which
were raised by S. Tripakis in [Tri04] and by E. Asarin in [Asa04]. In
particular, we show that one cannot decide whether a given timed au-
tomaton is determinizable or whether the complement of a timed regular
language is timed regular. We show that the problem of the minimization
of the number of clocks of a timed automaton is undecidable. It is also
undecidable whether the shuffle of two timed regular languages is timed
regular. We show that in the case of timed Büchi automata accepting
infinite timed words some of these problems are Π

1

1 -hard, hence highly
undecidable (located beyond the arithmetical hierarchy).1
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1 Introduction

R. Alur and D. Dill introduced in [AD94] the notion of timed automata reading
timed words. Since then the theory of timed automata has been much studied
and used for specification and verification of timed systems.
In a recent paper, E. Asarin raised a series of questions about the theoretical
foundations of timed automata and timed languages which were still open and
wrote: “I believe that getting answers to them would substantially improve our
understanding of the area” of timed systems, [Asa04].
Some of these questions concern decision problems “à la [Tri04]”. For instance :
“Is it possible, given a timed automaton A, to decide whether it is equivalent to
a deterministic one ?”.
S. tripakis showed in [Tri04] that there is no algorithm which, given a timed au-
tomaton A, decides whether it is equivalent to a deterministic one, and if this is
the case gives an equivalent deterministic automaton B. But the above question

1 Part of the results stated in this paper were presented very recently in the Bulletin
of the EATCS [Fin05,Fin06].



of the decidability of the determinizability alone (where we do not require the
construction of the witness B) was still open.
We give in this paper the answer to this question and to several other ones of
[Tri04,Asa04]. In particular, we show that one cannot decide whether a given
timed automaton is determinizable or whether the complement of a timed reg-
ular language is timed regular. We study also the corresponding problems but
with “bounded resources” stated in [Tri04].
For that purpose we use a method which is very similar to that one used in
[Fin03b] to prove undecidability results about infinitary rational relations, re-
ducing the universality problem, which is undecidable, to some other decision
problems.
We study also the problem of the minimization of the number of clocks of a
timed automaton, showing that one cannot decide, for a given timed automaton
A with n clocks, n ≥ 2, whether there is an equivalent timed automaton B with
at most n − 1 clocks.
The question of the closure of the class of timed regular languages under shuffle
was also raised by E. Asarin in [Asa04]. C. Dima proved in [Dim05] that timed
regular expressions with shuffle characterize timed languages accepted by stop-
watch automata. This implies that the class of timed regular languages is not
closed under shuffle. We proved this result independently in [Fin06]. We recall
the proof here, giving a simple example of two timed regular languages whose
shuffle is not timed regular. Next we use this example to prove that one can not
decide whether the shuffle of two given timed regular languages is timed regular.
We extend also the previous undecidability results to the case of timed Büchi au-
tomata accepting infinite timed words. In this case many problems are Π1

1 -hard,
hence highly undecidable (located beyond the arithmetical hierarchy), because
the universality problem for timed Büchi automata, which is itself Π1

1 -hard,
[AD94], can be reduced to these other decision problems.
We mention that part of the results stated in this paper were presented very
recently in the Bulletin of the EATCS [Fin05,Fin06].

The paper is organized as follows. We recall usual notations in Section 2. The
undecidability of determinizability or regular complementability for timed regu-
lar languages is proved in Section 3. The problem of minimization of the number
of clocks is studied in Section 4. Results about the shuffle operation are stated
in Section 5. Finally we extend in Section 6 some undecidability results to the
case of timed Büchi automata.

2 Notations

We assume the reader to be familiar with the basic theory of timed languages
and timed automata (TA) [AD94].
The set of positive reals will be denoted R. A (finite length) timed word over
a finite alphabet Σ is of the form t1.a1.t2.a2 . . . tn.an, where, for all integers
i ∈ [1, n], ti ∈ R and ai ∈ Σ. It may be seen as a time-event sequence, where



the ti ∈ R represent time lapses between events and the letters ai ∈ Σ represent
events. The set of all (finite length) timed words over a finite alphabet Σ is the
set (R × Σ)?. A timed language is a subset of (R× Σ)?. The complement ( in
(R× Σ)? ) of a timed language L ⊆ (R× Σ)? is (R× Σ)? − L denoted Lc.
We consider a basic model of timed automaton, as introduced in [AD94]. A
timed automaton A has a finite set of states and a finite set of transitions. Each
transition is labelled with a letter of a finite input alphabet Σ. We assume that
each transition of A has a set of clocks to reset to zero and only diagonal-free
clock guard [AD94].
A timed automaton A is said to be deterministic iff it satisfies the two following
requirements:
(a) A has only one start state, and
(b) if there are multiple transitions starting at the same state with the same
label, then their clock constraints are mutually exclusive.
Then a deterministic timed automaton A has at most one run on a given timed
word [AD94].
As usual, we denote by L(A) the timed language accepted (by final states) by
the timed automaton A. A timed language L ⊆ (R × Σ)? is said to be timed
regular iff there is a timed automaton A such that L = L(A).

An infinite timed word over a finite alphabet Σ is of the form t1.a1.t2.a2.t3.a3 . . .,
where, for all integers i ≥ 1, ti ∈ R and ai ∈ Σ. It may be seen as an infinite
time-event sequence. The set of all infinite timed words over Σ is the set (R×Σ)ω.
A timed ω-language is a subset of (R× Σ)ω. The complement ( in (R× Σ)ω )
of a timed ω-language L ⊆ (R× Σ)ω is (R× Σ)ω − L denoted Lc.
We consider a basic model of timed Büchi automaton, (TBA), as introduced in
[AD94]. We assume, as in the case of TA accepting finite timed words, that each
transition of A has a set of clocks to reset to zero and only diagonal-free clock
guard [AD94]. The timed ω-language accepted by the timed Büchi automaton A
is denoted Lω(A). A timed language L ⊆ (R×Σ)ω is said to be timed ω-regular
iff there is a timed Büchi automaton A such that L = Lω(A).

3 Complementability and determinizability

We first state the undecidability of determinizability or regular complementabil-
ity for timed regular languages.

Theorem 1. It is undecidable to determine, for a given TA A, whether

1. L(A) is accepted by a deterministic TA.
2. L(A)c is accepted by a TA.

Proof. It is well known that the class of timed regular languages is not closed
under complementation. Let Σ be a finite alphabet and let a ∈ Σ. Let A be the
set of timed words of the form t1.a.t2.a . . . tn.a, where, for all integers i ∈ [1, n],
ti ∈ R and there is a pair of integers (i, j) such that i, j ∈ [1, n], i < j, and



ti+1 + ti+2 + . . . + tj = 1. The timed language A is formed by timed words
containing only letters a and such that there is a pair of a’s which are separated
by a time distance 1. The timed language A is regular but its complement can
not be accepted by any timed automaton because such an automaton should
have an unbounded number of clocks to check that no pair of a’s is separated
by a time distance 1, [AD94].

We shall use the undecidability of the universality problem for timed regular
languages: one cannot decide, for a given timed automaton A with input alphabet
Σ, whether L(A) = (R× Σ)?, [AD94].

Let c be an additional letter not in Σ. For a given timed regular language
L ⊆ (R × Σ)?, we are going to construct another timed language L over the
alphabet Γ = Σ ∪ {c} defined as the union of the following three languages.

– L1 = L.(R× {c}).(R× Σ)?

– L2 is the set of timed words over Γ having no c’s or having at least two c’s.

– L3 = (R × Σ)?.(R × {c}).A, where A is the above defined timed regular
language over the alphabet Σ.

The timed language L is regular because L and A are regular timed languages.
There are now two cases.

(1) First case. L = (R × Σ)?. Then L = (R × (Σ ∪ {c}))?. Therefore L has
the minimum possible complexity. L is of course accepted by a deterministic
timed automaton (without any clock). Moreover its complement Lc is empty
thus it is also accepted by a deterministic timed automaton (without any
clock).

(2) Second case. L is strictly included into (R×Σ)?. Then there is a timed word
u = t1.a1.t2.a2 . . . tn.an ∈ (R × Σ)? which does not belong to L. Consider
now a timed word x ∈ (R × Σ)?. It holds that u.1.c.x ∈ L iff x ∈ A. Then
we have also : u.1.c.x ∈ Lc iff x ∈ Ac.
We are going to show that Lc is not timed regular. Assume on the contrary
that there is a timed automaton A such that Lc = L(A). There are only
finitely many possible global states (including the clock values) of A after
the reading of the initial segment u.1.c. It is clearly not possible that the
timed automaton A, from these global states, accept all timed words in Ac

and only these ones, for the same reasons which imply that Ac is not timed
regular. Thus Lc is not timed regular. This implies that L is not accepted by
any deterministic timed automaton because the class of deterministic regular
timed languages is closed under complement.

In the first case L is accepted by a deterministic timed automaton and Lc is
timed regular. In the second case L is not accepted by any deterministic timed
automaton and Lc is not timed regular. But one cannot decide which case holds



because of the undecidability of the universality problem for timed regular lan-
guages. �

Below TA(n, K) denotes the class of timed automata having at most n clocks
and where constants are at most K. In [Tri04], Tripakis stated the following
problems which are similar to the above ones but with “bounded resources”.

Problem 10 of [Tri04]. Given a TA A and non-negative integers n, K, does there
exist a TA B ∈ TA(n, K) such that L(B)c = L(A) ? If so, construct such a B.

Problem 11 of [Tri04]. Given a TA A and non-negative integers n, K, does there
exist a deterministic TA B ∈ TA(n, K) such that L(B) = L(A) ? If so, construct
such a B.

Tripakis showed that these problems are not algorithmically solvable. He asked
also whether these bounded-resource versions of previous problems remain un-
decidable if we do not require the construction of the witness B, i.e. if we omit
the sentence “If so construct such a B” in the statement of Problems 10 and 11.
It is easy to see, from the proof of preceding Theorem, that this is actually the
case because we have seen that, in the first case, L and Lc are accepted by
deterministic timed automata without any clock.

4 Minimization of the number of clocks

The following problem was shown to be undecidable by S. Tripakis in [Tri04].

Problem 5 of [Tri04]. Given a TA A with n clocks, does there exists a TA B with
n − 1 clocks, such that L(B) = L(A) ? If so, construct such a B.

The corresponding decision problem, where we require only a Yes / No answer
but no witness in the case of a positive answer, was left open in [Tri04].
Using a very similar reasoning as in the preceding section, we can prove that
this problem is also undecidable.

Theorem 2. Let n ≥ 2 be a positive integer. It is undecidable to determine, for
a given TA A with n clocks, whether there exists a TA B with n− 1 clocks, such
that L(B) = L(A).

Proof. Let Σ be a finite alphabet and let a ∈ Σ. Let n ≥ 2 be a positive
integer, and An be the set of timed words of the form t1.a.t2.a . . . tk.a, where,
for all integers i ∈ [1, k], ti ∈ R and there are n pairs of integers (i, j) such that
i, j ∈ [1, k], i < j, and ti+1 + ti+2 + . . . + tj = 1. The timed language An is
formed by timed words containing only letters a and such that there are n pairs
of a’s which are separated by a time distance 1. An is a timed regular language
but it can not be accepted by any timed automaton with less than n clocks, see
[HKW95].



Let c be an additional letter not in Σ. For a given timed regular language
L ⊆ (R × Σ)? accepted by a TA with at most n clocks, we construct another
timed language Vn over the alphabet Γ = Σ ∪ {c} defined as the union of the
following three languages.

– Vn,1 = L.(R× {c}).(R× Σ)?

– Vn,2 is the set of timed words over Γ having no c’s or having at least two
c’s.

– Vn,3 = (R× Σ)?.(R× {c}).An.

The timed language Vn is regular because L and An are regular timed languages.
Moreover it is easy to see that Vn is accepted by a TA with at most n clocks,
because L and An are accepted by timed automata with at most n clocks. There
are now two cases.

(1) First case. L = (R×Σ)?. Then Vn = (R× (Σ∪{c}))?, thus Vn is accepted
by a (deterministic) timed automaton without any clock.

(2) Second case. L is strictly included into (R×Σ)?. Then there is a timed word
u = t1.a1.t2.a2 . . . tk.ak ∈ (R × Σ)? which does not belong to L. Consider
now a timed word x ∈ (R× Σ)?. It holds that u.1.c.x ∈ Vn iff x ∈ An.
Towards a contradiction, assume that Vn is accepted by a timed automaton
B with at most n − 1 clocks. There are only finitely many possible global
states (including the clock values) of B after the reading of the initial segment
u.1.c. It is clearly not possible that the timed automaton B, from these global
states, accept all timed words in An and only these ones, because it has less
than n clocks.

But one cannot decide which case holds because of the undecidability of the
universality problem for timed regular languages accepted by timed automata
with n clocks, where n ≥ 2. �

Remark 3. For timed automata with only one clock, the inclusion problem,
hence also the universality problem, have recently been shown to be decidable by
J. Ouaknine and J. Worrell [OW04]. Then the above method can not be applied.
It is easy to see that it is decidable whether a timed regular language accepted
by a timed automaton with only one clock is also accepted by a timed automaton
without any clock.

5 Shuffle operation

It is well known that the class of timed regular languages is closed under union,
intersection, but not under complementation. Another usual operation is the
shuffle operation. Recall that the shuffle x on y of two elements x and y of a
monoid M is the set of all products of the form x1 · y1 · x2 · y2 · · ·xn · yn where
x = x1 · x2 · · ·xn and y = y1 · y2 · · · yn.



This operation can naturally be extended to subsets of M by setting, for R1, R2 ⊆
M , R1 on R2 = {x on y | x ∈ R1 and y ∈ R2}.
We know that the class of regular (untimed) languages is closed under shuffle.
The question of the closure of the class of timed regular languages under shuffle
was raised by E. Asarin in [Asa04]. C. Dima proved in [Dim05] that timed regular
expressions with shuffle characterize timed languages accepted by stopwatch
automata. This implies that the class of timed regular languages is not closed
under shuffle. We proved this result independently in [Fin06].
We are going to reprove this here, giving a simple example of two timed regular
languages whose shuffle is not timed regular. Next we shall use this example
to prove that one cannot decide whether the shuffle of two given timed regular
languages is timed regular.

Theorem 4. The shuffle of timed regular languages is not always timed regular.

Proof. Let a, b be two different letters and Σ = {a, b}.
Let R1 be the language of timed words over Σ of the form

t1 · a · 1 · a · t2 · a

for some positive reals t1 and t2 such that t1 + 1 + t2 = 2, i.e. t1 + t2 = 1.
It is clear that R1 is a timed regular language of finite timed words.

Remark. As remarked in [AD94, page 217], a timed automaton can compare
delays with constants, but it cannot remember delays. If we would like a timed
automaton to be able to compare delays, we should add clock constraints of the
form x + y ≤ x′ + y′ for some clock values x, y, x′, y′. But this would greatly
increase the expressive power of automata: the languages accepted by such au-
tomata are not always timed regular, and if we allow the addition primitive in
the syntax of clock constraints, then the emptiness problem for timed automata
would be undecidable [AD94, page 217].

Notice that the above language R1 is timed regular because a timed automaton
B reading a word of the form t1 · a · 1 · a · t2 · a, for some positive reals t1 and
t2, can compare the delays t1 and t2 in order to check that t1 + t2 = 1. This is
due to the fact that the delay between the two first occurrences of the event a

is constant equal to 1.
Using the shuffle operation we shall construct a language R1 on R2, for a regular
timed language R2. Informally speaking, this will “insert a variable delay” be-
tween the two first occurrences of the event a and the resulting language R1 on R2

will not be timed regular.
We now give the details of this construction.

Let R2 be the language of timed words over Σ of the form

1 · b · s · b



for some positive real s.
The language R2 is of course also a timed regular language.

We are going to prove that R1 on R2 is not timed regular.

Towards a contradiction, assume that R1 on R2 is timed regular. Let R3 be the
set of timed words over Σ of the form

t1 · a · 1 · b · s · b · 1 · a · t2 · a

for some positive reals t1, s, t2. It is clear that R3 is timed regular. On the other
hand the class of timed regular languages is closed under intersection thus the
timed language (R1 on R2) ∩ R3 would be also timed regular. But this language
is simply the set of timed words of the form t1 · a · 1 · b · s · b · 1 · a · t2 · a, for some
positive reals t1, s, t2 such that t1 + t2 = 1.

Assume that this timed language is accepted by a timed automaton A.

Consider now the reading by A of a word of the form t1 · a · 1 · b · s · b · 1 · a · t2 · a,
for some positive reals t1, s, t2.
After reading the initial segment t1 · a · 1 · b · s · b · 1 · a the value of any clock of
A can only be t1 + s + 2, 2 + s, 1 + s, or 1.
If the clock value of a clock C has been at some time reset to zero, its value may
be 2 + s, 1 + s, or 1. So the value t1 is not stored in the clock value and this
clock can not be used to compare t1 and t2 in order to check that t1 + t2 = 1.
On the other hand if the clock value of a clock C has not been at some time reset
to zero, then, after reading t1 · a · 1 · b · s · b · 1 · a, its value will be t1 + s + 2 .
This must hold for uncountably many values of the real s, and again the value
t1 + s+2 can not be used to accept, from the global state of A after reading the
initial segment t1 · a · 1 · b · s · b · 1 · a, only the word t2 · a for t2 = 1 − t1.

This implies that (R1 on R2) ∩ R3 hence also (R1 on R2) are not timed regular.
�

We can now state the following result:

Theorem 5. It is undecidable to determine whether the shuffle of two given
timed regular languages is timed regular.

Proof.

We shall use again the undecidability of the universality problem for timed reg-
ular languages: one cannot decide, for a given timed automaton A with input
alphabet Σ, whether L(A) = (R× Σ)?.

Let Σ = {a, b}, and c be an additional letter not in Σ. For a given timed regular
language L ⊆ (R×Σ)?, we are going firstly to construct another timed language
L over the alphabet Γ = Σ ∪ {c}.



The language L is defined as the union of the following three languages.

– L1 = L.(R× {c}).(R× Σ)?

– L2 is the set of timed words over Γ having no c’s or having at least two c’s.
– L3 = (R×Σ)?.1.c.R1, where R1 is the above defined timed regular language

over the alphabet Σ.

The timed language L is regular because L and R1 are regular timed languages.
Consider now the language L on R2, where R2 is the above defined regular timed
language.

There are now two cases.

(1) First case. L = (R × Σ)?. Then L = (R × (Σ ∪ {c}))? and L on R2 =
(R× (Σ ∪ {c}))?. Thus L on R2 is timed regular.

(2) Second case. L is strictly included into (R× Σ)?.
Towards a contradiction, assume that L on R2 is timed regular. Then the
timed language L4 = (L on R2) ∩ [(R × Σ)?.1.c.R3], where R3 is the above
defined timed regular language, would be also timed regular because it would
be the intersection of two timed regular languages.
On the other hand L is strictly included into (R×Σ)? thus there is a timed
word u = t1.a1.t2.a2 . . . tn.an ∈ (R× Σ)? which does not belong to L.
Consider now a timed word x ∈ (R × Σ)?. It holds that u.1.c.x ∈ L4 iff
x ∈ (R1 on R2) ∩ R3.
We are going to show now that L4 is not timed regular. Assume on the
contrary that there is a timed automaton A such that L4 = L(A). There
are only finitely many possible global states (including the clock values) of
A after the reading of the initial segment u.1.c. It is clearly not possible that
the timed automaton A, from these global states, accept all timed words in
(R1 on R2) ∩R3 and only these ones, for the same reasons which imply that
(R1 on R2) ∩ R3 is not timed regular. Thus L4 is not timed regular and this
implies that L on R2 is not timed regular.

In the first case L on R2 is timed regular. In the second case L on R2 is not timed
regular. But one cannot decide which case holds because of the undecidability
of the universality problem for timed regular languages. �

We can also study the corresponding problems with “bounded resources”:

Problem 1. Given two timed automata A and B and non-negative integers n, K,
does there exist a TA C ∈ TA(n, K) such that L(C) = L(A) on L(B) ?

Problem 2. Given two timed automata A and B and an integer n ≥ 1, does there
exist a TA C with less than n clocks such that L(C) = L(A) on L(B) ?



Problem 3. Given two timed automata A and B, does there exist a deterministic
TA C such that L(C) = L(A) on L(B) ?

From the proof of above Theorem 5, it is easy to see that these problems are also
undecidable. Indeed in the first case L on R2 was accepted by a deterministic
timed automaton without any clocks. And in the second case L on R2 was not
accepted by any timed automaton.

E. Asarin, P. Carpi, and O. Maler have proved in [ACM02] that the formalism
of timed regular expressions (with intersection and renaming) has the same ex-
pressive power than timed automata. C. Dima proved in [Dim05] that timed
regular expressions with shuffle characterize timed languages accepted by stop-
watch automata. We refer the reader to [Dim05] for the definition of stopwatch
automata.
Dima showed that, from two timed automata A and B, one can construct a
stopwatch automaton C such that L(C) = L(A) on L(B). Thus we can infer the
following corollaries from the above results.
Notice that in [ACM02,Dim05] the authors consider automata with epsilon-
transitions while in this paper we have only considered timed automata without
epsilon-transitions, although we think that many results could be extended to
the case of automata with epsilon-transitions. So in the statement of the follow-
ing corollaries we consider stopwatch automata with epsilon-transitions but only
timed automata without epsilon-transitions.

Corollary 6. One cannot decide, for a given stopwatch automaton A, whether
there exists a timed automaton B (respectively, a deterministic timed automaton
B) such that L(A) = L(B).

Corollary 7. One cannot decide, for a given stopwatch automaton A and non-
negative integers n, K, whether there exists a timed automaton B ∈ TA(n, K)
such that L(A) = L(B).

Corollary 8. One cannot decide, for a given stopwatch automaton A and an
integer n ≥ 1, whether there exists a timed automaton B with less than n clocks
such that L(A) = L(B).

6 Timed Büchi automata

The previous undecidability results can be extended to the case of timed Büchi
automata accepting infinite timed words. Moreover in this case many problems
are highly undecidable (Π1

1 -hard) because the universality problem for timed
Büchi automata, which is itself Π1

1 -hard, [AD94], can be reduced to these prob-
lems.
For more information about the analytical hierarchy (containing in particular
the class Π1

1 ) see the textbook [Rog67].



We now consider first the problem of determinizability or regular complementabil-
ity for timed regular ω-languages.

Theorem 9. The following problems are Π1
1 -hard.

For a given TBA A, determine whether :

1. Lω(A) is accepted by a deterministic TBA.
2. Lω(A)c is accepted by a TBA.

Proof. Let Σ be a finite alphabet and let a ∈ Σ. Let, as in Section 3, A be the
set of timed words containing only letters a and such that there is a pair of a’s
which are separated by a time distance 1. The timed language A is regular but
its complement is not timed regular [AD94].

We shall use the Π1
1 -hardness of the universality problem for timed regular ω-

languages:

Let c be an additional letter not in Σ. For a given timed regular ω-language
L ⊆ (R × Σ)ω, we can construct another timed language L over the alphabet
Γ = Σ ∪ {c} defined as the union of the following three languages.

– L1 = A.(R × {c}).(R × Σ)ω, where A is the above defined timed regular
language over the alphabet Σ.

– L2 is the set of infinite timed words over Γ having no c’s or having at least
two c’s.

– L3 = (R× Σ)?.(R× {c}).L.

The timed ω-language L is regular because L is a regular timed ω-language and
A is a regular timed language. There are now two cases.

(1) First case. L = (R × Σ)ω. Then L = (R × (Σ ∪ {c}))ω. Therefore L has
the minimum possible complexity and it is accepted by a deterministic TBA
(without any clock). Moreover its complement Lc is empty thus it is also
accepted by a deterministic TBA (without any clock).

(2) Second case. L is strictly included into (R× Σ)ω, i.e. Lc is non-empty. It
is then easy to see that :

Lc = Ac.(R× {c}).Lc

where Lc = (R× Γ )ω −L, Ac = (R× Σ)? − A, and Lc = (R× Σ)ω − L.

We are going to show that Lc is not timed ω-regular. Assume on the contrary
that there is a TBA A such that Lc = Lω(A). Consider the reading of a timed
ω-word of the form x.1.c.u, where x ∈ (R× Σ)? and u ∈ (R× Σ)ω, by the
TBA A. When reading the initial segment x.1.c, the TBA A has to check
that x ∈ Ac, i.e. that no pair of a’s in x is separated by a time distance
1; this is clearly not possible for the same reasons which imply that Ac is



not timed regular (see above Section 3). Thus Lc is not timed ω-regular.
This implies that L is not accepted by any deterministic TBA because the
class of deterministic regular timed ω-languages is closed under complement,
[AD94].

In the first case L is accepted by a deterministic TBA and Lc is timed ω-regular.
In the second case L is not accepted by any deterministic TBA and Lc is not
timed ω-regular.
This ends the proof because the universality problem for timed Büchi automata
is Π1

1 -hard, [AD94]. �

As in the case of TA reading finite length timed words, we can consider the
corresponding problems with “bounded resources”.

Below TBA(n, K) denotes the class of timed Büchi automata having at most n

clocks, where constants are at most K.

Problem A. Given a TBA A and non-negative integers n, K, does there exist a
TBA B ∈ TBA(n, K) such that Lω(B)c = Lω(A) ?

Problem B. Given a TBA A and non-negative integers n, K, does there exist a
deterministic TBA B ∈ TBA(n, K) such that Lω(B) = Lω(A) ?

We can infer from the proof of preceding Theorem, that these problems are also
Π1

1 -hard, because we have seen that, in the first case, L and Lc are accepted by
deterministic timed Büchi automata without any clock.

In a very similar manner, using the same ideas as in the proof of Theorems 2
and 9, we can study the problem of minimization of the number of clocks for
timed Büchi automata. We can then show that it is Π1

1 -hard, by reducing to it
the universality problem for timed Büchi automata with n clocks, where n ≥ 2,
which is Π1

1 -hard. So we get the following result.

Theorem 10. Let n ≥ 2 be a positive integer. It is Π1
1 -hard to determine, for

a given TBA A with n clocks, whether there exists a TBA B with n − 1 clocks,
such that Lω(B) = Lω(A).

Remark 11. We have already mentioned that, for timed automata with only
one clock, the universality problem is decidable [OW04]. On the other hand, for
timed Büchi automata with only one clock, the universality problem has been
recently shown to be undecidable by P. A. Abdulla, J. Deneux, J. Ouaknine, and
J. Worrell in [ADOW05]. However it seems to us that, in the paper [ADOW05],
this problem is just proved to be undecidable and not Π1

1 -hard. Then we can just
infer that the above theorem is still true for n = 1 if we replace “Π1

1 -hard” by
“undecidable”.
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