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This paper deals with the problem of H∞ control, via static output feedback, of continuous time
Active Fault Tolerant Control Systems with Markovian Parameters (AFTCSMP) with Wiener process.
The above problematic is addressed under a convex programming approach. Indeed, the fundamen-
tal tool in the analysis is an LMI (Linear Matrix Inequalities) characterization of output feedback
compensators that stochastically stabilize the closed loop system and ensure H∞ performances. A
numerical example is presented to illustrate the theoretical results.
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1 Introduction

Fault tolerant control systems (FTCS) have been developed in order to achieve high levels of reliability
and performance in situations where the controlled system can have potentially damaging effects on
the environment if failures of its components take place. FTCS have been a subject of great practical
importance, which have attracted a lot of interest for the last three decades. A bibliographical review
on reconfigurable fault tolerant control systems can be found in [24].
Active fault tolerant control systems are feedback control systems that reconfigure the control law in
real time based on the response from an automatic fault detection and identification (FDI) scheme.
The dynamic behaviour of this class of systems is governed by stochastic differential equations and
can be viewed as a general stochastic hybrid system [23]. In the literature, there are two major classes
of stochastic hybrid systems: jump linear systems (JLS) and active fault tolerant control systems with
Markovian parameters (AFTCSMP). In JLS, a single jump process is used to describe the random
variations affecting the system parameters. This process is represented by a finite state Markov chain
and is called the plant regime mode. The theory of stability, optimal control and H2/H∞ control, as
well as important applications of such systems, can be found in several papers in the current litera-
ture, for instance in [5, 6, 7, 9, 10, 11, 14, 15, 20].
The AFTCSMP model allows to study the impact of time delays and errors in the decisions of the
FDI process. That is, it does not assume instantaneous and perfect failure detection. In this class
of hybrid systems, two random processes are defined: the first random process represents system
components failures and the second random process represents the FDI process used to reconfigure
the control law. This model was proposed by Srichander and Walker [23]. Necessary and sufficient
conditions for stochastic stability of AFTCSMP were developed for a single component failure (actu-
ator failures). The problem of stochastic stability of AFTCSMP in the presence of noise, parameter
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uncertainties, detection errors, detection delays and actuator saturation limits has also been inves-
tigated in [16, 18, 19]. Another issue related to the synthesis of fault tolerant control laws was also
addressed by [17, 21, 22]. In [17], the authors designed an optimal control law for AFTCSMP using
the matrix minimum principle to minimize an equivalent deterministic cost function. The problem of
H∞ and robust H∞ control was treated in [21, 22] for both continuous and discrete time AFTCSMP.
The authors showed that the state feedback control problem can be solved in terms of the solutions
of a set of coupled Riccati inequalities. The dynamic output feedback counterpart was treated by
[1, 2] in a convex programming framework. Indeed, the authors provide an LMI characterization of
dynamical compensators that stochastically stabilize (robustly stabilize) the AFTCSMP and ensure
H∞ (robust H∞) constraints. Nevertheless, in [1, 2, 19, 21, 22], the authors make the assumption
that the controllers must access both failures and FDI processes. However, in practice, the different
random failures affecting the system are not directly measurable but rather can only be monitored by
the FDI scheme. This fact makes these controllers inapplicable in practical AFTCSMP. In addition, it
is important to mention that the design problem in the framework of AFTCSMP is more complicated
when comparing with JLS formulation. This is due, particulary, to the fact that the controller only
depends on the FDI process i.e. the number of controllers to be designed is less than the total number
of the closed loop systems modes by combining both failure an FDI processes. The design problem
involves searching feasible solutions of a problem where there are more constraints than variables
to be solved. In this work, the assumption on the availability of failure processes, for the synthesis
purposes, is stressed.
In this paper, we are concerned with the problem of static output feedback H∞ control of an AFTC-
SMP with Wiener process via convex analysis, which has shown to be a powerful tool to derive
numerical algorithms for several important control problems. The first problematic we consider in
this paper is the output feedback stochastic stabilization of the AFTCSMP with Wiener process sub-
ject to multiple failure processes. It is shown that the necessary and sufficient conditions for the
internal exponential stability in the mean square sense can be written in terms of an nonlinear ma-
trix inequality feasibility problem. Then, an LMI relaxation scheme is presented to eliminate the
nonlinearities, yielding to a new easily tractable sufficient condition. Having obtained this result, we
can move on the control problem and write the output feedback H∞ control problem of continuous
time AFTCSMP in terms of an LMI optimization problem. The convex approach naturally leads to
powerful numerical algorithms to solve these problematic.
This paper is organized as follows: section 2 describes the dynamical model of the system with appro-
priately defined random processes. A brief summary of basic stochastic terms, results and definitions
are given in section 3. Section 4 derives the necessary and sufficient conditions for the stochastic
exponential stability in the mean square sense, and the LMI characterization of the static output
feedback compensators. Section 5 considers the H∞ control problem for the output feedback system
via LMI optimization problems. In Section 6, numerical examples are given to illustrate the effective-
ness of the theoretical results. Finally, a conclusion is given in section 7.
Notations. The notations in this paper are quite standard. The notation X ≥ Y (X > Y , respec-
tively), where X and Y are symmetric matrices, means that X − Y is positive semi-definite (positive
definite, respectively); I and 0 are identity and zero matrices of appropriate dimensions, respectively;
E{·} denotes the expectation operator with respect to some probability measure P ; L2[0,∞) stands
for the space of square-integrable vector functions over the interval [0,∞); ‖ · ‖ refers to either the
Euclidean vector norm or the matrix norm, which is the operator norm induced by the standard vector
norm; ‖ · ‖2 stands for the norm in L2[0,∞); while ‖ · ‖E2

denotes the norm in L2((Ω,F , P ), [0,∞));
(Ω,F , P ) is a probability space.

2 Dynamical Model of the AFTCSMP with Wiener Process

Consider general FTCS as shown in Fig. 1. The dynamical model of the AFTCSMP with Wiener
process, defined in a fundamental probability space (Ω,F , P ), is described by the following differential
equations:
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Figure 1: General schematic diagram for fault tolerant control systems

ϕ :











dx(t)=A(ξ(t))x(t)dt+B(η(t))u(y(t), ψ(t), t)dt+E(ξ(t), η(t))w(t)dt+W(ξ(t), η(t))x(t)d̟(t)

y(t) = C2x(t) + D2(ξ(t), η(t))w(t)

z∞(t) = C1x(t) + D1(η(t))u(y(t), ψ(t), t)

(1)

where x(t) ∈ R
n is the system state, u(y(t), ψ(t), t) ∈ R

r is the system input, y(t) ∈ R
q is the system

measured output, z∞(t) ∈ R
p is the controlled output, w(t) ∈ R

m is the system external disturbance,
ξ(t), η(t) and ψ(t) represent the plant component failure process, the actuator failure process and
the FDI process, respectively. ξ(t), η(t) and ψ(t) are separable and mesurable Markov processes with
finite state spaces Z = {1, 2, ..., z}, S = {1, 2, ..., s} and R = {1, 2, ..., r}, respectively. ̟(t) is a
standard Wiener process that is assumed to be independent of the Markov processes. The matrices
A(ξ(t)), B(η(t)), E(ξ(t), η(t)), D2(ξ(t), η(t)), D1(η(t)) and W(ξ(t), η(t)) are properly dimensioned
matrices which depend on random parameters. The system disturbance w(t) is assumed to belong to
L2[0,∞) i.e.

‖ w ‖2=

{∫ ∞

0
wT (t)w(t)dt

}1/2

< ∞

This implies that the disturbance has finite energy.
In AFTCS, we consider that the control law is only a function of the mesurable FDI process ψ(t).
Therefore, we introduce a static output feedback compensator (ϕs) of the form:

ϕs :
{

u(t) = K(ψ(t))y(t) (2)

Applying the controller ϕs to the AFTCSMP ϕ, we obtain the following closed loop system:

ϕcl :











dx(t) = Ā(ξ(t), η(t), ψ(t))x(t)dt + Ē(ξ(t), η(t), ψ(t))w(t)dt + W(ξ(t), η(t))x(t)d̟(t)

y(t) = C2x(t) + D2(ξ(t), η(t))w(t)

z∞(t) = C̄1(η(t), ψ(t))x(t) + D̄1(ξ(t), η(t), ψ(t))w(t)

(3)

where
[

Ā(ξ(t), η(t), ψ(t)) Ē(ξ(t), η(t), ψ(t))
C̄1(η(t), ψ(t)) D̄1(ξ(t), η(t), ψ(t))

]

=

[

A(ξ(t)) E(ξ(t), η(t))
C1 0

]

+

[

B(η(t))
D1(η(t))

]

K(ψ(t)) [ C2 D2(ξ(t), η(t)) ]

For notational simplicity, we will denote A(ξ(t)) = Ai when ξ(t) = i ∈ Z, B(η(t)) = Bj and
D1(η(t)) = D1j when η(t) = j ∈ S, E(ξ(t), η(t)) = Eij , D2(ξ(t), η(t)) = D2ij and W(ξ(t), η(t)) = Wij

when ξ(t) = i ∈ Z, η(t) = j ∈ S and K(ψ(t)) = Kk when ψ(t) = k ∈ R. We also denote x(t) = xt,
y(t) = yt, z∞(t) = z∞t, w(t) = wt, ξ(t) = ξt, η(t) = ηt, ψ(t) = ψt and the initial conditions
x(t0) = x0, ξ(t0) = ξ0, η(t0) = η0 and ψ(t0) = ψ0.
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The FDI and the Failure Processes:

ξt, ηt and ψt being homogeneous Markov processes with finite state spaces, we can define the transition
probability of the plant components failure process as [19, 23]:







pij(∆t) = πij∆t + o(∆t)

pii(∆t) = 1 − ∑

i6=j

πij∆t + o(∆t) ; i, j ∈ Z

The transition probability of the actuator failure process is given by:






pkl(∆t) = νkl∆t + o(∆t)

pkk(∆t) = 1 − ∑

k 6=l

νkl∆t + o(∆t) ; k, l ∈ S

where πij is the plant components failure rate, and νkl is the actuator failure rate. ∆t is the infinites-
imal transition time interval and o(∆t) is composed of infinitesimal terms of order higher than that
of ∆t.
Given that ξ = k and η = l, the conditional transition probability of the FDI process ψ(t) is:







pkl
iv(∆t) = λkl

iv∆t + o(∆t)

pkl
ii (∆t) = 1 − ∑

i6=v

λkl
iv∆t + o(∆t) ; i, v ∈ R

Here, λkl
iv represents the transition rate from i to v for the Markov process ψ(t) conditioned on

ξ = k ∈ Z and η = l ∈ S. Depending on the values of i, v ∈ R, k ∈ Z and l ∈ S, various
interpretations, such as rate of false detection and isolation, rate of correct detection and isolation,
false alarm recovery rate, etc, can be given to λkl

iv [19, 23].

3 Basic Definitions and Results

In this section, we will first give some basic definitions related to stochastic stability notions and
then we will summarize some results about exponential stability in the mean square sense of the
AFTCSMP with Wiener process. Without loss of generality, we assume that the equilibrium point,
x = 0, is the solution at which stability properties are examined.
Under the assumption that the system (ϕ) coupled with (ϕs) satisfies the global Lipchitz condition,
the solution xt determines a family of unique continuous stochastic processes, one for each choice of
the random variable x0. The joint process {xt, ξt, ηt, ψt} is a Markov process.

3.1 Stochastic Lyapunov Function

A fundamental tool in the analysis of the stability of stochastic systems is the stochastic Lyapunov
function which is used to describe the stability behavior without explicit solution of the differential
equation.
Definition 1 [23]: The random function ϑ(xt, ηt, ξt, ψt, t) of the joint Markov process {xt, ηt, ξt, ψt}
qualifies as a stochastic Lyapunov function candidate if the following conditions hold for some fixed
ε < ∞:

a) The function ϑ(xt, ηt, ξt, ψt, t) is positive definite and continuous in xt and t in the open set Oε =
{xt : ϑ(xt, ηt, ξt, ψt, t) < ε} ∀ηt ∈ S, ∀ξt ∈ Z,∀ψt ∈ R and ∀t ≥ t0, and ϑ(xt, ηt, ξt, ψt, t) = 0 only
if xt = 0. (The function ϑ(xt, ηt, ξt, ψt, t) is said to be positive definite if ϑ(xt, ηt, ξt, ψt, t) ≥
W (xt) ∀ηt ∈ S,∀ξt ∈ Z,∀ψt ∈ R and ∀t ≥ t0, where W (xt) is positive definite in the sense of
Lyapunov).

b) The joint Markov process {xt, ηt, ξt, ψt} is defined until t = τε where τε = inf{t : xt /∈ Oε}. If
xt ∈ Oε ∀t < ∞, then τε = ∞.
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c) The function ϑ(xt, ηt, ξt, ψt, t) is in the domain of L where L is the weak infinitesimal operator
of the joint Markov process {xτt , ητt , ξτt , ψτt} and τt = min(t, τε).

The definition of the weak infinitesimal operator is given as follows:
Definition 2 [23]: A bounded function f(ζ) is said to be in the domain of the weak infinitesimal
operator L of the random process ζ(t) if the limit

lim
τ→0

E{f(ζ(t + τ))|ζ(t)} − f(ζ(t))

τ
= Lf(ζ) = h(ζ)

exists pointwise in R and satisfies,

lim
τ→0

E{h(ζ(t + τ))|ζ(t)} = h(ζ(t))

If we generalize definition 2 to time varying functions f(ζ, t), then we have

Lf(ζ, t) =
∂

∂t
f(ζ, t) + h(ζ, t)

In general, Lf(ζ) is interpreted as the average time rate of change of the process f(ζ) at time t given
that ζ(t) = ζ.

3.2 Stochastic Stability

System (3) is said to be

(i) stochastically stable (SS) if there exists a finite positive constant K(x0, ξ0, η0, ψ0) such that the
following holds for any initial conditions (x0, ξ0, η0, ψ0):

E
{∫ ∞

0
‖ xt ‖2 dt

}

≤ K(x0, ξ0, η0, ψ0) (4)

(ii) internally exponentially stable in the mean square sense if it is exponentially stable in the mean
square sense for wt = 0, i.e. for any ξ0, η0, ψ0 and some γ(ξ0, η0, ψ0), there exists two numbers
a > 0 and b > 0 such that when ‖x0‖ ≤ γ(ξ0, η0, ψ0), the following inequality holds ∀t ≥ t0 for
all solution of (3) with initial condition x0:

E
{

‖xt‖2
}

≤ b‖x0‖2 exp [−a(t − t0)] (5)

The following theorem gives a sufficient condition for internal exponential stability in the mean square
sense for the system (ϕ) coupled with (ϕs).
Theorem 1: The solution x = 0 of the system (ϕ) coupled with (ϕs) is internally exponentially stable
in the mean square for t ≥ t0 if there exists a Lyapunov function ϑ(xt, ξt, ηt, ψt, t) such that

K1‖xt‖2 ≤ ϑ(xt, ξt, ηt, ψt, t) ≤ K2‖xt‖2 (6)

and
Lϑ(xt, ξt, ηt, ψt, t) ≤ −K3‖xt‖2 (7)

for some positive constants K1, K2 and K3.
A necessary condition for internal exponential stability in the mean square for the system (ϕ) coupled
with (ϕs) is given by theorem 2.
Theorem 2: If the solution x = 0 of the system (ϕ) coupled with (ϕs) is internally exponentially
stable in the mean square, then for any given quadratic positive definite function W (xt, ξt, ηt, ψt, t)
in the variables x which is bounded and continuous ∀t ≥ t0, ∀ξt ∈ Z, ∀ηt ∈ S and ∀ψt ∈ R,
there exists a quadratic positive definite function ϑ(xt, ξt, ηt, ψt, t) in x such that Lϑ(xt, ξt, ηt, ψt, t) =
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−W (xt, ξt, ηt, ψt, t).

Remark 1: The proofs of these theorems follow the same arguments as in [19, 23] for their proposed
stochastic Lyapunov functions, so they are not shown in this paper to avoid repetition.

We conclude this section by recalling the following lemmas which will be useful for the proof of our
main results in the next sections.

Lemma 1 [19]: Let G, M , N be real matrices of appropriate dimensions. Then, for any γ > 0, and
for all the functional matrices satisfying MT (t)M(t) ≤ I, we have:

2xT PGM(t)Nx ≤ γxT PGGT Px + (1/γ)xT NT Nx

Lemma 2 (Schur complement) [8]: Given constant matrices M, L, Q of appropriate dimensions where
M and Q are symmetric, then Q > 0 and M + LT Q−1L < 0 if and only if:

[

M LT

L −Q

]

< 0

Lemma 3 (Reciprocal Projection Lemma) [4]: Let P be any given positive-definite matrix. The
following statements are equivalent:

1) Ψ + S + ST < 0;

2) the LMI problem
[

Ψ + P − (W + W T ) ST + W T

S + W −P

]

< 0

is feasible with respect to W .

4 Stochastic Stabilization

In this section, we will first derive a necessary and sufficient condition for the internal exponential
stability in the mean square of the system (3). The synthesis condition thus obtained is formulated as
coupled matrix inequalities feasibility problem which is non linear in the design variables and hence
not easily tractable by convex optimization techniques. Then, an LMI relaxation scheme is presented
to eliminate the nonlinearities, yielding a new easily tractable sufficient condition.
The following proposition gives a necessary and sufficient condition for internal exponential stability
in the mean square sense for the system (3).
Proposition 1: A necessary and sufficient condition for internal exponential stability in the mean
square of the system (3) is that there exists symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S
and k ∈ R such that:

Λ̃T
ijkPijk + PijkΛ̃ijk + WT

ijPijkWij +
∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv < 0 (8)

∀i ∈ Z, j ∈ S and k ∈ R, where

Λ̃ijk = Ai + BjKkC2 − 0.5I









∑

h∈Z
h 6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv









(9)

¤

Proof : The proof of this proposition is easily deduced from theorems 1 and 2. ¥
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We are now able to present the following proposition which gives a nonlinear matrix inequalities
characterization of compensators (ϕs) that internally stabilize the closed-loop system in the mean
square sense.

Proposition 2 (Necessary and sufficient condition): System (3) is exponentially stable in the
mean square If and only if there exists matrices Xijk = X T

ijk > 0, Kk, and Ωijk satisfying the following
coupled matrix inequalities









XijkZijkXijk − ΩijkXijk −XijkΩ
T
ijk Ãijk + BjKkC2 + Ωijk XijkWT

ij Rijk(Xijk)

⋆ −Zijk 0 0

⋆ ⋆ −Xijk 0

⋆ ⋆ ⋆ −Sijk(Xijk)









< 0 (10)

where Zijk are any given positive-definite matrices and






































































































Rijk(Xijk) = [R1ijk(Xijk),R2ijk(Xijk),R3ijk(Xijk)]

R1ijk(Xijk) =
[

αi1Xijk, ...αi(i−1)Xijk, αi(i+1)Xijk, ..., αizXijk

]

R2ijk(Xijk) =
[

βj1Xijk, ...βj(j−1)Xijk, βj(j+1)Xijk, ..., βjsXijk

]

R3ijk(Xijk) =
[

γk1Xijk, ...γk(k−1)Xijk, γk(k+1)Xijk, ..., γkrXijk

]

αil =
√

πil;βjl =
√

νjl; γkl =
√

λij
kl

Sijk(Xijk) = −diag [S1ijk(Xijk),S2ijk(Xijk),S3ijk(Xijk)]

S1ijk(Xijk) =
[

X1jk, ...,X(i−1)jk,X(i+1)jk, ...,Xzjk

]

S2ijk(Xijk) =
[

Xi1k, ...,Xi(j−1)k,Xi(j+1)k, ...,Xisk

]

S3ijk(Xijk) =
[

Xij1, ...,Xij(k−1),Xij(k+1), ...,Xijr

]

Ãijk = Ai − 0.5I







∑

h∈Z
h 6=i

πih +
∑

l∈S
l 6=j

νjl +
∑

v∈R
v 6=k

λij
kv







Then, when (10) is feasible, the stabilizing output feedback control law is given by

uk(t) = Kky(t)

¤

Proof : Let us consider the matrix inequalities given by (8). The use of the reciprocal projection

lemma with Ψ =






WT

ijPijkWij +
∑

h∈Z
h6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv






, and S = Λ̃T

ijkPijk yields







WT
ijPijkWij +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv + Zijk − (Ωijk + ΩT

ijk) PijkΛ̃ijk + Ωijk

⋆ −Zijk






< 0

(11)
where Zijk are any given positive-definite matrices, ∀i ∈ Z, j ∈ S and k ∈ R.
Let us define Xijk = P−1

ijk and Ωijk = XijkΩijk, then by the congruence transformation

[

Xijk 0

0 I

]

and with a Schur complement operation with respect to the term

Xijk









WT
ijPijkWij +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv









Xijk
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the inequality (11) in turn becomes









XijkZijkXijk − ΩijkXijk −XijkΩ
T
ijk Λ̃ijk + Ωijk XijkWT

ij Rijk(Xijk)

⋆ −Zijk 0 0

⋆ ⋆ −Xijk 0

⋆ ⋆ ⋆ −Sijk(Xijk)









< 0 (12)

then, the proof is complete. ¥

Remark 2: The condition of proposition 2 is nonlinear in the unknown variables Xijk and Ωijk and
hence not easily tractable by convex optimization techniques. However, the degree of freedom intro-
duced by the variables Zijk can be adequately used to provide an easily tractable sufficient condition
for the stochastic stability in terms of an LMI feasibility problem. This is illustrated by the following
proposition.

Proposition 3 (Sufficient condition): If there exists matrices Xijk = X T
ijk > 0, Kk, and Ωijk

satisfying the following LMI















µijkI − Ωijk − Ω
T
ijk (µijkXijk − Ωijk) Ãijk + BjKkC2 + Ωijk XijkWT

ij Rijk(Xijk)

⋆ −µijkI 0 0 0

⋆ ⋆ −µijkI 0 0

⋆ ⋆ ⋆ −Xijk 0

⋆ ⋆ ⋆ ⋆ −Sijk(Xijk)















< 0

(13)
where µijk are arbitrary positive scalars, then the system (ϕ) coupled with (ϕs) is internally expo-
nentially stable in the mean square. ¤

Remark 3: The free scalar parameters µijk are introduced to reduce the conservatism of the sufficient
condition for exponential stochastic stability in the mean square sense.

Proof : Since, according to proposition 2, Zijk can be any positive-definite matrix, we let Zijk = µijkI

∀i ∈ Z, j ∈ S and k ∈ R. Then, using the Schur complement operation with respect to the term

XijkZijkXijk − Ω
T
ijkXijk −XijkΩijk

the inequality (10) can be further be written as















−µ−1
ijkΩijkΩ

T
ijk (µijkXijk − Ωijk) Ãijk + BjKkC2 + Ωijk XijkWT

ij Rijk(Xijk)

⋆ −µijkI 0 0 0

⋆ ⋆ −µijkI 0 0

⋆ ⋆ ⋆ −Xijk 0

⋆ ⋆ ⋆ ⋆ −Sijk(Xijk)















< 0 (14)

then, using the relation

−µ−1
ijkΩijkΩ

T
ijk ≤ −Ω

T
ijk − Ωijk + µijkI

yields the matrix inequality (13). Hence the proof is complete. ¥

5 H∞ Control

In this section, we deal with the design of controllers that stochastically stabilize the closed-loop
system and guarantee the disturbance rejection, with a certain level µ > 0. This problematic is
addressed under a convex optimization framework. Mathematically, we are concerned with the LMI
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characterization of compensators ϕs that stochastically stabilize the system (3) and guarantee the
following for all w ∈ L2[0,∞):

‖ z∞ ‖E2
= E

{∫ ∞

0
zT
∞tz∞tdt

}1/2

< µ
[

‖ w ‖2
2 +a(x0, ξ0, η0, ψ0)

]1/2
(15)

where µ > 0 is a prescribed level of disturbance attenuation to be achieved and a(x0, ξ0, η0, ψ0) is
a constant that depends on the initial conditions (x0, ξ0, η0, ψ0). To this end, we need the auxiliary
result given by the following proposition.

Proposition 4: If the system (3) is internally exponentially stable in the mean square sense, then it
is stochastically stable. ¤

Proof : Since the system (3) is internally exponentially stable in the mean square sense, it follows
from proposition 1 that there exist symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R
such that

Λ̃T
ijkPijk + PijkΛ̃ijk + WT

ijPijkWij +
∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv = Ξijk < 0

∀i ∈ Z, j ∈ S and k ∈ R.
Note that it is easy to show that there exists α > 0, such that

Ξijk + αP2
ijk < 0.

∀i ∈ Z, j ∈ S and k ∈ R.
Let us consider the following quadratic stochastic Lyapunov function

ϑ(xt, ξt, ηt, ψt) = xT
t P(ξt, ηt, ψt)xt

then
Lϑ(xt, ξt, ηt, ψt) = xT

t {Ξ(ξt, ηt, ψt)}xt + 2xT
t P(ξt, ηt, ψt)Ē(ξt, ηt, ψt)wt. (16)

Using lemma 1, it follows from (16) that

Lϑ(xt, ξt, ηt, ψt) ≤ −xT
t Γ(ξt, ηt, ψt)xt + α−1wT

t Ē(ξt, ηt, ψt)
T Ē(ξt, ηt, ψt)wt

where
Γ(ξt, ηt, ψt) = −Ξ(ξt, ηt, ψt) − αP2(ξt, ηt, ψt)

From Dynkin’s formula [12], we have

E {ϑ(xT , ξT , ηT , ψT )} − ϑ(x0, ξ0, η0, ψ0) = E
{∫ T

0
Lϑ(xτ , ξτ , ητ , ψτ )dτ

}

≤ −E
{∫ T

0
xT

τ Γ(ξτ , ητ , ψτ )xτdτ

}

+ α−1E
{∫ T

0
wT

τ Ē(ξτ , ητ , ψτ )
T Ē(ξτ , ητ , ψτ )wτdτ

}

≤ −E
{∫ T

0
λminΓ(ξτ , ητ , ψτ )x

T
τ xτdτ

}

+ α−1E
{∫ T

0
λmax(Ē(ξτ , ητ , ψτ )

T Ē(ξτ , ητ , ψτ ))w
T
τ wτdτ

}

(17)
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From (17), we get

lim
T→∞

{

E
{

xT
TP(ξT , ηT , ψT )xT

}

+ min
i,j,k

{λminΓ(i, j, k)} E
{∫ T

0
xT

τ xτdτ

}}

≤
{

xT
0 P(ξ0, η0, ψ0)x0

}

+ α−1max
i,j,k

{

λmaxĒ
T (i, j, k)Ē(i, j, k)

}

E
{∫ ∞

0
wT

τ wτdτ

}

(18)

From (18), and knowing that E
{

xT
t P(ξt, ηt, ψt)xt

}

≥ 0 and w(·) ∈ L2[0,∞), then the system (3) is
stochastically stable. Hence the proof is complete. ¥

We are now able to state the sufficient condition for stochastic stability and H∞ performance for the
certain AFTCSMP driven by a static output feedback controller.

Proposition 5: If there exists symmetric positive-definite matrices Pijk, i ∈ Z, j ∈ S and k ∈ R
such that

[

Υijk C̄T
1jkD̄1ijk + PijkĒijk

⋆ D̄T
1ijkD̄1ijk − µ2

I

]

= Φijk < 0 (19)

where

Υijk = Λ̃T
ijkPijk + PijkΛ̃ijk + WT

ijPijkWij + C̄T
1jkC̄1jk +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv

∀i ∈ Z, j ∈ S and k ∈ R.
then the system (3) is stochastically stable and satisfies

‖ z∞ ‖E2
<

[

µ2 ‖ w ‖2
2 +xT

0 P(ξ0, η0, ψ0)x0

]1/2
. (20)

¤

Proof : From (19), we get the following inequality

Λ̃T
ijkPijk + PijkΛ̃ijk + WT

ijPijkWij + C̄T
1jkC̄1jk +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv < 0

which implies the following since C̄T
1jkC̄1jk ≥ 0

Λ̃T
ijkPijk + PijkΛ̃ijk + WT

ijPijkWij +
∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv = Ξijk < 0 (21)

it follows from (21) and proposition 1 that the system (3) is internally exponentially stable in the
mean square sense. Using proposition 4, it follows that (3) is stochastically stable.
Let us now prove that (20) is verified. We begin by defining the following function

JT = E
{∫ T

0

(

zT
∞tz∞t − µ2wT

t wt

)

dt

}

(22)

Then, to prove (20), it suffices to establish that

J∞ ≤ xT
0 P (ξ0, η0, ψ0)x0

Let a quadratic stochastic Lyapunov function

ϑ(xt, ξt, ηt, ψt) = xT
t P(ξt, ηt, ψt)xt (23)
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then
Lϑ(xt, ξt, ηt, ψt) = xT

t {Ξ(ξt, ηt, ψt)}xt + 2xT
t P(ξt, ηt, ψt)Ē(ξt, ηt, ψt)wt. (24)

and

zT
∞tz∞t − µ2wT

t wt = [C̄1(ηt, ψt)xt + D̄1(ξt, ηt, ψt)wt]
T [C̄1(ηt, ψt)xt + D̄1(ξt, ηt, ψt)wt] − µ2wT

t wt

= xT
t C̄1(ηt, ψt)

T C̄1(ηt, ψt)xt + xT
t C̄1(ηt, ψt)

T D̄1(ξt, ηt, ψt)wt

+ wT
t D̄1(ξt, ηt, ψt)

T C̄1(ηt, ψt)xt + wT
t D̄1(ξt, ηt, ψt)

T D̄1(ξt, ηt, ψt)wt − µ2wT
t wt

(25)

which implies the following equality

zT
∞tz∞t − µ2wT

t wt + Lϑ(xt, ξt, ηt, ψt) = χT
t Φ(ξt, ηt, ψt)χt (26)

where χt =

[

xt

wt

]

.

adding and subtracting E
{

∫ T
0 Lϑ(xt, ξt, ηt, ψt)dt

}

to (22), we get

JT = E
{∫ T

0

(

zT
∞tz∞t − µ2wT

t wt + Lϑ(xt, ξt, ηt, ψt)
)

dt

}

− E
{∫ T

0
(Lϑ(xt, ξt, ηt, ψt)) dt

}

(27)

From Dynkin’s formula, we have

E {ϑ(xT , ξT , ηT , ψT )} − ϑ(x0, ξ0, η0, ψ0) = E
{∫ T

0
Lϑ(xt, ξt, ηt, ψt)dt

}

(28)

then we get

JT = E
{∫ T

0
χT

t Φ(ξt, ηt, ψt)χtdt

}

− E {ϑ(xT , ξT , ηT , ψT )} + ϑ(x0, ξ0, η0, ψ0) (29)

Since Φ(ξt, ηt, ψt) < 0 and E {ϑ(xT , ξT , ηT , ψT )} ≥ 0, it follows from (29) that

JT ≤ ϑ(x0, ξ0, η0, ψ0)

which yields J∞ ≤ xT
0 P(ξ0, η0, ψ0)x0. Hence the proof is complete. ¥

The H∞ constraints (20) can be rephrased in LMI form. This is illustrated by proposition 6, which
gives an LMI characterization of static output feedback compensators (ϕs) that stochastically stabi-
lize the AFTCSMP and ensure (20).

Proposition 6: If there exists matrices Xijk = X T
ijk > 0, Ωijk, Kk such that the following LMIs are

feasible

















µijkI − Ωijk − Ω
T
ijk +

[

0 0

0 −µ2
I

]

(µijkX ijk − Ωijk)

[

Rijk(Xijk)
0

]

Θijk + Ωijk 0

⋆ −µijkI 0 0 0

⋆ ⋆ −Sijk(Xijk) 0 0

⋆ ⋆ ⋆ −µijkI ΠT
ijk

⋆ ⋆ ⋆ ⋆ −I

















< 0

(30)
[

µijkI ΠT
ijk

⋆ I

]

> 0 (31)
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where


































































Πijk =
[

C1 0

]

+ D1jKk

[

C2 D2jk

]

Θijk =

[

Ãijk Eij

0 0

]

+

[

Bj

0

]

Kk

[

C2 D2ij

]

Rijk(Xijk) =
[

Rijk(Xijk) XijkWij

]

Sijk(Xijk) =

[

Sijk(Xijk) 0

0 Xijk

]

X ijk =

[

Xijk 0

0 I

]

(32)

and µijk are positive scalars ∀i ∈ Z, j ∈ S and k ∈ R. Then the system (3) is stochastically stable
and satisfies

‖ z∞ ‖E2
<

[

µ2 ‖ w ‖2
2 +xT

0 P(ξ0, η0, ψ0)x0

]1/2
. (33)

Then, the stabilizing output feedback control law is given by

uk(t) = Kky(t)

¤

Proof : The matrix inequalities (19) can be equivalently written as follows

Φijk =

[

Λ̃T
ijk 0

ĒT
ijk 0

]

[

Pijk 0

0 I

]

+

[

Pijk 0

0 I

] [

Λ̃ijk Ēijk

0 0

]

+

[

C̄T
1jk

D̄T
1ijk

]

[

C̄1jk D̄1ijk

]

+







WT
ijPijkWij +

∑

h∈Z
h6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv 0

0 −µ2
I






< 0 (34)

The use of the reciprocal projection lemma with

Ψijk =







WT
ijPijkWij +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv 0

0 −µ2
I






+

[

C̄T
1jk

D̄T
1ijk

]

[

C̄1jk D̄1ijk

]

(35)
and

Sijk =

[

Λ̃T
ijk 0

ĒT
ijk 0

]

[

Pijk 0

0 I

]

(36)

yields
[

Ψijk + Zijk − (Ωijk + ΩT
ijk) ST

ijk + Ωijk

⋆ −Zijk

]

< 0 (37)

where Zijk are any given positive-definite matrices, ∀i ∈ Z, j ∈ S and k ∈ R.
Let us define Xijk = P−1

ijk and Ωijk = X ijkΩijk, then by the congruence transformation

[

X ijk 0

0 I

]

(38)

and with a Schur complement operation with respect to the term

X ijk







WT
ijPijkWij +

∑

h∈Z
h 6=i

πihPhjk +
∑

l∈S
l 6=j

νjlPilk +
∑

v∈R
v 6=k

λij
kvPijv 0

0 0






X ijk
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the inequality (37) in turn becomes








X̄ijk

(

Zijk +

[

C̄T
1jk

D̄T
1ijk

]

[

C̄1jk D̄1ijk

]

)

X̄ijk − Ω̄ijkX̄ijk − X̄ijkΩT
ijk +

[

0 0

0 −µ2
I

] [

Rijk(Xijk)
0

]

Θijk + Ω̄ijk

⋆ −Sijk(Xijk) 0

⋆ ⋆ −Zijk









< 0

(39)

Since Zijk can be any positive-definite matrix we let

Zijk =

(

µijkI −
[

C̄T
1jk

D̄T
1ijk

]

[

C̄1jk D̄1ijk

]

)

> 0

or equivalently




µijkI

[

C̄T
1jk

D̄T
1ijk

]

⋆ I



 > 0 (40)

then using the Schur complement with respect to the term

X̄ijk

(

Zijk +

[

C̄T
1jk

D̄T
1ijk

]

[

C̄1jk D̄1ijk

]

)

X̄ijk − Ω̄ijkX̄ijk − X̄ijkΩ
T
ijk (41)

the inequality (39) can be further be written as

















[

0 0

0 −µ2
I

]

− µ−1
ijkΩ̄ijkΩ̄

T
ijk (µijkX ijk − Ωijk)

[

Rijk(Xijk)
0

]

Θijk + Ωijk 0

⋆ −µijkI 0 0 0

⋆ ⋆ −Sijk(Xijk) 0 0

⋆ ⋆ ⋆ −µijkI ΠT
ijk

⋆ ⋆ ⋆ ⋆ −I

















< 0 (42)

then, using the relation

−µ−1
ijkΩijkΩ

T
ijk ≤ −Ω

T
ijk − Ωijk + µijkI

yields the matrix inequality (30). Hence the proof is complete. ¥

From practical point of view, the controller that stochastically stabilizes the AFTCSMP and at the
same time guarantees the minimum disturbance rejection is of great interest. This controller can be
obtained by solving the following optimization problem:

O :























































































min
δ>0, Xijk=XT

ijk
>0, Kk, Ωijk

δ

s.t :






















µijkI − Ωijk − Ω
T
ijk +

[

0 0

0 −δI

]

(µijkX ijk − Ωijk)

[

Rijk(Xijk)

0

]

Θijk + Ωijk 0

⋆ −µijkI 0 0 0

⋆ ⋆ −Sijk(Xijk) 0 0

⋆ ⋆ ⋆ −µijkI ΠT
ijk

⋆ ⋆ ⋆ ⋆ −I























< 0

[

µijkI ΠT
ijk

⋆ I

]

> 0

where the LMIs in the constraints are obtained from (30)-(31) by replacing µ2 by δ. This leads to
the following Corollary:
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Corollary 1: Let δ > 0, Xijk = X T
ijk > 0, Kk, and Ωijk be the solution of the optimization problem

O. Then, the controller (2) stochastically stabilizes the AFTCSMP we are considering and moreover
the closed loop system satisfies the disturbance rejection of level

√
δ. ♦

Remark 4: The optimization problem O represents a minimization of a linear objective under LMI
constraints. It can be easily solved using the function mincx implemented on the LMI control toolbox
for use with MATLAB [13].

Remark 5: For practical applications, the above derived theoretical results could be used as fol-
lows: first, compute off-line, using the results in Proposition 3 (stochastic stability) or Corollary 1
(H∞ control), the controller gains in nominal and faulty situations. Second, and providing the FDI
processus states, the supervision mechanism will switch, on-line, to the corresponding controller.

6 Numerical Examples

a) Actuator Failures Case

In this section, the proposed H∞ static output feedback control of AFTCSMP is illustrated using
a flight control example. Consider the nominal system with:

A =

[

−1.175 0.9871
−8.458 −0.8776

]

, B =

[

−0.194 −0.0359
−19.29 −3.803

]

, E =

[

0.5 0
0.1 0.2

]

, W = 0.5 × I,

C2 =
[

0 1
]

, D2 =
[

0.1 0.1
]

, C1 =

[

1 0
0 1

]

, D1 =

[

0 0
1 0

]

.

This model is adapted from [3]. It represents the decoupled linearized longitudinal dynamics of F-18
aircraft flying at Mach 0.7 at an altitude of 14000 ft. The state vector xt ∈ R

2 is composed by the
following:

x1: angle of attack;

x2: pitch rate;

and the components of command vector are:

u1: symmetric elevator position;

u2: symmetric pitch thrust velocity nozzle position.

For illustration purposes, we will consider two faulty modes:

i) Mode 2: A 50% power loss on the second actuator;

ii) Mode 3: First actuator outage and a 50% power loss on the second actuator.

From above, we have that S = {1, 2, 3}, where the mode 1 represents the nominal case. The failure
process is assumed to have Markovian transition characteristics. The FDI process is also Markovian
with three states R = {1, 2, 3}.
The actuator failure rates are assumed to be:

[νij ] =





−0.002 0.0010 0.0010
0.0010 −0.002 0.0010
0.0010 0.0010 −0.002





The FDI conditional transition rates are:

[λ1

ij ] =





−0.02 0.01 0.01
1.00 −1.01 0.01
1.00 0.01 −1.01



 , [λ2

ij ] =





−1.01 1.00 0.01
0.01 −0.02 0.01
0.01 1.00 −1.01



 , [λ3

ij ] =





−1.01 0.01 1.00
0.01 −1.01 1.00
0.01 0.01 −0.02



 .
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For the above AFTCSMP, and solving the optimization problem O, we obtain the following H∞

performance from wt to z∞t: µ = 1.4247.
The corresponding controllers are given as follows:

K1 =
[

−0.0010 25.1064
]T

, K2 =
[

0.8996 24.9051
]T

, K3 =
[

−0.8854 33.4214
]T

.
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Figure 2: State variables evolution: single sample path simulation
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Figure 3: Evolution of the variables z∞t: single sample path simulation

The state trajectories of the closed loop system resulting from the obtained controllers are shown in
Figure 2. These trajectories represent a single sample path simulation corresponding to a realization
of the failure process ηt and the FDI process ψt. Figure 3 represents the evolution of the controlled
outputs z∞t. It can be seen that the closed-loop system is stochastically stable and that the distur-
bance attenuation is achieved.

b) Plant Component Failure case

Let us consider the following academical example:

A1 =





0.9749 −0.3257 0.2333
−2.3779 −2.0122 0.6464
−1.0923 1.5677 −1.129



 , B =





1 1
0.25 2
0 0.5



 , E =





1 0
0 0.1

0.2 0



 , W = 0.5 × I,

C2 =

[

1 0 0
0 1 0

]

, D2 =

[

0.5 0
0 0.5

]

, C1 =

[

1 0 0
0 0 1

]

, D1 =

[

0 0
0 1

]

.
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We will consider that this system is subject to one possible plant component failure that modify the
dynamics as follows:

A2 =





0.1970 0.7925 −1.1087
1.6969 0.6034 2.1442
0.7260 −0.0584 −1.3528



 .

From above, we have that Z = {1, 2}, where the mode 1 represents the nominal case and mode 2
the faulty one. The failure process is assumed to have Markovian transition characteristics. The FDI
process is also Markovian with two states R = {1, 2}.
The plant component failure rates are assumed to be:

[πij ] =

[

−0.0050 0.0050
0.0100 −0.0100

]

The FDI conditional transition rates are:

[λ1
ij ] =

[

−0.1000 0.1000
0.9000 −0.9000

]

, [λ2
ij ] =

[

−1.000 1.0000
0.1000 −0.1000

]

.

As for the previous example, and solving the optimization problem O, we obtain the following H∞

performance from wt to z∞t: µ = 1.3595.
The corresponding controllers are given as follows:

K1 =

[

−5.4724 −0.2437
0.4205 −1.0532

]

, K2 =

[

−5.6677 −1.0610
0.3593 −1.0551

]

.
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Figure 4: State variables evolution: single sample path simulation

The state trajectories of the closed loop system resulting from the obtained controllers are shown in
Figure 4. These trajectories represent, as for the previous example, a single sample path simulation
corresponding to a realization of the failure process ηt and the FDI process ψt. Figure 5 represents
the evolution of the controlled outputs z∞t. It can be seen that the closed-loop stochastic stability
and H∞ performance requirements are achieved.

7 Conclusion

In this paper, we have first considered the problematic of static output feedback stochastic stabilization
of an AFTCSMP. It was shown that the necessary and sufficient conditions for the internal exponential
stability in the mean square sense can be written in terms of a nonlinear matrix inequality feasibility
problem. Then, an LMI relaxation scheme was presented to eliminate the nonlinearities, yielding to a
new easily tractable sufficient condition. Having obtained these results, we have moved on the control
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Figure 5: Evolution of the variables z∞t: single sample path simulation

problem. Indeed, we have introduced an LMI approach to the H∞ control for linear continuous
time AFTCSMP with Wiener process under a static output feedback control. We have derived some
linear matrix inequalities whose solutions indicate the achievability of the desired control problem;
i.e. we have shown that the H∞ control problematic can be recast as a convex optimization problem
under constraints of LMIs which can be solved effectively using the recently developed LMI tool.
The effectiveness of the developed method was illustrated on simulation examples. However, it is
important to note that the obtained LMI conditions are only sufficient. Our future works will be
dedicated to treat the above problematic in a nonconvex optimization framework which will lead to
necessary and sufficient synthesis conditions. Significant results are already obtained using a new
framework based on the synthesis of ellipsoidal sets of controllers.
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